2014年九年级数学中考一模模拟试卷及 答案

合集下载

2014年九年级数学中考一模 调研试卷及答案

2014年九年级数学中考一模 调研试卷及答案

2014年初三统一练习暨毕业考试数学试卷一、选择题(本题共32分,每小题4分) 1.32-的相反数是 A .23- B .23 C .32- D .322.清明小长假本市150家景区接待游客约5245000人,数字5245000用科学记数法表示为 A .3105.245⨯B .6105.245⨯C .7100.5245⨯ D .3105245⨯ 3.正五边形的每个内角等于 A .72°B .108°C .54°D .36°4.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:则这10户家庭的月用水量的平均数和众数分别是A .7.8,9B .7.8,3C .4.5,9D .4.5,3 5.将二次函数1822--=x x y 化成k h x a y +-=2)(的形式,结果为 A .1)2(22--=x y B . 32)4(22+-=x y C .9)2(22--=x y D . 33)4(22--=x y6.如图,△ABC 内接于⊙O ,BA =BC ,∠ACB =25°,AD 为⊙O 的直径,则∠DAC 的度数是 A .2530° C .40° D .50°7.转盘上有六个全等的区域,颜色分布如图所示,若指针固定不动,转动转盘, 当转盘停止后,则指针对准红色区域的概率是 A .21 B .31 C .41 D .618.如图,边长为1的正方形ABCD 中有两个动点P , Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC →CD 作匀速运动,P ,Q 两个点的速度都为每秒1个单位,如果其中一点停止运动,则另一点也停止运动.设P ,Q 两点的运动时间为x 秒,两点之间的距离为y ,下列图象中,能表示y 与x的函数关系的图象大致是红 黄蓝 红蓝 蓝二、填空题(本题共16分,每小题4分) 9. 分解因式:ax ax 163-=_______________.10. 如图,CD AB //,AC 与BD 相交于点O ,3=AB , 若3:1:=BD BO ,则CD 等于_____.11.如图所示,小明同学在距离某建筑物6米的点A 处测得条幅两端B 点、C 点的仰角分别为60°和30°,则条幅的高度BC 为 米(结果可以保留根号).12.在平面直角坐标系xOy 中,已知直线l :x y =,作1A (1,0)关于xy =的对称点1B ,将点1B 向右水平平移2个单位得到点2A ;再作2A 关于x y =的对称点2B ,将点2B 向右水平平移2个单位得到点3A ;….请继续操作并探究:点3A 的坐标是 ,点2014B 的坐标是 .三、解答题(本题共30分,每小题5分)13.02014130tan 3512(-︒+--. 14.解方程:xx x -=+--53153. 15.如图,在△ABC 和△ADE 中,AC AB =, AE AD =,DAE BAC ∠=∠,点C 在DE 上. 求证:(1)△ABD ≌△ACE ;(2)ADC BDA ∠=∠.16.已知:23=y x ,求代数式y x yx 3294+-的值.17.如图,一次函数21+=kx y 的图象与x 轴交于点B (0 2-,),与函数xmy =2(0>x )的图象交于点A (a 1,).(1)求k 和m 的值; BBDCC(2)将函数xmy =2(0x >)的图象沿y 轴向下平移3个单位后交x 轴于点C .若点D 是平移后函数图象上一点,且△BCD 的面积是3,直接写出点D 的坐标.18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台. (1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案? 四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,2AB =,︒=∠=∠60C A ,DB AB ⊥于点B ,45DBC ∠=︒,求BC 的长.20.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.(1)请根据以上信息,直接补全条形统计图和扇形统计图;(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史? (3)若该校共有学生540人,请估算全校有多少学生选修篮球课? 21.如图,⊙O 是△ABC 的外接圆,AC AB =,连结CO 并延长交⊙O 的切线AP 于点P . (1)求证:BCP APC ∠=∠; (2)若53sin =∠APC ,4=BC ,求AP 的长.P三个班级参加选修课的 初二(5)班参加各类选修课的人数统计图 人数分布统计图 人数 音乐史 管乐 篮球 健美操油画 课程 10 9 8 7 6 5 4 3 2 122.实验操作(1)如图1,在平面直角坐标系xOy 中,△ABC 的顶点的横、纵坐标都是整数,若将(1)求m 的值;(2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的表达式;(3)将抛物线2C 绕点(n n ,1+)旋转︒180得到抛物线3C ,若抛物线3C 与直线121+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围.24.在矩形ABCD 中,AD =12,AB =8,点F 是AD 边上一点,过点F 作∠AFE =∠DFC ,交射线AB 于点E ,交射线CB 于点G . (1) 若FG =_____CFG ∠=︒;(2) 当以F ,G ,C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;(3)过点E 作EH//CF 交射线CB 于点H ,请探究:当GB 为何值时,以F ,H ,E ,C为顶点的四边形是平行四边形.25.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义: “水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”=S ah .例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,则“水平底”5=a ,“铅垂高”4=h ,“矩面积”20==S ah .(1)已知点)2,1(A ,)1,3(-B ,),0(t P .①若A ,B ,P 三点的“矩面积”为12,求点P 的坐标; ②直接写出A ,B ,P 三点的“矩面积”的最小值. (2)已知点)0,4(E ,)2,0(F ,)4,(m m M ,)16,(nn N ,其中0>m ,0>n . ①若E ,F ,M 三点的“矩面积”为8,求m 的取值范围;②直接写出E ,F ,N 三点的“矩面积”的最小值及对应n 的取值范围.备用图数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)9.)4)(4(-+x x ax ; 10.6; 11.34; 12.(3,2),(2013,2014). 三、解答题(本题共30分,每小题5分)13.解:02014130tan 3512)(-︒+-- =1333532-⨯+- ………………………………………4分 =6-33 ………………………………………5分 14. 解:方程两边同乘以)5(-x ,得 ………………………………………1分3)5(3-=-+-x x . ………………………………………2分解得25=x . ………………………………………3分 经检验:25=x 是原分式方程的解. ………………………………4分所以25=x 是原方程的解. ………………………………………5分15.证明:(1)DAE BAC ∠=∠ ,DAC DAE DAC BAC ∠-∠=∠-∠∴.CAE BAD ∠=∠∴. …………………………1分 在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE AD EAC BAD AC AB , ……………2分 ∴△ABD ≌△ACE . ………………………3分 (2)AEC ADB ∠=∠∴. AE AD = ,AEC ADC ∠=∠∴. …………………………4分 ADC BDA ∠=∠∴. …………………………5分16.解:由已知y x 32=, ………………………………………2分 ∴原式yy yy 3396+-=………………………………………4分21-=. ………………………………………5分 17.解:(1)根据题意,将点B (0 2-,)代入21+=kx y ,∴22-0+=k . ………………………………………………………1分∴1=k . …………………………………………………2分∴A (3 1,). 将其代入x my =2,可得:3=m …………………3分(2)(2 53,)或(2 3-,). ………………………………………5分 18.解:设该公司购进甲型显示器x 台, 则购进乙型显示器()50-x 台.(1)依题意可列不等式:77000)50(20001000≤-+x x ……………2分解得:23≥x …………………………………………………………3分∴该公司至少购进甲型显示器23台. (2)依题意可列不等式:x x -≤50解得:25≤x ………………………………………………………4分∵23≥x∴x 为23,24,25. 答:购买方案有:①甲型显示器23台,乙型显示器27台; ②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台. …………5分四、解答题(本题共20分,每小题5分)19. 解:过点D 作BC DE ⊥于点E . ……………………1分︒=∠=⊥60 2,A AB AB DB ,,∴3260tan =︒⨯=AB BD . ………………2分 45DBC ∠=︒,BC DE ⊥,∴645sin =︒⨯==BD DE BE …………3分︒=∠︒=∠=∠9060DEC A C , 260tan =︒=∴DECE . ……………………4分62+=∴BC .………………………………5分20.解:(1)条形统计图补充数据:6(图略). ………………………………………1分 扇形统计图补充数据:20. ……………………………2分(2)180×308=48(人). ………………………………………………3分 (3)()1543030303020866=++÷⎪⎭⎫⎝⎛⨯++. ……………4分144540154=⨯(人). …………………………………………5分 21.(1)证明:连结AO 并延长交BC 于D 、⋂BC 于EAP 切⊙O 于点AAPBC BC EA AC AB ACAB PA EA //∴⊥∴=∴=⊥∴⋂⋂…………………1分 BCP APC ∠=∠∴…………………………2分(2)解:BC AE ⊥221==∴BC CD53sin ==∠PO AO APC ∴设k OP k OA 5,3==,则k OA OC 3==………………3分AP BC //∴△PAO ∽△CDO …………………………4分 COPOCD PA =∴ kkPA 352=∴∴310=PA …………………………5分PE34π=⋂AB ……………………………………………………5分 五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.解:(1)∵方程01)1(22=-+-+m x m mx有两个实数根,∴0≠m 且0≥∆, ……………………1分则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m又∵m 为非负整数,∴1=m . ………………………………2分(2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2)(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a ,同理:b a b +-=+2)4(12,可得3=b , …………………………4分∴2C :()322+-=x y )(或742+-=x x y . …………5分(3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶点为(322-n n ,), ………………6分当n x 2=时,11221+=+⨯=n n y , 由题意,132+>-n n ,即:4>n . ……………………………7分24.解:(1)90° ………………………………………………2分 (2)正确画图 ………………………………………………3分四边形ABCD 是矩形, ∴∠D=90°.△FGC 是等边三角形,=60GFC ∴∠︒ . ∠DFC =∠AFE ,∴∠DFC =60°. …………4分 DC =8 ,∴331660sin =︒=DC FC .△FGC 是等边三角形,∴GC =FC .BC=AD =12,∴GB=12.………………………………5分 (3)过点F 作FK ⊥BC 于点K 四边形ABCD 是矩形∴∠ABC =90°,AD//BC∴∠DFC =∠KCF ,∠AFG =∠KGF ∠DFC =∠AFG ∴∠KCF =∠KGF∴FG =FC ……………………………………………………………6分∴GK =CK四边形FHEC 是平行四边形∴FG =EG ……………………………………………………………7分 ∠FGK =∠EGB, ∠FKG =∠EBG=90°∴△FGK ≌△EGB∴BG =GK=KC=4312=……………………………………………8分25.解:(1)由题意:4=a .①当2>t 时,1-=t h , 则12)1(4=-t ,可得4=t ,故点P 的坐标为(0,4);……………1分当1<t 时,t h -=2,则12)2(4=-t ,可得1-=t ,故点P 的坐标为(0,1)-.…………2分②A ,B ,P 三点的“矩面积”的最小值为4. ……………………3分 (2)①∵E ,F ,M 三点的“矩面积”的最小值为8,∴⎩⎨⎧≤≤≤≤24040m m .∴210≤≤m .∵0>m ,∴210≤<m . ………………………………………………………4分②E ,F ,N 三点的“矩面积”的最小值为16,…………………………5分 n 的取值范围为84≤≤n ………………………………………………7分。

