结构力学专题习题解答_图文
结构力学-习题集(含答案)
《结构力学》课程习题集一、单选题1.弯矩图肯定发生突变的截面是(D )。
A.有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。
2.图示梁中C截面的弯矩是( D )。
4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。
3.静定结构有变温时,(C)。
A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。
4.图示桁架a杆的内力是(D)。
A.2P;B.-2P;C.3P;D.-3P。
5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为(A)。
A.四根;B.二根;C.一根;D.零根。
l= a66.图示梁A点的竖向位移为(向下为正)(C)。
A.)24/(3EIPl; B.)16/(3EIPl; C.)96/(53EIPl; D.)48/(53EIPl。
P7. 静定结构的内力计算与( A )。
A.EI 无关; B.EI 相对值有关;C.EI 绝对值有关;D.E 无关,I 有关。
8. 图示桁架,零杆的数目为:( C)。
A.5;B.10;C.15;D.20。
9. 图示结构的零杆数目为( C )。
A.5;B.6;C.7;D.8。
10. 图示两结构及其受力状态,它们的内力符合( B )。
A.弯矩相同,剪力不同;B.弯矩相同,轴力不同;C.弯矩不同,剪力相同;D.弯矩不同,轴力不同。
PP2ll11. 刚结点在结构发生变形时的主要特征是( D )。
A.各杆可以绕结点结心自由转动; B.不变形; C.各杆之间的夹角可任意改变; D.各杆之间的夹角保持不变。
12. 若荷载作用在静定多跨梁的基本部分上,附属部分上无荷载作用,则( B )。
A.基本部分和附属部分均有内力;B.基本部分有内力,附属部分没有内力;C.基本部分无内力,附属部分有内力;D.不经过计算,无法判断。
13.图示桁架C 杆的内力是(A)。
结构力学习题集(下)_结构的动力计算习题与答案
结构⼒学习题集(下)_结构的动⼒计算习题与答案第九章结构的动⼒计算⼀、判断题:1、结构计算中,⼤⼩、⽅向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复⼒作⽤下的振动称为⾃由振动。
3、单⾃由度体系其它参数不变,只有刚度EI 增⼤到原来的2倍,则周期⽐原来的周期减⼩1/2。
4、结构在动⼒荷载作⽤下,其动内⼒与动位移仅与动⼒荷载的变化规律有关。
5、图⽰刚架不计分布质量和直杆轴向变形,图a 刚架的振动⾃由度为2,图b 刚架的振动⾃由度也为2。
6、图⽰组合结构,不计杆件的质量,其动⼒⾃由度为5个。
7、忽略直杆的轴向变形,图⽰结构的动⼒⾃由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同⼀体系在不考虑阻尼和考虑阻尼时的⾃振频率,ω与ωD 的关系为ωω=D 。
⼆、计算题:10、图⽰梁⾃重不计,求⾃振频率ω。
l l /411、图⽰梁⾃重不计,杆件⽆弯曲变形,弹性⽀座刚度为k ,求⾃振频率ω。
12、求图⽰体系的⾃振频率ω。
l l0.5l 0.513、求图⽰体系的⾃振频率ω。
EI = 常数。
ll 0.514、求图⽰结构的⾃振频率ω。
l l15、求图⽰体系的⾃振频率ω。
EI =常数,杆长均为l 。
16、求图⽰体系的⾃振频率ω。
杆长均为l 。
17、求图⽰结构的⾃振频率和振型。
l /218、图⽰梁⾃重不计,W EI ==??2002104kN kN m 2,,求⾃振圆频率ω。
B2m2m19、图⽰排架重量W 集中于横梁上,横梁EA =∞,求⾃振周期ω。
EIEIW20、图⽰刚架横梁∞=EI 且重量W 集中于横梁上。
求⾃振周期T 。
EIEIWEI 221、求图⽰体系的⾃振频率ω。
各杆EI = 常数。
a aa22、图⽰两种⽀承情况的梁,不计梁的⾃重。
求图a 与图b的⾃振频率之⽐。
l /2/2(a)l /2l /2(b)23、图⽰桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求⽔平⾃振周期T 。
