解一元一次方程步骤与注意事项
解一元一次方程(去括号)
知识回顾
1、 解方程 9-3x=-5x+5
解:移项,得
移项要变号
3x 5 x 5 9 合并同类项,得 2 x 4
系数化为1,得
x 2
2、去括号 ① 32 y 5 ② 3x 2 y
3x 2 y ③ (3x 5) 3x 5 ④ 21 3ab 2 6ab
解:去括号,得3 0.4x 2 0.2x 去括号,得3-0.4x-2=0.2x 移项,得 0.4x 0.2x 3 2
移项,得 -0.4x-0.2x=-3+2 合并同类项,得 -0.6x=-1
合并同类项,得
系数化为1,得
0.2 x 5
x 25
5 系数化为1,得x 3
解一元一次方程的一般步骤
变形名称 注 意 事 项
去 括 号 移项 合并同类项 系数化为1
注意符号,防止漏乘;
移项要变号,防止漏项; 计算要准确,防止合并出错; 分子、分母不要颠倒了;
思考:下列变形对吗?若不对,请说明理由,并改正:
1 解方程: 3 2(0.2 x 1) x 5
去括号变形错,有一项 没变号,改正如下:
练习:解下列方程 (练习95页)
(1)2(x+3)=5x (2) 4x + 3(2X-3) = 12- (x+4) (4)2-3(x+1)=1-2(1+0.5x)
X=2
17 x 11
X=0
1 1 (3)6( x 4) 2 x 7 ( x 1) X=6 2 3
本节课学习了什么?
2x-x-5x-2x=-2+10
解对了吗?
合并同类项,得: -6x = 8 系数化为1,得:
一元一次方程的知识点及性质
一元一次方程的知识点及性质2016关于一元一次方程的知识点及性质导语:世界之大,而能获得最公平分配的是常识。
下面是小编为大家整理的,初中一元一次方程.希望对大家有所帮,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!Ⅰ. 认识一元一次方程1)等式:用“=”号连接而成的式子叫等式.2)方程:含有未知数的等式叫做方程.3)一元一次方程:只含有一个未知数,并且未知数的次数都是1,等号的两边都是整式,这样的方程叫做一元一次方程.注:判断一元一次方程的条件:⑴首先必须是方程;⑵其次必须只含有一个未知数,且未知数的指数是1;⑶分母中不含有未知数.4)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解.说明:方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论5)一元一次方程都可以化为一般形式:ax+b=0(a≠0)Ⅱ. 等式的性质1)等式的性质:⑴等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质1:如果a=b,那么a±c=b±c⑵等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.等式的性质2:如果a=b,那么ac=bc;如果a=b(c≠0),那么ab= cc2)解以x为未知数的方程,就是把方程逐步转化为x=a(常数)的形式,等式的性质是转化的重要依据.Ⅲ. 解一元一次方程1)解一元一次方程——合并同类项与移项1、合并同类项通过合并同类项可以把一元一次方程化为最简形式:ax=b,其中未知数的系数a满足的条件是a≠0.2、系数化为1:解方程系数化为1这一步的理论根据是等式的性质2.3、移项:把等式一边的某项变号后移动到另一边,叫做移项.4、移项的目的:通过移项,含有未知数的项与常数项分别在等号的两边,使方程更接近ax=b的形式.5、移项的理论根据是等式的性质1.2)解一元一次方程——去括号与去分母1、去括号法则:括号前面是“+”号,去括号时符号不变,括号前面是“-”号,去括号时各项都变号.2、去括号的理论根据是:乘法分配律.3、去分母:去分母的理论根据是:等式的性质2.4、去分母注意事项:⑴方程两边同乘的`数是各分母的最小公倍数;⑵不要漏乘不含分母的项;⑶当分子是多项式时分别乘以每一项.5、解一元一次方程的一般步骤:⑴去分母:方程两边同乘各分母的最小公倍数.⑵去括号:按去括号法则和分配律.⑶移项:把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号. ⑷合并同类项:把方程化成ax=b(a≠0)形式.⑸系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=Ⅳ. 实际问题与一元一次方程1)列方程解一元一次方程的步骤:⑴审——审题:找出等量关系;⑵设——设未知数:根据提问,巧设未知数;⑶列——列方程:利用已找出的等量关系列方程;⑷解——解方程:解所列的方程,求出未知数的值;⑸检——检验所求的未知数的值是否是方程的解,同时要注意该值是否符合实际情况; ⑹答——作答.2)与一元一次方程有关的实际问题:类型1:若干应用问题等量关系的规律(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
专题17解一元一次方程(7个知识点3种题型2种中考考法)(原卷版)
专题17解一元一次方程(7个知识点3种题型2种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.方程的解与解方程的概念(重点)知识点2等式的基本性质(重点)知识点3.利用等式的基本性质解方程(重点)知识点4.利用移项、合并同类项解方程(难点)知识点5.利用去括号解方程(难点)知识点6.利用去分母解方程(重点)知识点7.解一元一次方程的一般步骤(重点)【方法二】实例探索法题型1.方程的解的应用题型2.解一元一次方程题型3.一元一次方程的解的情况【方法三】仿真实战法考法1.方程的解的应用考法2.解一元一次方程【方法四】成果评定法【学习目标】1.了解方程的解与解方程的概念,会根据等式的基本性质解方程。
2.掌握解一元一次方程的方法,了解解一元一次方程的一般步骤,并能灵活运用,能判别解的合理性。