2014届九年级数学中考质量检测摸底考试试卷及答案

2014届九年级数学中考质量检测摸底考试试卷及答案

2014届初中毕业班数学科综合模拟试卷(一)(试卷满分:150分 考试时间:120分钟)一、选择题(每小题3分,共21分).1. 实数2014的相反数是( ). A . 2014 B .2014- C .12014 D .12014- 2. 下列计算正确的是( ).A. 32x x x =⋅B. 2x x x =+C. 532)(x x =D. 236x x x =÷3. 如图是一个由4个相同的正方体组成的立体图形,则它的主视图为( ).A .B .C .D .\4. 下列说法不正确的是( ). A .选举中,人们通常最关心的数据是众数B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .一组数据3、5、4、1、-2的中位数是3D .某游艺活动的中奖率是60%,说明只要参加该活动10次就一定有6次获奖5. 有一道题目:已知一次函数y=2x+b,其中b <0,…,与这段描述相符的函数图像可能是( ).6. 下列图形中,既是轴对称图形又是中心对称图形的是( ).A .等边三角形B .平行四边形C .正方形D .等腰梯形 7. 如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C=50°, ∠ABC 的平分线BD 交⊙O 于点D ,则∠BAD 的度数是( ). A .45° B .85° C .90° D .95°二、填空题(每小题4分,共40分).8. 实数16的平方根是.9. 分解因式23x x -= .10. 微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 71平方毫米,用科学记数法表示为 平方毫米.11. 一副三角尺按如图所示放置,则∠1= 度.12. 若等腰三角形两边长分别为10和5,则它的周长是 . 13. 已知5-=+y x ,6=xy ,则=+22y x .14.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,点F 在BC 的延长线上,∠A=46°,∠1=52°,则∠2= 度. 15. 如图,反比例函数ky x=的图象经过点P ,则 k = .(第14题图) (第15题图) (第16题图) (第17题图)16. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为 厘米.17. 如图,在Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=4, E 、F 分别是AB 、AC 边的中点,则(1)=EF ;(2)若D 是BC 边上一动点,则△EFD 的周长最小值是 .三、解答题(共89分).18. (9分)计算:201)2π-⎛⎫⨯-- ⎪⎝⎭19. (9分)先化简,再求值:先化简,再求值:21(1)(1)(1)x x x x+-+-,其中2x =-.20. (9分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查。

深圳中学2014年中考数学一模试卷(含答案)

深圳中学2014年中考数学一模试卷(含答案)

深圳中学2014年中考第一次模拟考试数学考生须知:1.本试卷共5页。

全卷满分150分。

考试时间为120分钟。

试题包含选择题和非选择题。

考生答题全部答在答题卡上,答在本试卷上无效。

2.请将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡上。

3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案。

答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其它位置答题一律无效。

一、选择题(共10小题,每小题3分,共30分.).C D.C D..C D.5.(3分)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().C D.7.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是().C D.210.(3分)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为().C D.二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上).11.(3分)因式分解:a2+2a=_________.12.(3分)某市在市中心建了一个文化广场,建成后总面积达163500平方米,成为该市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为_________平方米.13.(3分)如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为_________.14.(3分)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且圆心距O1O2=t+2,若这两个圆相切,则t=_________.15.(3分)双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是_________.16.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…;则a2014的值为_________.(用含m的代数式表示)三、解答题(本大题共9题,满分102分.解答应写出文字说明、证明过程或演算步骤).17.(9分)解不等式组,并把解集在数轴上表示出来.18.(9分)如图,已知:在△ABC中,AB=AC,∠BAF=∠CAE,求证:BE=CF.19.(10分)化简求值:,其中x=2.20.(10分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为_________;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是_________.21.(12分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?22.(12分)马航事件牵动了全国甚至全世界人们的心,当得知MH370客机最后失踪地点是在印度洋南部某海域C处,“雪龙”号科考船立即从B处出发以60km/h的速度前往搜救.已知出发时在B 测得搜救指挥基地A的方位角为北偏东80°,测得失踪地点C的方位角为南偏东25°.航行10小时后到达C处,在C处测得A的方位角为北偏东20°.求C到A的距离.23.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.(14分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.25.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m 的值;若不存在,请说明理由.深圳中学2014年中考第一次模拟试卷数学答案一、选择题(共10小题,每小题3分,共30分.).C D.C D..C D.5.(3分)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().C D.sinA==7.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是().C D.210.(3分)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为().C D.a,C=C=aa a+++l=二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上).11.(3分)因式分解:a2+2a=a(a+2).12.(3分)某市在市中心建了一个文化广场,建成后总面积达163500平方米,成为该市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为 1.635×105平方米.13.(3分)如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为18.14.(3分)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且圆心距O1O2=t+2,若这两个圆相切,则t=2或0.15.(3分)双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是y2=.解:∵=..16.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…;则a2014的值为1﹣.(用含m的代数式表示)﹣=1=,=1=m=﹣.三、解答题(本大题共9题,满分102分.解答应写出文字说明、证明过程或演算步骤).17.(9分)解不等式组,并把解集在数轴上表示出来.18.(9分)如图,已知:在△ABC中,AB=AC,∠BAF=∠CAE,求证:BE=CF.19.(10分)化简求值:,其中x=2.20.(10分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为100;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.扇形统计图:赞成:,反对:×=.21.(12分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?22.(12分)马航事件牵动了全国甚至全世界人们的心,当得知MH370客机最后失踪地点是在印度洋南部某海域C处,“雪龙”号科考船立即从B处出发以60km/h的速度前往搜救.已知出发时在B 测得搜救指挥基地A的方位角为北偏东80°,测得失踪地点C的方位角为南偏东25°.航行10小时后到达C处,在C处测得A的方位角为北偏东20°.求C到A的距离.×=300×=100kmCA=300+100=1003)+23.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)BD=2BF=2××﹣24.(14分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.25.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m 的值;若不存在,请说明理由.((=,∴)﹣=2(•±+2∴∴((EC=。

中考一模数学参考答案

中考一模数学参考答案

2014年初三数学一模参考答案一、ABACD CABAC二、11、710137.2⨯12、 2(x+2)(x-2)13、9614、3215、(1,5)16、π316 三、17、解:原式=+3﹣+1......4’=4. ......6’18、解:方程两边都乘(x+1)(x ﹣1), ......1’得:2=﹣(x+1), ......3’解得:x=﹣3. ......4’检验:当x=﹣3时,(x+1)(x ﹣1)≠0. .....5’∴x=﹣3是原方程的解. .....6’19、解:画树状图得:或正确列表 .....2’(1)∵共有16种等可能的结果,两次取出的小球标号相同的有4种情况, ∴两次取出的小球标号相同的概率为:=; .....4’(2)∵两次取出的小球的标号和是5的倍数的有3种情况,∴两次取出的小球的标号和是5的倍数的概率为:. .....6 四、20、解:∵S 正方形OBAC =OB ×AB=9,∴OB=AB=3, .....2’∴点A 的坐标为(3,3) .....3’∵点A 在一次函数y=kx+1的图象上,∴3k+1=3, .....5’∴k=, .....6’∴一次函数的关系式是:y=x+1. .....7’21、(1)解:作图如下; 画第一段弧 .....1’ 画出垂线 .....2’(2)证明:∵△ABC 是等边三角形,∠DCE=60°+60°=120°, .....3’ 在△DCE 中,∵CE=CD ,∴∠CDE=∠CED=30° .....4’D是AC的中点, ∴BD平分∠ABC,∴∠DBE=30°.....5’∴∠DBE=∠CED .....6’又∵DM⊥BE ∴BM=EM......7’22、解:过点P作PC⊥AB,C是垂足.则∠APC=30°,∠BPC=45°,AC=PC•tan30°,BC=PC•tan45°......2’∵AC+BC=AB,∴PC•tan30°+PC•tan45°=100km,∴PC=100,.....4’∴PC=50(3﹣)≈50×(3﹣1.732)≈63.4km>50km......6’答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区......7’五、23、解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2......2’解这个方程,得x1=0.2,x2=1.8...... 4’因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%......6’(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),.....7’方案二所需费用为:3.2×5000﹣200×5=15000(元)......8’∵14400<15000,∴小华选择方案一购买更优惠......9’24、证明:(1)如图1,连接OA,OC;.....1’因为点O是等边三角形ABC的外心,所以Rt△OFC≌Rt△OGC≌Rt△OGA,.....2’S四边形OFCG=2S△OFC=S△OAC,.....3’因为S△OAC=S△ABC,所以S四边形OFCG=S△ABC......4’(2)设OD交BC于点F,OE交AC于点G;作OH⊥BC,OK⊥AC,垂足分别为H、K;.....5’在四边形HOKC中,∠OHC=∠OKC=90°,∠C=60°,∴∠HOK=360°﹣90°﹣90°﹣60°=120°,即∠1+∠2=120°;.....6’又∵∠GOF=∠2+∠3=120°,∴∠1=∠3,.....7’∵AC=BC,∴OH=OK,∴△OGK ≌△OFH , .....8’∴S 四边形OFCG =S 四边形OHCK =S △ABC . .....9’25、(1)证明:在正方形ABCD 中,AB=BC=CD=4,∠B=∠C=90°,∵AM ⊥MN ,∴∠AMN=90°, ∴∠CMN+∠AMB=90°......1’在Rt △ABM 中,∠MAB+∠AMB=90°,∴∠CMN=∠MAB , .....2’∴Rt △ABM ∽Rt △MCN . .....3’(2)解:∵Rt △ABM ∽Rt △MCN , ∴,即,∴, .....4’∴y=S 梯形ABCN =(+4)•4=﹣x 2+2x+8 =﹣(x ﹣2)2+10, .....5’当x=2时,y 取最大值,最大值为10. .....6’ (3)依题意得2BM=DN,即:44422x x x --=, 化为016122=+-x x , .....7’ 解得5261+=x ,因为(0<x<4)不合题意舍去, 5262-=x ,.....8’所以,当M 点运动到与B 点的距离是526-时,Rt △ABM 年的面积是Rt △ADN 的面积的一半。