结构力学习题及答案
构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。
假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。
题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。
〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。
〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。
习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。
(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。
结构力学习题解答PPT课件
结论:据三钢片原理,此体系为几何不 变体系,且没有多余约束。
另外,可将基础看过一根链杆,则刚片Ⅱ、 Ⅲ由三根链杆相连。 据二刚片原理,得到相同的答案。
-
4
2-7
2
如图刚片Ⅰ、 Ⅱ、 Ⅲ
刚片Ⅰ、 Ⅱ通过虚铰1相连
Ⅰ
1
刚片Ⅰ、 Ⅲ通过虚铰2相连
Ⅲ
Ⅱ
3
刚片Ⅱ、 Ⅲ通过虚铰3相连
结论:此体系为几何不变体系,且无多余约束。
正确
正确
错误
错误
-
9
2-1(注意本题与课本原题不同)
去二元体
Ⅱ
去二元体后
二元体原则 一铰一链杆
Ⅰ
多余约束
结论:此体系为几何不变体系,且有一个多余约束。
-
1
2-1 常见错误
错误认为,只要去二元体或加二元体就可知 体系为结构不变体系,且没有多余约束。
由于没有仔细分析或没看清题目,认为通过 简单的去二元体法就可以了,通过正解分析, 去二元体可以达到简化的目的,但不能直接 得出答案。
-
2
2-3
Ⅱ
1 简化后
Ⅰ
2
Ⅲ
3
如图刚片Ⅰ、 Ⅱ、 Ⅲ 刚片Ⅰ、 Ⅱ通过节点1相连
刚片Ⅱ 、 Ⅲ通过两链杆形成的虚铰2相连
刚片 Ⅰ、 Ⅲ通过两链杆形成的虚铰3相连
结论:据三钢片原理,此体系为几何- 不变体系,且没有多余约束。
3
2-5
Ⅱ
Ⅲ
1
3
Ⅰ
如图刚片Ⅰ、 Ⅱ、 Ⅲ 2 刚片Ⅰ、 Ⅱ通过节点1相连
刚片Ⅰ、 Ⅲ通过节点2相连 刚片Ⅱ、 Ⅲ通过两链杆形成的虚
-
5
去二元体法
2-11
结构力学习题及答案
结构力学习题及答案一、填空题1、图(a )所示结构A 支座的弯距大小为A M ,则图(b )所示结构A 支座的弯距大小为 3 M A .(a)(b)2、图示桁架结构中内力为零的杆件的数目(包括支座连杆)为 11 。
3、图示结构中AB 杆B 截面的弯矩BA M =____0______________。
(设内侧受拉为正)二、(1.)计算并作出图示结构的弯矩图。
(2.)计算出该结构中E 点平方向的位移,各杆EI 为常数 。
解:(1)绘制结构的弯矩图,见图(a )(2)E 点沿水平方向虚设单位力1=F ,绘M 图,见)(b 图利用图乘法,图)(b 与图)(a 的弯矩图图乘,即∑=∆EIwy E C水平 其中:3824311=⨯⨯=w 232431=⨯=C y 844212=⨯⨯=w 2231076103138322=-=⨯-⨯=C y844213=⨯⨯=w 36831256123138323=+=⨯+⨯=C y442214=⨯⨯=w 35232824283112324=+=⨯+⨯=C y EIEI EI EI EI y w y w y w y w EI EI wy E C 292)1121764(1)33361764(1)32085441764(1)352436882282338(1)(144332211水平=++=++=-++=⨯-⨯+⨯+⨯=-++==∆∑三、作图示结构M 图,各杆EI 相同。