3.经历和体会解一元一次方程中“转化”的思想方法。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.方程的解与解方程的概念(重点)方程的解:使方程两边相等的未知数的值 解方程:求方程的解的过程【例1】如果关于x 的方程2x +k ﹣4=0的解x =﹣3,那么k 的值是( ) A .﹣10B .10C .2D .﹣2【变式】如果x =2是方程x ﹣2a =﹣2的解,那么a 的值是( ) A .﹣6B .﹣2C .0D .2知识点2等式的基本性质(重点)1)等式两边同加或同减一个数(或式子),等式仍然成立。
即:c b c a ±=±=,则若b a (注:此处字母可表示一个数字,也可表示一个式子)2)等式两边同乘一个数(或式子),或同除一个不为零的数(式子),等式仍然成立。
即:⎩⎨⎧≠÷=÷⨯=⨯=0c c b c a c b c a b a ,,则若(此处字母可表示数字,也可表示式子)例:3x+7=22x 3x+7+2x=22x+2x 3x+7+2x7=22x+2x7 5x=5 5x ÷5=5÷5 x=1 3)其他性质:①对称性:若a=b ,则b=a ;②传递性:若a=b ,b=c ,则a=c 。
3.3 解一元一次方程(二)——去括号与去分母(3)去分母;解一元一次方程的步骤
根据等式的性质2,在这个方程的两边乘各分母的 最小公倍数42,得
28 x 21x 6 x 42 x 1386
合并同类项,得 97 x 1386 .
1386 系数化为1,得 x . 97
你能解这个方程吗?
这个 方程 中各 分母 的最 小公 倍数 是多 少?
3x 1 3x 2 2x 3 2 2 10 5
A.15x-5(x+1)=1-3(x+3)
B. 15x-(x-1)=15-3(x+3) C.x-5(x-1)=1-3(x+3) D. 15x-5(x-1)=15-3(x+3) x 1 x +7 2 4.如果方程 的解也是方程 3 6 7. 那么a的值是
2 ax 0 3
的解,
5.小张和小王从甲地去乙地,小张早出发1小时,却晚到 1小时,他的速度为4千米/时,小王的速度为6千米/时, 则甲、乙两地的距离是 24 千米.
2
3
互为相反数.
6.解下列方程:
19 21 () 1 x ( x 2); 100 100 (2) x 1 x 2 ; 2 4
5 x 1 3x 1 2 x 3x 2 2x 1 2x 1 (3) ; (4) 1 . 4 2 1 3 2 5 9 4
x=21
B.4x+2-x+1=12 D.x=3
B.7 C.8 D.-1 x 1 3 2x 5 4.方程 的解是( C ) 4 6 2 A.x=-1 B.x=-2 C.x=-3 D.x=-4
1 1 ( x 1) 3.若式子 与 ( x 2)的值相等,则x的值是( B ) 2 3
13 3 2x 2 x 5.当x=____ 时,式子 与 8
一元一次方程知识点及经典例题
一元一次方程知识点及经典例题一、知识要点梳理知识点一:方程和方程的解1.方程:含有未知数的等式叫方程。
注意:a.必须是等式b.必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:(1).8-7=1+0(2).1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:1)只含有一个未知数;2)未知数的次数是1次;3)整式方程。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等。
知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a+c=b+c;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b(且c≠0),那么a/c=b/c。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6.方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤:1.变形步骤具体方法变形根据注意事项1.不能漏乘不含分母的项;去分母公倍数2.掉分母后,如果分子是多项式,则要加括号2.合并同类项1.分配律应满足分配到每一项去先去小括号,再乘法分配律、去括号2.注意符号,特别是去掉括号3.移项要变号;一般把含有未知数的项移动到方程左边,其余项移到右边4.合并同类项时,把同类项的同系数相加,字母与字母的指数不变5.未知数的系数a,成“ax=b”的形式6.方程两边同除以未知数的系数a,分子、分母不能颠倒。
解方程的方法与技巧
解方程的方法与技巧在数学学习中,解方程是一个常见而重要的技能。
无论是在初中、高中还是大学阶段,解方程都是一个必不可少的环节。
本文将介绍一些解方程的方法与技巧,帮助读者更好地掌握这一技能。
一、一元一次方程的解法1.平衡法:对于形如a + x = b的方程,可以通过平衡法来解。
我们需要通过某种操作,使得方程两边的量相等,从而求得x的值。
例如,对于方程3 + x = 8,我们可以通过减去3的操作,得到x = 5的解。
2.移项法:对于形如ax + b = c的方程,我们可以通过移项的方式将x移到一边,将常数移到另一边,从而求得x的值。
例如,对于方程2x + 3 = 11,我们可以通过减去3再除以2的操作,得到x = 4的解。
3.消元法:对于形如ax + by = c和dx + ey = f的方程组,我们可以通过消元的方式将其中一个变量消去,从而得到只含有一个变量的方程。
然后,可以使用平衡法或移项法解得该变量的值,进而求得另一个变量的值。
二、一元二次方程的解法1.公式法:对于形如ax² + bx + c = 0的方程,我们可以使用求根公式来解。
根据二次方程的求根公式:x = (-b ± √(b² - 4ac)) / (2a),我们可以求得方程的解。
需要注意的是,方程的解可能为实数或复数,取决于判别式b² - 4ac的值。
2.配方法:对于形如ax² + bx + c = 0的方程,我们可以使用配方法将其转化为一个完全平方的形式,从而求得方程的解。
具体步骤可以参考教材或相关资料,不再赘述。
需要注意的是,配方法在某些情况下可能会得到复数解。
三、多项式方程的解法1.因式分解法:对于形如x³ - 3x² + 2x = 0的多项式方程,我们可以尝试使用因式分解来解得方程的解。
