热管技术的原理
热管技术及原理
热管原理热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1•3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
热管原理生活中的应用
热管原理生活中的应用1. 热管的基本原理热管是一种利用液体和气体在封闭系统中传递热量的设备。
其基本原理是利用液体在低温端被加热后蒸发成气体,在高温端被冷却后凝结成液体,从而实现热量传递。
热管由内管、外管和工作介质组成,内管内充满工作介质。
2. 热管在电子设备中的应用2.1 CPU散热器热管广泛应用于CPU散热器中。
CPU在工作过程中会产生大量热量,如果不能及时散热,会导致CPU温度过高,影响计算机的性能和稳定性。
热管散热器通过将CPU产生的热量传递到风扇上,并利用风扇的散热效果将热量排出,保持CPU的正常工作温度。
2.2 电子设备散热除了CPU散热器,热管还广泛应用于其他电子设备的散热中。
例如,笔记本电脑中的散热器、手机中的散热模组等都可以利用热管的原理将热量传递到散热器上,实现快速散热,保障设备的正常工作。
3. 热管在能源领域的应用3.1 太阳能热水器太阳能热水器利用太阳能将水加热至一定温度。
在太阳能集热器中,热管被用来将吸收的热量传递到储水箱中,提供热水供应。
热管的高热传导和热量传递效率使得太阳能热水器的热量转换更加高效。
3.2 核反应堆传热系统目前一些核反应堆的传热系统中,也采用了热管的技术。
传统的传热系统使用流体循环进行热量传递,而热管可以直接将热量传递到合适的位置,不需要额外的能量消耗,提高了传热效率和系统可靠性。
4. 热管在航天领域的应用4.1 航天器温度控制航天器在太空中会面临极端的温度变化,需要对温度进行有效控制。
热管可以通过将热量从较热的部分传递到较冷的部分,实现航天器内部温度的均衡。
在航天器的结构中,热管被广泛应用于温控系统,保护航天器内部设备的正常运行。
4.2 空调系统在航天站和宇航器中,也需要进行空调系统的设计。
热管可以作为传热装置,将处于不同温度的空气导入相应的区域,实现温度的均衡。
热管可以减小空调系统的体积和重量,提高系统的效率和可靠性。
5. 热管在新能源领域的应用5.1 电动汽车电池散热系统在电动汽车中,电池产生的热量需要及时散热,否则会影响电池寿命和性能。
热管散热技术原理
热管散热技术原理热管是一种高效的热传导器件,它能够快速而均匀地将热量从一个地方传递到另一个地方。
其原理基于液体在低温端蒸发成气体,然后在高温端冷凝成液体,从而完成热量传递。
热管由密封的金属管内部填充有工质,通常是一种低沸点的液体,如水,乙醇或氨。
管内的工质在热管两端的低温端和高温端之间循环,实现热量的传递。
在热管的低温端,由于外界的热源,工质开始被加热,转化为气体。
这个过程中,工质吸收了大量的热量,形成了高压高温的气体。
气体在热管内部开始向高温端移动,通过热管的壁以及毛细管效应的作用,使得气体在热管的壁上沉积下来,形成饱和的气体层。
在热管的高温端,由于外界的冷源,气体开始冷却,凝结成液体。
这个过程中,气体释放出大量的热量,形成了低压低温的液体。
液体通过热管的壁开始向低温端移动,通过重力和毛细管效应的作用,使得液体在热管的壁上升起,重新回到低温端。
这样,热管内部形成了一个完整的循环,热量通过液体的蒸发和凝结的过程,从低温端传递到高温端。
1.高效传热:热管利用了液体蒸发和凝结的相变过程,能够实现高效的热量传递。
相比于传统的散热器,热管的传热能力更强。
2.均匀传热:热管能够将热量快速、均匀地从低温端传递到高温端,避免了传统散热器中存在的局部热点问题。
3.具有可调节性:通过工质的选择和调整,可以改变热管的传热性能,满足不同散热需求。
4.结构简单:热管的结构相对简单,由金属管和工质组成,不需要外部动力和控制设备,维护成本低。
热管散热技术在各个领域具有广泛的应用,如电子领域、航空航天领域和工业领域等。
在电子领域,热管被广泛应用于电子元器件的散热,如CPU、显卡等高功率元件的散热。
在航空航天领域,热管可以用于航天器的热控系统,保证航天器在极端环境下的工作稳定性。
在工业领域,热管可以用于工业设备的冷却,提高设备的运行效率和寿命。
总之,热管散热技术通过利用液体的相变过程,实现了高效的热量传递,具有传热效率高、传热均匀、结构简单等优点。
热管工作原理
热管的工作原理热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
热管技术的原理及应用
热管技术的原理及应用1. 什么是热管技术热管技术是一种利用液体蒸发和凝结的原理,实现热量传输和温度调控的先进技术。
通过利用液体在蒸发器中的蒸发和在冷凝器中的凝结,热管可以将热量迅速从高温区域传输到低温区域,实现高效的热量传递。
2. 热管技术的原理热管技术的原理可以简单概括为以下几个步骤:1.液体蒸发:热源作用下,液体在蒸发器内部迅速蒸发,吸收热量并变为气体。