(22分)解:(1)取基本结构 (a )(2)列力法方程01212111=∆++F x x δδ02222121=∆++F x x δδ(3)计算系数和自由项,画_1M 、_2M 、F M 图,见(b )、(c) 、(d)333311353223221l l l l l l l =+=+⨯⨯⨯⨯=δ 322211222l l ll l -=⨯-⨯-==δδ3322343221l l l l l =+⨯⨯⨯=δ31613121Fl l l Fl F =⨯⨯⨯=∆322212Fl Fl l F -=⨯-=∆(4)计算多余未知力 1X 、2X23406353231332313=-+-=+-l FX l X l l FX l X l⎪⎭⎪⎬⎫→023406352121=-+-=+-F X X F X X F FF F F F X 2259111851920218413435)1(23461==-+-=-⨯-⨯-⨯-= F FF F F F X 1169116491166591162352==-=-⨯=(5)绘制弯矩图 见(e)图四、图示结构,EI=常数,利用位移法作其M图(利用对称性)。
结构力学课后习题答案[1]
)e( 移位线个 1�移位角个 3 移位角个 1
)d(
)c(
。构结本基出绘并�目数量知未本基法移位的构结示图定确试 1-7
)b(
) a(
题
习
33 -7
下如图矩弯各�量知未移位角个 1 m4 m4
量知未本基定确�1� �解 C IE
m4
D Nk01
IE
B
IE2 m/Nk5.2
A )b(
图M
42 lq 2 5
图矩弯终最画�4� 得解�入代
61.53
IE
3
0 � p 2 R , 0 3 � p 1R 6 � 2 2r IE � 1 2r � 2 1r , I E 2 � 1 1r
程方解并数系定确�3�
p2
11
1
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
N K 0 3 � � p 2 R , N K 0 3 � p 1R 4 � � 2 2r 0 � 1 2r � 2 1r , i1 1 � 1 1r
p2
得解�入代
i3
程方解并数系定确�3�
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
程方型典法移位�2�
程方型典法移位�2�
0�
p1
图p M
03 � p 1R � 0 � p 1R
03
04 -7
m2
m2 数常=IE F
B E
m2
m2
D
A
m2
Nk03
C )c(
90.92 55.43
图M
81.8 19.02 54.57 02
结构力学章节习题及参考答案
结构力学章节习题及参考答案第1章绪论(无习题)第2章平面体系的机动分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W=0,则该体系一定为无多余约束的几何不变体系。
( )(3) 若平面体系的计算自由度W<0,则该体系为有多余约束的几何不变体系。
( )(4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )习题2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC后,成为习题2.1(6)(b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6)(c)图,故原体系是几何可变体系。
()(a)(b)(c)习题2.1(6)图习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
习题2.2(6)图(7) 习题2.2(7)图所示体系为_________体系,有_________个多余约束。
习题2.2(7)图习题2.3 对习题2.3图所示各体系进行几何组成分析。
(a)(b)(c)(d)(e)(f)习题2.3图(h)第3章(g)静定梁与静定刚架习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
结构力学习题讲解
超静定结构力法
<3>将刚结改成单铰联结,相对于去掉一个约束: 将刚结改成单铰联结,相对于去掉一个约束: 将刚结改成单铰联结
超静定结构力法
<4>在刚性联结处剪开,相对于去掉三个约束: 在刚性联结处剪开,相对于去掉三个约束: 在刚性联结处剪开
超静定结构力法 § 4.1超静定结构的基本概念和计算方法 超静定结构的基本概念和计算方法 2. 力法的基本概念
超静定结构力法
未知力)引起的位移 因为 ∆11 是由 X 1 (未知力 引起的位移, 未知力 引起的位移, 成正比。 且 ∆11 与 X 1 成正比。 设: ∆11 = δ 11 X 1 若:X 1 = 1 则 δ 11 = ∆11