找到方程中的公因式,并将其分解为两个或多个因式的乘积,从而求得方程的解。
2.长除法:对于形如x⁴ + 3x³ + 2x² + x + 1 = 0的多项式方程,我们可以使用长除法来分解方程,并求得方程的解。
解方程的步骤及格式
解方程的步骤及格式
解方程的步骤包括去分母、去括号、移项、合并同类项和化系数为1。
格式上需要注意移项要变号,移项后不含x的项移到等号的右边,移项后含x的项移到等号的左边。
具体步骤如下:
1. 有分母先去分母。
2. 有括号就去括号。
3. 需要移项就进行移项。
4. 合并同类项。
5. 系数化为1求得未知数的值。
以上是解一元一次方程的一般步骤,也可以用于其他简单的一元一次方程和二元一次方程组。
另外,解方程的方法还包括估算法、应用等式的性质、合并同类项、移项、去括号、公式法和函数图像法等。
在解方程时,需要根据方程的特点选择合适的方法,以达到快速准确的解题效果。
最后,需要注意解方程和检验的注意事项,即所有的方程都能用直接去分母的方法解答,但有的题目繁杂,不如用去括号的方法简单。
解方程时,需要把求得的x的值代入原方程进行检验,以确保所求的x的值就是原方程的解。
中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)
中考数学复习考点知识与题型专题讲解专题03一元一次方程【思维导图】【知识要点】知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。
注意:1.等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等。
2.不能将等式和代数式概念混淆,等式含有等号,表示两个式子相等关系,而代数式不含等号,你只能作为等式的一边。
方程的概念:含有未知数的等式叫做方程。
特征:它含有未知数,同时又是—个等式。
一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
标准形式:ax+b=0(x为未知数,a、b是已知数且a≠0)【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式,分母中不含未知数。
方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。
一元方程的解又叫根。
知识点二等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。
表示为:如果a=b,则a±c=b±c等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
表示为:如果 a=b,那么ac = bc如果 a=b(c≠0),那么 =【注意事项】1.等式两边都要参加运算,并且是同一种运算。
2.等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
3.等式两边不能都除以0,即0不能作除数或分母.4.等式左右两边互换,所得结果仍是等式。
知识点三解一元一次方程合并同类项把若干能合并的式子的系数相加,字母和字母的指数不变,起到化简的作用。
移项把等式一边的某项变号后移到另一边,叫做移项。
(依据:等式的性质1)去括号括号前负号时,去掉括号时里面各项应变号。
去分母在方程的两边都乘以各自分母的最小公倍数。
去分母时不要漏乘不含分母的项。
当分母中含有小数时,先将小数化成整数。
解一元一次方程的基本步骤:知识点四实际问题与一元一次方程用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.【考查题型】考查题型一 一元一次方程概念的应用【解题思路】关键是根据一元一次方程的概念和其解的概念解答.典例1.(2021·四川中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1, 可得:a-2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选:C .变式1-1.(2021·内蒙古中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____. 【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,2m 11∴﹣=,即m 1=或m 0=,方程为x 20﹣=或x 20--=, 解得:x 2=或x 2=-, 当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为:x=2或x=-2或x=-3.变式1-2.(2021·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为() A .9 B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C . 考查题型二 解一元一次方程【解题思路】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.典例2.(2021·重庆中考真题)解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .变式2-1.(2021·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是(). A .1- B .1 C .0 D .2【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】解:由题意知:2211☆=+-=+x x x , 又21x =☆, ∴11x +=, ∴0x =. 故选:C .变式2-2.(2021·四川凉山彝族自治州·中考真题)解方程:221123x x x ---=- 【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解. 