2-微专题1 高考数学二轮复习专题
高三数学二轮复习专题突破课件:解析几何
A.[1,+∞) B.[-1,- )
3
C.( ,1]
4
4
D.(-∞,-1]
答案:B
解析:∵y=kx+4+2k=k(x+2)+4,所以直线过定点(-2,4),曲线y=
4 − x 2 变形为x2+y2=4(y≥0),表示圆的上半部分,当直线与半圆相切时直线斜
3
率为k=- ,当直线过点(2,0)时斜率为-1,结合图象可知实数k的取值范围是
a=2
所以 ሺ2 − 3 − ሻ2 + 2 = 2 ,解得 b = 1 .
r=2
2 + ሺ1 − ሻ2 = 2
所以圆的方程为(x-2)2+(y-1)2=4.
4.[2023·广东深圳二模]过点(1,1)且被圆x2 +y2 -4x-4y+4=0所
x+y-2=0
截得的弦长为2 2的直线的方程为___________.
-2)的距离为 2 − 0 2 + 0 + 2 2 =2 2,由于圆心
α
2
5
=
2 2 2 2
α
αபைடு நூலகம்
α = 2sin cos =
2
2
与点(0,-2)的连线平分角α,所以sin =
10
α
6
, 所 以 cos = , 所 以 sin
4
2
4
10
6
15
2×
× = .故选B.
4
4
4
r
=
(2)[2023·河南郑州二模]若圆C1:x2+y2=1与圆C2:(x-a)2+(y-b)2
解析:圆x2+y2-4x-4y+4=0,即(x-2)2+(y-2)2=4,
圆心为(2,2),半径r=2,
高考数学二轮专题(人教版)
高考数学二轮复习专题教案(人教版)集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,...};②描述法。
2、两类关系:(1)元素与集合的关系,用或表示;(2)集合与集合的关系,用,,=表示,当AB时,称A是B的子集;当AB时,称A是B的真子集。
3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2}(C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}解:选(D),最小的质数是2,不是1,故(A)错;由集合的定义可知(B)(C)都错。
例2、已知集合A=-1,3,2-1,集合B=3,.若BA,则实数=.解:由BA,且不可能等于-1,可知=2-1,解得:=1。
2023年高考数学二轮复习第一部分专题攻略专题一小题专攻第二讲复数、平面向量
第二讲 复数、平面向量微专题1 复数常考常用结论1.已知复数z =a +b i(a ,b ∈R ),则(1)当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数. (2)z 的共轭复数z ̅=a -b i. (3)z 的模|z |=√a 2+b 2. 2.已知i 是虚数单位,则 (1)(1±i)2=±2i ,1+i 1−i =i ,1−i1+i =-i.(2)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.保 分 题1.[2022·新高考Ⅱ卷](2+2i)(1-2i)=( ) A .-2+4i B .-2-4i C .6+2i D .6-2i 2.[2022·全国甲卷]若z =1+i ,则|i z +3z ̅|=( ) A .4√5 B .4√2 C .2√5D .2√23.[2022·全国乙卷]已知z =1-2i ,且z +a z ̅+b =0,其中a ,b 为实数,则( ) A .a =1,b =-2 B .a =-1,b =2 C .a =1,b =2 D .a =-1,b =-2提 分 题例1 (1)[2022·福建漳州一模]已知z =|√3i -1|+11+i,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限(2)[2022·山东潍坊二模](多选)若复数z 1=2+3i ,z 2=-1+i ,其中i 是虚数单位,则下列说法正确的是( )A .z1z 2∈RB.z 1·z 2̅̅̅̅̅̅̅̅=z 1̅·z 2̅C .若z 1+m (m ∈R )是纯虚数,那么m =-2D .若z 1,z 2在复平面内对应的向量分别为OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ (O 为坐标原点),则|AB⃗⃗⃗⃗⃗ |=5 听课笔记:【技法领悟】复数的代数运算的基本方法是运用运算法则,可以通过对代数式结构特征的分析,灵活运用i 的幂的性质、运算法则来优化运算过程.巩固训练11.[2022·山东泰安二模]已知复数z =3−i 1−2i,i 是虚数单位,则复数z ̅-4在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.[2022·河北保定二模](多选)已知复数z 满足方程(z 2-4)(z 2-4z +5)=0,则( )A .z 可能为纯虚数B .方程各根之和为4C .z 可能为2-iD .方程各根之积为-20微专题2 平面向量常考常用结论1.平面向量的两个定理 (1)向量共线定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.2.平面向量的坐标运算设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,θ为a 与b 的夹角. (1)a ∥b ⇔x 1y 2-x 2y 1=0.(2)a ·b =|a ||b |cos θ=x 1x 2+y 1y 2. (3)a ⊥b ⇔x 1x 2+y 1y 2=0.(4)|a |=√a ·a =√x 12+y 12.(5)cos θ=a·b|a ||b |=1212√x 1+y 1 √x 2+y 2.保 分 题1.△ABC 中,E 是边BC 上靠近B 的三等分点,则向量AE⃗⃗⃗⃗⃗ =( ) A .13AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ B .13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ C .23AB⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ D .23AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ 2.[2022·全国乙卷]已知向量a ,b 满足|a |=1,|b |=√3,|a -2b |=3,则a ·b =( ) A .-2 B .-1 C .1 D .2 3.[2022·全国甲卷]已知向量a =(m ,3),b =(1,m +1),若a ⊥b ,则m =________.提 分 题例2 (1)[2022·河北石家庄二模]在平行四边形ABCD 中,M ,N 分别是AD ,CD 的中点,若BM⃗⃗⃗⃗⃗⃗ =a ,BN ⃗⃗⃗⃗⃗ =b ,则BD ⃗⃗⃗⃗⃗ =( ) A .34a +23b B .23a +23bC .34a +34bD .23a +34b(2)[2022·山东济宁一模]等边三角形ABC 的外接圆的半径为2,点P 是该圆上的动点,则PA ⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为( ) A .4 B .7 C .8 D .11 听课笔记:【技法领悟】求解向量数量积最值问题的两种思路1.直接利用数量积公式得出代数式,依据代数式求最值.2.建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.巩固训练21.[2022·山东济南二模]在等腰梯形ABCD 中,AB ⃗⃗⃗⃗⃗ =-2CD ⃗⃗⃗⃗⃗ ,M 为BC 的中点,则AM ⃗⃗⃗⃗⃗⃗ =( )A .12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ B .34AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ C .34AB ⃗⃗⃗⃗⃗ +14AD⃗⃗⃗⃗⃗ D .12AB ⃗⃗⃗⃗⃗ +34AD⃗⃗⃗⃗⃗ 2.[2022·福建漳州二模]已知△ABC 是边长为2的正三角形,P 为线段AB 上一点(包含端点),则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的取值范围为( ) A .[-14,2] B .[-14,4] C .[0,2]D .[0,4]第二讲 复数、平面向量微专题1 复数保分题1.解析:(2+2i)(1-2i)=2-4i +2i -4i 2=2-2i +4=6-2i.故选D. 答案:D2.解析:因为z =1+i ,所以z ̅=1-i ,所以i z +3z ̅=i(1+i)+3(1-i)=2-2i ,所以|i z +3z ̅|=|2-2i|=√22+(−2)2=2√2.故选D. 答案:D3.解析:由z =1-2i 可知z ̅=1+2i.由z +a z ̅+b =0,得1-2i +a (1+2i)+b =1+a +b +(2a -2)i =0.根据复数相等,得{1+a +b =0,2a −2=0,解得{a =1,b =−2.故选A.答案:A提分题[例1] 解析:(1)∵z =|√3i -1|+11+i = √(√3)2+(−1)2+1−i1−i 2=2+1−i 2=52−12i ,∴复平面内z 对应的点(52,-12)位于第四象限. (2)对于A ,z1z 2=2+3i −1+i=(2+3i )(−1−i )(−1+i )(−1−i )=1−5i 2=12−52i ,A 错误;对于B ,∵z 1·z 2=(2+3i)(-1+i)=-5-i ,∴z 1·z 2̅̅̅̅̅̅̅̅=-5+i ;又z 1̅·z 2̅=(2-3i)(-1-i)=-5+i ,∴z 1·z 2̅̅̅̅̅̅̅̅=z 1̅·z 2̅,B 正确;对于C ,∵z 1+m =2+m +3i 为纯虚数,∴m +2=0,解得:m =-2,C 正确; 对于D ,由题意得:OA ⃗⃗⃗⃗⃗ =(2,3),OB ⃗⃗⃗⃗⃗ =(-1,-1),∴AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(-3,-4),∴|AB ⃗⃗⃗⃗⃗ |=√9+16=5,D 正确.答案:(1)D (2)BCD [巩固训练1]1.解析:z =3−i1−2i =(3−i )(1+2i )(1−2i )(1+2i )=5+5i 5=1+i ,则z ̅-4=1-i -4=-3-i ,对应的点位于第三象限.故选C.答案:C2.解析:由(z 2-4)(z 2-4z +5)=0,得z 2-4=0或z 2-4z +5=0, 即z 2=4或(z -2)2=-1,解得:z =±2或z =2±i ,显然A 错误,C 正确; 各根之和为-2+2+(2+i)+(2-i)=4,B 正确; 各根之积为-2×2×(2+i)(2-i)=-20,D 正确. 答案:BCD微专题2 平面向量保分题1.解析:因为点E 是BC 边上靠近B 的三等分点,所以BE ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ , 所以AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=23AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ .故选C. 答案:C2.解析:将|a -2b |=3两边平方,得a 2-4a ·b +4b 2=9.因为|a |=1,|b |=√3,所以1-4a ·b +12=9,解得a ·b =1.故选C.答案:C3.解析:由a ⊥b ,可得a ·b =(m ,3)·(1,m +1)=m +3m +3=0,所以m =-34. 答案:-34提分题[例2] 解析:(1)如图所示,设AB ⃗⃗⃗⃗⃗ =m ,AD⃗⃗⃗⃗⃗ =n ,且BD ⃗⃗⃗⃗⃗ =x a +y b ,则BD ⃗⃗⃗⃗⃗ =x a +y b =x (12n -m )+y (n -12m )=(12x +y )n -(x +12y )m , 又因为BD⃗⃗⃗⃗⃗ =n -m , 所以{12x +y =1x +12y =1,解得x =23,y =23,所以BD ⃗⃗⃗⃗⃗ =23a +23b . 故选B.(2)如图,等边三角形ABC ,O 为等边三角形ABC 的外接圆的圆心,以O 为原点,AO 所在直线为y 轴,建立直角坐标系.因为AO =2,所以A (0,2),设等边三角形ABC 的边长为a ,则asin A =asin 60°=2R =4,所以a =2√3,则B (-√3,-1),C (√3,-1).又因为P 是该圆上的动点,所以设P (2cos θ,2sin θ),θ∈[0,2π), PA ⃗⃗⃗⃗ =(-2cos θ,2-2sin θ),PB⃗⃗⃗⃗⃗ =(-√3-2cos θ,-1-2sin θ),PC ⃗⃗⃗⃗ =(√3-2cos θ,-1-2sin θ),PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =-2cos θ(-√3-2cos θ)+(2-2sin θ)(-1-2sin θ)+(-√3-2cos θ)(√3-2cos θ)+(-1-2sin θ)(-1-2sin θ)=3+1+2sin θ+2√3cos θ=4+4sin (θ+π3),因为θ∈[0,2π),θ+π3∈[π3,7π3),sin (θ+π3)∈[-1,1],所以当sin (θ+π3)=1时,PA ⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为8.故选C.答案:(1)B (2)C [巩固训练2]1.解析:取AD 中点N ,连接MN ,∵AB⃗⃗⃗⃗⃗ =-2CD ⃗⃗⃗⃗⃗ ,∴AB ∥CD ,|AB |=2|CD |, 又M 是BC 中点,∴MN ∥AB ,且|MN |=12(|AB |+|CD |)=34|AB |, ∴AM ⃗⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗⃗ +NM ⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ +34AB ⃗⃗⃗⃗⃗ ,故选B. 答案:B 2.解析:以AB 中点O 为坐标原点,OB ⃗⃗⃗⃗⃗ ,OC⃗⃗⃗⃗⃗ 正方向为x ,y 轴可建立如图所示平面直角坐标系,则A (-1,0),B (1,0),C (0,√3),设P (m ,0)(-1≤m ≤1),∴PB⃗⃗⃗⃗⃗ =(1-m ,0),PC ⃗⃗⃗⃗ =(-m ,√3), ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =m 2-m =(m -12)2-14, 则当m =12时,(PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ )min =-14;当m =-1时,(PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ )max =2; ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的取值范围为[-14,2].故选A. 答案:A。
高中数学二轮微专题复习策略探究
高中数学二轮微专题复习策略探究高中数学是学生们最常接触的学科之一,是学生们学习过程中必须重视的科目。
在高中数学学习中,微积分是一个非常重要的部分。
作为高中数学二轮微专题复习的一部分,微积分的学习内容涉及到极限、导数、微分、积分等方面的知识点,需要学生们在复习时重点掌握。
本文将探讨高中数学二轮微专题的复习策略,帮助学生们更好地准备微积分的考试。
高中数学二轮微专题复习的策略之一是系统性复习。
这意味着学生们需要在复习微积分时,按照学科知识的逻辑顺序,从易到难、由表及里地展开复习。
学生们可以从回顾基本概念开始,例如极限的定义与性质、导数的定义与几何意义、微分的定义与性质等,然后逐步深入,掌握微积分的相关定理和公式,最后完成一些综合练习和真题演练。
通过系统性复习,学生们可以全面地掌握微积分的知识,提高学习效果。
高中数学二轮微专题复习的策略之二是注重重点难点。
在微积分学科中,一些知识点可能会比较抽象和难以理解,例如极限的运算法则、洛必达法则、微分中的高阶导数、积分中的换元积分法等。
针对这些重难点,学生们可以通过查阅资料、请教老师、多加练习等方式,加强对这些知识点的理解和掌握。
学生们也可以结合实际问题,通过举一反三的方法,将这些抽象的知识点转化为实际问题的解决方案,有助于深入了解和掌握这些知识点。
高中数学二轮微专题复习的策略之三是勤加练习。
微积分是一个需要通过大量练习来掌握的学科,在复习微积分时,学生们需要勤加练习,多做例题和真题。
通过大量的练习,学生们可以更加熟练地掌握微积分的知识点,提高解题的能力,培养思维方式和解决问题的方法。
