高中数学不等式课件

合集下载

第三章3.1基本不等式-北师大版高一数学必修5课件(共21张PPT)

第三章3.1基本不等式-北师大版高一数学必修5课件(共21张PPT)

探究结果
1. 对于任意实数a,b,总有 a2 b2 2ab 如何证明?
当且仅当a=b时,等号成立.
特别地,如果 a 0,b 0 ,我们用 a , b 分别代替a,b,可得
a b 2 ab,即a b ab, 2
当且仅当a=b时,等号成立.
探究结果 1. 对于
a,b,总有 a2 b2 2ab
当且仅当a=b时,等号成立.
2. 如果a,b都是
,那么 a b ab 2
当且仅当a=b时,等号成立.
我们称上述不等式为
ab ,其中 2 称为a,b的算术
平均数, ab 称为a,b
. 因此,基本不等式又被称为
均值不等式.
探究结果 1. 对于
a,b,总有 a2 b2 2ab
当且仅当a=b时,等号成立.
当且仅当a=b时,等号成立.
文字语言可叙述为:两个非负实数的算术平均数不小于它们 的几何平均数.
从数列的角度看:两个正实数的等差中项不小于它们正的等 比中项.
课堂升华 几何解释
如图,AB是圆O的直径,AC=a,BC=b,过点C作CD⊥AB交圆O上半
圆于D. 由射影定理可知
D
CD ab, 而OD a b ,
同向相加可得 a b c ab ac bc, 当且仅当a b c时,等号成立.
例题讲解
例2 若a b 1,比较P lg a lg b,Q 1 (lg a lg b), 2
R lg a b 的大小关系. 2
解 因为a b 1,所以 lg a lg b 0,
由 ab a b , 2
证明 (方法2)
ab
2
ab 2ab
ab(b a) 2ab
11
ba

高中数学《不等式的性质》课件

高中数学《不等式的性质》课件
证明:因为a>b,所以a+c>b+c,
又因为c>d,所以b+c>b+d,
根据不等式的传递性得 a+c>b+d.
几个同向不等式的两边分别相加,所
得的不等式与原不等式同向。
这个性质是不等式的加法法则。
性质4:如果a>b,c>0,则ac>bc;如果 a>b,c<0,则ac<bc. (不等式的可乘性) 推论1:如果a>b>0,c>d>0,则ac>bd.
知识回顾
判断两个实数大小的依据是: a b ab 0
a b ab 0 a b ab 0
作差比较法
这既是比较大小 ( 或证明大小 ) 的基本方 法,又是推导不等式的性质的基础.
作差比较法其一般步骤是: 作差→变形→判断符号→确定大小.
新知探究
性质1:如果a>b,那么b<a;如果b<a, 那么a>b. 性质1表明,把不等式的左边和右边交 换位置,所得不等式与原不等式异向,我 们把这种性质称为不等式的对称性。

2
,求

2 , 2
的取值范围。


2


2


2
,

2


2
0
例3 已知:函数
f ( x) ax2 c,
4 f (1) 1, 1 f (2) 5
求: f ( 3) 的取值范围. 解:因为f(x)=ax2-c, f (1) a c 所 f (2) 4a c 以
由-4≤a-b≤-1,得
5 5 20 ≤ ( a b) ≤ 3 3 3

等式性质与不等式高中数学必修第一册课件(共25张ppt)