X1 =1
所以 δ 11 X 1 + ∆1 p = 0
超静定结构力法
正确的弯矩图如下: 正确的弯矩图如下:
图(d)
无集中外力作用, 铰E无集中外力作用, 无集中外力作用 杆弯矩为零。 故BD杆弯矩为零。 杆弯矩为零
正确的弯矩图如下: 正确的弯矩图如下:
图(e) 弯矩图凸向应与载荷 指向一致,并绘于受拉边。 指向一致,并绘于受拉边。 正确的弯矩图如下: 正确的弯矩图如下:
超静定结构力法 § 4.1超静定结构的基本概念和计算方法 超静定结构的基本概念和计算方法 2. 力法的基本概念
<3>力法的基本方程 求解基本未知量 力法的基本方程 力法的 除了平衡条件外, 除了平衡条件外,必修补充新的条件 比较: 比较:
这里:X 1 为被动力, 这里: 为被动力, 相应的 ∆1 = 0
超静定结构力法
超静定的次数: 超静定的次数: 超静定的次数是指超静定结构中多余约束的个数n。 超静定的次数是指超静定结构中多余约束的个数 。 =把原结构变成静定结构时所需撤掉的约束个数。 把原结构变成静定结构时所需撤掉的约束个数。 =未知力的个数-平衡方程的个数 未知力的个数-
《结构力学》典型习题与解答
《结构力学》经典习题及详解一、判断题(将判断结果填入括弧内,以√表示正确,以×表示错误。
)1.图示桁架结构中有 3 个杆件轴力为0 。
(×)F P2。
(×) 2.图示悬臂梁截面 A 的弯矩值是qlq Al l3.静定多跨梁中基本部分、附属部分的划分与所承受的荷载无关。
(√)4.一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。
(×)5.用平衡条件能求出全部内力的结构是静定结构。
(√)6.求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。
(√)7.超静定结构的力法基本结构不是唯一的。
(√)8.在桁架结构中,杆件内力不是只有轴力。
(×)9.超静定结构由于支座位移可以产生内力。
(√)10.超静定结构的内力与材料的性质无关。
(×)11.力法典型方程的等号右端项不一定为0。
(√)12.计算超静定结构的位移时,虚设力状态可以在力法的基本结构上设。
(√)13.用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为1,则表明分配系数的计算无错误。
(×)14.力矩分配法适用于所有超静定结构的计算。
(×)15.当AB 杆件刚度系数S AB 3i 时,杆件的 B 端为定向支座。
(×)二、单项选择题(在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。
不选、错选或多选者,该题无分。
)1.图示简支梁中间截面的弯矩为( A )ql2 2ql qlA.8 B . 42qlql 2C. 2D.2.超静定结构在荷载作用下产生的内力与刚度(B)A.无关 B .相对值有关C.绝对值有关D.相对值绝对值都有关3.超静定结构的超静定次数等于结构中( B )A.约束的数目B.多余约束的数目C.结点数 D .杆件数4.力法典型方程是根据以下哪个条件得到的(C)。
A.结构的平衡条件B.结构的物理条件C.多余约束处的位移协调条件D.同时满足A、B两个条件5.图示对称结构作用反对称荷载,杆件EI 为常量,利用对称性简化后的一半结构为(A )。
《结构力学》习题解答(内含解答图)
解:杆AB由固定支撑与基础联结形成一体,此外,杆AB又用链杆1再与基础联结,故链杆1为多余约束;将此部分取为刚片,杆CD取为刚片,则两刚片用个BC、链杆2、链杆3三根不平行也不交于一点相连,组成几何不变体。所以,体系是具有一个多余约束的几何不变体系。
习题2-4试对图示体系进行几何组成分析。
习题2-8试对图示体系进行几何为了便于分析,对图中的链杆和刚片进行编号,分析过程见图2-21(b)。首先去掉二元体NMI、JNI,然后分析剩余部分。杆AD由固定支撑与基础联结形成一体,构成几何不变体,在此基础上增加二元体DEB、EFC、EHF形成刚片Ⅰ(注意固定铰支座与铰相同);铰结△GIJ为刚片Ⅱ;刚片I与刚片Ⅱ之间用不交于一点的杆DI、杆GI、杆HJ相连,组成几何不变体。