学生们还可以通过参加模拟考试和做题比赛等方式,检验自己的学习水平,找出学习中存在的不足,并及时调整学习策略。
高中数学二轮微专题复习的策略之四是及时总结。
在复习微积分的过程中,学生们需要及时总结自己的学习情况,包括每一次复习的收获和不足,总结某一种解题方法的使用规律和技巧,找出容易出错的知识点等。
2022年高考数学二轮复习第一部分专题攻略 专题二 三角函数、解三角形 第1讲三角函数的图象与性质
第1讲三角函数的图象与性质——小题备考微专题1三角函数图象的平移伸缩『常考常用结论』1.“五点法”作图设z=ωx+φ,令z=0,π2,π,3π2,2π,求出x的值与相应的y的值,描点、连线可得.2.图象变换y=sin x向左(φ>0)或向右(φ<0),平移|φ|个单位y=sin (x+φ)横坐标变为原来的1ω(ω>0)倍,纵坐标不变y=sin (ωx+φ)纵坐标变为原来的A(A>0)倍,横坐标不变y=A sin (ωx+φ).『保分题组训练』1.将函数y=sin x的图象向左平移π4个单位,得到的图象的函数解析式是()A.y=sin(x−π4)B.y=sin x-π4C.y=sin(x+π4)D.y=sin x+π42.要得到函数y =cos (3x −π6)的图象,只需将y =cos 3x 的图象( ) A .向右平移π6B .向左平移π6C .向右平移π18D .向左平移π183.[2021·河北保定一模]已知函数f(x)=2sin x ,为了得到函数g(x)=2sin (2x −π3)的图象,只需( )A .先将函数f(x)图象上点的横坐标变为原来的2倍,再向右平移π6个单位 B .先将函数f(x)图象上点的横坐标变为原来的12,再向右平移π6个单位C .先将函数f(x)图象向右平移π6个单位,再将点的横坐标变为原来的12 D .先将函数f(x)图象向右平移π3个单位,再将点的横坐标变为原来的2倍4.(多选题)要得到函数y =sin (2x +π3)的图象,只要将函数y =sin x 的图象( )A .每一点的横坐标扩大到原来的2倍(纵坐标不变),再将所得图象向左平移π3个单位长度B .每一点的横坐标缩短到原来的12 (纵坐标不变),再将所得图象向左平移π6个单位长度 C .向左平移π3个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变)D .向左平移π6个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变)『提分题组训练』1.[2021·河北张家口三模]为了得到函数f (x )=sin 13x +cos 13x 的图象,可以将函数g (x )=√2cos 13x 的图象( )A .向右平移3π4个单位长度 B .向右平移π4个单位长度C .向左平移3π4个单位长度D .向左平移π4个单位长度2.[2021·山东潍坊学情调研]将函数f(x)=sin (2x +π3)的图象向右平移a(a>0)个单位得到函数g(x)=cos (2x +π4)的图象,则a 的值可以为( )A.5π12B.7π12C.19π24D.41π243.函数y=sin(ωx+φ)(ω>0)的图象向左平移2π3的单位,所得到的图象与原函数图象的对称轴重合,则ω的最小值是()A.34B.1 C.2 D.324.[2021·山东青岛期末检测](多选题)要得到y=cos2x的图象C1,只要将y=sin(2x+π3)的图象C2怎样变化得到()A.将y=sin(2x+π3)的图象C2沿x轴方向向左平移π12个单位B.将y=sin(2x+π3)的图象C2沿x轴方向向右平移11π12个单位C.先作C2关于x轴对称图象C3,再将图象C3沿x轴方向向右平移5π12个单位D.先作C2关于x轴对称图象C3,再将图象C3沿x轴方向向左平移π12个单位微专题2三角函数的性质『常考常用结论』1.三角函数的单调区间y=sin x的单调递增区间是[2kπ−π2,2kπ+π2](k∈Z),单调递减区间是[2kπ+π2,2kπ+3π2](k∈Z);y=cos x的单调递增区间是[2kπ-π,2kπ](k∈Z),单调递减区间是[2kπ,2kπ+π](k∈Z);y=tan x的递增区间是(kπ−π2,kπ+π2)(k∈Z).2.三角函数的奇偶性与对称性y=A sin (ωx+φ),当φ=kπ(k∈Z)时为奇函数;当φ=kπ+π2(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ+π2(k∈Z)求得.y=A cos (ωx+φ),当φ=kπ+π2(k∈Z)时为奇函数;当φ=kπ(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ(k∈Z)求得.y=A tan (ωx+φ),当φ=kπ(k∈Z)时为奇函数.3.三角函数的周期(1)y=A sin (ωx+φ)和y=A cos (ωx+φ)的最小正周期为2π|ω|,y=A tan (ωx+φ)的最小正周期为π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个最小正周期,相邻的对称中心与对称轴之间的距离是14个最小正周期;正切曲线相邻两对称中心之间的距离是12个最小正周期.『保分题组训练』1.下列函数中,周期为π,且在区间(π2,π)单调递增的是()A.y=|sin x|B.y=sin |x|C.y=cos 2x D.y=sin 2x2.已知函数f(x)=cos (2x+π3),则下列说法错误的是()A.f(x)的最小正周期是πB.f(x)的图象关于点(−5π12,0)对称C.f(x)在[−π6,π3]上为减函数D.f(x)的一条对称轴是x=π123.[2021·山东济宁质量检测](多选题)将函数f(x)=sin 2x的图象向右平移π4个单位后得到函数g(x)的图象,则函数g(x)具有性质()A.在(0,π4)上单调递增,为偶函数B.最大值为1,图象关于直线x=-3π2对称C.在(−3π8,π8)上单调递增,为奇函数D.周期为π,图象关于点(3π4,0)对称4.[2021·辽宁朝阳二模] (多选题)已知函数f (x )=|sin x ||cos x |,则下列说法正确的是( ) A. f (x )的图象关于直线x =π2对称 B. f (x )的周期为π2C .(π,0)是f (x )的一个对称中心 D. f (x )在区间[π4,π2]上单调递增『提分题组训练』1.[2021·淄博一模]已知f (x )=cos x (cos x +√3sin x )在区间[-π3,m ]上的最大值是32,则实数m 的最小值是( )A .π12 B .π3 C .-π12 D .π62.将函数y =sin 2x +√3cos 2x 的图象沿x 轴向左平移φ个单位后,得到一个偶函数的图象,则|φ|的最小值为( )A .π12 B .π6 C .5π12D .-5π123.[2021·湖南六校联考](多选题)已知函数f (x )=2cos (ωx +φ)(ω>0,|φ|<π2)的图象上,对称中心与对称轴x =π12的最小距离为π4,则下列结论正确的是( )A.函数f (x )的一个对称点为(5π12,0)B .当x ∈[π6,π2]时,函数f (x )的最小值为-√3C .若sin 4α-cos 4α=-45(α∈(0,π2)),则f (α+π4)的值为4−3√35D .要得到函数f (x )的图象,只需要将g (x )=2cos2x 的图象向右平移π6个单位 4.[2021·山东烟台一模](多选题)已知函数f (x )=2|sin x |+|cos x |-1,则( ) A .f (x )在[0,π2]上单调递增B .直线x =π2是f (x )图象的一条对称轴C.方程f(x)=1在[0,π]上有三个实根D.f(x)的最小值为-11.三角函数单调区间的求法:微专题3由图象求三角函数的解析式『保分题组训练』1.函数y=A sin (ωx+φ)的图象的一部分如图所示,则函数表达式可写成()A.y=2sin (2x+π3)B.y=sin (x+π12)C.y=√2sin (2x−5π6)D.y=2sin (2x+π6)2.函数f(x)=A sin (ωx+φ)(其中A>0,ω>0,|φ|<π2)的图象如图所示,为了得到f(x)的图象,只需将g (x )=A sin ωx 图象( )A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π12个单位长度 D .向右平移π12个单位长度3.设函数f (x )=sin (ωx −π4)(ω>0)的部分图象如图所示,且满足f (2)=0.则f (x )的最小正周期为( )A .169 B .16C .18D .984.[2021·全国乙卷]把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin (x −π4)的图象,则f (x )=( )A .sin (x2−7π12) B. sin (x 2+π12) C. sin (2x −7π12) D. sin (2x +π12)『提分题组训练』1.智能主动降噪耳机工作的原理如图1所示,是通过耳机两端的噪声采集器采集周围的噪音,然后通过听感主动降噪芯片生成相等的反向波抵消噪音.已知某噪音的声波曲线y =A sin (ωx +π6)(A >0,ω>0)在[−π2,π2]上大致如图2所示,则通过听感主动降噪芯片生成相等的反向波曲线可以为( )A .y =2sin (πx +π6) B .y =2√33sin (2π5x −π3) C .y =2√33sin (4π5x −2π3)D .y =2sin (πx −5π6)2.[2021·山东德州一模](多选题)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,将函数f (x )的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g (x )的图象,则下列关于函数g (x )的说法正确的是( )A .g (x )的最小正周期为2π3 B .g (x )在区间[π9,π3]上单调递增 C .g (x )的图象关于直线x =4π9对称D .g (x )的图象关于点(π9,0)成中心对称3.[2021·石家庄一模](多选题)函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象如图,把函数f (x )的图象上所有的点向右平移π6个单位长度,可得到函数y =g (x )的图象,下列结论正确的是( )A .φ=π3B .函数g (x )的最小正周期为πC .函数g (x )在区间[−π3,π12]上单调递增 D .函数g (x )关于点(−π3,0)中心对称确定y =A sin (ωx +φ)+b (A >0,ω>0)的解析式的方法详解答案 二轮专题复习战略·数学(新高考)专题二 三角函数、解三角形 第1讲 三角函数的图象与性质微专题1 三角函数图象的平移伸缩保分题组训练1.解析:函数y =sin x 的图象向左平移π4个单位,得到y =sin (x +π4)的图象. 故选C . 答案:C2.解析:将y =cos 3x 的图象向右平移π18个长度单位,可得函数y =cos [3(x −π18)]=cos (3x −π6)的图象.故选C . 答案:C3.解析:对于A :先将函数f(x)图象上点的横坐标变为原来的2倍,得到y =2sin 12x ,故A 错误;对于B :先将函数f(x)图象上点的横坐标变为原来的12,得到y =2sin 2x ,再右移π6个单位,得到y =2sin 2(x −π6),即为y =2sin (2x −π3),故B 正确;对于C: 先将函数f(x)图象向右平移π6个单位,得到y =2sin (x −π6),再将点的横坐标变为原来的12,得到y =2sin (2x −π6),故C 错误;对于D: 先将函数f(x)图象向右平移π3个单位,得到y =2sin (x −π3),再将点的横坐标变为原来的2倍,得到y =2sin (12x −π3),故D 错误.故选B . 答案:B4.解析:(1)先伸缩后平移时:每一点的横坐标缩短到原来的12 (纵坐标不变),再将所得图象向左平移π6个单位长度,所以A 选项错误,B 选项正确.(2)先平移后伸缩时:向左平移π3个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变),所以C 选项正确,D 选项错误.故选BC .答案:BC提分题组训练1.解析:f (x )=sin 13x +cos 13x =√2cos (13x −π4)=√2cos [13(x −3π4)].故选A . 答案:A2.解析:由题意知,g(x)=cos (2x +π4)=sin (2x +3π4),其图象向左平移a 个单位得到函数f(x)=sin (2x +2a +3π4),而函数f(x)=sin (2x +π3),所以有2a +3π4=π3+2k π,a =-524π+k π,取k =1得a =1924π. 故选C . 答案:C3.解析:∵函数y =sin (ωx +φ)(ω>0)的图象向左平移2π3个单位,所得到的图象与原函数图象的对称轴重合,∴2π3=k·T2=kπω,即ω=32k ,k ∈Z , 令k =1,可得ω的最小值为32,故选D. 答案:D4.解析:对于A ,将y =sin (2x +π3)的图象C 2沿x 轴方向向左平移π12个单位,可得y =sin [2(x +π12)+π3]=sin (2x +π2)=cos 2x 的图象C 1,故选项A 正确;对于B ,将y =sin (2x +π3)的图象C 2沿x 轴方向向右平移11π12个单位也可得到,y =sin [2(x −11π12)+π3]=sin (2x −3π2)=cos 2x 的图象C 1,故选项B 正确;对于C ,先作C 2关于x 轴对称,得到y =-sin (2x +π3)的图象C 3,再将图象C 3沿x轴方向向右平移5π12个单位,得到y =-sin [2(x −5π12)+π3]=-sin (2x −π2)=cos 2x 的图象C 1,故选项C 正确;对于D ,先作C 2关于x 轴对称,得到y =-sin (2x +π3)的图象C 3,再将图象C 3沿x轴方向向左平移π12个单位,得到的y =-sin [2(x +π12)+π3]=-sin (2x +π2)=-cos 2x 图象,故选项D 不正确.故选ABC.答案:ABC微专题2 三角函数的性质保分题组训练1.解析:对于A ,y =|sin x |的图象是将y =sin x 的图象中y 轴下方的图象翻折到上方得到的,故最小正周期为π;当x ∈(π2,π)时,y =sin x >0,∴y =|sin x |=sin x 在(π2,π)上单调递减,故A 不正确;对于B ,当x =-3π2时,y =sin |x |=-1,当x =-π2时,y =sin |x |=1≠-1,所以周期不是π,故B 不正确;对于C ,y =cos 2x 的最小正周期为2π2=π,当x ∈(π2,π)时,2x ∈(π,2π),y =cos 2x 单调递增,故C 正确;对于D ,y =sin 2x 的最小正周期为2π2=π,当x ∈(π2,π)时,2x ∈(π,2π),y =sin 2x 不是单调递增的,故D 不正确.故选C. 答案:C2.解析:对于函数f (x )=cos (2x +π3),它的最小正周期为2π2=π,故A 正确;令x =-5π12,可得f (x )=0,所以f (x )的图象关于点(−5π12,0)对称,故B 正确;当x ∈[−π6,π3]时,2x +π3∈[0,π],故f (x )在[−π6,π3]上为减函数,故C 正确;令x =π12,可得f (x )=0,故x =π12不是f (x )的一条对称轴,故D 错误.故选D. 答案:D3.解析:g (x )=sin 2(x −π4)=sin (2x −π2)=-cos 2x ,x ∈(0,π4),则2x ∈(0,π2),g (x )=-cos 2x 单调递增,为偶函数,A 正确,C 错误;最大值为1,当x =-3π2时2x =-3π,为对称轴,B 正确;T =2π2=π,取2x =π2+k π,∴x =π4+kπ2,k ∈Z ,当k =1时满足,图象关于点(3π4,0)对称,D 正确.故选ABD. 答案:ABD4.解析:因为函数f (x )=|sin x ||cos x |=|sin x cos x |=12|sin 2x |,画出函数图象,如图所示;由图可知,f (x )的对称轴是x =kπ4,k ∈Z ;所以x =π2是f (x )图象的一条对称轴, A 正确; f (x )的最小正周期是π2,所以B 正确;f (x )是偶函数,没有对称中心,C 错误;由图可知,f (x )=12|sin 2x |在区间[π4,π2]上是单调减函数,D 错误.故选AB. 答案:AB提分题组训练1.解析:f (x )=cos x (cos x +√3sin x )=√3sin x cos x +cos 2x =1+cos 2x2+√32sin 2x =sin (2x +π6)+12,由x ∈[-π3,m ]得2x +π6∈[-π2,2m +π6], 当2x +π6=2k π+π2,k ∈Z 时取得最大值, 故2m +π6≥π2,即m ≥π6.则实数m 的最小值是π6. 