等式性质与不等式高中数学必修第一册课件(共25张ppt)
(2)4 2a 6;1 b 2 5 2a b 8
练习
1、(课本第42页练习第2题)用不等号“>”或“<”填空
(1)如果a>b,c<d,那么a-c__>___b-d
(2)如果a>b>0,c<d<0,那么ac__<___bd
(3)如果a>b>0,那么 1 __<___ 1
< a2
(4)如果a>b>c>0,那么
思考: 你能在这个图中找出些相等关系和不 等关系吗?
探究1:
D
a2 b2
b
G
F
A
aHE
1、正方形ABCD的面积
S=_a_2 _b_2
2、四个直角三角形的
面积和S’ =_2a__b_.
C
3、S与S’有什么样的 关系? S > S′
a2 b2 2ab
B 问:那么它们有相等的情况吗?
D
a2 b2
c
b
_____
2
c
a
b
2、课本第43页习题2.1第8题
b
G
F
A
aH E
D
C
A
a
C b E(FGH)
B
B
重要不等式: 一般地, a,b R,有
a2 b2 2ab
当且仅当a=b时,等号成立。 适用范围: a,b∈R
练习
1.用不等式或不等式组表示下面的不等关系: (1)某高速公路规定通过车辆的车货总高度h(单
位:m)从地面算起不能超过4m; h 4 (2)a与b的和是非负实数; a b 0 (3)如图,在一个面积小于350m2的矩形地基的中
a___b___c_,_a_.b c

高中必修高一数学PPT课件不等式的性质

高中必修高一数学PPT课件不等式的性质

3.数轴的三要素:
原点、长度单位、正方向
4.如何表示数轴上两个点所对数的大小:
数轴上右边的点所对的数大于左边的点所对的数。
B 。 A 。
bLeabharlann a5.如图,A、B是数轴上的两个点,A、B所对数分别为a、b, 试比较a-b与0的大小
a>b a-b>0
a<b a-b<0
a=b a-b=0
例1.比较(a 3)(a 5)与(a 2)(a 4)的大小。
a+2 > a+1----------------(1) a+3>3a-------------------(2) 3x+1<2x+6--------------(3) x<a------------------------(4)
同向不等式: • 在两个不等式中,如果每一个的左边都 大于右边,或每一个的左边都小于右边. 异向不等式: • 在两个不等式中,如果一个不等式的左 边大于右边,而另一个的左边小于右边.
2 2
(a a 1)(a a 1)的大小。
2 2
课外作业:
1.书P8习题6.1(1—3) 2. 设 a 0 且 a 1 , t 0 1 t 1 的大小. log t 与 log a a 比较 2 2
3.比较M a 1 a和N a a 1的大小(a 1 ).
解:(a 3)(a 5) (a 2)(a 4)
(a 2 2a 15) (a 2 2a 8) 7 0
(a 3)(a 5) (a 2)(a 4)
2 2 4 2 ,比较 ( x 1) 与x x 1 的大小 例2.已知 x 0

高中数学精品课件:第一章 基本不等式

高中数学精品课件:第一章 基本不等式

(2)若 x<23,则 f(x)=3x+1+3x-9 2有
A.最大值0
√C.最大值-3
B.最小值9 D.最小值-3
∵x<23,∴3x-2<0, f(x)=3x-2+3x-9 2+3 =-2-3x+2-93x+3 ≤-2 2-3x·2-93x+3=-3. 当且仅当 2-3x=2-93x,即 x=-13时取“=”.
教材改编题
1.已知 x>2,则 x+x-1 2的最小值是
A.1
B.2
C.2 2
√D.4
∵x>2, ∴x+x-1 2=x-2+x-1 2+2≥2 x-2x-1 2+2=4, 当且仅当 x-2=x-1 2,即 x=3 时,等号成立.
2.(多选)若a,b∈R,则下列不等式成立的是
A.ba+ab≥2
√B.ab≤a2+2 b2
第一章
§1.4 基本不等式
考试要求
1.了解基本不等式的推导过程. 2.会用基本不等式解决简单的最值问题. 3.理解基本不等式在实际问题中的应用.
知识梳理
1.基本不等式: ab≤a+2 b (1)基本不等式成立的条件: a>0,b>0 . (2)等号成立的条件:当且仅当 a=b 时,等号成立.
a+b (3)其中 2 叫做正数a,b的算术平均数, ab 叫做正数a,b的几何 平均数.
方法一 9-xy=x+3y≥2 3xy, ∴9-xy≥2 3xy, 令 xy=t, ∴t>0, ∴9-t2≥2 3t, 即 t2+2 3t-9≤0, 解得 0<t≤ 3,
∴ xy≤ 3,∴xy≤3, 当且仅当x=3y,即x=3,y=1时取等号,∴xy的最大值为3.
方法二 ∵x=91-+3yy, ∴x·y=91-+3yy·y=9y1-+3yy2