另外,该题也可用二元体概念求解,即杆AB由固定支撑与基础联结形成一体后,把杆BC和链杆1作为二元体,由规则三,组成几何不变体;再将杆CD和链杆2作为二元体,组成几何不变体,而链杆3为多余约束。
习题2-5试对图示体系进行几何组成分析。
习题2-5图习题2-5解答图
解:地基为刚片I,折杆BCD为刚片Ⅱ(注意曲杆BC与CD在C点刚性联结),刚片I与刚片Ⅱ之间用不交于一点的链杆1和杆AB、杆ED相连,组成几何不变体,而曲杆AB和ED的联结方式为图(b)中的虚线。
习题2-12图习题2-12解答图
习题2-13试对图示体系进行几何组成分析。
习题2-13图习题2-13解答图
解:将原图结点进行编号,并将支座6换为单铰,如图(b)。取基础为刚片Ⅰ,△134为刚片Ⅱ,△235为刚片Ⅲ,由规则一知,三刚片用三个不共线的铰联结组成几何不变体。在此基础上增加二元体674、785,而杆38看作多余约束。杆910由铰联结着链杆10,可看作二元体,则整个体系为有一个多余约束的几何不变体系。
《结构力学》课后习题答案__重庆大学出版社
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
结构力学习题含答案解析
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.M =15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M k M p7、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移∆DV 。
EI = 常数,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数。
l l l /3/3q13、图示结构,EI=常数,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
ql15、求图示刚架结点C 的转角和水平位移,EI = 常数。
16、求图示刚架中D点的竖向位移。
EI=常数。
l/217、求图示刚架横梁中D点的竖向位移。
EI =常数。
18、求图示刚架中D 点的竖向位移。
E I = 常数 。
ql l/219、求图示结构A、B两截面的相对转角,EI =常数。
l/23l/320、求图示结构A 、B 两点的相对水平位移,E I = 常数。
l l21、求图示结构B 点的竖向位移,EI =常数。
l l22、图示结构充满水后,求A 、B 两点的相对水平位移。
结构力学课后练习题+答案
2cm
A CB 2cm 2cm
42、求图示结构 A 点竖向位移(向上为正) AV 。
M EI
EI A
a
EI
EI = ∞ 1
3 EI
K = a3
a
a
43、求图示结构 C 点水平位移 CH ,EI = 常数。
M B
2l
C 6 EI k=
l3
A l
44、求图示结构 D 点水平位移 DH 。EI= 常数。
a/ 2 D
a
A
c1
A'
a
B B'
aห้องสมุดไป่ตู้
c2
35、图示结构 B 支座沉陷 = 0.01m ,求 C 点的水平位移。
C l
A
B
l/2 l/2
—— 25 ——
《结构力学》习题集
36、结构的支座 A 发生了转角 和竖向位移 如图所示,计算 D 点的竖向位移。
A
D
l
l l/ 2
37、图示刚架 A 支座下沉 0.01l ,又顺时针转动 0.015 rad ,求 D 截面的角位移。
P
P
l
l
l
l
18、用力法计算图示结构并作弯矩图。
—— 31 ——
100 kN C EI
《结构力学》习题集
100 kN D
2 EI A
2 EI
4m
B
1m
6m
1m
19、已知 EI = 常数,用力法计算并作图示对称结构的 M 图。
q
q
EA=
l
l
l
20、用力法计算并作图示结构的 M 图。EI =常数。
a
P q
结构力学课后练习题+答案
第三章 静定结构的位移计算
一、判断题:
1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内 力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰 C 左侧截面的转角时,其虚拟状态应取:
P 2I
I
I
6m
2I
I
I
6m
8m