2014年九年级数学第一次中考模拟考试试卷及答案

2014年九年级数学第一次中考模拟考试试卷及答案

2014年中考第一次模拟考试数学试题本试题分选择题,36分;非选择题,84分;全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.∣-4∣的平方根是A.2 B.±2 C.-2 D.不存在2.下列图形中既是中心对称图形,又是轴对称图形的是A.B.C.D.3. 2013年德州市参加学业水平考试的学生人数为43259人,那么数据43259用科学记数法并保留到百位可以表示为A.5⨯D.44.33104.32610⨯⨯B.4⨯C.40.432104.32104.下列说法正确的是A.某工厂质检员检测某批灯泡的使用寿命采用普查法B . 一组数据1,a ,4,4,9的平均数是4,则这组数据的方差是7.6C . 12名同学中有两人的出生月份相同是必然事件D . 一组数据:5,4,3,6,4中,中位数是35.已知点M (1-2m ,1-m )在第一象限,则m 的取值范围在数轴上表示正确的是6. 若反比例函数xky =(k <0)的图象上有两点1P (2,1y )和2P (3,2y ),那么 A .021<<y y B .021>>y y C .012<<y y D .012>>y y 7. 下列命题中,正确的是A .平分弦的直径垂直于弦B .对角线相等的平行四边形是正方形C .对角线互相垂直的四边形是菱形D .三角形的一条中线能将三角形分成面积相等的两部分 8.直线y =2x 经过平移可以得到直线y =2x -2的是A .向左平移1个单位B .向左平移2个单位C .向右平移1个单位D .向上平移2个单位9.如图a 是长方形纸带,∠DEF =25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠DHF 的度数是A .35°B .50°C .65°D .75°10.有一个质地均匀的骰子,6个面上分别写有1,1,2,2,3,3这6个数字.连续投掷两次,第一次向上一面的数字作为十位数字,第二次向上一面的数字作为个位数字,这个两位数是奇数的概率为A .12 B .13 C .23 D .5911.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为x =1,点A 坐标为(-1,0).则下面的四个结论:①2a +b =0;②4a +2b +c >0 ③B 点坐标为(4,0);④当x <-1时,y >0.其中正确的是10 0.510 0.510.5 10 0.5A . B . C . D .A BCD 图aEA .①②B .③④C .①④D .②③12.如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ;把正方形1111A B C D 边长按原法延长一倍得到正方形2222A B C D ;以此进行下去…,则正方形n n n n A B C D 的面积为A.n B .5n C .15n - D .15n +非选择题 (共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13°的值为 .14.设x 1,x 2是方程2x 2+4x -3=0的两个根,则x 12+x 22= .15.新定义:[a ,b ,c ]为函数y =2ax bx c ++ (a ,b ,c 为实数)的“关联数”.若“关联数”为 [m -2,m ,1]的函数为一次函数,则m 的值为 .16.如图,在□ABCD 中,AD =4,AB =8,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 .(结果保留π)17.如图,在等腰直角△ACB 中,∠ACB =90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE =90°,DE 交OC 于点P .有下列结论: ①∠DEO =45°;②△AOD ≌△COE ; ③S 四边形CDOE =12S △ABC ;④2OD OP OC =⋅. ACD 第16题图第17题图A x =1xyBO 第11题图 CB 1B C D AA 1C 1D 1A 2B 2C 2D 2第12题图其中正确的结论序号为.(把你认为正确的都写上)三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分)化简求值:22221211x x x xx x x x+÷--++-,其中1x=.19.(本题满分8分)如图,已知矩形OABC的A点在x轴上,C点在y轴上,6=OC,10OA=.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.20.(本题满分8分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据PM2.5检测网的空气质量新标准,从德州市2013年全年每天的PM2.5日均值标准值(单位:微克/立方米)监测数据中随机地抽取25天的数据作为样本,并根据检测数据制作了尚不完整的频数分布表和条形图:空气质量PM2.5日均频频等级 值标准值 数 率 优 0~35 1 0.04 良 35~75 m 0.2 轻度污染 75~150 11 0.44 中度污染 150~200 5 0.2 重度污染 200~300 n a 严重污染大于30010.04(1)求出表中m ,n ,a 的值,并将条形图补充完整;(2)以这25天的PM2.5日均值来估计该年的空气质量情况,估计该年(365天)大约有多少天的空气质量达到优或良;(3)请你结合图表评价一下我市的空气质量情况.21.(本题满分10分)如图,△ABC 中,AB =AC ,作以AB 为直径的⊙O 与边BC 交于点D ,过点D 作⊙O 的切线,分别交AC 、AB 的延长线于点E 、F . (1)求证:EF ⊥AC ;(2)若BF =2,CE =1.2,求⊙O 的半径.第21题图22.(本题满分10分)某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?23.(本题满分10分)如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____度时,图中阴影部分的面积和有最大值是________.24. (本题满分12分)如图,已知抛物线y =x 2+bx +c 经过A (-1, 0)、B (4, 5)两点,过点B 作BC ⊥x 轴,垂足为C . (1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果以M 、N 、B 、C 为顶点的四边形是平行四边形,求出点M 的横坐标.图3A BC DEFG图1GAB C DEF图2第23题图 ABO xyC第24题图数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:(本大题共12题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDBAADCDCCB二、填空题:(本大题共5小题,每小题4分,共20分) 13.14.7 15.2 16.12﹣34π 17.①②③④ 三、解答题:(本大题共7小题, 共64分) 18. (本题满分6分)解:原式= 222(1)1(1)1x x x x x x x +⋅--+- =22(1)(1)(1)(1)1x x x x x x x x +⋅-+-+- ………………………2分 = 2111x x x ---= 211x x --= (1)(1)1x x x +---= 1x --, ………………………4分当1x =时,原式= ………………………6分19.(本题满分8分)解:(1)保留痕迹,作图正确.…………3分 (2)过点E 做EF ⊥OA ,垂足为F . ∵矩形OABC 中6=OC ,10OA =, ∴B 点坐标为(10,6). ∴EF =6.…………5分 又∵OE =OA ,∴OF.…………7分 ∴点E 的坐标为(8,6).…………8分 20.(本题满分8分)解:(1)观察频数分布表可知,空气质量为良的频数m =25×0.2=5(天),重度污染的频数n =25-1-5-11-5-1=2(天), 所以重度污染的频率a =2÷25=0.08.…………3分 条形图补充如下:…………5分(2)这25天中空气质量达到优或良的频率为:0.04+0.2=0.24,以此估计该年(365天)空气质量达到优或良的天数为:365×0.24=87.6≈88(天);……7分 (3)结合图表可知我市的空气质量情况主要是轻度污染及其他程度的污染(占76%),空气质量较差. …………8分 21.(本题满分10分)(1)证明:连接OD ,AD .…………1分 ∵EF 是⊙O 的切线, ∴OD ⊥EF .…………2分 又∵AB 为⊙O 的直径,∴∠ADB =90°,即AD ⊥BC .…………3分 又∵AB =AC , ∴BD =DC .∴OD ∥AC . …………4分 ∴AC ⊥EF . …………5分 (2)解:设⊙O 的半径为x . ∵OD ∥AE ,∴△ODF ∽△AEF .…………7分 ∴OD OF AE AF =,即22 1.222x xx x+=-+. 解得:x =3.∴⊙O 的半径为3. …………10分22.(本题满分10分) 解:(1)由题意得:y =30﹣10x,且0<x ≤90,且x 为10的正整数倍.…………2分 (2)w=(120﹣20+x )(30﹣10x), …………4分整理,得w =﹣110x 2+20x +3000.…………5分(3)w=﹣110x 2+20x +3000=﹣110(x ﹣100)2+4000.…………7分∵110a =-,∴抛物线的开口向下,当x <100时,w 随x 的增大而增大,又0<x ≤90,因而当x =90时,利润最大,此时一天订住的房间数是:30﹣9010=21间,最大利润是:3990元.…………10分答:一天订住21个房间时,宾馆每天利润最大,最大利润为3990元. 23.(本题满分10分)解:(1)证明:在△ABC 与△DFC 中, ∵AC =DC ,∠ACB =∠DCF =90°,BC =FC , ∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等.…………………2分 (2)成立.…………………3分证明:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .∴∠APC =∠DQC =90°.…………………4分 ∵四边形ACDE ,BCFG 均为正方形, ∴AC =CD ,BC =CF ,∠ACP +∠PCD =90°, ∠DCQ +∠PCD =90°. ∴∠ACP =∠DCQ .∴△APC ≌△DQC .(AAS )…………………5分 ∴AP =DQ . 又∵S △ABC =12BC •AP ,S △DFC =12FC •DQ , ∴S △ABC =S △DQC . …………………7分ABC D EFGQPGA B C DEF11(3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍, 若图中阴影部分的面积和的最大值,则三角形ABC 的面积最大,∴当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.…………9分 ∴S 阴影部分面积和=3S △ABC =3×12×3×4=18.………………10分 24.(本题满分12分)解:(1)将A (-1, 0)、B (4, 5)分别代入y =x 2+bx +c ,得10164 5.b c b c -+=⎧⎨++=⎩,解得b =-2,c =-3.∴抛物线的解析式:y =x 2-2x -3.…… 2分 (2)在Rt △BOC 中,OC =4,BC =5. 在Rt △ACB 中,AC =AO +OC =1+4=5, ∴AC =BC .………………4分 ∴ ∠BAC =45°,AB =25552222=+=+BC AC .………………5分如图1,过点O 作OH ⊥AB ,垂足为H . 在Rt △AOH 中,OA =1, ∴AH =OH =OA ×sin45°=1×22=22, ∴BH =AB -AH =52-22=229 在Rt △BOH 中,tan ∠ABO =BH OH =22×292=91.…………7分 (3)直线AB 的解析式为:y =x +1.………8分设点M 的坐标为(x ,x 2-2x -3), 点N 的坐标为(x ,x +1),① 如图2,当点M 在点N 的上方时, 则四边形MNCB 是平行四边形,MN =BC23题图123题图212=5.由MN =(x 2-2x -3)-(x +1)=x 2-2x -3-x -1=x 2-3x -4, 解方程x 2-3x -4=5, 得x =2533+或x =2533-. ……………………10分②如图3,当点M 在点N 的下方时,则四边形NMCB 是平行四边形,NM =BC =5. 由MN =(x +1)-(x 2-2x -3) =x +1-x 2+2x +3=-x 2+3x +4, 解方程-x 2+3x +4=5, 得x =253+或x =253-. 所以符合题意的点M 有4个,其横坐标分别为:2533+,2533-,253+,253-.……………12分MN N23题图3。