高中数学人教A版必修第一册课件2.1等式性质与不等式性质(课件共11张PPT)

高中数学人教A版必修第一册课件2.1等式性质与不等式性质(课件共11张PPT)
性质3 若a b,则a c b c 不等式左右两边同时加上(或减去)同一个数,不等号方向不变.
性质3的推论 若a b c,则a c b. 不等式中的项移到另一边时,要改变符号.
性质4 若a b, c 0则ac bc. 若a b, c 0则ac bc.
不等式左右两边同时乘以(或除以)同一个正数,不等号方向不变. 不等式左右两边同时乘以(或除以)同一个负数,不等号方向改变.
探究: 当 a>b 时, 1a与1b的大小关系如何?
一个重要的常用不等式:
a>b,
ab>0
11 a<b
例1
(1)已知a b, c d , 求证:a c b d; (2)已知a b c 0, 求证: b b c .
ab ac ac
练习
(1)已知 a>b>0,c<0, 求证: ac>bc
达式中,从而用f (1)与f (2)来表示f (3)。最后运用已知条
件确定f (3)的取值范围。
解:
f
x
ax2
c
f (1) a c f (2) 4a c
即4aacc
f (1) .
f (2)
解之得ca113[[ff((22))4ff((11))]]
f
(3)
9a c
8 3
f
(2)
5 3
f
例 2 已知 f(x)=ax2-c, 且-4≤ f(1) ≤-1, -1≤f(2)≤5, 求 f(3)的取值范围.
例 2:已知函数f (x) ax2 c, 4 f (1) 1,
1 f (2) 5,求f (3)的取值范围.
分析:利用f (1)与f (2)设法表示a、c然后再代入f (3)的表

人教版高中数学必修1《基本不等式》PPT课件

人教版高中数学必修1《基本不等式》PPT课件

(二)基本知能小试 1.判断正误:
(1)当 x>0 时,1x+x 的最小值为 2. (2)已知 m>0,n>0,且 mn=81,则 m+n 的最小值为 18.
答案:(1)√ (2)√
() ()
2.下列不等式正确的是
A.a+1a≥2
B.(-a)+-1a≤-2
C.a2+a12≥2
D.(-a)2+-1a2≤-2
(2)已知 0<x<12,求 x(1-2x)的最大值;
(3)已知 x>0,y>0,且8x+1y=1,求 x+2y 的最小值.
[解]
(1)

x

2


x

2

0


x

4 x-2

x

2

4 x-2

2≥2 x-2·x-4 2+2=6.当且仅当 x-2=x-4 2即 x=4 时,等号成立.∴x+
x-4 2的最小值为 6.
解析:∵a>b>c,∴a-b>0,b-c>0, ∴ a-bb-c≤a-b+2 b-c=a-2 c. 当且仅当 a-b=b-c,即 2b=a+c 时,等号成立. 答案: a-bb-c≤a-2 c
题型二 利用基本不等式求最值 【学透用活】
(1) 利 用 基 本 不 等 式 求 最 值 , 必 须 按 照 “ 一 正 , 二 定 , 三 相 等 ” 的 条 件 进 行.若具备这些条件,可直接运用基本不等式;若不具备这些条件,则应进行适 当地变形.
()
A.x≥2y
B.x>2y
C.x≤2y
D.x<2y
解析:∵不等式成立的前提条件是各项均为正,∴x-2y>0,即 x>2y. 故选 B.