2.气体传输:气体通过热管中空心管道内部的蒸汽管道,从蒸发器传输到冷凝器。
3.气体冷凝:在冷凝器中,气体发生冷凝,释放热量,并变为液体。
4.液体返流:液体在内部管道作用下,返回到蒸发器,并再次蒸发,循环往复。
3. 热管技术的应用热管技术在各个领域具有广泛的应用,包括但不限于以下几个方面:3.1. 电子器件散热热管技术可以有效地解决电子器件散热问题。
通过将热管放置在电子器件的散热片上,热量可以迅速从散热片传输到其他部分,以保持器件的温度在安全范围内。
热管的高效散热性能可以大幅度提高电子器件的工作稳定性和寿命。
3.2. 航空航天领域热管技术在航空航天领域的应用也非常广泛。
例如,在航天器热控系统中,热管可以用于传递和分散热量,保证航天器各个部分的温度均衡和稳定。
此外,热管技术还可用于航空发动机的冷却和热管理。
3.3. 医疗设备和制药行业热管技术在医疗设备和制药行业的应用也非常重要。
例如,热管可以用于医疗设备的温控和热管理,确保设备的稳定性和可靠性。
在制药行业中,热管可以用于控制反应器温度,提高药物合成的效率和质量。
3.4. 太阳能与可再生能源热管技术在太阳能和其他可再生能源领域有广泛应用。
例如,在太阳能热水器中,热管可以将太阳能吸收器中的热量传输到储水罐中,实现热水的供应。
热管还可以用于太阳能光伏板的冷却,提高光伏发电效率。
4. 热管技术的优势热管技术相比传统的热传导方法具有以下几个优势:•高热传导效率:热管可以实现高效的热量传递,使得热量可以迅速从高温区域传输到低温区域。
热管原理
热管原理萧潜,天堂羽,唐家三少,撒冷,玄雨一、热管简介热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
热管图示从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管,是一种具有极高导热性能的传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到类似冰箱压缩机制冷的效果。
具有很高的导热性、优良的等温性、热流密度可变性、热流方向酌可逆性、可远距离传热、恒温特性(可控热管)、热二极管与热开关性能等一系列优点,并且由热管组成的换热器具有传热效率高、结构紧凑、流体阻损小等优点。
热管的工作原理
热管的工作原理一、热管的定义和结构热管是一种利用液体蒸汽转化为热能传输的热传输设备。
热管结构一般包括端盖、外壳、液体、蒸汽和毛细管等组成部分。
其工作原理是利用液体在毛细管内受到蒸汽扩散的作用,产生液体运动并传输热能,以达到热传输的目的。
二、热管的工作原理热管的工作原理是基于液体在毛细管内受到蒸汽扩散的作用,从而产生液体运动。
其工作原理主要分为以下三个过程:1、液体吸热过程热管的液体一般为高沸点的液体,如水、乙醇、甘油等,在常温下呈液态。
当热管的一端受到热源的加热时,液体就开始受热,其分子的热运动加快,液体温度和压力均升高。
2、液体汽化过程当液体达到一定温度时,其蒸汽压力超过管壁的压力,就会通过毛细管扩散到热管的另一端,并在那里遇冷凝结成为液体。
在这个过程中,液体蒸发吸收了热量,而蒸汽在凝结过程中释放了热量,把热量传递给了被动的一侧。
3、蒸汽回流过程凝结成液体的蒸汽通过毛细管由低压到高压的方向回流到被动侧,达到传输热能的目的。
三、热管的优点1、高效性:热管能够快速、高效地传递热能,具有传热速度快、传输距离远等优点。
2、可靠性:热管由于没有运动部件,其可靠性比传统的热传输设备更高。
3、安全性:热管使用无毒、无污染的液体作为传输介质,对环境无污染,更加安全可靠。
4、灵活性:热管的传输距离和传热方向可以任意设置,更加灵活方便。
四、热管的应用领域热管广泛应用于许多领域,特别是在电子电器和航空航天领域中,如:1、航空航天领域:热管应用于飞船、卫星等航空航天设备的温控、热控中。
2、电子电器领域:热管可用于计算机、通讯设备、高功率LED灯等设备的散热和温控中。
3、化工领域:热管可用于高温反应、低温分离等化学工艺中。
4、医疗领域:热管可用于医疗设备中实现恒温热控。
五、热管的发展趋势在科技的不断发展下,热管应用的范畴也越来越广泛。
未来,热管的发展趋势主要有以下几个方面:1、新材料:将尝试开发新型材料,以提高热管的运行温度和压力等性能。
热管技术及其工程应用
热管技术及其工程应用
热管技术是空气压缩器的现代化技术,它是一种新型的节能和环境保护技术,具有结构简单、体积小、可靠性高等优点。
热管技术可以用来生产多种温度不同的空气压缩机,以满足客户的不同需求。
热管技术的工作原理是在高温条件下利用金属热管发挥其能量
转移的作用,通过热管内壁的热能传输,实现空气压缩机蓄热,把空气转变成较高压力的低温空气。
热管技术的应用非常多,它可以用在空调压缩机、冷却器和加热器等应用领域,其中,最常用的就是空调压缩机,它可以将空气从一端压缩到另一端,达到加热和冷却的效果。