【详解】解:221123x x x ---=- ()()6326221x x x --=--636642x x x -+=-+ 634662x x x -+=-+ 72x =27x =考查题型三 配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据.【工程问题解题关键】常把总工作量看做1,并利用“工作量=人均效率×人数×时间”的关系考虑问题典例3.(2021·哈尔滨市模拟)某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是()A.22x=64(27﹣x)B.2×22x=64(27﹣x)C.64x=22(27﹣x)D.2×64x=22(27﹣x)【答案】B【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺母数量=2倍的螺栓数量,可得出方程.【详解】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母64个或螺栓22个,∴可得2×22x=64(27﹣x).故选:B.变式3-1.(2021·黑哈尔滨市二模)某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x名工人生产螺钉,依题意列方程为()A.1200x=2000(22﹣x)B.1200x=2×2000(22﹣x)C.1200(22﹣x)=2000x D.2×1200x=2000(22﹣x)【答案】D【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),即2×1200x=2000(22-x),故选D.变式3-2.(2021·山西阳泉市模拟)在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十. 问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱. 问共有多少人家,每头牛的价钱是多少元?若设有x户人家,则可列方程为()A.1902703303079x x+=-B.1902703303079x x-=+C.7190927033030x x⨯⨯+=-D.7190927033030x x⨯⨯-=+【答案】A【分析】根据“如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱”,可得每头牛的价钱是1903307x+或270309x-,即可得出关于x的方程.【详解】解:∵如果每7家共出190元,那么还缺少330元钱,∴每头牛的价钱是1903307x+;∵如果每9家共出270元,又多了30元钱,∴每头牛的价钱又可以表示为270309x-,∴可列方程为:19027033030 79x x+=-,故选A.变式3-3.(2021·广西南宁市一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350506x x+-=+D.120350650x x+-=+【答案】C【分析】关系式为:零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解. 【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:12035050+6x x +-= 故选C .变式3-4.(2021·浙江杭州市·中考真题)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x xB .327230x xB .C .233072x xD .323072x x【答案】D【分析】先设男生x 人,根据题意可得323072x x .【详解】男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.变式3-5.(2021·哈尔滨市模拟)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是() A .1(96)723x x -=-B .196723x x ⨯-=-C .1(96)723x x +=-D .196(72)3x x +=-【答案】C【分析】根据等量关系:乙队调动后的人数=13甲队调动后的人数,列出一元一次方程即可. 【详解】设应从乙队调x 人到甲队,此时甲队有(96+x )人,乙队有(72-x )人, 根据题意可得:13(96+x )=72-x .故选C . 考查题型四 销售盈亏问题 销售金额=售价×数量利润= 商品售价-商品进价利润率=(利润÷商品进价)×100%现售价 = 标价×折扣售价 = 进价×(1+利润率)典例4.(2021·长沙市一模)随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.150【答案】A【分析】设该超市该品牌粽子的标价为x元,则售价为80%x元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.变式4-1.(2021·广东深圳市模拟)某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元【答案】C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C变式4-2.(2021·长沙市二模)中国总理李克强2021年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%【答案】B【分析】设该小商品的利润率为x,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.考查题型五比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分典例5.(2021·大庆市模拟)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【答案】B【分析】解答此题可设该队获胜x场,则负了(6-x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.变式5-1.(2021·武汉市模拟)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道【答案】C【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.变式5-2.(2021·广东深圳市模拟)在2018﹣2021赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74【答案】C【分析】根据题意分析,可以设曼城队一共胜了x场,则平了(30-x-4)场,找出等量关系:总积分=3×获胜场数+1×踢平场数,即可得出关于x的一元一次方程,此题得解.【详解】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.考查题型六方案选择问题结合实际,分情况讨论,给出合理建议。