高中数学基本不等式 PPT课件 图文

高中数学基本不等式 PPT课件 图文
2. 一段长为30 m的篱笆围成一个一边靠墙 的矩形菜园,墙长18 m,问这个矩形的长 、宽各为多少时,菜园的面积最大?最大 面积是多少?
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的 收益远 大于同 时做很 多事; 你会明白,有人风风火火做各种事仍未 有回报 ,是因 为他们 从未投 入过。 从“做 了”到 “做” ,正如 “知道 ”到“ 懂得” 的距离 。 3 之前

高中数学必修5优质课件:基本不等式

高中数学必修5优质课件:基本不等式

第七页,编辑于星期日:二十三点 三十九分。
解得 x=1- 22,y= 2-1,∴当 x=1- 22,y= 2 -1 时,1x+1y有最小值 3+2 2.
法二:1x+1y=1x+1y·1=1x+1y(2x+y)=3+2yx+xy≥3 +2 xy·2yx=3+2 2,
以下同解法一.
第八页,编辑于星期日:二十三点 三十九分。
A.最大值为 0
B.最小值为 0
Байду номын сангаасC.最大值为-4
D.最小值为-4
解析:∵x<0,∴f(x)=--x+-1x-2≤-2-2=-4, 当且仅当-x=-1x,即 x=-1 时取等号. 答案:C
第二十二页,编辑于星期日:二十三点 三十九 分。
2.若 a>b>0,则下列不等式成立的是( ) A.a>b>a+2 b> ab B.a>a+2 b> ab>b C.a>a+2 b>b> ab D.a> ab>a+2 b>b
[解] (1)∵m,n>0 且 m+n=16, 所以由基本不等式可得 mn≤m+2 n2=1262=64, 当且仅当 m=n=8 时,mn 取到最大值 64.∴12mn 的最大值为 32.
第六页,编辑于星期日:二十三点 三十九分。
(2)∵x>3,∴x-3>0,x-4 3>0,于是 f(x)=x+x-4 3=x-3
基本不等式
【知识梳理】
1.重要不等式 当 a,b 是任意实数时,有 a2+b2≥ 2ab ,当且仅当 a=b 时,等号成立. 2.基本不等式
a+b (1)有关概念:当 a,b 均为正数时,把 2 叫做正 数 a,b 的算术平均数,把 ab 叫做正数 a,b 的几何平均数.
第一页,编辑于星期日:二十三点 三十九分。
第三页,编辑于星期日:二十三点 三十九分。

第三节 基本不等式 (高中数学精品课件PPT)

第三节  基本不等式      (高中数学精品课件PPT)

返回
设a>0,b>0,则a,b的算术平均数为
a+b 2
,几何平均
数为 ab ,基本不等式可叙述为:两个正数的算术平均
数不小于它们的几何平均数.
4.利用基本不等式求最值问题
已知x>0,y>0,则
(1)如果xy是定值p,那么当且仅当x=y时,x+y有最小值是
2 p(简记:积定和最小).
(2)如果x+y是定值q,那么当且仅当x=y时,xy有最大值是
返回
考点——在细解中明规律
题目千变总有根,梳干理枝究其本
返回
考点一 利用基本不等式求最值[全析考法过关]
返回
(一) 拼凑法——利用基本不等式求最值
[例1] (1)已知0<x<1,则x(4-3x)取得最大值时x的值
2 为____3____.
[解析]
x(4-3x)=
1 3
·(3x)(4-3x)≤
1 3
A.80
B.77
C.81
D.82
( C)
返回
2.设0<a<b,则下列不等式中正确的是
(B )
A.a<b< ab<a+2 b
B.a< ab<a+2 b<b
C.a< ab<b<a+2 b
D. ab<a<a+2 b<b
解析:因为0<a<b,所以a- ab= a( a- b)<0,
故a< ab;b-a+2 b=b-2 a>0,故b>a+2 b;由基本不等式
2.几个重要的不等式
(1)a2+b2≥2ab(a,b∈R);(2)ba+ab≥2(a,b同号);
(3)ab≤a+2 b2(a,b∈R);(4)a+2 b2≤a2+2 b2(a,b∈R);
(5)a2+abb≤ ab≤a+2 b≤