此外,热管技术可以用在工业或者冶金等行业中,用来冷却或加热水,以便进行进一步的处理。
热管技术具有节能、高效、稳定性等优点,可以有效提高生产效率。
相比传统技术,热管技术工作效率更高,耗电量较低,更加环保。
此外,它的结构简单,体积小,可靠性高,可以有效满足客户的需求。
总的来说,热管技术是一种新型的节能和环保技术。
它具有节能高效、体积小、可靠性高等优点,目前已经广泛应用于空调压缩机、冷却器和加热器等多种领域,并可以为用户提供高质量的产品和服务,从而满足客户的需求。
随着科学技术的发展,热管技术将会发挥更大的作用,同时也将会持续研发出更多能够满足客户需求的新型热管产品。
我们相信,未来热管技术在不断推进中将会引领着更高水平的节能和环保技术,为社会发展和经济发展做出更大的贡献。
热超导体_热管技术的原理及应用
热超导体——热管技术的原理及应用李洪斌杨先说起超导现象人们就会想到,当温度降低到一定程度时,导体对电流的阻碍作用就消失,即电阻等于零。
现在要给大家介绍的是对热量超导的热管技术。
日常生活和工作中,我们常需要把热量从一个地方传递到另一个地方,或是将某处的热量收集起来。
根据物理学知识我们知道,在相同条件下不同的物质对热量传导能力是不同的。
一般说来,金、银、铜等金属的导热性能良好;塑料、干木材、陶瓷等导热性能较差。
因此在涉及到导热时,人们往往考虑金属材料。
但由于金属材料本身价格较高,从而限制了其大量使用的可能。
于是在找寻新型高效导热材料的过程中,热管(heat pipe)技术诞生了。
一、热管技术的发展历程1944年美国俄亥俄州通用发动机公司的研究人员在研究制冷问题时,设想一装置由密封的管子组成,在管内液体吸热蒸发后于该下方的某一位置放热冷凝,在无任何外加动力的前提下,冷凝液体借助管内的毛细吸液芯所产生的毛细力回到上方继续蒸发,如此循环,达到热量从一处传到另一处的目的。
当然这些工作也只是停留在初步研究和申请专利阶段。
1963年美国洛杉矶国家实验室发明了类似的传热元件,并进行了性能测试实验,后来又在美国的《应用物理》杂志上公开发表了一篇论文,并正式将这一传热元件命名为热管,指出它的导热率远远超出任何一种已知的金属,并给出了以钠为液体工质,不锈钢为壳体,内部装有丝网吸液芯的热管的实验结果,热管这才为人们所知。
1965年美国的科特首次提出了完整的热管理论,为以后的热管原理的研究工作奠定了基础。
1967年不锈钢——水热管首次安置在轨道卫星上并运行成功,从而吸引了很多科学技术人员从事热管的研究。
1974年以后,热管在节约能源和新能源开发研究方面得到了充分的重视,由热管做成的换热器来回收废热,并将其应用于工业以节约能源。
进入20世纪80年代后,世界各国的热管换热器研制工作迅猛展开;到90年代末期,为了降低热管的生产成本、缩短热管的设计周期、提高热管的设计水平,特别是随着热管计算机辅助设计水平的发展,各大热管生产厂家纷纷开发出了热管计算机辅助设计的软件,大大缩短了热管的设计和开发周期,促进了热管技术应用的发展。
热管工作原理
热管工作原理引言概述:热管是一种利用液体在内部循环传热的热传导装置。
它具有高效、可靠、轻巧等优点,在众多领域中得到广泛应用。
本文将详细介绍热管的工作原理及其应用。
一、热管的基本结构1.1 热管的外壳:热管的外壳通常由金属材料制成,具有良好的导热性能和机械强度,能够保护内部结构。
1.2 热管的工作介质:热管内部充满了一种工作介质,通常为液态。
这种工作介质的选择取决于热管的工作温度范围和要求。
1.3 热管的内部结构:热管内部包含蒸发段、冷凝段和毛细管三个主要部份。
蒸发段吸热后使工作介质蒸发,冷凝段则将蒸发后的工作介质冷凝成液体,毛细管起到连接蒸发段和冷凝段的作用。
二、热管的工作原理2.1 蒸发:当热管蒸发段受热时,工作介质吸收热量并蒸发成气体。
蒸发过程中,工作介质的温度升高,压力增加,气体在热管内部形成高压区域。
2.2 冷凝:高压区域的气体流向冷凝段,在冷凝段的冷却作用下,气体释放热量并凝结成液体。
冷凝过程中,工作介质的温度下降,压力减小,液体在热管内部形成低压区域。
2.3 毛细管效应:由于蒸发段和冷凝段之间存在压力差,液体味通过毛细管效应从低压区域流向高压区域,使得热管内的工作介质形成循环。
三、热管的优点3.1 高效传热:热管利用液体的蒸发和冷凝过程,实现了高效的热传导,使得热能能够快速、均匀地传递。
3.2 可靠性高:热管没有机械运动部件,结构简单,因此具有较高的可靠性和稳定性,能够长期稳定工作。
3.3 分量轻巧:相比于传统的散热器,热管的体积小、分量轻,适合于对分量要求较高的场景,如航空航天领域。
四、热管的应用领域4.1 电子散热:热管广泛应用于电子设备的散热领域,如计算机、手机等,能够快速将设备内部的热量传递到散热器中。
4.2 光电散热:在光电子器件中,热管能够有效传导产生的热量,保证器件的正常工作温度,提高器件的寿命和性能。