2014年中考数学模拟考试题 参考答案及解析

2014年中考数学模拟考试题 参考答案及解析

2014年中考数学模拟考试题 参考答案及解析一、选择题:1、C2、D3、B4、A5、C6、B7、C8、C9、C 10、C 二、填空题:11、x=3; 12、k>-2; 13、25; 14、25 三、解答题15、(1)233+ (2) 原式211x x +== 16、解:由题意得:232a a +≥- ∴2a ≤17、解:由题意得:∠PBH=60°,∠APB=45°. ∵山坡的坡度i (即tan ∠ABC )为1:3 ∴tan ∠ABC=13,∠ABC=30° , ∴∠APB=90°. 在Rt △PHB 中,PB=PBHPH∠sin =203,在Rt △PBA 中,AB=PB=203≈34.6. 答:A 、B 两点间的距离约34.6米.18、(1)把C (1,3)代入y = kx得k =3 设斜边AB 上的高为CD ,则sin ∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,①当点B 在点A 右侧时,如图1有: AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134O xyB A CD 图1此时B 点坐标为(134,0)②当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(- 54,0)所以点B 的坐标为(134,0)或(- 54,0).19、解:(1) 坐标1232131 1 (1, 2)( 1, 3) (1,21) ( 1 ,31) 2 (2, 1) ( 2, 3)( 2 ,21)( 2 ,31)3(3, 1) ( 3, 2 ) ( 3 ,21)( 3 ,31)21(21,1) (21,2) (21,3) (21 ,31) 31 (31,1) (31,2) (31,3) (31 ,21)(2)当1=x 时2=y ,∴点(1,21),(1,31)在△AOB 内部, 当2=x 时1=y ,∴点(2,21),(2,31)在△AOB 内部,当3=x 时0=y ,∴则上述点都不在△AOB 内部,当21=x 时25=y ,则点(21,1)(21,2),(21,31)在△AOB 内部, 当31=x 时,38=y 则点(31,1)(31,2), (31,21)在△AOB 内点, ∴点P 在△AOB 的内部概率()101=202P =内部xyB ACDO图220、解:(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2. 又tan ∠ADC =2,所以212DM ==.因为MC =AB =1,所以DC =DM+MC =2,即DC =BC . (2)等腰直角三角形.证明:∵DE =DF ,∠EDC =∠FBC ,DC =BC . ∴△DEC ≌△BFC (5分)∴CE =CF ,∠ECD =∠BCF . ∴∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(3)设BE =k ,则CE =CF =2k , ∴22EF k =. ∵∠BEC =135°,又∠CEF =45°,∴∠BEF =90°. ∴22(22)3BF k k k =+= ∴1sin 33BFE k k ∠==. B 卷21、8 ; 22、a+b ; 23、 124,1x x =-=-; 24、31nn + ; 25、1或4 26、解:(1)由P =-1100(x -60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P 1=41×5=205(万元) (2)若实施规划,在前2年中,当x=50时,每年最大利润为: P= 1100-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,每年用x 万元投资本地销售,而用剩下的(100-x )万元投资外地销售,则其总利润W=[-1100(x -60)2+41+(- x 2+x +160]×3=-3(x-30)2+3195当x=30时,W 的最大值为3195万元, ∴5年的最大利润为3195-20=3175(万元)(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.27、解:(1)60,60;(2)∵CM ∥BP ,∴∠BPM+∠M=180°,∠PCM=∠BPC=60. ∴∠M=180°-∠BPM=180-(∠APC+∠BPC )=180°-120°=60°. ∴∠M=∠BPC=60°.(3)∵△ACM ≌△BCP ,∴CM=CP ,AM=BP . 又∠M=60°,∴△PCM 为等边三角形. ∴CM=CP=PM=1+2=3. 作PH ⊥CM 于H.在Rt △PMH 中,∠MPH=30°.∴PH=332. ∴S 梯形PBCM =11315()(23)332224PB CM PH +⨯=+⨯=. 28、解:(1)∵抛物线y=ax 2+bx+3(a≠0)经过A (3,0),B (4,1)两点,∴933016431a b a b ++=⎧⎨++=⎩解得:1252a b ==-∴y=21x 2﹣25x+3; ∴点C 的坐标为:(0,3);(2)①当△PAB 是以AB 为直角边的直角三角形,且∠PAB=90°,直线PA 与y 轴交于点D 过B 作BM ⊥x 轴交x 轴于点M ,如图(1-1)∵A (3,0),B (4,1), ∴AM=BM=1, ∴∠BAM=45°, ∴∠DAO=45°,∴AO=DO , ∵A 点坐标为(3,0), ∴D 点的坐标为:(0,3), ∴直线AD 解析式为:y=kx+b ,将A ,D 分别代入得: ∴0=3k+b ,b=3, ∴k=﹣1, ∴y=﹣x+3, ∴y=21x 2﹣25x+3=﹣x+3, ∴x 2﹣3x=0, 解得:x=0或3, ∴y=3或0(0不合题意舍去), ∴P 点坐标为(0,3),②当△PAB 是以AB 为直角边的直角三角形,且∠PBA=90°,直线PB 与y 轴交于点D , 过B 分别作BE ⊥x 轴,BF ⊥y 轴,分别交x 轴、y 轴于点E 、F ,如图(1-2) 由(1)得,FB=4,∠FBA=45°, ∴∠DBF=45°,∴DF=4, ∴D 点坐标为:(0,5),B 点坐标为:(4,1),∴直线BD 解析式为:y=kx+b ,将B ,D 分别代入得: ∴1=4k+b ,b=5, ∴k=﹣1, ∴y=﹣x+5, ∴y=21x 2﹣25x+3=﹣x+5, ∴x 2﹣3x ﹣4=0, 解得:x 1=﹣1,x 2=4, ∴y 1=6,y 2=1, ∴P 点坐标为(﹣1,6),其中(4,1)不合题意,舍去。

2014届九年级数学中考一模押题试卷及答案

2014届九年级数学中考一模押题试卷及答案

2014年初中毕业生学业考试模拟(一)数学试题一、选择题(每小题3分,共24分)1.在0.1,3-,2和13这四个实数中,无理数是(A )0.1. (B )3-. (C )2. (D )13.2.2014年3月21日上午,我国新型导弹驱逐舰昆明舰举行入列仪式,正式加入人民海军战斗序列.昆明舰采用柴燃交替动力,配备2台QC208燃气轮机,单台功率37500马力.数据37500用科学记数表示为(A )43.7510⨯. (B )337.510⨯. (C )50.37510⨯. (D )33.7510⨯. 3.有一组数据:2,4,3,4,5,3,4,则这组数据的众数是(A )5. (B )4. (C )3. (D )2. 4.将“中国梦我的梦”六个字分别写在一个正方体的六个面上, 这个正方体的展开图如图所示,那么在这个正方体中, 和“我”字相对的字是(A )中. (B )国. (C )的. (D5.不等式组⎩⎨⎧≤>+1,022x x 的解集是(A )11≤<-x .(B )11<<-x .(C )1->x . (D )1≤x . 6.如图,直线 l 1∥l 2,且分别与△ABC 的两边AB 、AC 相交, 若∠A =50°,∠1=35°,则∠2的度数为(A )35°. (B )65°.(C )85°.(D )95°.7.如图,O ⊙是ABC △的外接圆,连结OA 、OB ,且点C 、O 在弦AB 的同侧,若50ABO ∠=°,则ACB ∠的度数为 (A )B )45°.(C )308.如图,在平面直角坐标系中,菱形ABCD 的顶点C 的坐标为(-1,0),点B 的坐标为(0,2),点A 在第二象限.直线521+-=x y 与x 轴、y 轴分别交于点N 、M .将菱形ABCD 沿x 轴向右平移m 个单位,当点D 落在△MON 的内部时(不包括三角形的边),则m 的值可能是(第4题)BCAl 1 l 21 2(第6题)(第7题) (第8题)二、填空题(每小题3分,共18分) 9.计算:=-29 .10.某饭店在2014年春节年夜饭的预定工作中,第一天预定了a 桌,第二天预定的桌数比第一天多了4桌,则这两天该饭店一共预定了 桌年夜饭(用含a 的代数式表示). 11.一个正方形与一个正六边形如图放置,正方形的一条边与正六边形的一条边完全重合,则∠1的度数为 度.12.如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若⊙O 的半径为5,AB = 4,则AD13.如图,抛物线2y x bx c =-++的对称轴是直线x =1,与x 轴的一个交点为(3,0),则此抛物线的函数关系式为 . 14.如图,点A 在反比例函数ky x=(x>0)的图象上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使AD =DC ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E .若△ABC 的面积为4,则k 的值为 . 三、解答题(本大题10小题,共78分)15.(5分)化简:x x xx x 12122-÷+-.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A 、B 、C ,每张卡片除了标记不同外,其余均相同. 某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A 的概率. 17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.(第11题) (第12题)M A B C D O · N18.(7分)如图,在矩形ABCD 中,以点D 为圆心,DA 长为半径画弧,交CD 于点E ,以点A 为圆心,AE 长为半径画弧,恰好经过点B ,连结BE 、AE . 求∠EBC 的度数.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米). (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a 名学生的上学交通方式,统计结果如图所示. (1)求a 的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.(第20题) 被调查学生上学采用交通方式扇形统计图 20% 10%10% 公共汽车 私家车校车步行 其它被调查学生上学采用交通方式条形统计图 0200400600800100012001400人数(第18题) A B DC E (第19题) A B C21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t 小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;22.(9分)如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连接AC、BD.在四边形ABCD的外部以BC为一边作等边三角形BCE,连接AE.(1)求证:BD=AE;(2)若AB=2,BC=3,求BD的长.A BDC(第22题)E23.(10分)如图①,在平面直角坐标系中,点A 是抛物线y =x 2在第一象限上的一个点,连结OA ,过点A 作AB ⊥OA ,交y 轴于点B ,设点A 的横坐标为n . 探究:(1)当n =1时,点B 的纵坐标是 ; (2)当n =2时,点B 的纵坐标是 ;(3)点B 的纵坐标是 (用含n 的代数式表示). 应用:如图②,将△OAB 绕着斜边OB 的中点顺时针旋转180°,得到△BCO . (1)求点C 的坐标(用含n 的代数式表示);(2)当点A 在抛物线上运动时,点C 也随之运动.当1≤n ≤5时,线段OC 扫过的图形的面积是 .24.(12分)如图,在Rt ABC ∆中,∠ACB =90°,AC =8cm ,AB =10cm .点P 从点A 出发,以5cm/s 的速度从点A 运动到终点B ;同时,点Q 从点C 出发,以3cm/s 的速度从点C 运动到终点B ,连结PQ ;过点P 作PD ⊥AC 交AC 于点D ,将APD ∆沿PD 翻折得到'A PD ∆,以'A P 和PB 为邻边作□'A PBE ,'A E 交射线BC 于点F ,交射线PQ 于点G .设□'A PBE 与四边形PDCQ 重叠部分图形的面积为S cm 2,点P 的运动时间为t s . (1)当t 为何值时,点'A 与点C 重合; (2)用含t 的代数式表示QF 的长; (3)求S 与t 的函数关系式;(4)请直接写出当射线PQ 将□'A PBE 分成的两部分图形的面积之比是1:3时t 的值. (第24题)E(图①) (第232014年初中毕业生学业考试模拟试题(一)·数学答案一、选择题(每小题3分,共24分)1.C 2.A 3.B 4.B 5.A 6.D 7.D 8.C二、填空题(每小题3分,共18分)9.1 10.(2a +4) 11.30 12.6 13.223y x x =-++ 14. 4 三、解答题(本大题10小题,共78分) 15.解:原式=1)2()1)(1(-⋅+-+x xx x x x (3分) =21++x x . (5分) 16.列表法.4分)树状图略 P (两次抽取的卡片都是A )=19(6分) 17.解:设原来每天加工零件x 个. (1分)根据题意,得40160132.5x x+=. (3分) 解得 8x = (4分) 经检验8x =是原方程的解,且符合题意 . (5分)答:原来每天加工零件8个. (6分)18.解:∵四边形ABCD 是矩形,∴∠D =∠ABC =90°. (2分) ∵AD =DE ,∴∠DAE =∠AED =45°,∴∠EAB =45. (4分) ∵AB =AE , ∴∠ABE =67.5°,∴∠CBE =22.5°. (7分)19.解:如图:过点C 作CD ⊥AD 于点D ,过点B 作BE ⊥CD 于点E .(注:作图正确,不写作法也可得2分) (2分)由题知, AB =DE =1.55,∠CBE =58°. (3分)在Rt CEB △中,sin 58CEBC=°. (4分) sin 58100.858.5CE BC ∴=⨯=·°≈. (6分) 8.5 1.5510.0510.1CD CE ED ∴=+=+=≈m . (7分)58°(第18题)A BD C E20.(1)a =600÷20%=3000. (2分) (2)如图所示: (4分)圆心角的度数为︒=︒⨯723603000600. (6分) (3)15000×40%=6000.答:估计其中坐校车上学的人数约为6000人. (8分) (注:此问不答不扣分)21.解:(1)轿车从乙地返回甲地时的速度为240÷3×1.5=120; (1分)t =240÷120+3=5. (2分) (2)设轿车从乙地返回甲地时y 与x 之间的函数关系式为y =kx +b .则BC =CE ,∠CBE =60°. ∴∠ABE =∠ABC +∠CBE =90°. (7分)在Rt △ABE 中,由勾股定理得AE 2=AB 2+BE 2.又∵BD =AE ,∴BD 2=AB 2+BC 2,∴BD =13 . (9分) 被调查学生上学采用交通方式条形统计图 0200 400 600 800 1000 1200 1400 公共汽车私家车校车步行其它交通方式人数(1)2. (1分) (2)5. (2分) (3)n 2+1. (4分) 应用:(1)解:如图②,过点C 作CD ⊥x 轴于点D ,过点A 作AE ⊥y∴∠ODC =∠AEB =90°,∴∠ABE +∠BAE =90°. ∵∠ABE =∠COB ,且∠COD +∠COB =90°, ∴∠BAE =∠COD . ∵AB =OC ,∴△DCO ≌△EBA , ∴OD =AE ,CD =BE ,∴点C 的坐标为(-n ,1). (8分)(注:写出C 点坐标给2分,求解过程2 其它方法可参考此评分标准.)(2)2.(10分) 24.(1)∵∠ACB =∠APD = 90°,∠A =∠A∴△APD ∽△ABC ∴AD ='A D =4t∴当8t =8,即t =1时,点'A 与点C 重合 (2分) (注:此问直接写出t 的值也可给2分)(2)当点Q 与点F 相遇前,QF =6-9t (3分)当点Q 与点F 相遇前,QF =9t -6 (4分)(3)①如图①,当6-9t =0时,即t =32,点G 、F 、Q 重合 PG ='AA =8t ,过点'A 作'A M PG ⊥于点M ,则'3A M t =∴当0<t ≤32时, 2123821'21t t t M A PG S =∙=∙=②如图②,'88A C t =-,66CF t =-∴当32<t ≤1时, 247242)66)(88(214321)48(32-+-=---∙--∙=t t t t t t t t S③如图③,3(84)4BQ t =-当1<t<2时, 24246)48(432122+-=-∙=t t t S (10分)(注:每段解析式1分,取值范围1分)(4)32,43(12分) 1分)E A'。