不等式ppt课件

不等式ppt课件

不等式的应用场景
01
02
03
04
数学领域
解决各种不等关系的问题,如 最值、范围等。
物理领域
描述物理现象和规律,如力学 、电磁学等。
经济领域
描述经济变量之间的关系,如 价格、成本等。
实际生活
描述日常生活中的不等关系, 如时间、距离等。
02
不等式的类型
算术平均数与几何平均数的不等式
总结词
算术平均数与几何平均数的不等式是一种基本的不等式,它反映了平均值与方 差之间的关系。
实际应用定义
描述实际生活中两个量之 间的不等关系,如价格、 距离等。
不等式的性质
加法单调性
即同向不等式相加,不等号不 改变方向。
反身性
任何实数都大于它本身。
传递性
如果a>b,b>c,则a>c。
乘法单调性
即不等式乘以一个正数,不等 号不改变方向;乘以一个负数 ,不等号改变方向。
非空性
不等式的两边都可以取无穷大 或无穷小。
03
不等式的证明方法
利用导数证明不等式
总结词
导数是一阶导数的简称,它描述了函数在某一点的变化率, 可以用来判断函数的单调性和凹凸性,从而帮助我们证明不 等式。
详细描述
首先,我们需要找到不等式两边的函数,然后求导,通过比 较导数值的大小来判断函数的单调性,从而得出不等式的证 明结论。
利用拉格朗日中值定理证明不等式
详细描述
柯西不等式表明,对于任何实数x 和y,都有$x^2+y^2 \geq 2xy$ ,当且仅当x=y时等号成立。这 个不等式在解决一些最优化问题 时非常有用。
排序不等式
总结词
排序不等式是一种基于排序原理的不 等式,它反映了有序实数之间的差值 与乘积之间的关系。

高中数学必修5《基本不等式》优秀课件

高中数学必修5《基本不等式》优秀课件
替换后得到: ( a )2 ( b )2≥2 a b 即: a b≥2 ab 即: a b≥ ab (a>0,b>0) 2
ab a b (a 0,b 0) 2
(当且仅当a=b时,等号成立)
几何平均数 算术平均数
基本不等式
代数意义:几何平均数小于等于算术平均数 几何意义:半弦长小于等于半径
从数列角度看:两个正数的等比中项小于等于它们的
v
等差中项
重要不等式: a2 b2 2ab(a、b R)
当且仅当a=b时,等号成立.
基本不等式: ab a b (a 0,b 0) 2
当且仅当a =b时,等号成立.
注意:
(1)不同点:两个不等式的适用范围不同。
(2)相同点:当且仅当a=b时,等号成立。
a与b为正实数
积定和最小 和定积最大
若等号成立, a与b必须 能够相等
变式训练
1.已知函数 f x x 3 ,求函数的最值和
此时x的取值.
x
运用均值不等式的过程中,切记不要忽略 了“正数”这个条件.
2.已知x>1,f x x 1 的最小值.
x 1
运用均值不等式的过程中,切记不要忽略 了“积为定值”这个条件.
3.4基本不等式:
ab a b 2
学习目标
学习目标: 1、探索并了解基本不等式的证明过程; 2、会用基本不等式解决简单的最大(小)值问题。
重点与难点
重点:利用数形结合思想理解基本不等式。 难点:基本不等式成立的条件及应用。
导学案反馈
● 优秀小组:4组、7组、10组、12组 ● 优秀个人:
(评价标准:卷面干净,书写规范,正确率高)
李 傲、李艳萌
优秀导学案展示
卷面干净 书写规范 正确率高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
(x
1)( x
1)(2 x 2
2x
1)
=
(x
1) 2
2( x
1)2 2
1 2
0
∴A>B
3.若a、b、x、y∈R,则 成立的(C )
x y a (x a)( y
b b)
是 0
x
y
a b
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
4.对于实数a、b、c,判断下列命题的真假:
3、若X>-1,则x为何值时 x 1
x 1 有最小值,最小值为几?
解:∵ x 1 ∴ x 1 0
1 0 x 1