故选D. 答案:D2.解析:∵函数y =sin 2x +√3cos 2x =2sin (2x +π3),将函数y =sin 2x +√3cos 2x 的图象沿x 轴向左平移φ个单位后, 得到函数y =2sin (2x +2φ+π3),函数关于y 轴对称, ∴2φ+π3=k π+π2(k ∈Z ),∴φ=kπ2+π12(k ∈Z ),当k =0时,|φ|min =π12. 故选A. 答案:A3.解析:函数f (x )=2cos (ωx +φ)(ω>0,|φ|<π2)的图象上, 对称中心与对称轴x =π12的最小距离为14×2πω=π4,∴ω=2.再根据2×π12+φ=k π,k ∈Z ,可得φ=-π6,故 f (x )=2cos (2x −π6). 令x =5π12,可得f (x )=-1≠0,故A 错误;当x ∈[π6,π2]时,2x -π6∈[π6,5π6],故当2x -π6=5π6时,函数f (x )的最小值为-√3,故B正确;若sin 4α-cos 4α=sin 2α-cos 2α=-cos 2α=-45(α∈(0,π2)),∴cos 2α=45,sin 2α=√1−cos 22α=35,则f (α+π4)=2cos (2α+π2−π6)=-2sin (2α−π6)=-2sin 2αcos π6+2cos 2αsin π6=4−3√35,故C 正确;将g (x )=2cos 2x 的图象向右平移π6个单位,可得y =2cos (2x −π3)的图象,故D 错误.故选BC. 答案:BC4.解析:A 选项,当x ∈[0,π2],f (x )=2sin x +cos x -1,f (x )不单调,A 错误, B 选项,f (π-x )=2|sin (π-x )|+|cos (π-x )|-1=2|sin x |+|cos x |-1=f (x ), ∴x =π2是它的一条对称轴,B 正确.C 选项,f (x )=1,即2|sin x |+|cos x |=2,当x ∈[0,π2],即2sin x +cos x =2,sin x =1或sin x =35,有两个零点;当x ∈[π2,π],2sin x -cos x =2,sin x =35,有1个零点,共3个零点;D 选项,若f (x )min =-1,即2|sin x |+|cos x |=0,需要|sin x |=0,且|cos x |=0矛盾,D 错误.故选BC. 答案:BC微专题3 由图象求三角函数的解析式保分题组训练1.解析:由图可知A =2,因为图象过点(0,1),所以2sin φ=1,所以取φ=π6, 因为图象过点(11π12,0),所以2sin (11π12ω+π6)=0,所以11π12ω+π6=2k π,k ∈Z ,即ω=2411k -211,k ∈Z ,当k =1时,ω=2,所以y =2sin (2x +π6).故选D.答案:D2.解析:根据函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π2)的图象,可得A =1,14T =5π12−π4=π6,即T =23π,∴ω=2π23π=3.将(π4,0)代入,可得f (π4)=sin (3×π4+φ)=0,则3×π4+φ=k π,k ∈Z ,∴φ=k π-3π4,k ∈Z ,又|φ|<π2,∴φ=π4,故f (x )=sin (3x +π4).故把g (x )=sin 3x 的图象向左平移π12个单位长度,即可得到f (x )=sin (3x +π4)的图象.故选C. 答案:C3.解析:因为f (2)=0,所以sin (2ω−π4)=0⇒2ω-π4=k π(k ∈Z )⇒ω=12k π+π8(k ∈Z ),设函数f (x )=sin (ωx −π4)(ω>0)的最小正周期为T ,由图可知{54T >2T <2,因为ω>0,所以有{54·2πω>22πω<2,⇒π<ω<5π4,因为ω=12k π+π8(k ∈Z ),所以74<k <94∵k ∈Z ∴k =2, 所以ω=98π,因此T =2π98π=169,故选A.答案:A4.解析:依题意,将y =sin (x −π4)的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin (x −π4) 将其图象向左平移π3个单位长度 → y =sin (x +π12)的图象 所有点的横坐标扩大到原来的2倍→ f (x )=sin (x2+π12)的图象.答案:B提分题组训练1.解析:由题图2可知:y =f (x )=A sin (ωx +π6)过(0,1),(56,0)两点,所以有y =f (0)=A sin π6=1⇒12A =1⇒A =2,f (56)=2sin (56ω+π6)=0⇒56ω+π6=k π(k ∈Z )⇒ω=(65k -15)π(k ∈Z ),当k =1时,y =f (x )=2sin (πx +π6),显然A 不符合题意,此时函数的周期为2ππ=2,要想抵消噪音,只需函数y =f (x )=2sin (πx +π6)向左或向右平移一个单位长度即可,即得到y =f (x +1)=2sin (πx +π+π6)=-2sin (πx +π6), 或y =f (x -1)=2sin (πx −π+π6)=2sin (πx −5π6),故选项D 符合,显然选项B ,C 的振幅不是2,不符合题意, 故选D. 答案:D2.解析:根据函数的图象:周期12T =5π12−(−π12)=π2,解得T =π,故ω=2. 进一步求得A =2.当x =5π12时,f (5π12)=2sin (5π6+φ)=-1,由于|φ|<π, 所以φ=2π3.所以f (x )=2sin (2x +2π3),函数f (x )的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g (x )=2sin (3x +π6)的图象,故对于A :函数的最小正周期为T =2π3,故A 正确;对于B :由于x ∈[π9,π3],所以3x +π6∈[π2,76π],故函数g (x )在区间[π9,π3]上单调递减,故B 错误;对于C :当x =4π9时,g (4π9)=2sin (4π3+π6)=-2,故函数g (x )的图象关于直线x =4π9对称,故C 正确;对于D :当x =π9时,g (π9)=2,故D 错误. 故选AC. 答案:AC3.解析:根据函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象, 可得T =2πω>11π12,且34T <11π12,∴ω∈(1811,2411).把(0,√3)代入,可得2sin φ=√3,∴φ=π3,或 φ=2π3.再把根据图象经过最高点(11π12,2),可得ω·11π12+φ=2k π+π2,k ∈Z . 当φ=π3时,ω·11π12+π3=2k π+π2,k ∈Z ,求得ω=211+24k11,不满足条件ω∈(1811,2411), 故φ=2π3,故A 错误. 此时,由ω·11π12+2π3=2k π+π2,k ∈Z ,求得ω=-211+24k 11,令k =1,可得ω=2,满足条件ω∈(1811,2411),故f (x )=2sin (2x +2π3).把函数f (x )的图象上所有的点向右平移π6个单位长度,可得到函数y =g (x )=2sin (2x +π3)的图象,故g (x )的最小正周期为2π2=π,故B 正确.当x ∈[−π3,π12],2x +π3∈[−π3,π2],故g (x )单调递增,故C 正确.令x =-π3,求得g (x )=-√3≠0,故g (x )的图象不关于点(−π3,0)中心对称,故D 错误. 故选BC.答案:BC。
2023届高考数学二轮复习微专题:正、余弦定理在解三角形中的应用 含答案解析
3 正、余弦定理在解三角形中的应用1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知C =60°,b =6,c =3,则A =________.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为a 2+b 2-c 24,则C=________.4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.5.在△ABC 中,B =120°,AB =2,A 的平分线AD =3,则AC =________.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.设向量m =(a ,c ),n =(cos C ,cos A ). (1)若m ∥n ,c =3a ,求角A ;(2)若m ·n =3b sin B ,cos A =45,求cos C 的值.8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos A =35,tan (B -A)=13.(1)求tan B 的值;答案及解析1.答案:75°.解析:由正弦定理b sin B =c sin C ,可得sin B =b sin C c =22,结合b <c ,可得B =45°,则A=180°-B -C =75°.2.答案:π3.解析:由正弦定理可得2sin B cos B =sin A cos C +sin C cos A =sin B ,在△ABC 中,sin B ≠0,可得cos B =12,在△ABC 中,可得B =π3.3.答案:π4.解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .△ABC 的面积为a 2+b 2-c 24,∴S △ABC =12ab sin C =a 2+b 2-c 24,∴sin C =a 2+b 2-c 22ab =cos C ,∵0<C <π,∴C =π4.4.答案:8.解析:因为0<A <π,所以sin A =1-cos 2A =154,又S △ABC =12bc sin A =158bc =315,所以bc =24,解方程组⎩⎪⎨⎪⎧b -c =2,bc =24得b =6,c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =62+42-2×6×4×⎝⎛⎭⎫-14=64,所以a =8.5.答案: 6.解析:如图所示,由正弦定理易得AB sin ∠ADB =AD sin B ,即2sin ∠ADB =3sin B ,故sin ∠ADB =22,即∠ADB =π4,在△ABC ,知∠B =120°,∠ADB =π4,即∠BAD =π12.由于AD 是∠BAC 的平分线,故∠BAC=2∠BAD =π6.在△ABC 中,∠B =120°,∠BAC =30°,易得∠ACB =30°.在△ABC 中,由正弦定理得AC sin ∠ABC =AB sin ∠ACB ,即AC sin60°=2sin30°,所以AC = 6.6.答案:9.解析:由题意得12ac sin120°=12a sin60°+12c sin60°,即ac =a +c ,得1a +1c =1,得4a+c =(4a +c )⎝⎛⎭⎫1a +1c =c a +4ac +5≥2c a ·4a c +5=4+5=9,当且仅当c a =4ac,即c =2a 时,取等号.7.答案:(1)π6;(2)3-8215.解析:(1)∵m ∥n ,∴a cos A =c cos C .由正弦定理,得sin A cos A =sin C cos C .化简得sin2A =sin2C .∵A ,C ∈(0,π),∴2A =2C 或2A +2C =π,从而A =C (舍去)或A +C =π2,∴B =π2.在Rt △ABC 中,tan A =a c =33,A =π6.(2)∵m ·n =3b sin B ,∴a cos C +c cos A =3b sin B .由正弦定理,得sin A cos C +sin C cos A =3sin 2B ,从而sin(A +C )=3sin 2B .∵A +B +C =π,∴sin(A +C )=sin B .从而sin B =13.∵cos A =45>0,A ∈(0,π),∴A ∈⎝⎛⎭⎫0,π2,sin A =35.∵sin A >sin B ,∴a >b ,从而A >B ,B 为锐角,cos B =223. ∴cos C =-cos(A +B )=-cos A cos B +sin A sin B =-45×223+35×13=3-8215.8.答案:(1)3;(2)78.解析:(1)在△ABC 中,由cos A =35,得A 为锐角,所以sin A =1-cos 2A =45,所以tan A=sin A cos A =43,所以tan B =tan[(B -A )+A ]=tan (B -A )+tan A 1-tan (B -A )·tan A=13+431-13×43=3. (2)在三角形ABC 中,由tan B =3,所以sin B =31010,cos B =1010, 由sin C =sin(A +B )=sin A cos B +cos A sin B =131050,由正弦定理b sin B =c sin C ,得b =c sin Bsin C =13×31010131050=15.所以△ABC 的面积S =12bc sin A =12×15×13×45=78.。
高中数学二轮微专题复习策略探究
高中数学二轮微专题复习策略探究高中数学二轮微专题复习是高中数学复习的关键环节之一。
为了有效地复习这一专题,以下是一些探究的策略。
1. 理清基础知识:需要理清所学的基础知识。
高中数学是一个渐进式的学科,后面的知识会建立在前面的基础上。
复习时需要回顾前面学过的知识,确保基础知识掌握牢固。
2. 制定复习计划:制定一个合理的复习计划是很重要的。
可以根据各个专题的重要程度和自己的掌握情况来设置复习时间。
要保证每天有固定的复习时间,并将复习内容均匀地分配到每个时间段。
3. 理解概念与定理:复习数学需要对概念与定理进行深入的理解。
可以通过查阅教材、参考书籍或者网络资源来加深对这些概念与定理的理解。
可以尝试用自己的话来解释这些概念与定理,以加深记忆。
4. 做题巩固知识:做题是复习数学的重要环节。
可以选择题目来练习掌握的知识,也可以选择一些综合性的题目来检验自己的综合能力。
在做题的过程中,可以注意总结解题方法和技巧,以备考时能够快速解题。
5. 定期归纳总结:在复习过程中,定期归纳总结是很重要的。
可以将每个专题的重点和难点进行总结,制成复习笔记或者思维导图。
这样能够帮助加深对知识的理解和记忆。
6. 寻求帮助:如果在复习过程中遇到困难,可以寻求帮助。
可以向老师请教问题,或者与同学共同进行讨论,互相学习和解答问题。
也可以利用互联网资源,如网上论坛和学习群,与其他学习者进行交流。
7. 多维度复习:在复习过程中,可以尝试从多个维度进行复习。
可以通过解题的角度来复习知识,也可以通过拓展应用的角度来复习知识。
这样能够加深对知识的理解和掌握。
高中数学二轮微专题复习需要有计划地进行,理清基础知识,做题巩固知识,定期归纳总结,多角度复习。
通过这些策略的有机组合,可以提高复习效果,为高中数学的考试打下坚实的基础。
2023年高考数学二轮复习第一部分专题攻略专题四立体几何第三讲立体几何