2014年九年级数学中考一模预测试卷 及答案

2014年九年级数学中考一模预测试卷 及答案

高中招生模拟考试数学试题一.仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1.下列各数中,倒数为– 2的数是( )A. 2B. – 2C. 21D.21- 2.下列各式中,错误..的是( ) A. 3)3(2=-B.3=-C. 3)3(2=D. 3=-4. 图象经过点(2,1)的反比例函数是( )A. 2y x =-B. 2y x =C. 12y x= D. 2y x =5.将一块含60°角的三角板与一无刻度的直尺按如图所示摆放,如果三角板的斜边与直尺的长边平行,则图中1∠等于( )A .30°B .35°C .45°D .60°6. 心率即心脏在一定时间内跳动的次数. 某次九年级体检对5名同学的心率测试结果如下(次/分):76,72,74,76,77. 则下列说法错误..的是( ) A .这组测试结果的众数是76 B. 这组测试结果的平均数75 C. 这组测试结果的中位数是74 D. 这组测试结果的方差是2.3 7. 如图是某几何体的三视图,则该几何体的表面积为( )A. 31224+B. 31216+C. 3624+D. 3616+8. 不等式组⎪⎩⎪⎨⎧>+<--x x a x x 324)3(2无解,则a 的取值范围是( )A.2<aB.a ≤2C. 2>aD. a ≥2 9. 已知⊙O 半径为3cm ,下列与⊙O 不是..等圆的是( ) A. ⊙1O 中,120°圆心角所对弦长为 B. ⊙2O 中,45°圆周角所对弦长为 C. ⊙3O 中,90°圆周角所对弧长为32πcm D. ⊙4O 中,圆心角为60°的扇形面积为32π2cm 10.如图,射线AM 、BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交第7题第5题BE 、BN 于点F 、C ,过点C 作AM 的垂线CD ,垂足为D . 若CD =CF ,则=ADAE( ) A. 215- B. 412+ C. 21 D.413+二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.当3=x 时,分式bx ax +-没有意义,则=b . 12.如图,铁管CD 固定在墙角,BC =5米,∠BCD =55°,则顶端D 的高度为 .13. 函数b ax y +=的图象如图,则方程0=+b ax 的解为 ;不等式0<b ax +≤2的解集为 .14. 函数y = 2x 与函数y =x2的图象相交于A ,C 两点,AB 垂直于x 轴于点B ,则△ABC 的面积为 .15. 矩形纸片ABCD 中,AD =15cm ,AB =10cm ,点P 、Q 分别为AB 、CD 的中点. 如图,将这张纸片沿AE 折叠,使点B 与点G 重合,则AGE ∆的外接圆的面积为 .16. 如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B(4,2),一次函数y =kx -1的图象平分它的面积.若关于x 的函数k m x k m mx y +++-=2)3(2的图象与坐标轴只有两个交点,则m 的值为 .三. 全面答一答 (本题有7个小题, 共66分)17. (本小题满分6分) 梯形ABCD 中,AD ∥BC ,请用尺规作图并解决问题. ⑴作AB 中点E ,连接DE 并延长交射线CB 于点F ,在DF 的 下方作FDG ∠=ADE ∠,边DG 交BC 于点G ,连接EG ; ⑵试判断EG 与DF 的位置关系,并说明理由.第13题第12题第15题第16题18.(本小题满分8分)一个数的算术平方根为62-m ,此数的平方根为)2(-±m ,求这个数.19. (本小题满分8分)甲、乙两人每次都从五个数–2,–1,0,1,2中任取一个,分别记作x 、y .在平面直角坐标系中有一圆心在原点、半径为2的圆. ⑴能得到多少个不同的数组(x ,y )?⑵若把⑴中得到的数组作为点P 的坐标 (x ,y ), 则点P 落在圆内的概率是多少?20. (本小题满分10分)如图,点A 的坐标为)0,1(-,点B 在直线42-=x y 上运动.⑴若点B 的坐标是)2,1(-,把直线AB 向上平移m 个单位后,与直线42-=x y 的交点在第一象限,求m 的取值范围;⑵当线段AB 最短时,求点B 的坐标.第20题21. (本小题满分10分)如图,AB =AC ,AE 是△ABC 中BC 边上的高线,点D 在直线AE 上一点(不与A 、E 重合).⑴ 证明:△ADB ≌△ADC ;⑵当△AEB ∽△BED 时,若cos ∠DBE =32,BC = 8,求线段AE 的长度.22. (本小题满分12分) 如图,抛物线与x 轴相交于B 、C 两点,与y 轴相交于点A ,P (a ,m a a ++-272)(a 为任意实数)在抛物线上,直线b kx y +=经过A 、B 两点,平行于y 轴的直线2=x 交直线AB 于点D ,交抛物线于点E . ⑴若2=m ,①求直线AB 的解析式;②直线x =t 0(≤t ≤)4与直线AB 相交于点F ,与抛物线相交于点G . 若FG ∶DE =3∶4,求t 的值;⑵当EO 平分AED ∠时,求m 的值.23. (本小题满分12分) 如图,已知正方形ABCD 的边长为4,点E 、F 分别从C 、A 两点同时出发,以相同的速度作直线运动. 已知点E 沿射线CB 运动,点F 沿边BA 的延长线运动,连结DF 、DE 、EF ,EF 与对角线AC 所在的直线交于点M ,DE 交AC 于点N .⑴求证:DE ⊥DF ;⑵设CE =x ,AMF ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量的取值范围;第21题第22题⑶随着点E 在射线CB 上运动,NA ·MC 的值是否会发生变化?若不变,请求出NA ·MC 的值;若变化,请说明理由.2014年中考数学一模答案一、 选择题1. D2. D3. B4. B5. A6. C7. A8. B9. B (解析:90°所对的弦长才为 10. A 解析:二、 填空题 11. -312. 5tan55° 13. x=3 14. 0≤x<3 15. 2 16. 0或-1或12-解析:第23题备用图222CD=CF CDE CFE ED=EF DEC=FEC=ECB BE=BC AE=ED=y EF=y BC=BE=x BF=x AEF CBF ,y 0,()()10AE =AD x y y y yx x x y x x xy x y x x x x y ∠∠∠∴∴=+-=+-=++=∴===+由易知≌,,,设x,,,+y,由∽,有可得则得2B BE x E BCOE y=(3m 1)x 2m 1=x 1)(21)mx m -+++---过点作⊥轴于点,知直线平分梯形必过矩形的中心(2,1)则求得k=1,函数为,mx (。