【数学知识点】一元一次方程移项口诀
【数学知识点】一元一次方程移项口诀
移项是解方程的其中一个重要步骤,下面整理了解一元一次方程的移项口诀,供大家参考。
解一元一次方程,注意事项最重要:
去分母要都乘到,多项式分子要带括号;
去括号也要都乘到,千万小心是符号;
移项变号别漏项,已知未知隔等号;
合并同类项加系数,系数化1要记牢。
1.合并同类项
与整式加减中所学的内容相同,将等号同侧的含有未知数的项和常项分别合并成一项的过程叫做合并同类项。
合并同类项的目的是向接近x=a的形式变形,进一步求出一元一次方程的解。
2.移项
①概念:把等式一边的某项变号后移到另一边,叫做移项。
②依据:移项的依据是等式的性质1。
③目的:通常把含有未知数的各项都移到等号的左边,而把不含未知数的各项都移到等号的右边,使方程更接近于x=a的形式。
3.系数化为1
①概念:将形如ax=b(a≠0)的方程化成x=b/a的形式,也就是求出方程的解x=b/a的过程,叫做系数化为1。
②依据:运用等式的性质2,方程左右两边同时乘未知数系数的倒数。
4.去括号
解方程过程中,把方程中含有的括号去掉的过程叫去括号。
5.去分母
①去分母方法:一元一次方程的各项都乘所有分母的最小公倍数,依据等式的性质2使方程中的分母变为1。
②去分母的依据:是等式的性质2,即在方程的两边都乘所有分母的最小公倍数,使方程的系数化为整数。
感谢您的阅读,祝您生活愉快。
一元一次方程解法步骤
⼀元⼀次⽅程解法步骤 ⼀元⼀次⽅程是初中数学教学中的重点和难点,在教学过程中教师和学⽣都有有⼼⽆⼒的感觉,如何将⼀元⼀次⽅程与实际应⽤更好地结合起来是教学⼀元⼀次⽅程中的核⼼问题,什么是⼀元⼀次⽅程呢?怎么解呢?下⾯是店铺⼩编整理的什么是⼀元⼀次⽅程,欢迎阅读。
什么是⼀元⼀次⽅程 只含有⼀个未知数、未知数的最⾼次数为1的等式叫做⼀元⼀次⽅程(linear equation in one unknown);使⽅程左右两边的值相等的未知数的值,叫做⽅程的解(solution) ⼀元⼀次⽅程基本信息 标准形式 ⼀元⼀次⽅程的标准形式(即所有⼀元⼀次⽅程经整理都能得到的形式)是ax=b( )。
其中是未知数的系数,是常数,是未知数。
未知数⼀般常设为 , , 。
⽅程特点 (1)该⽅程为整式⽅程。
(2)该⽅程有且只含有⼀个未知数。
(3)该⽅程中未知数的最⾼次数是1。
满⾜以上三点的⽅程,就是⼀元⼀次⽅程。
判断⽅法 要判断⼀个⽅程是否为⼀元⼀次⽅程,先看它是否为整式⽅程。
若是,再对它进⾏整理。
如果能整理为的形式,则这个⽅程就为⼀元⼀次⽅程。
⾥⾯要有等号,且分母⾥不含未知数。
变形公式 ( ,为常数,为未知数,且 ) 求根公式 ⼀元⼀次⽅程的标准形式:ax+b=0 (a≠0) 其求根公式为:x=-b/a ⼀元⼀次⽅程只有⼀个根 通常解法 去分母→去括号→移项→合并同类项→未知项系数化为1(即化为x=a的形式) 两种类型 (1)总量等于各分量之和。
将未知数放在等号左边,常数放在右边。
如:。
(2)等式两边都含未知数。
如:,。
⽅程举例 3y=-1 5z+2=5 2x=1 5a+4=13×32 都是⼀元⼀次⽅程。
⼀元⼀次⽅程起源 “⽅程”⼀词来源于中国古算术书《九章算术》。
在这本著作中,已经列出了⼀元⼀次⽅程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的⽅程称为代数⽅程。
在19世纪以前,⽅程⼀直是代数的核⼼内容。
解一元一次方程-去分母应用
错误地找公共分母
在去掉分母时,需要找到各项的最小公倍数作为公共分母 。错误地找公共分母会导致计算错误。
例如,对于方程 $frac{x}{2} + frac{x}{3} = 1$,各项的最小 公倍数是 $6$,因此应该以 $6$ 作为公共分母。如果错误 地以 $2$ 或 $3$ 作为公共分母,会导致计算错误。
一元一次方程的定义
STEP 02
STEP 01
一元一次方程是只含有一 个未知数,且未知数的最 高次数为1的方程。
STEP 03
一元一次方程是数学中最基 本的方程之一,也是解决许 多实际问题的重要工具。
一元一次方程的一般形式为$ax + b = 0$,其中$a$、$b$为已 知数,$a neq 0$,$x$为未知 数。
拓展数学能力
掌握去分母的方法有助于培养学生的 数学思维和解决问题的能力,为学习 更高级的数学知识打下基础。
通过去分母,可以减少计算步骤和运 算量,提高解题速度和准确性。
掌握去分母的技巧和方法
找公分母
首先观察方程中的分母,找出它 们的最小公倍数作为通分母。
检验解的合理性
将求得的解代入原方程进行检验, 确保解的正确性。
去分母
将方程两边同时乘以通分母,从 而消去分母,得到整式方程。
求解整式方程
利用整式方程的求解方法,解出 未知数的值。
展望未来的研究方向
深入研究去分母的算法
进一步探索和优化去分母的算法, 提高解题效率和准确性。
培养学生的数学素养
通过教授去分母等数学方法,提高学 生的数学素养和解决问题的能力,为 未来的学习和工作打下坚实基础。
去分母的意义和目的
去分母是解一元一次方程的重 要步骤之一,它可以简化方程, 降低解题难度。
初中解方程全解知识点
