整式的乘法与除法提高题
17.整式的乘法与除法(含答案)-
17.整式的乘法与除法知识纵横指数运算律是整式乘除的基础,有以下4个:a m·a n=a m+n,(a m)n=a nm,(ab)n=a n b n,a m÷a n=a m-n,学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,•方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题求解【例1】(1)如果x2+x-1=0,则x3+2x2+3=________. (第14届“希望杯”邀请赛试题)(2) (“祖冲之杯”邀请赛试题)把(x2-x+1)6展开后得a12x12+a11x11+……+a2x2+a1x+a0,则a12+a10+a8+a6+a4+a2+a0=_______.思路点拨(1)把高次项用低次多项式表示;(2)我们很难将(x2-x+1)6的展开式写出,因此想通过展开式去求出每一个系数是不实际的,事实上,上列等式在x的允许值范围内取任何一个值代入计算,等式都成立,考虑用赋值法解.解:(1)4 提示:x2=1-x,原式=x·x-2+2x3+3=x(1-x)+2x2+3=x2+x+3=1-x+x+3=4.(2)365 提示:令x=1,由已知等式得a12+a11+…+a2+a1+a0=1 ①令x=-1,由已知等式得a12-a11+…+a2-a1+a0=729 ②①+②,得2(a12+a10+…+a2+a0)=730,即a12+a10+…+a2+a0=365【例2】已知25x=2000,80y=2000,则11x y+等于( ).A.2B.1C. 12D.32(第11届“希望杯”邀请赛试题)思路点拨因x、y为指数,我们目前无法求x、y的值,11x y+=x yxy+,其实只需求出x+y、•xy的值或它们的关系,自然想到指数运算律.解:选B 提示:25xy=2000y①,80xy=2000x②,①×②得(25×80)xy=2000x+y,得xy=x+y.【例3】设a、b、c、d都是自然数,且a5=b4,c3=d2,a-c=17,求d-b的值.(上海市普陀区竞赛题) 思路点拨设a5=b4=m20,c3=d2=n6,这样a,b可用m的式子表示,c、d可用n的式子表示,减少字母的个数,降低问题的难度.解:提示:设a5=b4=m20,c3=d2=n6(m,n为自然数),则a=m4,b=m5,c=n2,d=n3,由已知得m4-n2=17,即(m2+n)(m2-n)=17因17是质数m2+n、m2-n是自然数,且m2+n>m2-n故22171m nm n⎧+=⎪⎨-=⎪⎩解得m=3,n=8,所以,d-b=n3-m5=83-35=269【例4】已知x2-xy-2y2-x-7y-6=(x-2y+A)(x+y+B),求A、B的值.思路点拨等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2 提示:展开比较对应项的系数,得到关于A、B的等式.【例5】是否存在常数p、q使得x4+px2+q能被x2+2x+5整除?如果存在,求出p、q•的值,否则请说明理由.思路点拨由条件可推知商式是一个二次三项式(含待定系数),•根据“被除式=除式×商式”,运用待定系数法求出p、q的值,所谓p、q是否存在,其实就是关于待定系数的方程组是否有解.解:提示:假设存在满足题设条件的p、q值,设(x4+px2+q)=(x2+2x+5)(x2+mx+n),•即x 4+px 2+q=x 4+(m+2)x 3+(5+n+2m)x 2+(2n+5m)x+5n,得20522505m n m p n m n q +=⎧⎪++=⎪⎨+=⎪⎪=⎩ 解得25625m n p q =-⎧⎪=⎪⎨=⎪⎪=⎩ 故存在常数p,q 且p=6,q=25,使x 4+px 2+q 能被x 2+2x+5整除.学力训练一、基础夯实1. (2003年河北省中考题)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),房的主人计划把卧室以外的地面都铺上地砖,•如果他选用地砖的价格是a 元/米2,则买砖至少需要_______元(用含a 、x 、y 的代数式表示).4x2y4yy2xx 卫生间厨房客厅卧室2.若2x+5y -3=0,则4x ·32y =_______. (2002年绍兴市竞赛题)3.满足(x -1)200>3300的x 的最小正整数为_______. (2003年武汉市选拨赛试题)4.a 、b 、c 、d 都是正数,且a 2=2,b 3=3,c 4=4,d 5=5,则a 、b 、c 、d•中,•最大的一个是__________. (“英才杯”竞赛题)5. (2001年TI 杯全国初中数学竞赛题)化简4322(2)2(2)n n n ++-得( ).A.2n+1-18 B.-2n+1 C. 78 D. 746.已知a=255,b=344,c=533,d=622,那么a 、b 、c 、d 从小到大的顺序是( ). A.a<b<c<d B.a<b<d<cC.b<a<c<dD.a<d<b<c (北京市“迎春杯”竞赛题)7.