4.3 空调制冷:热管在空调制冷系统中被广泛应用,能够快速传递热量,提高制冷效果,提高空调的能效比。
热管散热技术原理分析
热管散热技术原理分析
热管散热技术是一种有效的散热方式,广泛应用于电子设备和工业领域。
本文分析了热管散热技术的原理和工作机制。
1. 热管的原理
热管是一种基于液体蒸发和凝结的传热器件。
它由内壁涂覆着特殊液体(工质)的密封金属外壳组成。
热管的一个端口被置于热源处,另一个端口被置于散热器处。
2. 热管的工作机制
当热源端的温度高于散热器端时,热管内的工质开始蒸发。
蒸汽沿着内壁升至散热器端,然后冷凝成液体。
这个过程通过内部毛细结构的作用进行。
3. 热管散热技术的优势
热管散热技术具有如下优势:
- 高传热效率:热管内的工质相变过程使得传热效率更高。
- 均匀散热:热管可以将热量均匀地传输到散热器处,减少热
点的出现。
- 静音工作:由于热管无动力部件,没有噪音产生。
- 可靠性高:热管的主要部件是密封的金属外壳和内壁,因此
具有较高的可靠性。
4. 热管散热技术的应用
热管散热技术广泛应用于电子设备和工业领域,包括但不限于:- 电脑和服务器散热
- 汽车发动机散热
- 空调和制冷设备散热
- 太阳能集热器散热
5. 热管散热技术的发展趋势
随着电子设备和工业领域的不断发展,热管散热技术也在不断
改进和创新。
未来的发展趋势包括:
- 热管材料的改良,提升传热效率
- 尺寸的缩小,适应更多场景
- 效率的提高,减少能量消耗
总结而言,热管散热技术是一种高效且可靠的散热方式,具有广泛的应用前景和发展潜力。
> 注:本文内容仅供参考,具体技术参数和应用场景需根据实际情况确认。
热管工作原理
热管工作原理热管是一种热传导装置,利用液体在低温端蒸发、气体在高温端凝结的原理,将热量从低温区域传递到高温区域。
它由一个密封的金属管内部充满工作介质,通常是液态或气态。
热管的工作原理基于以下几个关键步骤:1. 蒸发:热管的低温端暴露在热源上,热量使得工作介质在低温端蒸发。
液体吸收热量,转化为蒸汽。
2. 运输:蒸汽通过热管的内部空间传输到高温端。
这个过程是通过蒸汽的压力差和温度梯度驱动的。
3. 凝结:一旦蒸汽到达高温端,它会失去热量,转化为液体。
这个过程释放出的热量被传递到周围环境。
4. 循环:液体通过热管的内部结构重返低温端,以维持循环。
这个循环是基于温度差和液体的表面张力。
热管的工作原理可以通过以下几个方面来解释:1. 热传导:热管的工作介质在蒸发和凝结过程中,通过分子间碰撞传递热量。
这种热传导方式具有高效性和快速性。
2. 温度均衡:热管通过将热量从低温区域传递到高温区域,实现了温度的均衡。
这使得热管在热管理和温度控制方面有广泛的应用。
3. 高热传导性:由于热管内部的工作介质是液态或气态,它们具有较高的热传导性能。
这使得热管能够在相对较小的空间内传递大量的热量。
4. 自调节:热管的工作原理使得它具有自调节的能力。
当热源的温度变化时,热管会自动调整工作介质的蒸发和凝结速率,以适应新的热量需求。
热管在许多领域中有广泛的应用,例如电子设备散热、航天器热控制、能源系统、光伏电池等。
它们具有高效、可靠、轻量化等优点,被广泛认可为一种有效的热传导装置。
热管的工作原理的深入理解和应用,为热管理和能量传递领域的发展提供了重要的支持。
热管工作原理
热管的工作原理热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
热管技术原理
热管技术原理
热管技术是一种高效的热传递技术,它利用液体在管内的蒸发和凝结过程,将热量从一个地方传递到另一个地方。
热管由内部充满工作流体的密闭管道组成,工作流体通常是一种易于蒸发和凝结的液体,如水、乙醇、氨等。
热管的工作原理可以简单地概括为:热管的一端吸收热量,使工作流体蒸发,蒸汽在管内传递到另一端,然后在那里冷却凝结,释放热量。
热管技术的优点在于它具有高效、可靠、轻便、无噪音、无污染等特点。
热管可以在各种环境下工作,包括真空、重力、高温、低温等条件下。
热管还可以用于各种应用,如电子散热、太阳能热水器、空调、冷却器等。
热管的工作原理可以通过以下几个步骤来解释:
1. 蒸发:当热管的一端吸收热量时,工作流体开始蒸发。
蒸发过程中,工作流体从液态变为气态,吸收热量。
2. 传热:蒸汽在管内传递到另一端,这个过程中,蒸汽会带走热量,从而将热量从一端传递到另一端。
3. 冷凝:当蒸汽到达另一端时,它会冷却凝结成液态,释放热量。
这个过程中,工作流体从气态变为液态,释放热量。
4. 回流:凝结后的工作流体会通过毛细作用回流到热管的另一端,
重新开始蒸发过程。
热管技术是一种高效、可靠、轻便、无噪音、无污染的热传递技术,它可以在各种环境下工作,并且可以用于各种应用。
热管技术的应用前景非常广阔,它将在未来的各个领域中发挥重要作用。
热管技术及原理
热管技術及原理热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