2014年九年级数学中考 一模调研试卷及答案

2014年九年级数学中考 一模调研试卷及答案

2014年第一次质量检测(一模)九年级数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)..2.在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB 的距离是()324.下列根式中,与是同类二次根式的是()....5.如图,AB∥CD,AD、BC交于O点,∠BAD=35°,∠BOD=75°,则∠C的度数是()7.一个不透明的布袋中有10个大小形状质地完全相同的小球,从中随机摸出1球恰是黄球8.如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是()....二、填空题(本大题共有10小题,每小题3分,共30分)9.因式分解:y3﹣4y= _________.10.当a<2时,化简= _________.11.已知∠α=80°,则α的补角等于_________.12.中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固翼飞机的航空母舰,满载排水量为67500吨,这个数据67500用科学记数法表示为6.75×10n(n是正整数),则n的值等于_________.13.如图,在梯形ABCD中,AD∥BC,点E在AB上,点F在CD上,EF为中位线,EF 与BD交于点O,若FO﹣EO=5,则BC﹣AD= _________.14.已知+|a+b+1|=0,则a﹣b的值等于_________.15.若两圆的半径分别为5和3,圆心距为6,则两圆位置关系是_________.16.已知x﹣=1,则x2+= _________.17.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最小值为_________.18.如图,在直角坐标系xOy中,直线L:y=﹣x﹣1,双曲线y=.在L上取点A,过点A1作x轴的垂线交双曲线于点B1,过点B1作y轴的垂线交L于点A2,再过点A2作x轴的垂线交双曲线于点B2,过点B2作y轴的垂线交L于点A3,…,这样依次得到L上的点A1,A2,A3,…,A n,….记点A n的横坐标为a n,若a1=2,则a2014= _________.三、解答题(本大题共有10小题,共86分)19.(1)计算:﹣12014+|﹣2|﹣(π﹣3)0;(2)解不等式组:.20.(1)解分式方程:﹣1=;(2)化简求值:(a﹣)÷.(选取一个合适的a的值代入求值)21.(7分)已知,如图,AC∥DE,AC=DE,BE=CF,求证:∠B=∠F.22.(7分)某校学生会计划在“五•一”前夕举行班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如图所示的两幅不完整的统计图.请根据图①、图②所提供的信息,解答下列问题:(1)本次抽样调查的学生有_________名;(2)请将图②补充完整;(3)若该校共有900名学生,试估计喜欢歌曲C的学生人数?23.(8分)某班45学生协商共建“和谐班委”议案,第一轮无记名方式海选出A、B、C、D四名同学;第二轮A、B、C、D中的2名自由组建“和谐班委”轮回值周,用列表或树状图法解决下列问题:(1)学生A、B获得首次值周的概率是多少?(2)学生A首次不值周的概率是多少?24.(8分)(2014•徐州一模)如图,为测量一座地标性高楼的高度,小明在A点处测得楼顶D点的仰角为60°,在B点处测得楼顶D点的仰角为30°,A、B、C三点在一条直线上,已知AB=40m,小明的眼睛离地面为1.6m,求楼的高度.25.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.26.(8分)如图,直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)求证:PE=PF.27.(10分)某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么日均销售多少桶水?28.(10分)在△ABC中,AB=4,BC=6,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△CBC1的面积为3,求△ABA1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按顺时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.∴-x=0 ∴x=0………………………4分经检验x=0是原分式方程的根………………………5分(2)(a -a 1)÷1122+++a a a =a 1a 2-·121+++a a a ………………………1分 =a a a )1)(1(-+·2)1(1++a a =a a 1-………………………3分 求值时a 不能的取值有0和-1………………………5分21.证:∵AC ∥DE ∴∠BCA=∠FED ………………………2分∵BE=CF ∴BC=FE ………………………4分又∵AC=DE ∴△ABC ≌△DFE ………………………6分∴∠B=∠F ………………………7分22.(1)180………………………2分(2)高度为72………………………5分(3)360人………………………7分23.(1)列表: …………3分P (AB 首次值周)=61…………6分(2)P (A 首次不值周)=63=21…………8分24.在Rt △DEF 中 ∵∠DFE=60°∴EF=33DE ………2分 在Rt △DEG 中 ∵∠DGE=30°∴EG=3DE …………4分∴GF=EG-EF=3DE-33DE=(3-33)DE 又∵GF=AB=403 ∴(3-33)DE=403…………6分 ∴DE=60 ∴DC=DE+EC=60+1.6=61.6即楼的高度为6106米. …………8分25. 解(1)把A (-2,-4)、O (0,0)、B (2,0)三点的坐标代入y=ax 2+bx+c 中,得⎪⎩⎪⎨⎧==++-=+-002442a 4c c b a c b ………2分解得a=﹣21,b=1,c=0 ∴解析式为y=﹣21x 2+x ………4分(2)由y=﹣21x 2+x=﹣21(x ﹣1)2+21,可得抛物线的对称轴为x=1,并且对称轴垂直平分线段OB∴OM=BM ∴OM+AM=BM+AM………6分连接AB 交直线x=1于M 点,则此时OM+AM 最小过点A 作AN⊥x 轴于点N ,在Rt△ABN 中,AB=42∴OM+AM 最小值为42………8分26. 解:(1)连接OD∵直线PD 垂直平分⊙O 的半径OA 于点B ,⊙O 的半径为8∴OB=OA=4,BC=BD=12CD ………2分 ∴在Rt △OBD中,BD∴CD=2BD=4分(2)∵PE 是⊙O 的切线,∴∠PEO=90°∴∠PEF=90°-∠AEO ,∠PFE=∠AFB=90°-∠A ………6分∵OE=OA ,∴∠A=∠AEO ,∴∠PEF=∠PFE ,∴PE=PF ………8分27. 设日均销售量p (桶)与销售单价x (元)的函数关系为p=kx+b ,根据题意得⎩⎨⎧=+=+25012500k 7b k b ………2分 解得k=-50,b=850,∴p=-50x+850 ………4分(2)由题意得(x-5)(-50x+850)-250=1350………7分x 1=9,x 2=13(不合题意,舍去) ………9分当x=9时,p=-50x+850=400(桶)答:若该经营部希望日均获利1350元,那么日均销售400桶水.………10分28. 解:(1) ∠CC 1A 1 = 60°………2分(2)如图2,由(1)知:△A 1C 1B ≌△ACB.∴A 1B = AB ,BC 1 = BC ,∠A 1BC 1 =∠ABC.∴∠1 = ∠2, 114263A B AB C B BC === ∴ △A 1BA ∽△C 1BC ………4分 ∴112ΔΔ2439A BAC BC S S ⎛⎫== ⎪⎝⎭. ∵1Δ3C BC S =, ∴1Δ43A BA S =. ………6分 (3)在旋转过程中点P 1与线段EB 有三种情况:①点P 1与线段EB 形成△P 1EB ∴P 1B- EB < P 1E <P 1B+ EB②点P 1在射线EB 延长线上P 1E=P 1B+ EB③点P 1在射线BE 延长线上P 1E=P 1B- EB∴P 1B- EB ≤ P 1E ≤P 1B+ EB ………8分在△ABC 中, BC=6,∠ACB=30°∵点P 是线段A C 上的动点∴3≤ P 1B ≤6 又∵BE=21AB=2∴P 1B- EB 的最小值为1, P 1B+ EB 的最大值为8∴线段EP 1长度的最大值为8,EP 1长度的最小值1. ………10分21C 1CBA 1A 图2。

2014年九年级 数学中考一模预测试卷及答案

2014年九年级 数学中考一模预测试卷及答案

2014年一模测试数学试题一、仔细选一选(本题有10个小题,每小题3分,共30分) 1、下列计算正确的是( )A.339()a a =B.422a a a =+C. 1)1(22+=+a a D.aa211=+2、如图,点A 在直线BG 上,AD ∥BC ,AE 平分∠GAD ,若∠CBA=80°,则∠GAE=( ) A.60° B.50° C.40° D.30°3、比较三个数10,,3---π的大小,下列结论正确的是( )A.103->->-πB.310->->-πC.π->->-310 D.103->->-π4、若四个数5,3,,2x 的中位数为4,则有( )A.4=xB.6=xC.5≥x D 5≤x 4,当x 取值大于等于5时,中位数即为4253=+,满足题意,故答案选C 。

5、分解因式1224+-a a 的结果是A.22)1(+aB.22)1(-aC.)2(22-a aD.22)1()1(-+a a6、2014年1月10日,绿色和平发布了全国74个城市PM2.5浓度年均值排名和相应的最大日均值,其中浙江省六个地区的浓度如下图(舟山的最大日均值条形图缺损)以下说法中错误的是( ) A. 这6个地区中,最大日均值最高的是绍兴 B .杭州的年均值约是舟山的2倍C. 舟山的最大日均值一定低于丽水的最大日均值D. 这6个地区中,低于国家环境空气质量标准规定的年均值35微克每立方米的地区只有舟山。

7、将二次函数y=1)(2++--k k x 的图像向右平移1个单位,向上平移2个单位后,顶点在直线y=2x+1上,则k 的值为( )A. 2B. 1C. 0D. -18、一个正三棱柱的三视图如图所示,若这个正三棱柱的表面积为a 的值为( )A. 23+B. 23+C. 23D. 29、如图,已知A 、B 、C 三点在半径为2的圆O 上,OB 与AC 相交于D ,若∠ACB=∠OAC ,则=-BCBD 11( )A. 1B.32 C. 21 D. 3110、下列四个说法: ①已知反比例函数y=x 6,则当y ≤23时自变量x 的取值范围是x ≥4; ②点(11,y x )和点(22,y x )在反比例函数y=x3-的图像上,若21x x 〈,则21y y 〈; ③二次函数y=13822++x x (-3≤x ≤0)的最大值为13,最小值为7④已知函数y=1322++mx x 的图像当x ≤42时,y 随着x 的增大而减小,则m=32- 其中正确的是:A. ④B. ①②C. ③④D. 四个说法都不对 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案。

2014中考数学模拟试卷(附详细答案)(3份)

2014中考数学模拟试卷(附详细答案)(3份)