第三讲立体几何——大题备考【命题规律】立体几何大题一般为两问:第一问通常是线、面关系的证明;第二问通常跟角有关,一般是求线面角或二面角,有时与距离、几何体的体积有关.微专题1线面角保分题[2022·辽宁沈阳二模]如图,在四棱锥P-ABCD中,底面ABCD是正方形,P A⊥平面ABCD,P A=2AB=4,点M是P A的中点.(1)求证:BD⊥CM;(2)求直线PC与平面MCD所成角的正弦值.提分题例1 [2022·全国乙卷]如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E 为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.听课笔记:【技法领悟】利用空间向量求线面角的答题模板巩固训练1[2022·山东泰安一模]如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2AD=2,P A⊥平面ABCD,E为PD中点.(1)若P A=1,求证:AE⊥平面PCD;(2)当直线PC与平面ACE所成角最大时,求三棱锥E-ABC的体积.微专题2二面角保分题[2022·山东临沂二模]如图,AB是圆柱底面圆O的直径,AA1、CC1为圆柱的母线,四边形ABCD是底面圆O的内接等腰梯形,且AB=AA1=2BC=2CD,E、F分别为A1D、C1C的中点.(1)证明:EF∥平面ABCD;(2)求平面OEF与平面BCC1夹角的余弦值.提分题例2 [2022·湖南岳阳三模]如图,在四棱锥P-ABCD中,底面ABCD是菱形,F是PD 的中点.(1)证明:PB∥平面AFC;(2)若直线P A⊥平面ABCD,AC=AP=2,且P A与平面AFC所成的角正弦值为√21,求7锐二面角F-AC-D的余弦值.听课笔记:AD,现例3 [2022·山东日照二模]如图,等腰梯形ABCD中,AD∥BC,AB=BC=CD=12以AC为折痕把△ABC折起,使点B到达点P的位置,且P A⊥CD.(1)证明:平面APC⊥平面ADC;(2)若M为PD上一点,且三棱锥D-ACM的体积是三棱锥P-ACM体积的2倍,求二面角P-AC-M的余弦值.听课笔记:【技法领悟】利用空间向量求二面角的答题模板巩固训练21.[2022·广东韶关二模]如图,在四棱锥P-ABCD中,底面ABCD为矩形,点S是边AB 的中点.AB=2,AD=4,P A=PD=2√2.(1)若O是侧棱PC的中点,求证:SO∥平面P AD;(2)若二面角P-AD-B的大小为2π,求直线PD与平面PBC所成角的正弦值.32.[2022·河北保定一模]如图,在等腰梯形ABCD中,AD∥BC,AD=AB=CD=1,∠BCD =60°,现将DAC沿AC折起至P AC,使得PB=√2.(1)证明:AB⊥PC;(2)求二面角A-PC-B的余弦值.微专题3探索性问题提分题例4 [2022·山东聊城三模]已知四边形ABCD为平行四边形,E为CD的中点,AB=4,△ADE为等边三角形,将三角形ADE沿AE折起,使点D到达点P的位置,且平面APE⊥平面ABCE.(1)求证:AP⊥BE;(2)试判断在线段PB上是否存在点F,使得平面AEF与平面AEP的夹角为45°.若存在,试确定点F的位置;若不存在,请说明理由.听课笔记:【技法领悟】1.通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明;否则假设不成立.2.探索线段上是否存在满足条件的点时,一定注意三点共线的条件的应用.巩固训练3[2022·湖南岳阳一模]如图,在三棱锥S-ABC中,SA=SB=SC,BC⊥AC.(1)证明:平面SAB⊥平面ABC;(2)若BC=SC,SC⊥SA,试问在线段SC上是否存在点D,使直线BD与平面SAB所成的角为60°,若存在,请求出D点的位置;若不存在,请说明理由.第三讲 立体几何微专题1 线面角保分题解析:(1)证明:如图,连接AC ,∵四边形ABCD 是正方形,∴AC ⊥BD .又P A ⊥平面ABCD ,BD ⊂平面ABCD ,∴P A ⊥BD , ∵P A ,AC ⊂平面P AC ,P A∩AC =A , ∴BD ⊥平面P AC , 又CM ⊂平面P AC , ∴BD ⊥CM .(2)易知AB ,AD ,AP 两两垂直,以点A 为原点,建立如图所示的空间直角坐标系A - xyz . ∵P A =2AB =4,∴A (0,0,0),P (0,0,4),M (0,0,2),C (2,2,0),D (0,2,0), ∴MC ⃗⃗⃗⃗⃗⃗ =(2,2,-2),MD ⃗⃗⃗⃗⃗⃗ =(0,2,-2),PC ⃗⃗⃗⃗ =(2,2,-4). 设平面MCD 的法向量为n =(x ,y ,z ),则{n ·MC⃗⃗⃗⃗⃗⃗ =2x +2y −2z =0n ·MD ⃗⃗⃗⃗⃗⃗ =2y −2z =0,令y =1,得n =(0,1,1).设直线PC 与平面MCD 所成角为θ,由图可知0<θ<π2,则sin θ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·PC ⃗⃗⃗⃗⃗||n ||PC ⃗⃗⃗⃗⃗|=√12+12×√22+22+(−4)2=√36.即直线PC 与平面MCD 所成角的正弦值为√36.提分题[例1]解析:(1)证明:∵AD=CD,∠ADB=∠BDC,BD=BD,∴△ABD≌△CBD,∴AB=CB.∵E为AC的中点,∴DE⊥AC,BE⊥AC.∵DE∩BE=E,DE,BE⊂平面BED,∴AC⊥平面BED.∵AC⊂平面ACD,∴平面BED⊥平面ACD.(2)如图,连接EF.由(1)知AC⊥平面BED.又∵EF⊂平面BED,∴EF⊥AC.AC·EF.∴S△AFC=12当EF⊥BD时,EF的长最小,此时△AFC的面积最小.由(1)知AB=CB=2.又∵∠ACB=60°,∴△ABC是边长为2的正三角形,∴BE=√3.∵AD⊥CD,∴DE=1,∴DE2+BE2=BD2,∴DE⊥BE.以点E为坐标原点,直线EA,EB,ED分别为x轴、y轴、z轴建立空间直角坐标系,则E(0,0,0),A(1,0,0),B(0,√3,0),C(-1,0,0),D(0,0,1),⃗⃗⃗⃗⃗ =(-1,√3,0),AD⃗⃗⃗⃗⃗ =(-1,0,1),DB⃗⃗⃗⃗⃗ =(0,√3,-1),ED⃗⃗⃗⃗⃗ =(0,0,1),EC⃗⃗⃗⃗ =(-∴AB1,0,0).设DF⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗ (0≤λ≤1), 则EF ⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +λDB ⃗⃗⃗⃗⃗ =(0,0,1)+λ(0,√3,-1)=(0,√3λ,1-λ). ∵EF ⊥DB ,∴EF⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗ =(0,√3λ,1-λ)·(0,√3,-1)=4λ-1=0, ∴λ=14,∴EF ⃗⃗⃗⃗ =(0,√34,34),∴CF ⃗⃗⃗⃗ =EF ⃗⃗⃗⃗ −EC ⃗⃗⃗⃗ =(0,√34,34)-(-1,0,0)=(1,√34,34).设平面ABD 的法向量为n =(x ,y ,z ), 则{n ·AB⃗⃗⃗⃗⃗ =0,n ·AD⃗⃗⃗⃗⃗ =0,即{−x +√3y =0,−x +z =0.取y =1,则x =√3,z =√3,∴n =(√3,1,√3).设当△AFC 的面积最小时,CF 与平面ABD 所成的角为θ,则sin θ=|cos 〈n ,CF ⃗⃗⃗⃗ 〉|=|n·CF ⃗⃗⃗⃗⃗||n ||CF ⃗⃗⃗⃗⃗ |=|√3×1+1×√34+√3×34|√3+1+3× √1+316+916=4√37. 故当△AFC 的面积最小时,CF 与平面ABD 所成的角的正弦值为4√37. [巩固训练1]解析:(1)证明:∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD , ∵四边形ABCD 为矩形,∴AD ⊥CD ,又AD∩P A =A ,AD 、P A ⊂平面P AD ,∴CD ⊥平面P AD , ∵AE ⊂平面P AD ,∴AE ⊥CD ,在△P AD 中,P A =AD ,E 为PD 的中点,∴AE ⊥PD , 而PD∩CD =D ,PD 、CD ⊂平面PCD , ∴AE ⊥平面PCD .(2)以A 为坐标原点,分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立空间直角坐标系, 设AP =a (a >0),则C (2,1,0),P (0,0,a ),E (0,12,a2), ∴AC⃗⃗⃗⃗⃗ =(2,1,0),AE ⃗⃗⃗⃗⃗ =(0,12,a2),PC ⃗⃗⃗⃗ =(2,1,-a ), 设平面ACE 的一个法向量为n =(x ,y ,z ), 则{n ·AC ⃗⃗⃗⃗⃗ =2x +y =0n ·AE⃗⃗⃗⃗⃗ =12y +a 2z =0,取y =-a ,可得n =(a2,-a ,-1).设直线PC 与平面ACE 所成角为θ,则sin θ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·FC ⃗⃗⃗⃗⃗||n ||FC ⃗⃗⃗⃗⃗|=√54a 2+1·√5+a 2=√29+20a2+5a ≤27,当且仅当a =√2时等号成立.即当AP =√2时,直线PC 与平面ACE 所成角最大, 此时三棱锥E - ABC 的体积V =13×12×2×1×√22=√26.微专题2 二面角保分题解析:(1)证明:取AD 的中点M ,连接EM 、MC ,∵E 为A 1D 的中点,F 为CC 1的中点,∴EM ∥AA 1,EM =12AA 1,又CF ∥AA 1,CF =12AA 1,∴EM ∥CF ,EM =CF ,∴四边形EMCF 为平行四边形,∴EF ∥CM , 又EF ⊄平面ABCD ,CM ⊂平面ABCD , ∴EF ∥平面ABCD .(2)设AB =AA 1=2BC =2CD =4,∵AC ⊥BC ,∴AC =2√3.由题意知CA 、CB 、CC 1两两垂直,故以C 为坐标原点,分别以CA 、CB 、CC 1所在直线为x 、y 、z 轴建立空间直角坐标系.则A 1(2√3,0,4)、O (√3,1,0)、F (0,0,2)、C (0,0,0)、D (√3,-1,0), ∴A 1D 的中点E 的坐标为(3√32,-12,2), ∴OF⃗⃗⃗⃗⃗ =(-√3,-1,2),EF ⃗⃗⃗⃗ =(-3√32,12,0), 设平面OEF 的一个法向量为n =(x ,y ,z ),则{n ·OF ⃗⃗⃗⃗⃗ =0n ·EF ⃗⃗⃗⃗ =0,即{−√3x −y +2z =0−3√32x +12y =0,即{√3x +y −2z =03√3x −y =0, 令x =√3,得n =(√3,9,6), ∵AC ⊥BC ,AC ⊥CC 1,BC ∩CC 1=C , ∴AC ⊥平面BCC 1,∴平面BCC 1的一个法向量为CA ⃗⃗⃗⃗⃗ =(2√3,0,0),cos 〈n ,CA ⃗⃗⃗⃗⃗ 〉=n·CA ⃗⃗⃗⃗⃗|n |·|CA ⃗⃗⃗⃗⃗|=√3+81+36·2√3=√1020, ∴平面OEF 与平面BCC 1夹角的余弦值为√1020. 提分题[例2] 解析:(1)证明:连接BD 交AC 于O , 易证O 为BD 中点,又F 是PD 的中点, 所以OF ∥PB ,又OF ⊂平面AFC ,且PB 不在平面AFC 内, 故PB ∥平面AFC .(2)取PC 中点为Q ,以O 为坐标原点,OB 为x 轴,OC 为y 轴,OQ 为z 轴建立空间直角坐标系,设OB =m ,则A (0,-1,0),B (m ,0,0),C (0,1,0),P (0,-1,2),D (-m ,0,0)⇒F (-m2,-12,1),AP ⃗⃗⃗⃗⃗ =(0,0,2),OF ⃗⃗⃗⃗⃗ =(-m 2,-12,1),OC⃗⃗⃗⃗⃗ =(0,1,0), 设平面AFC 的法向量为n =(x ,y ,z ),由{n ⊥OF ⃗⃗⃗⃗⃗ n ⊥OC ⃗⃗⃗⃗⃗ ⇒{−m2x −12y +z =0y =0,令x =2,有n =(2,0,m ),由P A 与平面AFC 所成的角正弦值为√217⇒√217=|AP ⃗⃗⃗⃗⃗ ·n||AP⃗⃗⃗⃗⃗ |·|n|=2√4+m 2⇒m =√3, 平面ACD 的法向量为m =(0,0,1),则锐二面角F - AC - D 的余弦值为 |m·n ||m |·|n |=√3√7=√217. [例3] 解析:(1)证明:在梯形ABCD 中取AD 中点N ,连接CN , 则由BC 平行且等于AN 知ABCN 为平行四边形,所以CN =AB , 由CN =12AD 知C 点在以AD 为直径的圆上,所以AC ⊥CD . 又AP ⊥CD ,AP∩AC =A, AP ,AC ⊂平面P AC , ∴CD ⊥平面P AC , 又CD ⊂平面ADC , ∴平面APC ⊥平面ADC .(2)取AC 中点O ,连接PO ,由AP =PC ,可知PO ⊥AC ,再由平面P AC ⊥平面ACD ,AC 为两面交线,所以PO ⊥平面ACD ,以O 为原点,OA 为x 轴,过O 且与OA 垂直的直线为y 轴,OP 为z 轴建立空间直角坐标系,令AB =2,则A (√3,0,0),C (-√3,0,0),P (0,0,1),D (-√3,2,0), 由V P - ACM ∶V D - ACM =1∶2,得PM ⃗⃗⃗⃗⃗⃗ =13PD ⃗⃗⃗⃗⃗ , 所以OM⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +PM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +13PD ⃗⃗⃗⃗⃗ =(-√33,23,23), 设平面ACM 的法向量为n =(x ,y ,z ),则由{n ·OM ⃗⃗⃗⃗⃗⃗ =0n ·OA ⃗⃗⃗⃗⃗ =0得{−√33x +23y +23z =0√3x =0, 取z =-1得x =0,y =1,所以n =(0,1,-1),而平面P AC 的法向量m =(0,1,0),所以cos 〈n ,m 〉=m·n |m ||n |=√22. 又因为二面角P - AC - M 为锐二面角,所以其余弦值为√22. [巩固训练2]1.解析:(1)证明:取线段PD 的中点H ,连接OH 、HA ,如图,在△PCD 中,O 、H 分别是PC 、PD 的中点,所以OH ∥CD 且OH =12CD , 所以OH ∥AS 且OH =AS ,所以四边形ASOH 是平行四边形,所以SO ∥AH , 又AH ⊂平面P AD ,SO ⊄平面P AD ,所以SO ∥平面P AD .(2)取线段AD 、BC 的中点E 、F ,连结PE 、EF .由点E 是线段AD 的中点,P A =PD 可得PE ⊥AD ,又EF ⊥AD ,所以∠PEF 是二面角P - AD - B 的平面角,即∠PEF =23π,以E 为原点,EA ⃗⃗⃗⃗⃗ 、EF ⃗⃗⃗⃗ 方向分别为x 轴、y 轴正方向,建立如图所示坐标系,在△P AD 中,AD =4,P A =PD =2√2知:PE =2,所以P (0,-1,√3),D (-2,0,0),B (2,2,0),C (-2,2,0),所以PD⃗⃗⃗⃗⃗ =(-2,1,-√3),PB ⃗⃗⃗⃗⃗ =(2,3,-√3),PC ⃗⃗⃗⃗ =(-2,3,-√3), 设平面PBC 的法向量n =(x ,y ,z ),则{n ·PB ⃗⃗⃗⃗⃗=0n ·PC⃗⃗⃗⃗ =0,即{2x +3y −√3z =0−2x +3y −√3z =0,可取n =(0,1,√3),设直线PD 与平面PBC 所成角为θ, 则sin θ=|cos 〈PD⃗⃗⃗⃗⃗ ,n 〉|=2·2√2=√24,所以直线PD 与平面PBC 所成角的正弦值为√24.2.解析:(1)证明:在等腰梯形ABCD 中,过A 作AE ⊥BC 于E ,过D 作DF ⊥BC 于F ,因为在等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =1,∠BCD =60°,所以BE =CF =12CD =12,AE =DF =√12−(12)2=√32,所以AC =BD =√(32)2+(√32)2=√3,BC =2,所以BD 2+CD 2=BC 2,所以BD ⊥CD ,同理AB ⊥AC , 又因为AP =AB =1,PB =√2, ∴AP 2+AB 2=PB 2,∴AB ⊥AP 又AC∩AP =A ,AC ,AP ⊂平面ACP , 所以AB ⊥平面ACP , 因为PC ⊂平面ACP , 所以AB ⊥PC .(2)取AC 的中点为M ,BC 的中点为N ,则MN ∥AB , 因为AB ⊥平面ACP ,所以MN ⊥平面ACP ,因为AC ,PM ⊂平面ACP ,所以MN ⊥AC ,MN ⊥PM , 因为P A =PC ,AC 的中点为M ,所以PM ⊥AC , 所以MN ,MC ,MP 两两垂直,所以以M 为原点,以MN 所在直线为x 轴,以MC 所在直线为y 轴,以MP 所在直线为z 轴建立空间直角坐标系,则A (0,-√32,0),B (1,-√32,0),C (0,√32,0),P (0,0,12), PC⃗⃗⃗⃗ =(0,√32,-12),PB ⃗⃗⃗⃗⃗ =(1,-√32,-12), 平面APC 的一个法向量为m =AB ⃗⃗⃗⃗⃗ =(1,0,0), 设平面PBC 的一个法向量为n =(x ,y ,z ),则 {n ·PC⃗⃗⃗⃗ =√32y −12z =0n ·PB ⃗⃗⃗⃗⃗ =x −√32y −12z =0,令y =1,则n =(√3,1,√3),所以cos 〈m ,n 〉=m·n |m ||n |=√31×√7=√217, 因为二面角A - PC - B 为锐角, 所以二面角A - PC - B 的余弦值为√217.微专题3 探索性问题提分题[例4] 解析:(1)证明:因为四边形ABCD 为平行四边形,且△ADE 为等边三角形, 所以∠BCE =120°,又E 为CD 的中点,所以CE =ED =DA =CB ,即△BCE 为等腰三角形, 所以∠CEB =30°.所以∠AEB =180°-∠AED -∠BEC =90°, 即BE ⊥AE .又因为平面AEP ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,BE ⊂平面ABCE , 所以BE ⊥平面APE ,又AP ⊂平面APE ,所以BE ⊥AP .