热管技术在油田加热炉节能改造中的应用
1. 引言热管技术是一种利用热管在高温热源和工艺设备之间传递热量的先进技术,已经在许多领域得到了广泛应用。
其中,在油田加热炉节能改造中的应用尤为突出。
本文将从热管技术的基本原理、在油田加热炉中的应用、节能改造效果以及未来发展前景等方面展开探讨。
2. 热管技术的基本原理热管是一种利用液体的汽化和凝结来传递热量的装置。
其基本原理是利用液体在热管内部蒸汽化形成蒸气,然后在冷却段凝结成液体,从而完成热量的传递。
这种独特的传热方式使得热管技术在能源转换、热管理和节能领域具有广泛的应用前景。
3. 热管技术在油田加热炉中的应用在油田加热炉中,热管技术可以被应用于燃烧室、换热器和回收装置等部分。
通过将热管技术应用于油田加热炉中,可以实现燃料的高效利用和能量的有效回收,从而实现节能降耗的目的。
4. 节能改造效果经过热管技术的应用,油田加热炉的节能改造效果十分可观。
由于热管技术能够实现热能的高效传递和回收,因此可以大大减少能源的浪费。
通过热管技术的应用,油田加热炉的工作温度和燃烧效率都得到了有效提高,进一步实现了能源的节约和环境的保护。
5. 未来发展前景随着工业技术的不断发展和创新,热管技术在油田加热炉中的应用前景愈发广阔。
未来,我们可以预见热管技术将在油田加热炉的节能改造中发挥越来越重要的作用,为能源的可持续利用和环境的可持续发展提供更加坚实的技术支持。
6. 个人观点和理解作为一种先进的传热技术,热管技术在油田加热炉中的应用对于节能减排具有重要意义。
它不仅能有效提高油田加热炉的能源利用率,还能减少对环境的负面影响。
我对热管技术在油田加热炉中的应用前景充满信心,相信它将在未来发展中发挥越来越重要的作用。
7. 总结热管技术在油田加热炉节能改造中的应用已经取得了显著的成果,而且在未来发展中仍具有巨大的潜力。
通过深入探讨热管技术的基本原理、在油田加热炉中的应用、节能改造效果以及未来发展前景,我们可以更好地认识到热管技术在能源领域的重要作用,为其持续发展提供更好的技术支持和指导。
热管的工作原理
热管的工作原理
热管,又称热管传热器,是一种高效的热传递器件,广泛应用于各行各业中。
其工作原理基于热传导原理,通过液体的蒸发和凝结来完成热量的传递。
热管主要由管壳、工作液体和吸附剂组成。
液体通常是低沸点的物质,如水、乙醇等,吸附剂则用于吸附液体,防止其在管壳内流动。
当热管的一端受热时,液体在该端变成气体,向另一端扩散。
吸附剂吸附液体,防止其在管壳内扩散。
在另一端冷却时,气体变成液体,释放出热量,实现热量的传递。
通过热管的工作原理,可以实现高效的热传递。
与传统的热传递器件相比,热管具有以下优点:
1. 热管的热传递效率高:热管通过液体蒸发和凝结,实现热量的传递,其传热系数较高,能够实现快速的热传递。
2. 热管的结构简单:热管的结构相对简单,只需要管壳、液体和吸附剂即可,安装和维护也比较方便。
3. 热管的体积小:热管的体积相对较小,可以实现高效的热传递,同时也节省了空间。
4. 热管的重量轻:热管的重量相对较轻,可以方便地搬运和安装。
热管广泛应用于各种领域,如航空航天、电子器件、军事装备、医疗设备等。
在航空航天领域,热管可以用于控制航天器的温度,保证航天器正常运行;在电子器件领域,热管可以用于散热,保证电子器件的正常工作;在医疗设备领域,热管可以用于散热,保证医疗设备的正常运行。
热管作为一种高效的热传递器件,具有热传递效率高、结构简单、体积小、重量轻等优点,广泛应用于各行各业中。
掌握其工作原理,对于应用和维护都具有重要意义。
热管的工作原理
热管的工作原理
热管是一种传热设备,利用液体的蒸汽-液体相变过程来传导
热量。
热管由一个密封的金属管内部装有工作介质(通常为液体)构成。
热管的工作原理如下:
1. 蒸发:热管的一段被暴露在高温源下,该部分液体工作介质受热后蒸发成为高温高压的蒸汽。
2. 对流:由于液体蒸发产生的蒸汽是具有较高压强的,它会朝着低压强区域流动。
这种流动会推动蒸汽从高温区域向低温区域移动。
3. 冷凝:当蒸汽进入低温区域时,它会释放热量并凝结成液体。
这个过程将热量从高温区域传递到低温区域。
4. 重力辅助:在一些情况下,热管会借助重力来辅助蒸汽和液体的循环。
液体在低处凝结成液滴,然后由于重力作用,液滴会沿着热管内壁下滑回高温区域,完成循环。
热管通过不断循环蒸汽和液滴,从高温区域吸收热量并将其传递到低温区域,实现了热量的传导和均匀分布。
热管具有高传热效率、长距离传热、无需外部动力和可靠性高等优点,广泛应用于电子设备散热、太阳能热水器、空调等领域。
热管的工作原理及应用实例
热管的工作原理及应用实例热管是什么?热管是一种热传导元件,由一个密封的金属管内部填充一定量的工作流体,工作流体在管内循环运动,由于流体的汽化和凝结作用,使得热量能够有效地传导和传输。
热管的工作原理热管的工作原理基于液体的汽化和凝结过程。