知识点一、解一元一次方程的一般步骤变形名称 具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项 (2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项 (2)不要弄错符号移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号(2)不要丢项合并同类项 把方程化成ax =b (a ≠0)的形式 字母及其指数不变系数化成1在方程两边都除以未知数的系数a ,得到方程的解b x a=. 不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法、加减消元法和图像法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;转化消元一元一次方程二元一次方程组③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“ ”联立在一起即可.一.概念1.一元二次方程的概念:只含有一个未知数(一元),并且未知数的最高次数是2(2次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.3.直接开方法解一元二次方程:(1)算理:平方根的意义;即时,若,则;表示为,,有两个不等实数根.若,则x=O;表示为,有两个相等的实数根.若,则方程无实数根.(2)注意:一般先把系数化为1再开方;要正确写出根的形式.4.(1)用配方法解二次项系数是1的方程:通过配方,把方程的一边化为一个完全平方式,另一边是一个非负实数,即的形式,然后用直接开方法求根.(2)用配方法解二次项系数不是1的方程:先将二次项系数化为1,再用配方法求根.5.一元二次方程求根公式:对于一元二次方程,当时,,这个式子叫做一元二次方程的求根公式.注意:△≥0是公式使用的前提条件,是公式的重要组成部分.公式法是解一元二次方程的一般方法;由公式法可知,一元二次方程最多有两个实数根.6.归纳一元二次方程根的情况:对于一元二次方程,其中,△=称为一元二次方程根的判别式.(1)当△=时,原方程有两个不等的实数根,;(2)当△=时,原方程有两个相等的实数根;(3)当△=时,原方程没有实数根。
解一元一次方程之去分母-化小数系数为整数系数
确保分母不为0否则会导致无意义的情况。
需要注意符号问题尤其是负数的平方根要谨慎处理。
不要忽略方程两边的常数项否则会导致解的不准确。
在化小数系数为整数系数时要特别注意数值的变化避免出现计算错误。
感谢您的耐心观看
汇报人:
去分母在解方程中的作用是关键的能够使方程的解更加清晰明了。
化小数系数为整数系数的必要性
方便计算:将小数系数化为整数系数可以简化计算过程减少误差。
统一标准:将小数系数化为整数系数可以统一数学表达式的标准形式方便后续的数学处理和计算。
避免精度问题:在数学计算中小数系数的精度可能会影响计算结果。将小数系数化为整数系数可以避免这种精度问题。
示例:如方程 3x/4 + 2 = 5x/6最小公倍数为12两边乘以12得9x + 24 = 10x进一步求解得到x=24
消除分母得到整式方程
添加标题
添加标题
添加标题
添加标题
将方程两边同时乘以最小公倍数
将方程两边的分母统一为最小公倍数
消去分母后整理得到整式方程
解整式方程得到原方程的解
03
化小数系数为整数系数
应用广泛:在许多数学问题中需要将小数系数化为整数系数才能得到正确的解。例如在解一元一次方程时常常需要将小数系数化为整数系数来找到方程的解。
02
去分母的方法
找出最小公倍数
定义:最小公倍数是两个或多个整数公有的倍数中最小的那一个。
单击此处添加项标题
作用:在解一元一次方程时通过找出最小公倍数可以将方程中的分母消除简化方程。
添加标题
举例:解方程 0.5(x - 1) + 0.2(x + 3) = x通过去分母化简系数为整数系数得到方程 5x - 5 + 2x + 6 = 10x进一步解得 x = 1。
解一元一次方程人教版数学七年级上册教案
解一元一次方程人教版数学七年级上册教案一、教学目标1.知识与技能目标:使学生掌握一元一次方程的定义,理解一元一次方程的解法,能够熟练地解一元一次方程。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生解决问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生独立思考、合作探究的精神。
二、教学重点与难点1.教学重点:一元一次方程的定义及解法。
2.教学难点:一元一次方程的移项和系数化为1的方法。
三、教学过程1.导入新课师:同学们,我们之前学过不等式,那么大家知道方程吗?方程与不等式有什么区别和联系呢?生:方程是表示两个表达式相等的式子,不等式是表示两个表达式不相等的式子。
师:很好,那今天我们就来学习一种特殊的方程——一元一次方程。
2.学习一元一次方程的定义师:请同学们看教材第39页,一元一次方程的定义是什么?生:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
师:非常正确。
那么请同学们思考一下,一元一次方程的一般形式是什么?生:一元一次方程的一般形式是ax+b=0,其中a、b是常数,且a ≠0。
3.学习一元一次方程的解法师:我们来看一下如何解一元一次方程。
我们要把方程写成一般形式ax+b=0。
然后,我们通过移项和系数化为1的方法来求解。
师:请同学们看教材第40页例1,我们一起分析一下这个方程的解法。
生:将方程2x+3=5写成一般形式2x=5-3,然后通过系数化为1,得到x=1。
师:很好,那现在请同学们自己尝试解一下方程3x-4=7。
生:将方程写成一般形式3x=7+4,然后系数化为1,得到x=3。
4.巩固练习师:同学们,我们已经学习了一元一次方程的定义和解法,现在我们来巩固一下。
3x+2=5;2x^2+3=5;5x-3=2x+1。
2x-3=5;3x+4=2x-1。
师:通过本节课的学习,我们掌握了一元一次方程的定义和解法。
那么,同学们认为解一元一次方程的关键是什么?生:关键是把方程写成一般形式,然后通过移项和系数化为1的方法来求解。
一元一次方程及其解法
一元一次方程是一个只有一个未知数的一次方程,解方程是数学中常见的问 题之一,有多种解法可以选择。
什么是一元一次方程?