x
1 x 1
=
x 1
1 1 x 1
2
(x 1) 1 1 2 1 1 x 1
当且仅当
x 1 1 即 x 1
x
0

x
1 x 1
有最小值1
4、求函数y x 1 的值域. x
所以(x+1)(x+2)>(x-3)(x+6)
比较法的基本步骤: 1.作差(或作商) 2.变形 3.定号(与0比较或与1比较).
一: 不等式的性质
①、对称性:a b b a 传递性:_a___b_,b___c_ a c
②、 a b,c R,a+c>b+c (可加性) ③、a>b, c 0, 那么ac>bc; (可乘性)
a,
0<h=min{a,
a2
b
b2 }
a2
b
b2
,
h2 ag b 1 ,从而h 2 .
a2 b2 2
2
b c
证明: c d 0, cd 0,c d 0, 1 0, 1 1 c d 0
cd
d c cd
1 1 0, 又a 0, a a 0, ①
dc
dc
又 a b 0, 1 0, a b 0, ②
c
cc
由①②可得
a b 0, dc
a d
b c
课堂练习:
1.判断下列命题是否正确:
a>b, c 0,那么ac<bc (乘法法则)
④、a>b>0,c d 0 那么,ac>bd ⑤、a>b>0,那么an>bn.(条件 n N, n 2 )
(乘方性)
⑥、 a>b>0 那么 n a n b(条件 n N, n )2
(开方性)
例2
已知a b 0,c d 0,求证
a d
(1) a b,c b a c (× )
(3) a b ac2 bc2 (×)
(5)
a c2
b c2
ab
(√)
(7) a b a2 b2 (×)
(2) a b c a c b (√) (4) a b, c d ac bd (× ) (6) a2 b2 a b (×) (8) a b a2 b2 (√)
三:三个正数的算术—几何平均不等式
类比基本不等式得
定理3:如果a、b、c∈ R+,那么a
+
b 3
+
c