热管内部填充的工作流体通常为低沸点的液体,如水、酒精、氨等。
当热管的热端受热时,液体在热端汽化,形成蒸汽。
蒸汽在热管内部上升,通过对流传递热量。
当蒸汽到达冷端时,受到冷却而凝结成液体,然后通过毛细力回流到热端,完成传热循环。
热管的传热效果主要取决于工作流体的物性和热管的结构参数。
一般情况下,热管具有以下特点:•高传热效率:热管的传热效率比传统的导热材料高得多。
由于蒸汽的对流传热,热管具有很高的热传导能力。
•温度均匀性:热管能够均匀地分布温度,在某些应用中可以实现温度的精确控制。
•紧凑型设计:由于热管的高传热效率,可以使得热管的尺寸相对较小,适用于紧凑型设计场合。
热管的应用实例1. 电子器件的散热热管常用于电子器件的散热中。
如在高性能计算机、服务器、笔记本电脑等设备中,由于集成电路的集中排布和高功率密度,常常会导致散热不足的问题。
使用热管可以将热量从热点迅速传输到散热片上,进而通过散热片实现热量的散发,提高设备的散热性能。
2. 光电器件的温控热管可以用于光电器件的温度控制。
光电器件在工作过程中产生的热量会影响其性能和寿命,因此需要保持一定的工作温度。
使用热管可以将热量从光电器件传导到散热器上,实现对光电器件的温度控制。
3.航空航天领域热管在航空航天领域也有广泛的应用。
在航天器中,热管可以用于航天器内部温度的控制,以及热量的传输和散发。
此外,在火箭发动机的冷却系统中,热管也可以起到重要的作用。
热管的高传热效率和紧凑设计可以有效地降低航天器的重量和尺寸。
4.新能源领域热管在新能源领域也有着广泛的应用。
例如,在太阳能热发电系统中,热管可以用于传输太阳能聚焦后的热量到发电单元。
热管工作原理
热管工作原理热管是一种高效的热传导器件,广泛应用于各个领域,包括电子设备散热、航天器件温控、能源回收等。
它利用液体在低温端蒸发吸热,然后通过管道传导至高温端,再由高温端冷凝释放热量的原理,实现热能的传递。
热管的结构由内外两层金属管组成,内层为蒸发段,外层为冷凝段,两段之间充满一定量的工作介质。
热管的工作介质通常为低沸点的液体,如水、乙醇等。
当热管的低温端受到热源的加热时,工作介质在蒸发段蒸发成气态,吸收大量热量。
气态的工作介质由蒸发段流动至冷凝段,在高温端的冷凝段释放热量,将热量传递给冷却介质。
热管的工作原理可以通过以下几个步骤来解释:1. 蒸发:当热管的低温端受到热源的加热时,工作介质在蒸发段蒸发成气态。
蒸发段内的工作介质吸收热量,温度升高,液体逐渐转化为气体。
2. 导热:气态的工作介质由蒸发段流动至冷凝段。
在热管内部,工作介质通过对流和传导的方式将热量从低温端传递至高温端。
热管的金属壳体具有良好的导热性,能够有效地传导热量。
3. 冷凝:当气态的工作介质流动至高温端的冷凝段时,由于冷凝段的温度较低,工作介质开始冷凝成液体。
冷凝段内的工作介质释放热量,温度下降。
4. 重力回流:在冷凝段,液态的工作介质由于重力的作用,会沿着冷凝段的内壁下流回到蒸发段。
这个过程称为重力回流,它确保了热管能够持续地工作。
通过上述的循环过程,热管能够将热量从低温端传递至高温端,实现热能的传递和分配。
热管的工作原理基于热量的传导和相变,无需外部能源,具有高效、可靠、无噪音等优点。
热管的工作原理可以通过实验和数值摹拟进行研究和验证。
实验可以通过测量热管不同位置的温度和压力来分析热管的工作状态和性能。
数值摹拟可以基于热传导和流体力学的方程,摹拟热管内的流体运动和热传导过程,预测热管的热阻和热传导能力。
总结起来,热管是一种利用液体相变和传导热量的装置,通过蒸发、导热、冷凝和重力回流等步骤,实现热能的传递和分配。
它具有高效、可靠、无噪音等优点,在各个领域有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热管技术的原理、应用与发展引言传统散热方式主要是空气冷却、强制风冷散热以及水冷散热。
(1) 空气冷却也称自然冷却,一般是将电子元器件的发热核心部位与型材散热器相接触,通过空气的自然对流方式将热传导出来。
其优点是结构简单、安装方便、成本低廉。
缺点是散热功率低。
(2)风冷散热这是目前最普遍的散热方式,一般是将电力电子元器件的发热核心部位与散热器相接触将热传导出来,然后再通过风扇转动,来加强空气的流动,通过强制对流的方式将散热片上的热传至周围的环境。
优点:结构简单,价格低廉,安全可靠,技术成熟。
缺点:降温的效果有限,不能达到令人满意的程度,并且具有噪音,风扇的使用寿命也有限制。
(3) 水冷散热其原理是利用水泵驱动水流经过热源,进行吸热传递。
优点:水冷散热效率高,热传导率为传统风冷方式的20倍以上,可以解决几百至数千瓦的散热问题,是风冷效果所不能比拟的。
因为即使是散热效率最高的涡轮风扇风冷散热,其温度比水冷散热也要高大约10℃;相比于风冷散热,水冷散热因为没有风扇,所以不会产生振动现象,也无风冷散热的高噪音。