(2)取AE 的中点O ,连接PO ,由于△APE 为正三角形,则PO ⊥AE , 又平面APE ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,PO ⊂平面EAP , 所以PO ⊥平面ABCE ,PO =√3,BE =2√3, 取AB 的中点G ,则OG ∥BE , 由(1)得BE ⊥AE ,所以OG ⊥AE ,以点O 为原点,分别以OA ,OG ,OP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O - xyz ,则O (0,0,0),A (1,0,0),B (-1,2√3,0),P (0,0,√3),E (-1,0,0), 则EA ⃗⃗⃗⃗⃗ =(2,0,0),EB ⃗⃗⃗⃗⃗ =(0,2√3,0),PB ⃗⃗⃗⃗⃗ =(-1,2√3,-√3),EP ⃗⃗⃗⃗ =(1,0,√3), 假设存在点F ,使平面AEF 与平面AEP 的夹角为45°, 设PF⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ =(-λ,2√3λ,-√3λ),λ∈[0,1], 则EF ⃗⃗⃗⃗ =EP ⃗⃗⃗⃗ +PF ⃗⃗⃗⃗ =(1,0,√3)+(-λ,2√3λ,-√3λ)=(1-λ,2√3λ,√3−√3λ), 设平面AEF 的法向量为m =(x ,y ,z ),由{EF ⃗⃗⃗⃗·m =0EA ⃗⃗⃗⃗⃗ ·m =0得{(1−λ)x +2√3λy +(√3,-√3λ)z =02x =0, 取z =2λ,得m =(0,λ-1,2λ); 由(1)知EB⃗⃗⃗⃗⃗ 为平面AEP 的一个法向量,于是,cos 45°=|cos 〈m ,EB ⃗⃗⃗⃗⃗ 〉|=|m·EB ⃗⃗⃗⃗⃗||m |·|EB⃗⃗⃗⃗⃗ |=2√3|λ−1|2√3·√5λ2−2λ+1=√22,解得λ=13或λ=-1(舍去),所以存在点F ,且当点F 为线段PB 的靠近点P 的三等分点时,平面AEF 与平面AEP 的夹角为45°.[巩固训练3]解析:(1)证明:取AB 的中点E ,连接SE ,CE ,∵SA =SB ,∴SE ⊥AB , ∵BC ⊥AC ,∴三角形ACB 为直角三角形,∴BE =EC , 又BS =SC ,∴△SEC ≌△SEB ,∴∠SEB =∠SEC =90°, ∴SE ⊥EC ,又SE ⊥AB ,AB∩CE =E ,∴SE ⊥平面ABC . 又SE ⊂平面SAB ,∴平面SAB ⊥平面ABC .(2)以E 为坐标原点,平行AC 的直线为x 轴,平行BC 的直线为y 轴,ES 为z 轴建立空间直角坐标系,如图,不妨设SA =SB =SC =2,SC ⊥SA ,则AC =2√2,BC =SC =2知EC =2√3,SE =1,则A (-√2,1,0),B (√2,-1,0),C (√2,1,0),E (0,0,0),S (0,0,1),∴AB⃗⃗⃗⃗⃗ =(2√2,-2,0),SA ⃗⃗⃗⃗ =(-√2,1,-1), 设D (x ,y ,z ),CD ⃗⃗⃗⃗⃗ =λCS ⃗⃗⃗⃗ (0≤λ≤1),则(x -√2,y -1,z )=λ(-√2,-1,1), ∴D (√2−√2λ,1-λ,λ),BD⃗⃗⃗⃗⃗ =(-√2λ,2-λ,λ). 设平面SAB 的一个法向量为n =(x 1,y 1,z 1),则{n ·AB ⃗⃗⃗⃗⃗ =2√2x 1−2y 1=0n ·SA ⃗⃗⃗⃗ =−√2x 1+y 1−z 1=0,取x 1=1,得n =(1,√2,0),sin 60°=|n·BD ⃗⃗⃗⃗⃗⃗ ||n ||BD⃗⃗⃗⃗⃗⃗ |,则√2−2√2λ|√3×√2λ2+(2−λ)2+λ2=√32, 得λ2+7λ+1=0,又∵0≤λ≤1,方程无解,∴不存在点D ,使直线BD 与平面SAB 所成的角为60°.。
2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积
专题四 立体几何第一讲 空间几何体的表面积与体积——小题备考微专题1 空间几何体的表面积和体积常考常用结论1.柱体、锥体、台体、球的表面积公式: ①圆柱的表面积S =2πr (r +l ); ②圆锥的表面积 S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2.2.柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.保 分 题1.[2022·山东枣庄三模]若圆锥的母线长为2,侧面积为2π,则其体积为( ) A .√6π B .√3π C .√63π D .√33π2.[2022·河北保定一模]圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( )A .1∶1B .1∶2C .2∶1D .2∶33.[2022·湖北武汉二模]如图,在棱长为2的正方体中,以其各面中心为顶点构成的多面体为正八面体,则该正八面体的体积为( )A .2√23B .43 C .4√23D .83提分题例1 (1)[2022·河北张家口三模]如图,在三棱柱ABC A1B1C1中,过A1B1的截面与AC交于点D,与BC交于点E,该截面将三棱柱分成体积相等的两部分,则CDAC=()A.13B.12C.2−√32D.√3−12(2)[2022·湖南雅礼中学二模]某圆锥高为1,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2 B.√3C.√2D.1听课笔记:【技法领悟】1.求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的方法,将不规则几何体转化为规则几何体,易于求解.巩固训练11.[2022·山东菏泽一模]如图1,在高为h的直三棱柱容器ABC A1B1C1中,AB=AC=2,AB⊥AC.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为A 1B 1C (如图2),则容器的高h 为( )A .3B .4C .4√2D .62.[2022·福建福州三模]已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB ⊥CD ,O 1,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD 的体积为18,则该圆柱的侧面积为( )A .9πB .12πC .16πD .18π微专题2 与球有关的切、接问题常考常用结论1.球的表面积S =4πR 2,体积V =43πR 3.2.长方体、正方体的体对角线等于其外接球的直径. 3.n 面体的表面积为S ,体积为V ,则内切球的半径r =3VS .4.直三棱柱的外接球半径:R =√r 2+(L2)2,其中r 为底面三角形的外接圆半径,L 为侧棱长,如果直三棱柱有内切球,则内切球半径R ′=L2.5.正四面体中,外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离为外接球的半径R =√64a (a 为正四面体的棱长),球心到底面的距离为内切球的半径r =√612a ,因此R ∶r =3∶1.保 分 题1.[2022·广东深圳二模]已知一个球的表面积在数值上是它的体积的√3倍,则这个球的半径是( )A .2B .√2C .3D .√32.已知正四棱锥P ABCD 中,AB =√6,P A =2√3,则该棱锥外接球的体积为( )A.4π B.32π3C.16π D.16π33.[2022·天津红桥一模]一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1、√2、3,则此球的体积为________.提分题例2 (1)[2022·江苏苏州三模]《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的体积为()立方尺A.√41πB.41π3D.3√41πC.41√41π6(2)[2022·山东泰安三模]如图,已知三棱柱ABC A1B1C1的底面是等腰直角三角形,AA1⊥底面ABC,AC=BC=2,AA1=4,点D在上底面A1B1C1(包括边界)上运动,则三棱锥D ABC 的外接球表面积的最大值为()π B.24πA.814C.243π D.8√6π16听课笔记:【技法领悟】1.确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.2.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.3.补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.巩固训练21.已知圆柱的轴截面为正方形,其外接球为球O,球O的表面积为8π,则该圆柱的体积为()A.√22π B.√2πC.2π D.2√2π2.[2022·广东潮州二模]已知△ABC是边长为3的等边三角形,三棱锥P ABC全部顶点都在表面积为16π的球O的球面上,则三棱锥P ABC的体积的最大值为()A.√3B.3√32C.9√34D.√32专题四 立体几何第一讲 空间几何体的表面积与体积微专题1 空间几何体的表面积和体积保分题1.解析:设圆锥的底面半径为r ,高为h ,则πr ×2=2π,可得r =1,则h =√22−r 2=√3,因此,该圆锥的体积为V =13πr 2h =13π×12×√3=√33π. 答案:D2.解析:设球的半径为r ,依题意圆柱的底面半径也是r ,高是2r , 圆柱的侧面积=2πr ·2r =4πr 2 ,球的表面积为4πr 2 , 其比例为1∶1. 答案:A3.解析:该正八面体是由两个同底的正四棱锥组成,且正四棱锥的底面是边长为√2的正方形,棱锥的高为1,所以该正八面体的体积为2×13×√2×√2×1=43.答案:B提分题[例1] 解析:(1)由题可知平面A 1B 1ED 与棱柱上、下底面分别交于A 1B 1,ED , 则A 1B 1∥ED ,ED ∥AB , 显然CDE - C 1A 1B 1是三棱台,设△ABC 的面积为1,△CDE 的面积为S ,三棱柱的高为h , ∴12·1·h =13h (1+S +√S ), 解得√S =√3−12,由△CDE ∽△CAB ,可得CD AC =√S√1=√3−12. (2)如图,截面为△P AB ,设C 为AB 中点,设OC =x ,x ∈[0,√3),则AB =2√3−x 2,PC =√x 2+1,则截面面积S =12×2√3−x 2×√x 2+1=√−(x 2−1)2+4,则当x 2=1时,截面面积取得最大值为2. 答案:(1)D (2)A[巩固训练1]1.解析:在图1中V 水=12×2×2×2=4,在图2中,V 水=V ABC − A 1B 1C 1− V C − A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h , ∴43h =4,∴h =3.答案:A2.解析:分别过A ,B 作圆柱的母线AE ,BF ,连接CE ,DE ,CF ,DF ,设圆柱的底面半径为r ,则三棱锥A - BCD 的体积为两个全等四棱锥C - ABFE 减去两个全等三棱锥A - CDE , 即2×13×r ×2r ×r -2×13×r ×12×2r ×r =23r 3=18,则r =3,圆柱的侧面积为2πr ×r =18π答案:D微专题2 与球有关的切、接问题保分题1.解析:设球的半径为R ,则根据球的表面积公式和体积公式, 可得,4πR 2=43πR 3×√3,化简得R =√3. 答案:D2.解析:正方形ABCD 的对角线长√6+6=2√3,正四棱锥的高为 √(2√3)2−(2√32)2=3,设外接球的半径为R ,则(3-R )2+(2√32)2=R 2⇒R =2, 所以外接球的体积为4π3×23=32π3.答案:B3.解析:长方体外接球的直径为√12+(√2)2+32=2√3,所以外接球半径为√3,所以球的体积为4π3×(√3)3=4√3π.答案:4√3π提分题[例2] 解析:(1)作出图象如图所示:由已知得球心在几何体的外部, 设球心到几何体下底面的距离为x , 则R 2=x 2+(52)2=(x +1)2+(√52)2,解得x =2,∴R 2=414, ∴该球体的体积V =4π3×(√412)3=41√41π6.(2)因为△ABC 为等腰直角三角形,AC =BC =2,所以△ABC 的外接圆的圆心为AB 的中点O 1, 且AO 1=√2,连接O 1与A 1B 1的中点E ,则O 1E ∥AA 1,所以O 1E ⊥平面ABC , 设球的球心为O ,由球的截面性质可得O 在O 1E 上, 设OO 1=x ,DE =t (0≤t ≤√2),半径为R , 因为OA =OD =R ,所以√2+x 2=√(4−x )2+t 2, 所以t 2=8x -14,又0≤t ≤√2, 所以74≤x ≤2,因为R 2=2+x 2,所以8116≤R 2≤6,所以三棱锥D -ABC 的外接球表面积的最大值为24π. 答案:(1)C (2)B [巩固训练2]1.解析:设外接球的半径为R ,圆柱底面圆的半径为r ,因为圆柱的轴截面为正方形,所以圆柱的高h =2r ,由球O 的表面积S =4πR 2=8π,得R =√2,又R = √(h2)2+r 2=√2r ,得r =1,所以圆柱的体积V =πr 2·2r =2πr 3=2π.答案:C2.解析:球O 的半径为R ,则4πR 2=16π,解得:R =2,由已知可得:S △ABC =√34×32=9√34,其中AE =23AD =√3,球心O 到平面ABC 的距离为√R 2−(√3)2=1, 故三棱锥P - ABC 的高的最大值为3, 体积最大值为13S △ABC ·3=9√34.答案:C。
高三数学二轮复习微专题 ——解析几何中的线段长度问题
122
高三数学二轮复习微专题
——解析几何中的线段长度问题
■田荣成
在近几年高考及模拟试题中较多的出现线段长度(共线向 量)的问题。线段的长度问题常用的方法是两点间距离公式、 弦长公式。但对一些特殊的线段长度问题若仍然采用通法去 求解,则计算量成倍增加,费时费力,学生的畏难情绪油然而 生,大多中途放弃,能坚持算下去的少数学生中也极少有人能 算出正确答案。所以要攻克解析几何这座堡垒,一方面要坚持 培养学生的计算能力,另一方面也要重视条件转化方法的选 择,提升思维量,降低计算量,否则就把学生引入了“苦算”的汪 洋大海中去了。
(作者单位:河北省唐山市滦南县第一中学)
考点聚焦
123
称此方法为化斜为“平竖”法。在得到两交点的坐标关系后,可
用弦长公式求解 HG 长。
分别过 H, G 点作 H1, G1 垂直于 y 轴,垂足为 H1, G1。
因为 HH1 ∥ EO ∥ GG1
所以
|HE| |EG|
=
|H1O| |OG1|
=
3
H
本文拟从一道较常见的模拟试题入手,从五个不同的角度 介绍破解策略,供读者参考,希望能给读者一点启发。
x2 y2 【例】已知椭圆C:8 +4 = 1,过左焦点 E 的直线与椭圆 C 交于 G, H 两点,且 HE = 3 EG,试求此时弦长 HG。 何使【用分条析件】H本E题=中3 E出G现,以三及条如线何段表H示E,所EG求,问HG题的HG长的度长,那度么呢如? 【分方析法:1此】向题量中的的坐条标件法HE = 3 EG 是以向量形式给出的,所 以很容易想到向量的坐标法,在上述方法求出 H, G 点坐标后 可以用两点间距离公式求出 HG 长。
三、解题步骤 针对七选五这一题型,我建议以下解题步骤:1. 通读全文, 了解文章大意,明白上下文的逻辑。2. 浏览选项,并抓住选项 中的关键词语,做到心中有数。3. 详读段落,先易后难各个击 破,注重上下文的联系。4. 复读检查,攻克难点,注重上下文意 义关联。5. 研究两个多余选项,确定排除干扰。另外,在解题 过程中要牢记八字方针:空前空后,先易后难。 结语:通过以上分析,我们不难发现七选五题型并不像我 们想象得那么难,每一个空的设置都符合考试大纲的要求。由 此看出,高考题中的七选五是有答题模板的,只要我们掌握以 上解题技巧和方法,多练习高考真题,这一题型是可以拿高分 甚至满分的,毕竟把简单练到极致就会成功! 参考文献 [1]胡小力,赖丽燕 . 新课改背景下的英语试卷分析[D]. 中国考试(研究版),2009. [2]邓景鸿,彭桂华 . 全面破解高考英语阅读七选五[D]. 高考金刊,2016.
高三数学二轮复习重点内容
高三数学二轮复习重点内容高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
2024版高考数学二轮总复习第1篇核心专题提升多维突破专题2数列微专题数列与传统文化创新应用课件
【解析】 (1)由Sn=2an-2,则当n≥2时,Sn-1=2an-1-2, 两式相减得:an=2an-2an-1,则an=2an-1, 由S1=2a1-2,则a1=2, ∴数列{an}是以2为首项,2为公比的等比数列,则an=2n,
由TTn+n 1=bbn+n 2.
角度2:结论探究式问题 典例2 (2023·江苏南通统考一模)写出一个同时满足下列条件①
②的等比数列{an}的通项公式an=__(_-__2_)_n(_答__案__不__唯__一__)___. ①anan+1<0;②|an|<|an+1|.
【解析】 可构造等比数列,设公比为q,由anan+1<0,可知公比q 为负数,因为|an|<|an+1|,所以|q|>1,所以q可取-2,设a1=-2,则an= -2·(-2)n-1=(-2)n.
题型二 数列中的创新问题 典 例 研 析·悟 方 法
角度1:条件追溯问题 典例1 已知等比数列{an}的首项为-2,公比为q.试写出一个实
数q=______12_(答__案__不__唯__一__)_____,使得an<an+1.
【解析】 等比数列{an}的首项为-2,公比为 q,∵an<an+1,∴数 列{an}为递增数列,∴a2<a3,∴-2q<-2q2,解得 0<q<1,则 q 可以取12, (答案不唯一).