2014年中考数学模拟试卷三(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.从不同方向看一只茶壶,你认为是俯视图的是()2.下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab 3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.如果不等式组⎩⎪⎨⎪⎧ x +9<5x -1,x >m +1①②的解集是x >2,则m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1 D .m >15.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长L 的取值范围是( )A .1<L <5B .2<L <6C .5<L <9D .6<L <106.反比例函数y =2x的两个点为(x 1,y 1),(x 2,y 2),且x 1>x 2,则下式关系成立的是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在△ABC 中,AB >AC ,点D ,E 分别是边AB ,AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等的是( )A .EF ∥AB B .BF =CFC .∠A =∠DFED .∠B =∠DEF8.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .129.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是()10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A .12 120元B .12 140元C .12 160元D .12 200元11.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6 cm B.4 cmC.(6-23)cm D.(43-6)cm12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB,BC,CA为一边向△ABC外作正方形ABDE,BCMN,CAFG,连接EF,GM,ND,设△AEF,△BND,△CGM的面积分别为S1,S2,S3,则下列结论正确的是( )A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2 D.S2=S3<S1二、填空题(每小题4分,共20分)13.因式分解:x3-9x=__________.14.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是__________.(第14题图)15.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为__________米(如图).(第15题图)16.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B 交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.(第16题图)其中正确的是__________(写出正确结论的序号). 17.如图①,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,测得CE =5 cm ,将量角器沿DC 方向平移 2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图②,则AB 的长为__________cm.(精确到0.1 cm)图① 图②三、解答题(共64分)18.(6分)计算:12-⎝ ⎛⎭⎪⎫-12-1-tan 60°+3-8+|3-2|.19.(7分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是__________,它是自然数__________的平方,第8行共有__________个数;(2)用含n 的代数式表示:第n 行的第一个数是__________,最后一个数是__________,第n 行共有__________个数;(3)求第n 行各数之和.20.(7分)为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户4月份用水15度,交水费22.5元,5月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户6月份的水费支出不少于60元,但不超过90元,求该用户6月份的用水量x的取值范围.21.(7分)据媒体报道:某市4月份空气质量优良,高居全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1~4月份中30天空气综合污染指数,统计数据如下:空气污染指数0~50 51~100101~150151~200201~250251~300大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)30,32,40,42,45,45,77,83,85,87,90,113,127,153,167,38,45,48,53,57,64,66,77,92,98,130,184,201,235,243.请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)30(2)(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.22.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,点F 在AC 的延长线上,且∠CBF =12∠CA B .(1)求证:直线BF 是⊙O 的切线;(2)若AB =5,sin∠CBF =55,求BC 和BF 的长.23.(9分)如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB ,CD 相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,此时扣链EF 成一条线段,EF =32 cm.图1 图2(1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°,可使用科学计算器); (3)小红的连衣裙穿在衣架后的总长度达到122 cm ,问挂在晒衣架后是否会拖落到地面?请通过计算说明理由.24.(10分)如图,在平面直角坐标系中,已知A,B,C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A,B,C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD,BC的交点E 的坐标;(3)若抛物线的顶点为P,连接PC,PD,判断四边形CEDP的形状,并说明理由.25.(10分)已知:在如图1所示的锐角△ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.图1(1)求证:BF∥AC;(2)若AC边的中点为M,求证:DF=2EM;(3)当AB=BC时(如图2),在未添加辅助线和其他字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图2参考答案一、1.A 俯视图是从上面看到的平面图形,也是在水平投影面上的正投影.易判断选A.2.D 3.B4.C 由①得x >2,由②得x >m +1. ∵其解集是x >2,∴m +1≤2,∴m ≤1. 5.D 6.D7.C DE 是△ABC 的中位线,DE ∥BC ,所以∠EDF =∠BFD .又DF =FD ,所以两三角形已具备了一边一角对应相等的条件.添加A 中条件EF ∥AB ,可利用ASA 证全等;添加B 中条件BF =CF ,可利用SAS 证全等;添加C 中条件,不能证明全等;添加D 中条件∠B =∠DEF ,可利用AAS 证明全等.8.C9.C 当a >0时,直线从左向右是上升的,抛物线开口向上,B ,D 是错的;函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),A 是错的,所以C 是正确的,故选C.10.C11.C 如图,三角板A ′B ′C ′平移的距离为B ′B ″.∵AB =12 cm ,∠A =30°,∴BC =B ″C ″=6 cm ,利用三角函数可求出BC ″=2 3 cm ,所以B ′B ″=(6-23)cm.12.A 如下图,由全等可证EQ =BC =BN =CM ,AC =DG =FA =CG ,∴S 1=12FA ·EQ ,S 2=12BN ·DG ,S 3=12MC ·CG ,∴S 1=S 2=S 3.二、13.x (x -3)(x +3) x 3-9x =x (x 2-9)=x (x -3)(x +3).14.105° ∵∠AOD =30°,∴DAB 的度数为210°,∠BCD =105°.15.9 设路灯高为x 米,由相似得1.5x =530,解得x =9,所以路灯甲的高为9米.16.①②⑤ 17.24.5三、18.解:原式=23+2-3-2+2-3=2.19.解:(1)64 8 15 (2)(n -1)2+1 n 22n -1(3)方法一:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n 行各数之和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1.方法二:第n 行各数分别为(n -1)2+1,(n -1)2+2,(n -1)2+3,…,(n -1)2+2n -1,共有2n -1个数,它们的和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1. 20.解:(1)a =22.5÷15=1.5;b =(50-20×1.5)÷(30-20)=2;(2)根据题意,得60≤20×1.5+2(x -20)≤90,35≤x ≤50. 所以该用户6月份的用水量x 的取值范围是35≤x ≤50. 21.解:(1)30 (2)中位数是80(3)∵360×9+1230=252,∴空气质量优良(包括Ⅰ、Ⅱ级)的天数是252天. 22.(1)证明:如图,连接AE .∵AB 是⊙O 的直径,∴∠AEB =90°.∴∠1+∠2=90°.∵AB =AC ,∴∠1=12∠CAB .∵∠CBF =12∠CAB ,∴∠1=∠CBF .∴∠CBF +∠2=90°,即∠ABF =90°.∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线. (2)解:如图,过点C 作CG ⊥AB 于点G ,∵sin ∠CBF =55,∠1=∠CBF ,∴sin ∠1=55.∵∠AEB =90°,AB =5,∴BE =AB ·sin∠1= 5.∵AB =AC ,∠AEB =90°,∴BC =2BE =2 5.在Rt △ABE 中,由勾股定理得AE =AB 2-BE 2=25,∴sin ∠2=255,cos ∠2=55.在Rt △CBG 中,可求得GC =4,GB =2,∴AG =3. ∵GC ∥BF ,∴△AGC ∽△ABF . ∴GC BF =AG AB .∴BF =GC ·AB AG =203. 故BC 和BF 的长分别为25,203.23.(1)证法一:∵AB ,CD 相交于点O ,∴∠AOC =∠BOD .∵OA =OC ,∴∠OAC =∠OCA =12(180°-∠AOC ).同理可证:∠OBD =∠ODB =12(180°-∠BOD ),∴∠OAC =∠OBD ,∴AC ∥BD .证法二:∵AB =CD =136 cm ,OA =OC =51 cm ,∴OB =OD =85 cm ,∴OA OB =OC OD =35.又∵∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴∠OAC =∠OBD .∴AC ∥BD .(2)解:在△OEF 中,OE =OF =34 cm ,EF =32 cm , 作OM ⊥EF 于点M ,则EM =16 cm ,∴cos ∠OEF =EM OE =1634=817≈0.471,用科学计算器求得∠OEF ≈61.9°.(3)解法一:小红的连衣裙会拖落到地面.在Rt △OEM 中,OM =OE 2-EM 2=342-162=30(cm); 过点A 作AH ⊥BD 于点H ,同(1)可证:EF ∥BD , ∴∠ABH =∠OEM ,则Rt △OEM ∽Rt △ABH , ∴OE AB =OM AH ,AH =OM ·AB OE =30×13634=120(cm). ∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.解法二:小红的连衣裙会拖落到地面.同(1)可证:EF ∥BD ,∴∠ABD =∠OEF =61.9°.过点A 作AH ⊥BD 于点H ,在Rt △ABH 中,sin ∠ABD =AHAB,AH =AB ×sin∠ABD =136×sin 61.9°=136×0.882≈120.0 cm.∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.24.解:(1)由于抛物线经过点C (0,3),可设抛物线的解析式为y =ax 2+bx +3(a ≠0),则⎩⎪⎨⎪⎧4a -2b +3=0,36a +6b +3=0.解得⎩⎪⎨⎪⎧a =-14,b =1,故抛物线的解析式为y =-14x 2+x +3.(2)点D 的坐标为(4,3),直线AD 的解析式为y =12x +1,直线BC 的解析式为y =-12x+3,由⎩⎪⎨⎪⎧y =12x +1,y =-12x +3,得交点E 的坐标为(2,2).(3)四边形CEDP 为菱形.理由:连接PE 交CD 于F ,如图.∵P 点的坐标为(2,4),又∵E (2,2),C (0,3),D (4,3),∴PC =DE =5,PD =CE = 5.∴PC =DE =PD =CE .故四边形CEDP 是菱形.25.(1)证明:如图1.图1∵点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴BF =DF ,DH =BH .∴∠1=∠2.又∵∠EDA =∠A ,∠EDA =∠1,∴∠A =∠2.∴BF ∥AC .(2)证明:取FD 的中点N ,连接HM ,HN .图2∵H 是BD 的中点,N 是FD 的中点,∴HN ∥BF .由(1)得BF ∥AC ,∴HN ∥AC ,即HN ∥EM .∵在Rt △ACH 中,∠AHC =90°,AC 边的中点为M ,∴HM =12AC =AM .∴∠A =∠3.∴∠EDA =∠3.∴NE ∥HM . ∴四边形ENHM 是平行四边形.∴HN =EM .∵在Rt △DFH 中,∠DHF =90°,DF 的中点为N ,∴HN =12DF ,即DF =2HN .∴DF =2EM . (3)解:当AB =BC 时,在未添加辅助线和其他字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE .图3证明:连接CD.(如图3)∵点B关于直线CH的对称点为D,CH⊥AB于点H,∴BC=CD,∠ABC=∠5.∵AB=BC,∴∠ABC=180°-2∠A,AB=CD.①∵∠EDA=∠A,∴∠6=180°-2∠A,AE=DE.②∴∠ABC=∠6=∠5.∵∠BDE是△ADE的外角,∴∠BDE=∠A+∠6.∵∠BDE=∠4+∠5,∴∠A=∠4.③由①,②,③得△ABE≌△DCE.∴BE=CE.由(1)中BF=DF得∠CFE=∠BFC.由(1)中所得BF∥AC可得∠BFC=∠ECF.∴∠CFE=∠ECF.∴EF=CE.∴BE=EF.∴BE=EF=CE.。

2014届九年级数学中考一模模拟试卷及答案

2014届九年级数学中考一模模拟试卷及答案

DBCA 2014年中考调研测试(一)数 学 试 卷考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。

4.选择题使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。

5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。

第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共30分) 1.54的相反数是( ) A. 45 B. 45- C. 54 D. 54-2.下列计算正确的是( )A .34x x x +=B .325()x x =C .633x x x ÷=D .2532x x x =⋅3.下列图形中既是轴对称图形又是中心对称图形的个数是( )A. 1个B. 2个C. 3个D. 4个 4.图1所示的几何体主视图是( )图1 A. B .C .D .5.将抛物线2)2(3-=x y 向左平移3个单位得到的抛物线的解析式是( ) A.2)5(3-=x y B.3)2(32+-=x y C.2)1(3+=x y D.3)2(32--=x y6.一个不透明的袋子里有5个红球和3个黄球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是黄球的概率是( )A.15 B. 31 C. 38 D. 587.已知反比例数3k y x+=的图象在每一象限内y 随x 的增大而增大,则k 的取值范围是( )A. k>3B. k<-3C. k>-3D. k<38.如图,Rt △ABC 中,∠ACB=90º,CD ⊥AB ,BC=3,AC=4, tan ∠BCD 等于( )A.34 B. 43 C. 35 D. 459.如图,矩形ABCD 中,两条对角线相交于点O ,折叠矩形,第8题图 EOA DE DACBAFEACBDx y (时)(千米)4207CO A B ED 使顶点D 与对角线交点O 重合,折痕为CE ,已知△CDE 的 周长是10cm,则矩形ABCD 的周长为( )A. 15cmB. 18cmC. 19cmD. 20cm10.快车与慢车分别从相距420千米的甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快慢两车距各自出发地的路程y (千米)与所用的时间x (时)的关系如图所示,下列说法正确的有 ( )①快车返回的速度为140千米/时 ②慢车的速度为70千米/时 ③出发314小时时,快慢两车距各自出发地的路程相等④快慢两车出发错误!未找到引用源。

2014年九年级中考第一次模拟数学试题及答案

2014年九年级中考第一次模拟数学试题及答案

2014年中考网上阅卷适应性测试数 学 试 题(满分:150分 考试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分。

每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.︱-12︱等于A . 2B .-2C . 12D .-122.9的立方根是A .3B .39C .3±D .39±3.下列各图中,不是中心对称图形的是A .B .D .4.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是A .a >bB . a >-bC .-a >bD .-a <-b5.函数y =x 的取值范围是A .x ≥-1B .x ≤-1C . x >-1D .x <-1 6.已知,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则sin A 的值为A . 34B . 43C . 35D . 457.在数轴上表示5±的两点以及它们之间的所有整数点中,任意取一点P ,则P 点表示的数大于3的概率是A .41 B .92 C .51D .112 8.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是A .(-4,2)B .(-4.5,2)C .(-5,2)D .(-5.5,2)(第4题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案11.分解因式:22242y xy x +-= .12.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表所示:则全体参赛选手年龄的中位数是 岁.13.已知y 是x 的反比例函数,且当x =3时,y =8,那么当x =4时, y = . 14.如图,该图形经过折叠可以围成一个正方体,折好以后,与“静”字相对的字是 .15.已知⊙O 的半径为5厘米,若⊙O ′与⊙O 外切时,圆心距为7厘米,则⊙O ′与⊙O 内切时,圆心距为 厘米.16.如图,△ABC 内接于⊙O ,直径AD=2,∠ABC=30°,则CD 的长度是 .17.如图,矩形ABCD 中,AB=3cm ,BC=4cm 。

2014年九年级第一次模拟考试数学参考答案

2014年九年级第一次模拟考试数学参考答案

20. 解:过点A 作AC ⊥OB 于点C , ……1分 依题意得 ∠1=30°,∠2=45°,OB =20海里 …2分 设AC =x 海里,则BC =AC =x 海里, ……3分在Rt △AOC 中,tan ∠1=OCAC, ……4分∴tan30°=3120=+x x , ……5分 解得()≈+=-=13101320x 27.32, ……6分 ∴AC ≈27.32海里>25海里 ……7分 ∴该船没有触礁的危险. ……8分 21. 解:⑴列表:1 2 3 5 1 1 2 3 5 2 2 4 6 10 336915所以P (奇)=21126= …………6分(列表4分,算出概率2分) ⑵由表格得P (偶)=21126=,所以P (奇)=P (偶),……7分(缺概率相等扣1分) 所以游戏规则对双方是公平的. ……8分22. 证明:(1)∵BE ⊥AC 于E ,DF ⊥AC 于F , ∴∠1=∠2=90°, ……1分 ∵点O 是EF 的中点,∴OE =OF ……2分 在△BOE 和△DOF 中⎪⎩⎪⎨⎧∠=∠=∠=∠4321OF OE ……3分 ∴△BOE ≌△DOF (ASA ) ……4分 解:(2)四边形ABCD 是矩形,理由如下: ……5分 由(1)知△BOE ≌△DOF ,∴OB =OC , ∵点O 既是AC 的中点,∴OA =OC ,∴四边形ABCD 是平行四边形, ……6分 ∵OA =21BD ,∴AC =2OA =BD , ……7分 ∴□ABCD 是矩形. ……8分20x xCO B12东北45︒60︒A4312O FABCDE25.解:(1)易得A (0,2),B (4,0)……1分∴⎩⎨⎧=++-=04422c b c ,解得⎪⎩⎪⎨⎧==272b c ……2分 ∴2272++-=x x y ……3分 (2)由题意易得217(,2),(,2)22M t t N t t t -+-++ …… 4分22712(2)422MN t t t t t =-++--+=-+从而设△ABN 的面积为S ,则()()822442122+--=⨯+-=t t t S ……5分当t =2时,S min =8 ……6 分 (3)由题意可知,D 的可能位置有如图三种情形. 当D 在y 轴上时,设D 的坐标为(0,a ) 由AD =MN 得1224,6,2a a a -===-解得,从而D 为(0,6)或D (0,-2) ……7分 当D 不在y 轴上时,由图可知12D D N D M 为与的交点 易得126,2D N x D x +-13的方程为y=-M 的方程为y=22……8分 由两方程联立解得D 为(4,4) ……9分 故所求的D 为(0,6),(0,-2)或(4,4)(本问给分重点看学生解题思路及结果)本答案仅供参考,其他解法酌情给分。