一元一次方程是一个只有一个未知数的一次方程,例如ax + b = c。
方程的一般形式是什么样的?
一元一次方程的一般形式是ax + b = c,其中a、b、c是已知数,x是未知数。
矩阵法步骤详解
1. 将方程组转化为矩阵形式;2. 对矩阵进行初等行变换;3. 化简矩阵为阶梯 形式;4. 反推得出未知数的值。
如何判断一个一元一次方程组 有唯一解、无解或无穷解?
通过对矩阵化简后的形式判断,当方程个数大于未知数个数时,方程组无解; 当方程个数与未知数个数相同时,方程组有唯一解;当方程个数小于未知数 个数时,方程组有无穷解。
将一个未知数的值代入方程中,求解其他 未知数的值。
将方程表示为在坐标系中的一条直线,通 过图形交点求解。
总结一下这五种解法的优缺点
解法一:等式两边同 时加减同一个数量
优点:简单直观。缺点: 只能进行简单的计算。
解法二:移项
优点:更灵活。缺点:需 要进行多次移项操作。
解法三:消元
优点:适用于多个未知数 的方程组。缺点:计算较 繁琐。
解法一:联立消元法
通过联立多个方程,采取消元操作,将方程组化简为一个只有一个未知数的方程。
解法二:代入法
将其中一个方程表示为另一个方程的函数,并将其代入其他方程进行求解。
如何判断一个一元一次方程组 有无解?
如果方程组中的每个方程都有解,并且方程的解满足所有方程,那么方程组 有唯一解。否则,方程组无解或无穷解。
如何解一元一ห้องสมุดไป่ตู้方程?
1 解法一:等式两边
一元一次方程解法(学生版)
高一数学寒假课程一元一次方程解法 (学生版) 1 / 15 初一数学暑假课程高一数学寒假课程一元一次方程解法 (学生版) 2 / 15 初一数学暑假课程 初一数学暑假班(学生版)知识点一解一元一次方程的一般步骤在方程两边都除以未知数的系数a ,得到方程 的解x =知识点二理解方程ax=b 在不同条件下解的各种情况 ①0≠a 时,方程有唯一解abx =;高一数学寒假课程一元一次方程解法 (学生版) 3 / 15 初一数学暑假课程 ②0,0==b a 时,方程有无穷解; ③0,0≠=b a 时,方程无解。
【例1】解方程(1)3(x ﹣1)+1=x ﹣3(2x ﹣1) (2).【例2】解方程:(1)5x+3(2﹣x)=8 (2)=1﹣(3)+=(4)[x﹣(x﹣1)]=(x﹣1)【例3】数学迷小虎在解方程﹣1去分母时,方程右边的﹣1漏乘了3,因而求得方程的解为x=﹣2,请你帮小虎同学求出a 的值,并且正确求出原方程的解.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)4/ 15【例4】方程2﹣3(x+1)=0的解与关于x的方程的解互为倒数,求k的值.【例5】已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.【例6】小明在解方程=﹣1去分母时,方程右边的(﹣1)项没有乘3,因而求得的解是x=2,试求a的值,并求出方程正确的解.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)5/ 15【例7】已知关于x的方程2x﹣a=1与方程=﹣a的解的和为,求a的值.【例8】(1)已知式子与式子的值相等,求这个值是多少?(2)已知关于x 的方程4x+2m=3x+1的解与方程3x+2m=6x+1的解相同,求m的值.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)6/ 15【例9】阅读理解:在解形如3|x﹣2|=|x﹣2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:①当x<2时,原方程可化为﹣3(x﹣2)=﹣(x﹣2)+4,解得:x=0,符合x<2②当x≥2时,原方程可化为3(x﹣2)=(x﹣2)+4,解得:x=4,符合x≥2∴原方程的解为:x=0,x=4.解题回顾:本题中2为x﹣2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.知识迁移:(1)运用整体思想先求|x﹣3|的值,再去绝对值符号的方法解方程:|x﹣3|+8=3|x﹣3|;知识应用:(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2﹣x|﹣3|x+1|=x﹣9.提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)7/ 15【例10】阅读下面的解题过程:解方程:|5x|=2.解:(1)当5x≥0时,原方程可化为一元一次方程5x=2,解得x=;(2)当5x<0时,原方程可化为一元一次方程﹣5x=2,解得x=﹣.请同学们仿照上面例题的解法,解方程3|x﹣1|﹣2=10.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)8/ 15【例11】如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.【例12】方程和方程的解相同,求a 的值.初一数学暑假课程高一数学寒假课程一元一次方程解法(学生版)9/ 15高一数学寒假课程一元一次方程解法 (学生版) 10 / 15 初一数学暑假课程理解方程ax=b 在不同条件下解的各种情况 ①0≠a 时,方程有唯一解ab x =; ②0,0==b a 时,方程有无穷解; ③0,0≠=b a 时,方程无解。
解一元一次方程的步骤及注意事项
去分母 方程两边同时乘以所有分母的最小公倍数。
去括号 先去小括号,再去中括号,最后去大括号.