9×22a5=9a5=1 260,∴a5=140.故选 C.
3. (2023·广东深圳统考一模)将一个顶角为120°的等腰三角形(含边
界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角
形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重
高考数学二轮复习考点知识与题型专题解析20---导数的简单应用
高考数学二轮复习考点知识与题型专题解析导数的简单应用微专题1导数的几何意义及其应用导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P 处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)·(x-x0).『典型题训练』1.若过函数f(x)=ln x-2x图象上一点的切线与直线y=2x+1平行,则该切线方程为()A.2x-y-1=0B.2x-y-2ln2+1=0C.2x-y-2ln2-1=0D.2x+y-2ln2-1=02.已知a∈R,设函数f(x)=ax-ln x+1的图象在点(1,f(1))处的切线为l,则l过定点()A.(0,2) B.(1,0)C.(1,a+1) D.(e,1)),则曲线y=f(x)在x=0 3.已知函数f(x)的导函数为f′(x),且满足f(x)=cos x-xf′(π2处的切线方程是()A.2x-y-1=0 B.2x+y+1=0C.x-2y+2=0 D.x+2y+1=04.已知函数f(x)=a e x+x2的图象在点M(1,f(1))处的切线方程是y=(2e+2)x+b,那么ab=()A.2 B.1 C.-1 D.-25.[2021·重庆三模]已知曲线C1:f(x)=e x+a和曲线C2:g(x)=ln (x+b)+a2(a,b∈R),若存在斜率为1的直线与C1,C2同时相切,则b的取值范围是(),+∞)B.[0,+∞)A.[−94]C.(−∞,1]D.(−∞,94在点(-1,-3)处的切线方程为________________.6.[2021·全国甲卷(理)]曲线y=2x−1x+2微专题2利用导数研究函数的单调性『常考常用结论』导数与单调性的关系1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0;2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常数,函数不具有单调性.『提分题组训练』1.[2021·山东烟台模拟]已知a=ln12 020+2 0192 020,b=ln12 021+2 0202 021,c=ln12 022+2 0212 022,则a,b,c的大小关系是()A.a>b>c B.a>c>bC.c>b>a D.c>a>b2.函数f(x)=x2-a ln x在[1,+∞)上单调递增,则实数a的取值范围是()A.(0,2] B.(2,+∞)C.(-∞,2] D.(-∞,2)3.已知函数f(x)=23x3-ax2+4x在区间(-2,-1)内存在单调递减区间,则实数a的取值范围是()A.(2√2,+∞) B.[2√2,+∞)C.(-∞,-2√2) D.(-∞,-2√2]4.若函数f(x)的导函数为f′(x),对任意x∈(-π,0),f′(x)sin x<f(x)cos x恒成立,则()A.√2f(−5π6)>f(−3π4)B.f(−5π6)>√2f(−3π4)C.√2f(−5π6)<f(−3π4)D.f(−5π6)<√2f(−3π4)5.定义在R上的函数f(x)满足f(x)>1-f′(x),f(0)=6,则不等式f(x)>1+5e x(e为自然对数的底数)的解集为()A.(0,+∞) B.(5,+∞)C.(-∞,0)∪(5,+∞) D.(−∞,0)6.[2021·山东济南一模]设a=2022ln2020,b=2021ln2021,c=2020ln2022,则() A.a>c>b B.c>b>aC.b>a>c D.a>b>c微专题3利用导数研究函数的极值、最值『常考常用结论』导数与极值、最值(1)函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左正右负”⇔f(x)在x0处取极大值;函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左负右正”⇔f(x)在x0处取极小值.(2)函数f(x)在一闭区间上的最大值是此函数在该区间上的极值与该区间端点处函数值中的“最大者”;函数f(x)在一闭区间上的最小值是此函数在该区间上的极值与该区间端点处函数值中的“最小者”.『提分题组训练』1.已知函数f(x)=12sin2x+sin x,则f(x)的最小值是()A.-3√32B.3√32C.-3√34D.3√342.[2021·全国乙卷(理)]设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则()A .a <bB .a >bC .ab <a 2D .ab >a 23.函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则点(a ,b )为() A .(3,-3) B .(-4,11) C .(3,-3)或(-4,11) D .(4,11)4.若函数f (x )=x 3-3x 在区间(2a ,3-a 2)上有最大值,则实数a 的取值范围是() A .(-3,1) B .(-2,1) C .(−3,−12) D .(-2,-1]5.若函数f (x )=12e 2x -m e x -m2x 2有两个极值点,则实数m 的取值范围是() A .(12,+∞) B .(1,+∞) C .(e 2,+∞) D .(e ,+∞) 6.[2021·山东模拟]若函数f (x )={2x−2−2m ,x <12x 3−6x 2,x ≥1有最小值,则m 的一个正整数取值可以为________.参考答案导数的简单应用微专题1导数的几何意义及其应用典型题训练1.解析:由题意,求导函数可得y ′=1x -2, ∵切线与直线y =2x +1平行, ∴1x -2=2, ∴x =14,∴切点P 坐标为(14,−2ln 2−12),∴过点P 且与直线y =2x +1平行的切线方程为y +2ln2+12=2(x −14),即2x -y -2ln2-1=0.故选C.答案:C2.解析:由f (x )=ax -ln x +1⇒f ′(x )=a -1x ,f ′(1)=a -1,f (1)=a +1,故过(1,f (1))处的切线方程为:y =(a -1)(x -1)+a +1=(a -1)x +2,故l 过定点(0,2).故选A.答案:A3.解析:∵f (x )=cos x -xf ′(π2), ∴f ′(x )=-sin x -f ′(π2),∴f ′(π2)=-sin π2-f ′(π2)=-1-f ′(π2), 解得:f ′(π2)=-12,∴f (x )=cos x +12x ,f ′(x )=-sin x +12,∴f (0)=1,f ′(0)=12,∴y =f (x )在x =0处的切线方程为y -1=12x ,即x -2y +2=0.故选C.4.解析:因为f (x )=a e x +x 2,所以f ′(x )=a e x +2x ,因此切线方程的斜率k =f ′(1)=a e +2,所以有a e +2=2e +2,得a =2,又切点在切线上,可得切点坐标为(1,2e +2+b ), 将切点代入f (x )中,有f (1)=2e +1=2e +2+b ,得b =-1, 所以ab =-2.故选D. 答案:D5.解析:f ′(x )=e x ,g ′(x )=1x+b ,设斜率为1的切线在C 1,C 2上的切点横坐标分别为x 1,x 2,由题知e x 1=1x2+b=1,∴x 1=0,x 2=1-b ,两点处的切线方程分别为y -(1+a )=x 和y -a 2=x -(1-b ), 故a +1=a 2-1+b ,即b =2+a -a 2=-(a −12)2+94≤94.故选D. 答案:D6.解析:y ′=(2x−1x+2)′=2(x+2)−(2x−1)(x+2)2=5(x+2)2,所以y ′|x =-1=5(−1+2)2=5,所以切线方程为y +3=5(x +1),即y =5x +2.答案:y =5x +2微专题2利用导数研究函数的单调性提分题组训练1.解析:构造函数f (x )=ln x +1-x ,f ′(x )=1x-1=1−x x,当0<x <1时,f ′(x )>0,f (x )单调递增,所以f (12 020)>f (12 021)>f (12 022),a >b >c .故选A.2.解析:由题意得,f ′(x )=2x -ax ≥0在x ∈[1,+∞)上恒成立, 所以a ≤2x 2在x ∈[1,+∞)上恒成立, 因为2x 2在x ∈[1,+∞)的最小值为2, 所以m ≤2.故选C. 答案:C3.解析:f ′(x )=2x 2-2ax +4,由题意得∃x ∈(-2,-1),使得不等式f ′(x )=2(x 2-ax +2)<0成立, 即x ∈(-2,-1)时,a <(x +2x )max ,令g (x )=x +2x ,x ∈(-2,-1), 则g ′(x )=1-2x 2=x 2−2x 2,令g ′(x )>0,解得-2<x <-√2, 令g ′(x )<0,解得-√2<x <-1,故g (x )在(-2,-√2)上单调递增,在(-√2,-1)上单调递减, 故g (x )max =g (-√2)=-2√2,故满足条件的a 的范围是(-∞,-2√2), 故选C. 答案:C4.解析:因为任意x ∈(-π,0),f ′(x )sin x <f (x )cos x 恒成立, 即任意x ∈(-π,0),f ′(x )sin x -f (x )cos x <0恒成立, 又x ∈(-π,0)时,sin x <0,所以[f (x )sin x ]′=f ′(x )sin x−f (x )cos x(sin x )2<0,所以f (x )sin x 在(-π,0)上单调递减, 因为-5π6<-3π4,所以f(−5π6)sin(−5π6)>f(−3π4)sin(−3π4),即f(−5π6)−12>f(−3π4)−√22,所以√2f (−5π6)<f (−3π4),故选C.答案:C5.解析:设g (x )=e x f (x )-e x ,因为f (x )>1-f ′(x ),所以g ′(x )=e x [f (x )+f ′(x )]-e x =e x [f (x )+f ′(x )-1]>0,所以g (x )是R 上的增函数, 又g (0)=e 0f (0)-e 0=5,所以不等式f (x )>1+5e x 可化为e xf (x )-e x >5,即g (x )>g (0),所以x >0.故选A.答案:A6.解析:令f (x )=ln xx+1且x ∈(0,+∞),则f ′(x )=1+1x−ln x (x+1)2,若g (x )=1+1x -ln x ,则在x ∈(0,+∞)上g ′(x )=-1x 2−1x <0,即g (x )单调递减, 又g (e)=1e >0,g (e 2)=1e 2-1<0,即∃x 0∈(1e ,e 2)使g (x 0)=0, ∴在(x 0,+∞)上g (x )<0,即f ′(x )<0,f (x )单调递减; ∴f (2021)<f (2020),有ln 20212 022<ln 20202 021,即a >b ,令m (x )=ln xx−1且x ∈(0,1)∪(1,+∞),则m ′(x )=1−1x−ln x (x−1)2,若n (x )=1-1x -ln x ,则n ′(x )=1x (1x -1),即在x ∈(0,1)上n (x )单调递增,在x ∈(1,+∞)上n (x )单调递减,∴n (x )<n (1)=0,即m ′(x )<0,m (x )在x ∈(1,+∞)上递减, ∴m (2022)<m (2021),有ln 20222 021<ln 20212 020,即b >c ,故选D.答案:D微专题3利用导数研究函数的极值、最值提分题组训练1.解析:由题得f ′(x )=cos2x +cos x =2cos 2x +cos x -1=(2cos x -1)(cos x +1), 所以当cos x >12时,f ′(x )>0,f (x )单调递增;当-1≤cos x <12时,f ′(x )<0,f (x )单调递减.所以f (x )取得最小值时,cos x =12,此时sin x =±√32, 当sin x =-√32时,f (x )=sin x cos x +sin x =-3√34; 当sin x =√32时,f (x )=sin x cos x +sin x =3√34; 所以f (x )的最小值是-3√34.故选C.答案:C 2.解析:当a >0时,根据题意画出函数f (x )的大致图象,如图1所示,观察可知b >a .当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .综上,可知必有ab >a 2成立.故选D.答案:D3.解析:由f (x )=x 3-ax 2-bx +a 2,求导f ′(x )=3x 2-2ax -b ,由函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则{f(1)=10f′(1)=0,即{1−a−b+a2=103−2a−b=0,解得{a=−4b=11或{a=3b=−3,当a=3,b=-3时,f′(x)=3x2-6x+3=3(x-1)2≥0,此时f(x)在定义域R上为增函数,无极值,舍去.当a=-4,b=11,f′(x)=3x2+8x-11,x=1为极小值点,符合题意,故选B.答案:B4.解析:因为函数f(x)=x3-3x,所以f′(x)=3x2-3,当x<-1或x>1时,f′(x)>0,当-1<x<1时,f′(x)<0,所以当x=-1时,f(x)取得最大值,又f(-1)=f(2)=2,且f(x)在区间(2a,3-a2)上有最大值,所以2a<-1<3-a2≤2,解得-2<a≤-1,所以实数a的取值范围是(-2,-1]故选D.答案:D5.解析:依题意,f′(x)=e2x-m e x-mx有两个变号零点,令f′(x)=0,即e2x-m e x-mx=0,则e2x=m(e x+x),显然m≠0,则1m =e x+xe2x,设g(x)=e x+xe2x,则g′(x)=(e x+1)·e2x−(e x+x)·2e2xe4x =1−e x−2xe2x,设h(x)=1-e x-2x,则h′(x)=-e x-2<0,∴h(x)在R上单调递减,又h(0)=0,∴当x∈(-∞,0)时,h(x)>0,g′(x)>0,g(x)单调递增,当x∈(0,+∞)时,h(x)<0,g′(x)<0,g(x)单调递减,∴g(x)max=g(0)=1,且x→-∞时,g(x)→-∞,x→+∞时,g(x)→0,<1,解得m>1.∴0<1m故选B.答案:B6.解析:y=2x-2-2m在(-∞,1)上单调递增,∴y=2x-2-2m>-2m;当x≥1时,y=2x3-6x2,此时,y′=6x2-12x=6x(x-2).∴y=2x3-6x2在(1,2)上单调递减,在(2,+∞)上单调递增,∴y=2x3-6x2在[1,+∞)上的最小值为-8,函数f(x)有最小值,则-2m≥-8,即m≤4,故m的一个正整数取值可以为4.答案:4。
【高考数学二轮复习-经典微专题】第52讲 用空间向量判断,证明平行与垂直-解析版