2014年中考数学模拟考试及参考答案(1-4)

2014年中考数学模拟考试及参考答案(1-4)

参考答案(一)一、选择题: 1.C 2.A 3.D 4.C 5.C二、填空题:6.2x ≥- 7.7.94×106 8.39.4- 10.6 11.3π 12. 3 13.9,37三、解答题: 14.4 15.x 1=31+-,x 2=31-- 16.化简为:2—x .当22-=x 时,原式=2. 17.P (小菲两次都能摸到白球)=164=4118.(1)小山的高为25米;(2)铁架高约43.3米. 19.(1)80 ,40%;(2)补全条形图(略);(3)380.20.解:(1)∵∠ABC =90°, ∴OB ⊥BC ..∵OB 是⊙O 的半径, ∴CB 为⊙O 的切线..又∵CD 切⊙O 于点D , ∴BC =CD ;.(2)由△ADE ∽△ABD ..∴AD AB =AE AD ..∴21BE +=12,∴BE =3,.∴所求⊙O 的直径长为3. 21.(1)2(21010)(5040)101102100y x x x x =-+-=-++(015x <≤且x 为整数) (2)当2200y =时,21011021002200x x -++=,解得:12110x x ==,.当1x =时,5051x +=,当10x =时,5060x +=.所以,当售价定为每件51或60元时,每个月的利润为2200元. ∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).22.①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=PAD ,又∵AE=AP ,AB=AD ,∴△APD ≌△AEB ;②∵△APD ≌△AEB ,∴∠APD=∠AEB ,又∵∠AEB=∠AEP+∠BEP ,∠APD=∠AEP+∠PAE , ∴∠BEP=∠PAE=90°,∴EB ⊥ED ;③∵EF=BF= ,AE=1,∴在Rt △ABF 中,AB 2=(AE+EF )2+BF 2=4+ ,∴S 正方形ABCD =4+ (下图)23.(1)解:设所求的抛物线解析式()20y ax bx c a =++≠∵点A B C 、、均在此抛物线上.∴42016404a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ ∴1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩∴所求的抛物线解析式为2142y x x =--, ∴顶点D 的坐标为912⎛⎫- ⎪⎝⎭, (2)EBC △的形状为等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年初三一模试题数 学1一、选择题(本小题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。

1. 2-的绝对值是( )A. 2B. 2-C.12 D. 12- 2. 2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13 100 000人,创历史新高,将数字13 100 000用科学计数法表示为( )A. 613.110⨯B. 71.3110⨯C. 81.3110⨯D. 80.131⨯3. 由5个相同的正方体组成的几何体如图所示,则它的主视图是( )4. 从1到9这九个自然数中任取一个,是奇数的概率是( ) A.29 B. 49 C. 59 D. 235. 右图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm 水面宽AB 为8cm ,则水的最大深度CD 为( )A. 4cmB. 3cmC. 2cmD. 1cm6. 为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是( ) A.极差是6 B.众数是7 C.中位数是8 D.平均数是107. 已知关于x 的一元二次方程2210mx x +-=有两个不相等的实数根,则m 的取值范围是( )A.B.C.D.主视方向D第5题图A. 1m <-B. 1m >C. 1m <且0m ≠D. 1m >-且0m ≠8. 如图,在平面直角坐标系xOy 中,以点(23)A ,为顶点任作一直角PAQ ∠,使其两边分别与x 轴、y 轴的正半轴交于点P 、Q ,连接PQ ,过点A 作AH PQ ⊥于点H ,设点P 的横坐标为x ,AH 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题(本题共16分,每小题4分)9. 分解因式:2242a a -+= 。

10. 写出一个只含字母x 的分式,满足x 的取值范围是2x ≠,所写的分式是: 。

11. 如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且D F D C =,连接FC ,则A C F∠的度数为 度。

12. 如图,在平面直角坐标系xOy 中,点(10)A ,,(20)B ,, 正六边形ABCDEF 沿x 轴正方向无滑动滚动,当点D 第一次落 在x 轴上时,点D 的坐标为: ;在运动过程中,点A 的纵坐标的最大值是;保持上述运动过程,经过(2014 的正六边形的顶点是 。

C.D.第11题图第8题图三、解答题(本题共30分,每小题5分)13. 计算:0111)2cos30()2-︒+14. 如图,点C 、F 在BE 上,BF CE =,AB D E =,B E ∠=∠。

求证:.ACE DFE ∠=∠15. 解不等式组3(1)72113x x x x --<⎧⎪-⎨≤+⎪⎩.16. 已知231x x -=,求代数式2(1)(31)(2)4x x x -+-+-的值。

ACDEF17. 列方程(组)解应用题:某校甲、乙给贫困地区捐款购买图书,每班捐款总数均为1200元,已知甲班比乙班多8人,乙班人均捐款是甲班人均捐款的1.2倍,求:甲、乙两班各有多少名学生。

18. 平面直角坐标系xOy 中,一次函数y x n =+和反比例函数6y x=-的图象都经过点(3)A m ,。

(1)求m 的值和一次函数的表达式; (2)点B 在双曲线6y x=-上,且位于直线y x n =+的下方,若点B 的横、纵坐标都是整数,直接写出点B 的坐标。

四、解答题(本题共20分,每小题5分)19. 如图,在ABC ∆中,AB AC =,AD 平分BAC ∠,//CE AD 且CE AD =. (1)求证:四边形ADCE 是矩形;(2)若ABC ∆是边长为4的等边三角形,AC ,DE 相交于点O ,在CE 上截取CF CO =,连接OF ,求线段FC 的长及四边形AOFE 的面积。

20. 以下是根据北京市统计局公布的2010—2013年北京市城镇居民人均可支配收入和农民人均现金收入的数据绘制的统计图的一部分:根据以上信息,解答下列问题:(1)2012年农民人均现金收入比2011年城镇居民人均可支配收入的一半少0.05万元,则2012年农民人均现金收入是 万元,请根据以上信息补全条形统计图,并标明相应的数据(结果精确到0.1);(2)在2010—2013年这四年中,北京市城镇居民人均可支配收入和农民人均现金收入相差数额最大的年AD EF年份北京市2010—2013年城镇居民人均可支配收入和农民人均现金收入统计图年份北京市2010—2013年城镇居民人均可支配收入的年增长率统计图份是 年;(3)①2011—2013年城镇居民人均可支配收入的年平均增长率最接近 ; A.14% B.11% C.10% D.9%②若2014年城镇居民人均可支配收入按①中的年平均增长率增长,请预测2014年的城镇居民人均可支配收入为 万元(结果精确到0.1)。

21. 如图,在ABC ∆中,AB AC =,以AB 为直径作⊙O ,交BC 于点D ,连接OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F 。

(1)求证://OD AC ; (2)当10AB =,cos ABC ∠=时,求AF 及BE 的长。

22. 阅读下列材料:问题:在平面直角坐标系xOy 中,一张矩形纸片OBCD 按图1所示放置。

已知10OB =,6BC =,将这张纸片折叠,使点O 落在边CD 上,记作点A ,折痕与边OD (含端点)交于点E ,与边OB (含端点)或其延长线交于点F ,求点A 的坐标。

小明在解决这个问题时发现:要求点A 的坐标,只要求出线段AD 的长即可,连接OA ,设折痕EF 所在直线对应的函数表达式为:y kx n =+(00)k n <≥,,于是有(0)E n ,,(0)nF k-,,所以在Rt EOF ∆AOD中,利用等角的三角函数值相等,就可以求出线段DA的长1请回答:(1)如图1,若点E的坐标为(04),,直接写出点A的坐标;(2)在图2中,已知点O落在边CD上的点A处,请画出折痕所在的直线EF(要求:尺规作图,保留作图痕迹,不写做法);参考小明的做法,解决以下问题:(3)将矩形沿直线12y x n=-+折叠,求点A的坐标;(4)将矩形沿直线y kx n=+折叠,点F在边OB上(含端点),直接写出k的取值范围。

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 抛物线23y x kx=--与x轴交于点A,B,与y轴交于点C,其中点B的坐标为(10)k+,. (1)求抛物线对应的函数表达式;(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为G,求抛物线G所对应的函数表达式;(3)将线段BC平移得到线段B C''(B的对应点为B',C的对应点为C'),使其经过(2)中所得抛物线G的顶点M,且与抛物线G另有一个交点N,求点B'到直线OC'的距离h的取值范围。

24. 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。

(1)如图24-1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及ECGC的值; (2)将图24-1中的BEF ∆绕点B 顺时针旋转至图24-2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图24-1中的BEF ∆绕点B 顺时针旋转α(090α︒<<︒),若1BE =,AB =E ,F ,D 三点共线时,求DF 的长及tan ABF ∠的值。

B图24-1图24-2C备用图25. 定义1:在ABC ∆中,若顶点A ,B ,C 按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A ,B ,C 按顺时针方向排列,则规定它的面积的相反数为ABC ∆的“有向面积”。

“有向面积”用S表示,例如图1中,ABC ABC S S ∆∆=,图2中,ABC ABC S S ∆∆=-。

定义2:在平面内任取一个ABC ∆和点P (点P 不在ABC ∆的三边所在直线上),称有序数组(PBC S ∆,PCA S ∆,PAB S ∆)为点P 关于ABC ∆的“面积坐标”,记作()PBC PCA PAB P S S S ∆∆∆,,,例如图3中,菱形ABCD 的边长为2,=60ABC ∠︒,则ABC S ∆=D 关于ABC ∆的“面积坐标”()DBC DCA DAB D S S S ∆∆∆,,为D 。

在图3中,我们知道ABC DBC DAB DCA S S S S ∆∆∆∆=+-,利用“有向面积”,我们也可以把上式表示为:ABC DBC DAB DCA S S S S ∆∆∆∆=++。

应用新知:(1)如图4,正方形ABCD 的边长为1,则ABC S ∆= ,点D 关于ABC ∆的“面积坐标”是 ; 探究发现:(2)在平面直角坐标系xOy 中,点(02)A ,,(10)B -,.①若点P 是第二象限内任意一点(不在直线AB 上),设点P 关于ABO ∆的“面积坐标”为()P m n k ,,,试探究m n k ++与ABO S ∆之间有怎样的数量关系,并说明理由;B图1图2图3B②若点()P x y ,是第四象限内任意一点,请直接写出点P 关于ABO ∆的“面积坐标”(用x y ,表示);解决问题:(3)在(2)的条件下,点(10)C ,,(01)D ,,点Q 在抛物线224y x x =++上,求当QAB QCD S S ∆∆+的值最小时,点Q 的横坐标。

相关文档
最新文档