缺点:需要良好的通风环境,并且体积大,安装和维护不方便,容易滴漏、安全性不高,价格一般也相对较高。
(4) 热管散热热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。
具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。
将热管散热器的基板与晶闸管、igbt、igct等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。
通过对上述几种散热方式的分析,我们不难看出,热管散热相对于其他几种传统散热方式存在以下的优势:●热管散热技术具有散热效果好,热阻相对小,使用寿命长,传热快的优点。
热管的热导系数是普通金属的100倍以上;●传热方向可逆,不管任何一端都能成为蒸发端和冷凝端;●优良的热响应性。
热管内汽化的蒸汽能以接近音速的速度传输,从而有效的提高了导热效果;●结构简单紧凑,重量轻,体积小,维护方便;●无功耗、无噪音、符合工业“绿色”的要求;●可以在无重力场的环境下使用。
综上所述:热管传热利用热传导原理与致冷介质的快速热传递性质,通过热管将发热物体的热量迅速传递到热源以外。
采用热管技术使得散热器即便采用低转速、低风量电机,甚至不需风机,完全采用自冷方式,同样可以得到满意的散热效果,使得困扰风冷散热的噪音问题以及大功率电力模块散热问题得到良好解决,随着热管加工工艺的不断改善,其可靠性、安全性、耐用性将会更加提高,而成本和价格也会进一步降低。
热管散热器将有着传统散热器所无法比拟的优势,它的出现开辟了散热行业的新天地。
2 热管的基本工作原理2.1 工作原理物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
热传递有三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部被抽成负压状态,充入适当的液体(即工质),这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一端为蒸发段(简称热端),另外一端为冷凝段(简称冷端),当热管蒸发段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
2.2 组成与工作过程典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10-1~10-4)pa的负压后充以适量的工作液体(即工质),使紧贴管内壁毛细多孔材料中的吸液芯充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛细芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端,放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
如此循环不己,热量由热管的一端传至另—端。
热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程:(1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液-汽)分界面;(2)液体在蒸发段内的(液-汽)分界面上蒸发;(3)蒸汽腔内的蒸汽从蒸发段流到冷凝段;(4)蒸汽在冷凝段内的(汽-液)分界面上凝结;(5)热量从(汽-液)分界面通过吸液芯、液体和管壁传给冷源;(6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。
2.3 工作条件图1表示了热管管内汽-液交界面形状,蒸气质量、流量、压力以及管壁温度tw和管内蒸气温度tv沿管长的变化趋势。
沿整个热管长度,汽-液交界处的汽相与液相之间的静压差都与该处的局部毛细压差相平衡。
图1 热管管内汽-液交界面质量流、压力和温度沿管长的变化示意图热管正常工作的必要条件是:△pc ≥△pl +△pv +△pg其中△pc:毛细压头—是热管内部工作液体循环的推动力,用来克服蒸汽从蒸发段流向冷凝段的压力降△pv,冷凝液体从冷凝段流回蒸发段的压力降△pl,和重力场对液体流动的压力降△pg (△pg可以是正值,是负值或为零,视热管在重力场中的位置而定)。
3 热管的基本特性热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性。
3.1 很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。
与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。
当然,高导热性也是相对而言的,温差总是存在的,可能违反热力学第二定律,并且热管的传热能力受到各种因素的限制,存在着一些传热极限;热管的轴向导热性很强,径向并无太大的改善(径向热管除外)。