第52讲 用空间向量判断,证明平行与垂直知识与方法1用空间向量判断证明线面平行或垂直,面面平行或垂直的思路 (1)直接利·用向量运算的几何意义进行证明.(2)通过建立三维坐标系,用向量的坐标形式进行运算和证明. 2用向量证明直线与平面平行的方法(1)证明直线的方向向量与平面某一法向量垂直. (2)证明直线的方向向量与平面内某直线的方向向亘平行. (3)证明直线的方向向量可以用平面内的两个不共线的向量线性表示. 3用向量证明直线与平面垂直的方法(1)证明直线的方向向量与平面的某一法向量平行.(2)证明直线的方向向量与平面内两条相交直线的方向向量垂直. (3)证明直线的方向向量与平面内的任意一条直线的方向向量垂直. 4证明空间两个平面的平行与垂直关系的方法(1)利用两个平面的法向量的平行与垂直关系进行证明,关键是求出两个平面的法向量. (2)将证明两个平面的平行和垂直关系转化为证明直线与平面的平行与垂直关系,再 利用上述介绍的证明方法进行证明.(3)利用面面平行、面面垂直判定定理的向量表示进行证明.典型例题【例1】 如图52-1所示,在正方体111ABCD A BC D 中,M N ,分别是111C C B C ,的中点.证明://MN 平面1.A BD【解析】【解法1】 ∵1111111111111()2222MN C N C M C B C C D A D D D A =-=-=-=1//.MN DA ∴又∵MN 与1DA 不共线,∴1//.MN DA 又MN ⊄平面11,A BD A D ⊂平面1A BD ,//MN ∴平面1A BD .【解法2】设正方体的棱长为1,以D 为原点,分别以1,,DA DC DD 所在直线为x 轴、y 轴、z 轴,建立如图52-2所示空间直角坐标系,则1110,1,,,1,1,(0,0,0),(1,0,1),(1,1,0).22M N D A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭于是111,0,,(1,0,1),(1,1,0)22MN DA DB ⎛⎫=== ⎪⎝⎭.设平面1A BD 的一个法向量为(),,n x y z =,则0,,0n DA n DB ⎧⎪⋅⎨⎪⎩=⋅= 得00x z x y ⎧⎨⎩+=+=,取1x =,得1,1y z =-=-,∴()1,1,1n =--.又1111,0,(1,1,1)10(1)(1)02222n MN ⎛⎫⋅=⋅--=⨯+⨯-+⨯-= ⎪⎝⎭,MN n ∴⊥,又MN ⊄平面1A BD .∴//MN 平面1.A BD【解法3】 如图52-2所示,1DA (1,0,1),(1,1,0),DB ==设1MN sDA tDB =+ , 即11,0,(1,0,1)(1,1,0),22s t ⎛⎫=+ ⎪⎝⎭12012s t t s ⎧+=⎪⎪∴=⎨⎪⎪=⎩解得1,0,2s t ==∴1,2MN DA =∴MN 与1DA 共线,∵MN ⊄平面1A BD ,∴//MN 平面1.A BD【例2】如图524-所示,四棱锥S ABCD -中,///,.CD AB CD BC ⊥侧面SAB 为等边三角形,2,1AB BC CD SD ====. (1)证明:SD ⊥平面SAB .(2)求点A 到平面SBC 的距离.【解析】(1)【证明】以C 为原点,射线CD 为x 轴的正半轴建立如图525-所示的空间直角坐标系C xyz -.设(1,0,0)D ,则(2,2,0),(0,2,0)A B 又设(,,)S x y z ,则0,0,0.x y z >>>(2,2,),(,2,),(1AS x y z BS x y z DS x =--=-=-,)y z .由||||AS BS ==故1x =.由||1DS =,得221y z +=,又由||2BS =,得222(2)4x y z +-+=.即2410x y -+=,即可解得1,22y z ==,于是1333311,,1,,,1,,,0,222222S AS BS DS ⎛⎛⎫⎛⎫⎛=--=-= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭. 0,0DS AS DS BS ∴⋅=⋅=,故S ,AS B DS DS ⊥⊥,又BS AS S ⋂=,SD ∴⊥平面SAB .(2)设平面SBC 的法向量(,,)a m n p =,则BS 0,CB 0a a ⋅=⋅=.又331,,,(0,2,0)22BS CB ⎛⎫=-= ⎪ ⎪⎝⎭,故30220m n p n ⎧-+=⎪⎨⎪=⎩则(a =,又(2,0,0),AB =-故点A 到平面SBC 的距离为||2||a AB d a ⋅==。
高中数学二轮微专题复习策略探究
高中数学二轮微专题复习策略探究高中数学二轮微专题复习是理科生备战高考的关键,如何科学合理地制定复习策略,参照往年高考微积分出题特点,精准把握考试难易度和命题趋势,提高复习效率和考试成绩是必不可少的。
本文从以下几个方面探究高中数学二轮微专题复习策略:复习内容的整理、复习时间的安排、复习过程的具体操作、考场心理的调整、错题总结与复盘。
一、复习内容的整理高考微积分专题复习包括微分、导数应用、定积分、曲线与曲面积分等方面。
在整理复习资料时,首先要将二轮微积分知识点清晰分类,使每个知识点都可以得到系统的复习与巩固。
其次,在资料整理的过程中,建议同学们根据每个知识点的难易程度、重要程度和出题频率来分配复习时间,科学高效地利用有限的时间进行复习,并要将知识点的复习进度和掌握情况及时记录下来,以便检验效果。
二、复习时间的安排考生应视考试时间而定,制定合理的复习计划。
高中数学二轮微专题复习一般需要规划1-2周的时间,在此期间,要对所有会考的知识点进行备考,对于每个知识点进行掌握后,要及时巩固,同时保持一定的练习量,在考前一周要进行重点复习,并加强对难点知识的练习,加强对较易错的知识点的巩固,充分利用报纸、书籍、网络等各种渠道进行知识点的深化。
三、复习过程的具体操作在复习过程中,要注重以下几点:1、梳理思路,列提纲:在复习前应该先列一个复习大纲,让自己明确一下哪些知识点需要掌握,以及需要做的题目等。
2、注重理解,理论重要:不要一心追求得高分数,如果没有理解做题是没有意义的。
所以,越早理解知识点,复习时越轻松。
3、笔记要详细:复习要详细的笔记,可以帮助我快速发现错误,同时对疑难问题的解答更有针对性。
4、做题量多样:做题量多样可以加深记忆,便于回忆考点,更方便复习。
四、考场心理的调整高考是一项非常紧张的考试,需要应试者有良好的心理素质,特别是在考试过程中,在考场上给自己预留时间缓冲,应用科学的时间管理进行考场作答,在遇到难题时要有调整心态,保持状态,及时整理思路,做出正确的选择。
2021届高考数学统考第二轮专题复习微专题一数列与其他知识的综合学案理含解析
微专题一数列与其他知识的综合微点1数列与新信息的综合含“新信息”背景的数列问题,常常有图表迁移、新运算、新概念、新情境等.此类问题有以下几个难点:一是对于新的概念与规则,学生在处理时会有一个熟悉的过程,不易抓住信息的关键部分并用于解题.二是学生不易发现每一问所指向的知识点,传统题目通常在问法上就直接表明该用哪些知识进行处理,例如“求通项”“求和”,但因为新信息问题与新信息相关,所以要运用的知识隐藏得较深,不易让学生找到解题的方向.三是此类问题在设计时通常注重几问之间的联系,即前面问题的处理是为了给最后一问做好铺垫.1(1)[2020·全国卷Ⅱ]0-1周期序列在通信技术中有着重要应用.若序列a1a2…a n…满足a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成立,则称其为0-1周期序列,并称满足a i+m=a i(i=1,2,…)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2…a n…,C(k)=1m ∑i=1ma i a i+k(k=1,2,…,m-1)是描述其性质的重要指标.下列周期为5的0-1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…(2)图W1-1是某省从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.若该省从1月21日至2月24日的新冠肺炎每日新增确诊病例数按日期顺序排列构成数列{a n},{a n}的前n项和为S n,则下列说法中正确的是()图W1-1A.数列{a n}是递增数列B.数列{S n}是递增数列C.数列{a n}的最大项是a11D.数列{S n}的最大项是S11微点2数列与函数的综合数列与函数的综合问题的解题策略:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图像研究数列问题;(2)已知数列条件,解决函数问题,一般要充分利用数列的范围、公式、求和方法对式子化简变形.另外要注意数学思想方法的应用,如函数与方程思想等.2(1)若数列{a n}为等差数列,{b n}为等比数列,且满足a1+a2020=27,b1·b2020=2,函数f(x)满足f(x+2)=-f(x)且f(x)=e x,x∈[0,2],则f a1010+a10111+b1010b1011=()A.eB.e2C.e-1D.e9(2)已知数列{a n}满足对任意n∈N*,a n∈0,π2,且a1=π3,f(a n+1)=√f'(a n),其中f(x)=tan x,则使得sin a1·sin a2·…·sin a k<110成立的最小正整数k为.微点3数列与解析几何的综合数列与解析几何的综合,主要从探究数列递推关系开始,其步骤是:①探究递推公式;②研究数列的前n项和或通项公式.因此,其突破口是探究点与点的关系,挖掘数列的递推关系. 3两光滑的曲线相切,那么它们在公共点处的切线相同.如图W1-2所示,一列圆C n:x2+(y-a n)2=r n2(a n>0,r n>0,n=1,2,…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1= ,r n= .图W1-2微点4 数列与平面向量的综合4(1)如图W1-3,已知点E 是平行四边形的边AB 的中点,F n (n ∈N *)为边BC 上的一列点,连接AF n 交BD 于G n ,点G n 满足G n D ⃗⃗⃗⃗⃗⃗⃗⃗ =a n+1·G n A ⃗⃗⃗⃗⃗⃗⃗ -2(2a n +3)·G n E ⃗⃗⃗⃗⃗⃗⃗ ,其中数列{a n }是首项为1的正项数列,S n 是数列{a n }的前n 项和,则下列结论正确的是 ( )图W1-3A .a 3=15B .数列{a n +3}是等比数列C .a n =4n-3D .S n =2n+1-n-2(2)设S n ,T n 分别为等差数列{a n },{b n }的前n 项和,且Sn T n =3n+24n+5.设点A 是直线BC 外一点,点P 是直线BC 上一点,且AP ⃗⃗⃗⃗⃗ =a 1+a 4b3·AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ ,则实数λ的值为 ( ) A .2825B .-325C .328D .-18251.已知函数f (x )={1-4x,x ≤0,1+log 3x,x >0,在等差数列{a n }中,a 7=7,a 9=11,则f (a 8)= ( )A .1B .2C .3D .42.若数列{a n}的首项a1=2,且点(a n,a n+1)在直线x-y=2上,则数列{a n}的前n项和S n等于()A.3n-1B.-n2+3nC.3n+1D.n2-3n3.在数列{a n}中,a1=1,若OP⃗⃗⃗⃗⃗ =(a n+1,-1),OQ⃗⃗⃗⃗⃗⃗ =(1,a n+2),且OP⃗⃗⃗⃗⃗ ⊥OQ⃗⃗⃗⃗⃗⃗ ,S n为数列{a n}的前n项和,令b n=1S n+n,若数列{b n}的前n项和为T n,则T n=()A.nn+1B.n+1n+2C.n+2n+3D.n+3n+44.设函数f(x)是定义在(0,+∞)上的单调函数,且对于任意正数x,y均有f(xy)=f(x)+f(y),已知f(2)=1,若一个各项均为正数的数列{a n}满足f(S n)=f(a n)+f(a n+1)-1(n∈N*),其中S n是数列{a n}的前n项和,令b n=1a n a n+1,数列{b n}的前n项和为T n,则T2020的值为()A.2020B.12020C.20192020D.202020215.若数列{a n}满足:存在正整数T,对于任意正整数n都有a n+T=a n成立,则称数列{a n}为周期数列,周期为T.已知数列{a n}满足a1=m(m>0),a n+1={a n-1,a n>1,1a n,0<a n≤1,则下列结论中错误的是()A.若a3=4,则m可以取3个不同的值B.若m=√2,则数列{a n}是周期为3的数列C.对于任意的T∈N*且T≥2,存在m>1,使得{a n}是周期为T的数列D.存在m∈Q且m≥2,使得数列{a n}是周期数列6.对于数列{a n },令P n =1n (a 1+2a 2+…+2n-1a n )(n ∈N *),则称{P n }为{a n }的“伴随数列”.已知数列{a n }的“伴随数列”{P n }的通项公式为P n =2n+1(n ∈N *),记数列{a n -kn }的前n 项和为S n ,若S n ≤S 4对任意的正整数n 恒成立,则实数k 的取值范围为 .7.我们把一系列向量a i (i=1,2,…,n )按次序排列成一列,称为向量列,记作{a n }.已知向量列{a n }满足:a 1=(1,1),a n =(x n ,y n )=12(x n-1-y n-1,x n-1+y n-1)(n ≥2),设θn 表示向量a n-1与a n 的夹角,若b n =n 2πθn ,对于任意正整数n ,不等式√1b n+1+√1bn+2+…+√1b 2n>12log a (1-2a )恒成立,则实数a 的取值范围是 .8.牛顿迭代法(Newton'smethod)又称为牛顿-拉夫逊方法(Newton-Raphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图W1-4,设r 是f (x )=0的根,选取x 0作为r 的初始近似值,过点(x 0,f (x 0))作曲线y=f (x )的切线l ,l 与x 轴的交点的横坐标x 1=x 0-f(x 0)f'(x 0)(f'(x 0)≠0),称x 1是r 的一次近似值,过点(x 1,f (x 1))作曲线y=f (x )的切线,则该切线与x 轴的交点的横坐标为x 2=x 1-f(x 1)f'(x 1)(f'(x 1)≠0),称x 2是r 的二次近似值.重复以上过程,得到r 的近似值序列.请你写出r 的n+1次近似值与r 的n 次近似值的关系式 .若f (x )=x 2-2,取x 0=1作为r 的初始近似值,试求f (x )=0的一个根√2的三次近似值 (请用分数作答).图W1-4微专题一数列与其他知识的综合微点1例1(1)C(2)C[解析](1)对于A选项,C(1)=15∑i=15a i a i+1=15×(1+0+0+0+0)=15,C(2)=15∑i=15a i a i+2=15×(0+1+0+1+0)=25>15,不满足题意;对于B选项,C(1)=15∑i=15a i a i+1=15×(1+0+0+1+1)=35>15,不满足题意;对于C选项,C(1)=15∑i=15a i a i+1=15×(0+0+0+0+1)=15,C(2)=15∑i=15a i a i+2=15×(0+0+0+0+0)=0,C(3)=15∑i=15a i a i+3=15×(0+0+0+0+0)=0,C(4)=15∑i=15a i a i+4=15×(1+0+0+0+0)=15,满足题意;对于D选项,C(1)=15∑i=15a i a i+1=15×(1+0+0+0+1)=25>15,不满足题意.故选C.(2)因为1月28日的新增确诊病例数小于1月27日的新增确诊病例数,即a7>a8,所以{a n}不是递增数列,所以选项A错误;因为2月23日新增确诊病例数为0,所以S33=S34,所以数列{S n}不是递增数列,所以选项B错误;因为1月31日新增确诊病例数最多,从1月21日算起,1月31日是第11天,所以数列{a n}的最大项是a11,所以选项C正确;数列{S n}的最大项是S35,所以选项D错误.故选C.微点2例2 (1)A (2)298 [解析](1)因为数列{a n }为等差数列,且a 1+a 2020=27,所以a 1010+a 1011=27.因为{b n }为等比数列,且b 1·b 2020=2,所以b 1010b 1011=2,所以a 1010+a 10111+b 1010b 1011=273=9.因为f (x+2)=-f (x ),所以f (x+4)=-f (x+2)=f (x ),所以函数f (x )的周期为4,又f (x )=e x ,x ∈[0,2],所以f (9)=f (2×4+1)=f (1)=e,即fa 1010+a 10111+b 1010b 1011=e .故选A .(2)f (x )=tan x=sinxcosx ,f'(x )=cos 2x+sin 2xcos 2x=1+tan 2x.∵f (a n+1)=√f'(a n ),∴tan a n+1=√12a n即tan 2a n+1-tan 2a n =1,∴数列{tan 2a n }是首项为3,公差为1的等差数列, ∴tan a n =√n +2. ∵a n ∈0,π2,∴sin a n =√n+2√n+3, ∴sin a 1·sin a 2·…·sin a k =√34×45×56×…×k+2k+3=√3k+3,由√3k+3<110,解得k>297,∴使得sin a 1·sin a 2·…·sin a k <110成立的最小正整数k 为298.微点3例354n [解析]当r 1=1时,圆C 1:x 2+(y-a 1)2=1,将圆C 1的方程与y=x 2联立,消去x 得y 2-(2a 1-1)y+a 12-1=0,则Δ=(2a 1-1)2-4(a 12-1)=0,解得a 1=54.由图可知当n ≥2时,a n =a n-1+r n-1+r n ①.将x 2+(y-a n )2=r n 2与y=x 2联立,消去x 得y 2-(2a n -1)y+a n 2-r n 2=0,则Δ=(2a n -1)2-4(a n 2-r n 2)=0,整理得a n =r n 2+14,代入①得r n 2+14=r n -12+14+r n-1+r n ,整理得r n -r n-1=1,则r n =r 1+(n-1)=n.微点4例4 (1)B (2)B [解析](1)∵E 为AB 的中点,∴2G n E ⃗⃗⃗⃗⃗⃗⃗ =G n A ⃗⃗⃗⃗⃗⃗⃗ +G n B ⃗⃗⃗⃗⃗⃗⃗⃗ ,∴G n B ⃗⃗⃗⃗⃗⃗⃗⃗ =-G n A ⃗⃗⃗⃗⃗⃗⃗ +2G n E ⃗⃗⃗⃗⃗⃗⃗ .又∵D ,G n ,B 三点共线,∴G n D ⃗⃗⃗⃗⃗⃗⃗⃗ =λG n B ⃗⃗⃗⃗⃗⃗⃗⃗ =-λG n A ⃗⃗⃗⃗⃗⃗⃗ +2λG n E ⃗⃗⃗⃗⃗⃗⃗ .又∵G n D ⃗⃗⃗⃗⃗⃗⃗⃗ =a n+1·G n A ⃗⃗⃗⃗⃗⃗⃗ -2(2a n +3)·G n E ⃗⃗⃗⃗⃗⃗⃗ ,∴{-λ=a n+1,2λ=-2(2a n +3),可得a n+1=2a n +3,∴a n+1+3=2(a n +3),∴数列{a n +3}是等比数列.又∵a 1=1,∴a n +3=(1+3)×2n-1,∴a n =2n+1-3,∴a 3=13,S n =4(1-2n )1-2-3n=2n+2-3n-4.