25、用力法计算图示结构并作 M 图。EI =常数。
20 kN
4m
3m
4m
3m
26、用力法计算图示结构并作 M 图。EI =常数。
P
P
l
l /2 l /2
l
l /2 l /2
27、利用对称性简化图示结构,建立力法基本结构(画上基本未知量)。E =常数。
—— 33 ——
B A
l
2l
23、求图示刚架 C 点的水平位移 CH ,各杆 EI = 常数 。
2kN/m C
3m
4m
4m
24、求图示刚架 B 的水平位移 BH ,各杆 EI = 常数 。
7kN/m
B
q
4m
3m 4m
25、求图示结构 C 截面转角。已知 :q=10kN/m , P=10kN , EI = 常数 。
8、用力法作图示结构的 M 图。
28 kN 3
C
4kN/m
EI 3m
A
EI
B
3m
9、用力法作图示排架的 M 图。已知 A = 0.2 m2 ,I = 0.05 m4 ,弹性模量为 E0 。
—— 29 ——
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆盘转动时的惯性力偶为 平衡方程
其中 利用初始条件得
16-13试求图示梁的自振频率和主振型。梁承重可略去不计 EI=常数
P1=1
解:(1)计算自振频率 分别画出该梁在P1=1,P2=1作用 下的弯矩图M1,M2
P2=1
(2)计算主振型
16-21用振型分解法重作题16-19
解:由于此刚架振动时,各横梁不 能竖向地移动和转动而只能作水 平移动。故只有三个自由度。 (1)按刚度系数如图
(2)确定主振型
由于上式的系数行列式为0。故三个方程中只有两个是独立 的,可有三个方程中任取两个计算得
(3) 求广义质量
(4)广义荷载为
由于荷载为简谐振动, 其正则坐标幅值为
(5)求位移幅值
得 :
, ,
试求下图楔形悬臂梁的自振频率。设梁的截面宽度b=1,截面高度为
直线变化
。
:
解 截面惯性矩 :
单位长的质量
设其振型函数为 :
因
,满足边界条件,
所以
如图所示为一圆轴AB,a端有一圆盘。设圆轴质量远比圆盘小 当t=0时,圆轴受有扭转变形,圆,盘具有初始角位移 和初始速度
,然后体系作自由振动,圆盘在任一时刻t的转角为 ,转动 惯量 ,试出体系自由振动的微分方程及其解答。
该刚架的极限荷载pu=32Mu/5L
θ
机构四
15-9 试用静力法求图示结构的稳定方程及临界荷载
l
l
l
解 :
• 平衡微分方程为:
• 边界条件为 :
• 因此得齐次方程为 :
• 特征方程
16-9 图示悬臂梁具有一重量G=12KN的集中质量,其上受有振动荷载 其中p=5KN。若不考虑阻尼,试分别计算该梁在 振动
,集中
质量为m,梁CB的分布质量为
。试求体系的频率
。 解:由
分布质量的惯性力呈三角 形分布,其合力
15-10试用静力法求图示结构的稳
定方程及临界荷载
解:该结构在对称力作用下
可发生正对称和反对称变
形由于正对称时杆件上端
存在两个约束,而反对称
时仅存在一个约束按反对
称变形计算
结构各杆 系的频率。
,弹簧刚度为k,集中质量
。试求体
解:由几何关系得
l
l
l
l
根据柔度法,加力
梁长均为l,梁AB的
常数,梁CB的
荷载为每分钟振动(1)300次,(2)600次两种情况下的最大竖 向位移和最大负弯矩。已知 l=2m,E=210GPa,I=3.4×10-5m4.梁的 自重可略去不计。
l
解:如图所示
l
16-22试求图表示具有均布质量m=q/g的简支梁的自振频率和振型。 解:根据梁的边界条件 ,
l
15-8 试用静力法求图示结构的稳定方程及临界荷载
解 :
• 平衡微分方程为 :
•解得:
•16-14试求图示刚架的自振频率和主振型 •解:
由图乘得: •平衡微分方程:
解令,
即:
频率 :
回代上行列式,得: 振型:
16-22试求图示具有均布质量m=q/g的简支梁的自振频率和振型 。
解 振动微分方程
:
:
解方程,得 :
其中
为常量 ,
,
利用简支梁边界条件,
结构力学专题习题解答_图文.ppt
机构三 机构四 机构五
该刚架的极限荷载pu=40kN
θ
机构三
θ
θ
机构四
θ
θ
机构五
14-11 试求图示刚架的极限荷载
p 解:如图所示
机构一
q=3P/L
2Mu
Mu
Mu
L
机构二
θ
机构一
θ
机构二
机构三 近似计算:假设性塑铰在中性塑铰在中点 θ