3.2优良的等温性热管内腔的蒸汽处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性。
3.3 热流密度可变性热管可以独立改变蒸发段或冷却段的加热面积,即以较小的加热面积输入热量,而以较大的冷却面积输出热量,或者热管可以较大的传热面积输入热量,而以较小的冷却面积输出热量,这样即可以改变热流密度,解决一些其他方法难以解决的传热难题。
3.4 热流方向可逆性一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段。
此特点可用于宇宙飞船和人造卫星在空间的温度展平,也可用于先放热后吸热的化学反应容器及其他装置。
3.5 热二极管与热开关性能热管可做成热二极管或热开关,所谓热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热。
3.6 恒温特性(可控热管)普通热管的各部分热阻基本上不随加热量的变化而变,因此当加热量变化时,热管各部分的温度亦随之变化。
近年来出现了另一种新型热管——可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这样可使热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的恒温特性。
3.7 环境的适应性热管的形状可随热源和冷源的条件而变化,热管可做成电机的转轴、燃气轮机的叶片、钻头、手术刀等等,热管也可做成分离式的,以适应长距离或冲热流体不能混合的情况下的换热;热管既可以用于地面(重力场),也可用于空间(无重力场)。
4 热管的分类由于热管的用途、种类和型式较多,再加上热管在结构、材质和工作液体等方面各有不同之处,故而对热管的分类也很多,常用的分类方法有以下几种。
(1)按照热管管内工作温度可分为:低温热管(-273~0℃)、常温热管(0~250℃)、中温热管(250~450℃)、高温热管(450~1000℃)等。
(2)按照工作液体回流动力可分为:有芯热管、两相闭式热虹吸管(又称重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体动力热管、渗透热管等等。
(3)按管壳与工作液体的组合方式划分(这是一种习惯的划分方法)可分为:铜—水热管、碳钢—水热管、铜钢复合—水热管、铝—丙酮热管、碳钢—萘热管、不锈钢—钠热管等等。
(4)按结构形式区分可分为:普通热管、分离式热管、毛细泵回路热管、微型热管、平板热管、径向热管等。
(5)按热管的功用划分可分为:传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热管等等。
5 热管的相容性及寿命热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。
相容性在热管的应用中具有重要的意义。
只有长期相容性良好的热管,才能保证稳定的传热性能、长期的工作寿命及工业应用的可能性。
碳钢-水热管正是通过化学处理的方法,有效地解决了碳钢与水的化学反应问题,才使得碳钢—水热管这种高性能、长寿命、低成本的热管得以在工业中大规模推广使用。
影响热管寿命的因素很多,归结起来,造成热管不相容的主要形式有以下三方面,即:产生不凝性气体,工作液体热物性恶化,管壳材料的腐蚀、溶解。
(1)产生不凝性气体由于工作液体与热管材料发生化学反应或电化学反应,产生不凝性气体,在热管工作时,该气体被蒸汽流吹扫到冷凝段聚集起来形成气塞,从而使有效冷凝面积减小,热阻增大,传热性能恶化,传热能力降低甚至失效。
(2)工作液体物性恶化有机工作介质在一定温度下,会逐渐发生分解,这主要是由于有机工作液体的性质不稳定,或与热管壳体材料发生化学反应,使工作介质改变其物理性能,如甲苯、烷、烃类等有机工作液体易发生该类不相容现象。
(3)管壳材料的腐蚀、溶解工作液体在管壳内连续流动,同时存在着温差、杂质等因素,使管壳材料发生溶解和腐蚀,流动阻力增大,使热管传热性能降低。
当管壳被腐蚀后,引起强度下降,甚至引起管壳的腐蚀穿孔,使热管完全失效。
这类现象常发生在碱金属高温热管中。
6 热管制造热管的主要零部件为管壳、端盖(封头)、吸液芯、腰板(连接密封件)四部分。
不同类型的热管对这些零部件有不同的要求。
6.1管壳热管的管壳大多为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。
管子可以是标准圆形,也可以是异型的,如椭圆形、正方形、矩形、扁平形、波纹管等。
管径可以从2mm到200mm,甚至更大。
长度可以从几毫米到l00m以上。
低温热管换热器的管材在国外大多采用铜、铝作为原料。
采用有色金属作管材主要是为了满足与工作液体相容性的要求。
6.2 端盖热管的端盖具有多种结构形式,它与热管连接方式也因结构形式而异。