故选B .(2)由题知S n ,T n 分别为等差数列{a n },{b n }的前n 项和,且S n T n=3n+24n+5,不妨取S n =3n 2+2n ,T n =4n 2+5n ,当n=1时,a 1=S 1=5,当n ≥2时,a n =S n -S n-1=6n-1,验证得当n=1时上式成立,所以数列{a n }的通项公式为a n =6n-1,同理可得,数列{b n }的通项公式为b n =8n+1, 则a 1+a 4b 3=2825.由点P 在直线BC 上,可设BP⃗⃗⃗⃗⃗ =k BC ⃗⃗⃗⃗⃗ ,则AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +k BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +k (AC ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )=(1-k )AB ⃗⃗⃗⃗⃗ +k AC ⃗⃗⃗⃗⃗ =2825AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ ,所以1-k=2825,所以λ=k=-325.故选B . 【强化训练】1.C [解析]在等差数列{a n }中,a 7=7,a 9=11,可得a 8=7+112=9,所以f (a 8)=f (9)=1+log 39=3.故选C .2.B [解析]由点(a n ,a n+1)在直线x-y=2上,可得a n -a n+1=2,即a n+1-a n =-2,所以数列{a n }是首项为2,公差为-2的等差数列,则S n =2n+12n (n-1)·(-2)=3n-n 2.故选B .3.A [解析]∵OP ⃗⃗⃗⃗⃗ =(a n+1,-1),OQ ⃗⃗⃗⃗⃗⃗ =(1,a n +2),且OP ⃗⃗⃗⃗⃗ ⊥OQ⃗⃗⃗⃗⃗⃗ , ∴a n+1=a n +2,又a 1=1,∴数列{a n }是以1为首项,2为公差的等差数列, ∴a n =1+2×(n-1)=2n-1,∴S n =(a 1+a n )n2=n 2,∴b n =1Sn+n =1n 2+n =1n -1n+1,∴T n =11-12+12-13+13-14+…+1n -1n+1=1-1n+1=nn+1.故选A .4.D [解析]由题意可知当n ∈N *时,f (S n )+1=f (a n )+f (a n +1),即f (S n )+f (2)=f (a n )+f (a n +1),故f (2S n )=f [a n ·(a n +1)],即2S n =a n ·(a n +1)=a n 2+a n .当n=1时,2a 1=2S 1=a 1·(a 1+1),得a 1=1.当n ≥2时,由2S n =a n 2+a n ,可得2S n-1=a n -12+a n-1,两式相减,可得2a n =2S n -2S n-1=a n 2+a n -a n -12-a n-1,整理得(a n +a n-1)(a n -a n-1-1)=0,∵a n +a n-1>0,∴a n -a n-1-1=0,即a n -a n-1=1,故数列{a n }是以1为首项,1为公差的等差数列,∴a n =1+1·(n-1)=n ,n ∈N *,∴b n =1an a n+1=1n(n+1),∴T 2020=b 1+b 2+…+b 2020=11×2+12×3+…+12020×2021=1-12+12-13+…+12020-12021=1-12021=20202021.故选D .5.D [解析]对于A,若a 3=4,因为a n+1={a n -1,a n >1,1a n,0<a n≤1,所以当a 2>1时,a 2-1=a 3=4,解得a 2=5,当a 1>1时,a 1-1=a 2=5,解得a 1=6,当0<a 1≤1时,1a 1=a 2=5,解得a 1=15;当0<a 2≤1时,1a 2=a 3=4,解得a 2=14,当a 1>1时,a 1-1=a 2=14,解得a 1=54,当0<a 1≤1时,1a 1=a 2=14,解得a 1=4,不合题意,舍去.故m可以取3个不同的值,故A 中结论正确.对于B,若m=√2,则a 2=a 1-1=√2-1,a 3=1a 2=√2+1,a 4=a 3-1=√2,…,所以a n+3=a n ,则数列{a n }是周期为3的数列,故B中结论正确.对于C,D,先考虑数列{a n }的周期性.如果a 1=k+a ,k ∈N *,0<a ≤1,那么a 2=k-1+a ,a 3=k-2+a ,…,a k+1=a.要使得数列{a n }有周期性,只需要a k+2=1a =a 1=k+a.因为方程1a=k+a ,即a 2+ka-1=0的正根为a=-k+√k 2+42∈(0,1),所以a 一定存在,从而存在m=k+a ,使得数列{a n }的周期为k+1.对于C,为了使数列的周期为T ,只需取k=T-1≥1,a=-k+√k 2+42即可,此时m>1,故C 中结论正确.对于D,如果存在这样的m ,那么由前面的分析知必有m=k+a ,k ∈N *,0<a ≤1,且a=-k+√k 2+42∈Q ,于是有√k 2+4∈Q ,这是不可能的,故D 中结论错误. 6.125,52[解析]由题意得a 1+2a 2+…+2n-1a n =n ·2n+1①,所以a 1=1×22=4,a 1+2a 2+…+2n-2a n-1=(n-1)·2n (n ≥2)②,由①-②得2n-1a n =n ·2n+1-(n-1)·2n (n ≥2),所以a n =2n+2(n ≥2),当n=1时也满足上式,所以a n =2n+2(n ∈N *).因此数列{a n -kn }的前n 项和S n =12n (4-k+2n+2-kn )=12n (6-k+2n-kn ),因为S n ≤S 4对任意正整数n 恒成立,所以{2-k <0,4(2-k)+2≥0,5(2-k)+2≤0,所以125≤k ≤52.7.(0,√2-1) [解析]因为cos θn =a n -1·a n|an -1||a n|=(x ,y )·(12(x -y ),12(x +y ))√x n -1+y n -1×√[2(x n -1-y n -1)] 2+[2(x n -1+y n -1)] 2=12x 2+12y 2√x n -1+y n -1×√2x n -1+2y n -1=√22,所以θn =π4,故b n =n 24,√1bn+1+√1bn+2+…+√1b 2n=2n+1+2n+2+…+22n .令f (n )=2n+1+2n+2+…+22n ,则f (n+1)-f (n )=2n+2+2n+3+…+22(n+1)-2n+1+2n+2+…+22n =22n+1-22n+2>0,所以f (n )单调递增,所以f (n )min =f (1)=1,则1>12log a (1-2a ).因为a>0且a ≠1,1-2a>0,所以0<a<12,则1-2a>a 2,解得-1-√2<a<-1+√2,故实数a 的取值范围为(0,√2-1). 8.x n+1=x n -f(x n )f'(x n)(f'(x n )≠0)577408[解析]由题设可得x 1=x 0-f(x 0)f'(x 0)(f'(x 0)≠0),x 2=x 1-f(x 1)f'(x 1)(f'(x 1)≠0),x 3=x 2-f(x 2)f'(x 2)(f'(x 2)≠0),依次类推,则可得x n+1=x n -f(x n )f'(x n),其中f'(x n )≠0.因为f (x )=x 2-2,所以x n+1=x n -x n 2-22x n=x n2+22x n(x n ≠0),因为x 0=1,故x 1=32,x 2=1712,x 3=577408.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ax≤20, 2xa≥1,
亦即aaxx≥≥22a02,
①或aaxx≤≤22a02,.
②
第13页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
由题意知,不等式组①与②的解集的并集为{x|x>0}, 故 2a2=20,即 a= 10或 a=- 10(舍去).
-2,12 解析:由 y=x2 得 y′=2x,则在点 x=1 处的切线斜率 k=2×1=2,切 线方程为 y-1=2(x-1),即 2x-y-1=0.在平面直角坐标系中作出可行域,如图
阴影部分所示,则点 A(0,-1),B12,0.
第16页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
年份 2017 2018 2019
填空题
T7解一元二次不等式 T11解函数不等式 T5解对数不等式 T4解不等式
解答题
T20不等式证明 T20绝对值不等式 T19,T20函数、数列中不等关系的论证
第2页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
典课 型时 例作 题业
点评:本题为解函数不等式,直接代入解析式后解不等式;注意对于这类问题还 会通过研究函数单调性、奇偶性、图象等直接转化为自变量大小比较.
第4页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
(2) 已知函数 f(x)=x2+mx-1,若对任意 x∈[m,m+1],都有 f(x)<0 成立,则实 数 m 的取值范围是________. - 22,0 解析:据题意ffmm+=1m=2+mm+2-112<+0,mm+1-1<0, 解得- 22<m<0.
10 3
解析:x2+xyy-2+x2+x-y-2y1+2=x+x+112+y-y-112=yx- +11+xy+ -11,令 t=yx- +11,则 t
的几何意义为 2≤y≤4-x,x≥1 对应的可行域中的任一点与点(-1,1)连线的斜率.
由下图可得 t∈13,1,即t+1t max=130当t=13时取得,故原式的最大值为130.
1.
已知函数
f(x)
=
x,x≥0, x2,x<0,
则关于 x
的不等式
f(x2) > f(3 - 2x) 的 解 集 是
________. (-∞,-3)∪(1,3)
解析:由题意得x32->32-x≥2x0, 或3x2->23x-<02,x2,
解得 x<-3
或 1<x≤32或32<x<3,即 x∈(-∞,-3)∪(1,3).
第22页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
点评:本题所求分式可以进行配方,发现式子结构的特征为“二元齐次”,所给 不等式条件联想线性规划的思想,利用几何法求解最值.
第23页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
第9页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
点评:在二次方程、不等式及函数的处理过程中要注意灵活使用判别式,同时要 注意主变量与辅变量及它们的取值范围.
第10页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
【思维变式题组训练】
第11页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
2. 已知函数 f(x)=|xx+|+11,x∈R,则不等式 f(x2-2x)<f(3x-4)的解集是________. (1,2) 解析:f(x)=|xx+ |+11=1x--,21-1,xx<≥00,, f(x)在(-∞,0)上单调递增,在[0,
微专题一 解不等式及线性规划
点评:(1) 线性规划问题本质是借助于图形研究二元函数的最值问题.其中常见的 几何意义有斜率、截距、距离. (2) 利用线性规划求最值,一般用图解法求解,其步骤如下: ① 在平面直角坐标系中作出可行域; ② 考虑目标函数的几何意义,将目标函数进行变形; ③ 确定最优解:在可行域内平移目标函数变形后的直线,从而确定最优解; ④ 求最值:将最优解代入目标函数即可求出最大值或最小值.
根为 x1,x2,且 x1<x2,易知 x1<0,x2>0.又当 x>0 时,原不等式恒成立,故 x
=1a是方程 x2+ax-5=0 的一个根,代入得 a=12.
第8页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
解法二:如图所示,当 a=0 时,显然不能使原不等式对任意的 x>0 恒成立,故 a≠0, 且当 x=1a,a≠0 时,原不等式恒成立.易知 a>0,当 x=1a时,ax-1=0,此时, 结合图象可知 x=1a是方程 x2+ax-5=0 的一个根,所以 a=12.
第5页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
(3) 已知函数 f(x)=x3-2x+ex-e1x,其中 e 是自然对数的底数.若 f(a-1)+f(2a2)≤0, 则实数 a 的取值范围是________. -1,12 解析:因为 f(-x)=-x3+2x+e1x-ex=-f(x),所以函数 f(x)是奇函数.因 为 f′(x)=3x2-2+ex+e-x≥3x2-2+2 ex·e-x≥0,所以 f(x)在 R 上单调递增.又 f(a-1)+f(2a2)≤0,即 f(2a2)≤f(1-a),所以 2a2≤1-a,即 2a2+a-1≤0,解得- 1≤a≤12,故实数 a 的取值范围为-1,12.
第14页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
4. 已知函数 f(x)=x+4sinx,若不等式 kx+b1≤f(x)≤kx+b2 对一切实数 x 恒成立, 则 b2-b1 的最小值为________.
8 解析:思路分析:设 g(x)=f(x)-kx,则 g(x)是有界函数. 设 g(x)=f(x)-kx=(1-k)x+4sinx,x∈R. 若 k≠1,则 g(x)的值域为 R,不合题意. 若 k=1,则 g(x)=4sinx 的值域为[-4,4],所以 b2-b1 的最小值是 4-例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
点评:解函数不等式时,首先根据函数的性质把不等式转化为 f(g(x))>f(h(x))的形式, 然后根据函数 f(x)的单调性去掉“f”,转化为具体的不等式(组),此时要注意 g(x)与 h(x)的取值应在函数 f(x)的定义域内.
+ ∞) 上 的 值 始 终 为 1. 而
f(x2
-
2x)
<
f(3x
-
4)
,
则
x2-2x<0, 3x-4≥0,
或
x2-2x<3x-4, 3x-4<0, x2-2x<0,
解得43≤x<2 或 1<x<43,则不等式的解集为 1<x<2.
第12页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
目标 1 解不等式 例 1 (1) 已知函数 f(x)=- x2+x2, 2x,x≥x<0,0, 则不等式 f(f(x))≤3 的解集为________.
第3页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
(-∞, 3] 解析:x>0 时,f(f(x))≤3 即 x4-2x2-3≤0 且-x2<0,x∈(0, 3]; x=0 时,f(f(x))≤3 即 0≤3 成立; -2<x<0 时,x2+2x<0,f(f(x))≤3 即(x2+2x+3)(x2+2x-1)≤0 成立; x≤-2 时 f(f(x))≤3 即-(x2+2x)2≤3 成立. 综上,不等式的解集为(-∞, 3].
【思维变式题组训练】
x-y+1≥0, 1. 若 x,y 满足约束条件x+y-3≥0,
x-3≤0,
则 z=x-2y 的最小值为________.
第24页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
-5 解析:由xx+-yy-+31==00, 得yx==21,, 点 A(1,2). 由xx--3y+=10=0, 得yx==43,, 点 Β(3,4). 由xx+-y3-=30=,0 得yx==03,, 点 C(3,0).分别将 Α,Β,C 代入 z=x-2y 得 zΑ=1-2×2 =-3,zΒ=3-2×4=-5,zC=3-2×0=3,所以 z=x-2y 的最小值为-5.
第15页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
目标 2 线性规划的基本问题
例 2 (1) 已知抛物线 y=x2 在 x=1 处的切线与两坐标轴围成的三角形区域为 D(包 含三角形内部与边界).若点 P(x,y)是区域 D 内的任意一点,则 x+2y 的取值范围 是________.
第19页
考情分析 典型例题 课后作业
原创与经典•大二轮整体设计
微专题一 解不等式及线性规划
x2+y2 为可行域内的点到原点距离的平方.可以看出图中点 A 距离原点最近,此时 距离为原点到直线 2x+y-2=0 的距离,d= -4+21=255,则(x2+y2)min=45; 图中点 B 距离原点最远,点 B 为 x-2y+4=0 与 3x-y-3=0 的交点,则 B(2,3), 则(x2+y2)max=13.