3
abc,
当且仅当a = b = c时,等号成立。
推广:对于n个a1,a2 ,a3 ,L an,正数它们的算术 平均数不小于它们的几何平均数,

a1 + a2 + a3 +L n
+ an,≥ n a1 g
5
解下:面y的 解5 x法2 (对2 吗2?x) 5 xgx( 2 2x),
Q y 12g4xgx5(1 5x) 21 ( 4x 5 x 1 5x)3 1 ,
Q 0 x 4 1 , 2 2x 0,4
3
108
y
ymax 5
5 1 x108x [
.5
(
2 5
2x) ]3
4
.
2
3
ቤተ መጻሕፍቲ ባይዱ
675
例1: 如图,把一块边长是a的正方形 铁 片的各角切 去大小相同的小正方形,
再把它的边沿着虚线折转作成一个无盖 方底的盒子,问切去的正方形边长是多 小时?才能使盒子的容积最大?
x
解:依题意有 v =(a - 2x)2 gx
(0 < x < a)
a
2
例1 求函数y x2 (1 5x )(0 x 1)的最值。
解: (1)当x 0时, x 1 2 x 1 2
x
x
(2)当x 0时,x, 1 R , x
x 1 2 (x)( 1) 2
x
x
x 1 2 y (,2][2,). x
作业
1、求函数y=
1 x-3
x的最小值( x
f
3);
2、求函数y= x2 8的值域. x 1
3、求证 4 a 7(其中a f 3) a3
(9) a b 0, c d 0 a b ( × )
cd 2.设 A=1+2x4,B=2x3+x2,x∈R 且 x≠1,比较 A,B 的大小.
解:∵A-B=1+2x4-(2x3+x2)=(2x4 2x3 ) (1 x2 )
= 2x3 (x 1) (1 x)(1 x) = (x 1)(2x3 x 1)
C、6
D、非上述答案
课本P10第15题
已知a>0, b>0, 且h=min{a,
b a2 b2 },
求证:h 2 . 2
证明:Q a 0,b 0, a2 b2 2ab,
a2 b2
2,
ab
1 ,即ag
b
1,
ab
a2 b2 2
a2 b2 2
由于
0<h=min{a,
a2
b
b2
}
x3
解: ⑵∵ x 3,∴ x 3 0
∴ y 2x2 2(x2 9) 18 2x 6 18
x3
x3
x3
= 2(x 3) 18 12 ≥24 x3
当且仅当 2(x 3) 18 即 x 6 时取等号. x3
∴函数 y 2x2 (x 3) 的最小值为 24,且当 x 6 时取得. x3
第一讲 不等式和绝对值不等式
一:不等式的基本性质
AB
gg ab
b>a
B
A
g
g
b
a
a>b
a>ba-b>0
基本不等式 a < b a - b < 0
b=a b-a=0
注:是比较两个数大小的依据
例1:比较(x+1)(x+2)和(x-3)(x+6)的大小。
解:因为(x+1)(x+2)-(x-3)(x+6) =x2+3x+2-(x2+3x-18) =20>0,
∴ x(3 2x) = 1 2x(3 2x) ≤ 2
当且仅当 x 3 时取等号. 4
1 2x 3 2x = 3 2
22
4
∴函数 y x(3 2x) 的最大值为 3 2 ,当且仅当 x 3 取得.
4
4
例 2.⑴已知 0 x 3 ,求函数 y x(3 2x) 的最大值.
2 ⑵求函数 y 2x2 (x 3) 的最小值.
4
注:一正、二定、三等。
例 3求证:
(1)在所有周长相同的矩形中,正 方形的面 积最大;
(2)在所有面积相同的矩形中,正方形的周 长最短.
例 2.⑴已知 0 x 3 ,求函数 y x(3 2x) 的最大值.
2 ⑵求函数 y 2x2 (x 3) 的最小值.
x3
解⑴(重要不等式法)∵ 0 x 3 ,∴ x 0且3 2x 0, 2
当且仅当x
x
2 5
2x,即x
2 15
时,y
max
4 675
.
例2: 当0 x 1时,求函数y x2 (1 x)的最大值.
解: 0 x 1, 1 x 0,
y x2 (1 x) 4 x x (1 x) 22
x x 1 x
4( 2 2
)3
4
3
27
构造三 个数相
加等于 定值.
当 x 2
几何解释
b
a b
a
b
三: 基本不等式
定理2:(基本不等式)
如果a,b
0,那么a
+ 2
b

ab,
当且仅当a = b时等号成立。
算术平均数
C 几何平均数
几何解释
ab
A
a O DbB
两个正数的算术平均不小于它们的几何平均。
定理:设 x, y, z 都是正数,则有 ⑴若 xy S (定值),则当 x y 时, x y 有最小值2 s. ⑵若 x y p (定值),则当 x y 时, xy 有最大值 p2 .
1
x,
x
2 时, 3
ymax
4 27
.
练习:
1、函数y
4x2
16 (x2 1)2
的最小值是
___8___
2、函数y x4 (2 x2 )(0 x 2)的最大值是
( D) A、0 B、1
C、1267
32
D、27
3、若x, y R , xy2 4则x 2 y的最小值是B
A、4
B、33 4
((12))若若ca>>ab>, b1a>0,b1则,c则aaa>0,cbb<0b。((真真命 命题 题) )
5.已知f(x)=ax2+c,且-4≤f(1)≤-1,-1≤f(2)≤5,求 f(3)的取值范围。 f(3)的取值范围是[-1, 20]
相关文档
最新文档