已知a 是不为0的整数,并且关系x 的方程ax=2a 3-3a 2-5a+4有整数根,则a•的值共有( ). A.1个 B.3个 C.6个 D.9个 8.计算(0.04)2003×[(-5)2003]2得( ). A.1 B.-1 C.200315 D.-200315 (2003年杭州市中考题)9.已知6x 2-7xy -3y 2+14x+y+a=(2x -3y+b)(3x+y+c),试确定a 、b 、c 的值.10.设a 、b 、c 、d 都是正整数,并且a 5=b 4,c 3=d 2,c-a=19,求a-b 的值. (江苏省竞赛题)11.已知四位数29x y =2x ·9y ,试确定29x y -x(x 2y-1-x y-1-1)的值. (北京市竞赛题)二、能力拓展12.多项式2x3-5x2+7x-8与多项式ax+bx+11的乘积中,没有含x4的项,也没有含x3•的项,则a2+b=________.13.若多项式3x2-4x+7能表示成a(x+1)2+b(x+1)+c的形式,则a=____,b=_____,•c=______.14.若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a2+a4=________. (2003年北京市竞赛题)15.如果多项式(x-a)(x+2)-1能够写成两个多项式(x-3)和(x+b)的乘积,那么a=___,b=_____.16.若a=2255,b=3344,c=5533,d=6622,则a、b、c、d的大小关系是( ).A.a>b>c>dB.a>b>d>cC.b>a>c>dD.a>d>b>c17.已知a1,a2,a3,……,a1996,a1997均为正数,又M=(a1+a2+……+a1996)·(a2+a3+……+a1997),N=(a1+a2+•……+a1997)(a2+a3+……+a1996),则M与N的大小关系是( ).A.M=NB.M<NC.M>ND.关系不确定18.若3x3-x=1,则9x4+12x3-3x2-7x+1999的值等于( ).A.1997B.1999C.2001D.2003 (北京市竞赛题)19.已知关于x的整系数二次三项式ax2+bx+c,当x取1,3,6,8时,•某同学算得这个二次三项式的值分别为1,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A.当x=1时,ax2+bx+c=1B.当x=3时,ax2+bx+c=5C.当x=6时,ax2+bx+c=25D.当x=8时,ax2+bx+c=5020.已知3x2-x-1=0,求6x3+7x2-5x+1999的值.21.已知a是方程2x2+3x-1=0的一个根,试求代数式543223395131a a a a aa+++-+-的值.22.已知2a·5b=2c·5d=10,求证:(a-1)(d-1)=(b-1)(c-1).三、综合创新23.是否存在整数a、b、c,满足(98)a·(109)b·(1615)c =2?若存在,求出a、b、c的值;若不存在,•说明理由.24.当自然数n的个位数分别为0,1,2,……,9时,n2,n3,n4,n5的个位数如表所示(1)从所列的表中你能发现什么规律?(2)若n为自然数,和数1981n+1982n+1983n+1984n不能被10整除,那么n必须满足什么条件?答案1.11axy2.83.7 提示:(x-1)2>334.b5.C6.D 提示:a=(25)11,b=(34)11,c=(53)11,d=(62)11,只需比较25,34,53,62的大小7.C 提示:x=2a2-3a-5+4a,a│4 8.A 9.a=4,b=4,c=1提示:•参见例5•10.75711.提示:由条件得2│29x y且9│29x y,则y的值可能为0,2,4,6,8,9│(x+y)+•11,又0≤x+y≤18,x+y=7,或x+y=16,逐一验证可得x=5,y=2,故原式=2592-5(53-5-1)=•1997.12.26 提示:x4、x3的系数分别为2b-5a,7a-5b+22,由2b-5a=0及7a-5b+22=0•得a=4,b=1013.3,-10,14 14.-120 令x=±1代入 15.-2,1 16.A 提示:作商比较17.C 提示:设a2+a3+…+a1996=x,则M=(a1+x)(x+a1997)=a1x+x2+a1a1997+a1997x.,N=(a1+x+a1997)x=a1x+x2+•a1997x, M-N=a1a1997>018.D提示:原式=(3x3-x-1)(3x+4)+200319.C 提示:由整除性质知:(n-m)[(an2+bn+c)-(am2+bm+c)],但(6-1)(25-1),(•8-6)(50-25),(8-1)│(50-1).20.2002 提示:原式=(2x+3)(3x2-x-1)+200221.提示:2a2+3a-1=0,3a-1=-2a2原式=23322 (231)(21)5553122 a a a a a aa a+-+-+==---22.提示:由已知有2a·5b=10=2×5,得2a-1·5b-1=1,故(2a-1·5b-1)d-1=1d-1. 