移项 把含有未知数的项移到一边,常数项移到另 一边.“移项要变号”
合并同 将未知数的系数相加,常数项项加。 类项 方程化成ax=b (a 0) 的形式。 系数化 在方程的两边除以未知数的系数a. b x 为1 方程化成 a 的形式。
去分母时需注意: 1、不要漏乘没有分母的项; 2、去掉分母后,分子应加上括号表示整体。 去括号;
2、去括号时不要漏乘多项式的任何一项。
解一元一次方程-去分母解方程
希腊数学家丢番图(公元3~4世纪)的墓碑上
记载着:
“墓中安葬着丢番图,多么令人惊讶,它忠实地 记录了所经历的道路.上帝给予的童年占六分之一. 又过十二分之一,两颊长胡.再过七分之一,点燃结 婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿, 享年仅及其父之半,便进入冰冷的墓.悲伤只有用数 论的研究去弥补,又过四年,他也走完了人生的旅 途.”
合并同类项,得
- 9x= - 756
系数化为1.得
x=84
答:丢番图的年龄为84岁.
请你算一算, 丢番图一共 活了多少年?
1 x 1 x 1 x5 1 x4 x
6 12 7
2
解 设令丢番图年龄为x岁,根据题意,得
1 x 1 x 1 x5 1 x4 x
6 12 7
2
去分母,得14x+7x+12x+420+42x+336=84x
移项,得
14x+7x+12x+42x-84x=- 420 – 336
合并同类项,得 11x 21
系数化为1,得
x 21 11
当堂训练二
解方程 x
1.2-0.3x
=1+
0.3
0.2课Leabharlann 小结谈谈这节课你有什么收获?
解一元一次方程的一般步骤:
步骤
具体的做法
去分母
乘所有的分母的最小公倍数. 依据是等式性质二
去括号
先去小括号,再去中括号,最后去大括号. 依据是去括号法则和乘法分配律
合并同类项,得 15x =3.
系数化为1,得
x =5.
自学检测二
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等式:用等号表示相等关系的式子叫等式。
等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
等式性质3 等式两边同时乘方(或开方),两边依然相等。
等式性质4 等式具有对称性。
若a=b,则b=a。
等式性质5 等式具有对传递性。
如果a=b且b=c,那么a=c。
注意:1)等式中一定含有等号;2)等式两边除以一个数时,这个数必须不为0;3)对等式变形必须同时进行,且是同一个数或式。
二、一元一次方程的概念:只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元一次方程。
解方程就是求出使方程中等号左右两边相等的未知数的值,能使方程左右两边相等的未知数的值,叫做方程的解
1、写出一个满足下列条件的一元一次方程:①某个未知数的系数是2;②方程的解是3;这样的方程是。
2、若关于x的方程(k-1)x²+x-1=0是一元一次方程,则k= 。
三、列一元一次方程解应用题的一般步骤:
1、审题:弄清题意.
2、找出等量关系:找出能够表示本题含义的相等关系.
3、设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程。
1)直接设元法,求什么设什么,方程的解就是问题的答案; 2)间接设元法,不是求什么设什么,方程的解并不是问题的答案,需要根据问题中的数量关系求出最后的答案。
4、解方程:解所列的方程,求出未知数的值.
5、检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。
四、解方程的一般步骤和注意事项:
1、去括号:先去小括号,再去中括号,最后去大括号,注意:括号外面是负号时,去括号后,括号内的每一项都要变号。
2、移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(也就是说未知数和常数项各占等号一边,记住:被移项要改变符号。
)
3、去分母在方程两边都乘分母的最小公倍数。
去分母时:1)没有分母的项不要漏乘(尤其整数项)。
也可以说方程中的每一项都要乘以分母的最小公分母。
2)去分母时,应把分子作为一个整体加上括号。
4、合并同类项
把方程化成ax=b(a≠0)的形式系数化成1,在方程两边都除以未知数的系数a,
得到方程的解x=b/a。