同理可得(2c-1·5d-1)b-1=1b-1,从而2(a-1)×(d-1)·5(b-1)(d-1)=2(c-1)(b-1)·5(d-1)(b-1),即2(a-1)(d-1)=2(c-1)(b-1),故(a-1)(d-1)=(c-1)(b-1)23.原式可化为32a·2-3a·2b·5b·3-2b·24c·3-c·5-c=2, 即2-3a+b+4c·32a-2b-c·5b-c=21×30×50故341220a b ca b cb c-++=⎧⎪--=⎨⎪-=⎩,解得a=3,b=2,c=224.(1)以下解答仅供参考:①n5的个位数与n的个位数相等;②个位数是0,1,5,6的自然数的任何次幂,其个位数不变;③个位数是4,9的自然数的乘方,其个位数字交替变化;④任何自然数,乘方后的奇偶性不变等.(2)分n=4k,4k+1,4k+2,4k+3为讨论(k为自然数)当n=4k时,1981n、1982n、1983n、1984n的个位数字分别为1,6,1,6,则1981n+•1982n+1983n+1984n的个位数字为4,故10(1981n+1982n+1983n+1984n);当n=4k+1时,1981n、1982n、1983n、1984n的个位数字分别为1,•2,•3,•4,•则1981n+1982n+1983n+1984n的个位数字为0,故10│(1981n+1982n+1983n+1984n),同理,当n=4k+2、4k+3时,10│(1981n+1982n+1983n+1984n)故当且仅当n=4k,即n是4的倍数时,和数1981n+1982n+1983n+1984n不能被10整除.。
(完整版)《整式的乘除》提高测试题加答案(可编辑修改word版)
整式的乘除 提高测试(二)选择题(每小题 2 分,共计 16 分)13.计算(-a )3·(a 2)3·(-a )2 的结果正确的是……………………………() (A )a 11 (B )a 11 (C )-a 10 (D )a 1314.下列计算正确的是………………………………………………………………()(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1 15.4m ·4n 的结果是……………………………………………………………………( ) (A )22(m +n ) (B )16mn (C )4mn (D )16m +n 16.若 a 为正整数,且 x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………()5 (A )5(B )(C )25 (D )10217. 下列算式中, 正确的是 ……………………………………………………………… ( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )( 1 )-2=1= 13329(C )(0.00001)0=(9999)0(D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于………………………………………………( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4(四)计算(每小题 5 分,共 10 分) 23.9972-1001×999.1111122.(1-22 )(1-32 )(1-42 ) (1)92 )(1-102)的值.(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1 =2,求 x 2+ 1 x x 2,x 4+ 1x4 的值.a 2b 2 24.已知(a -1)(b -2)-a (b -3)=3,求代数式-ab 的值.225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.⎨26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值.13, 【答案】B .14【答案】C . 15【答案】A .16 【答案】A .17 【答案】C .18 【答案】D .(四)计算(每小题 5 分,共 10 分)23.9972-1001×999.【提示】原式=9972-(1000+1)(1000-1)=9972-10002+1=(1000-3)2-10002+1 =10002+6000+9-10002+.【答案】-5990.1 1 1 1 1 22.(1-22)(1-32)(1-42 ) (1)92)(1-102)的值.【提示】用平方差公式化简,1 1 11 1 1 11原式=(1- )(1+ )(1- )(1+ )…(1- )(1+ )(1-)(1+)=21 32 4 32339 10 11 1 9 910101111 · · · · …· ··= ·1·1·1·…·. 【答案】.2 23 3 48 9 102 1020(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1=2,求 x 2+ 1x x 2,x 4+ 1x4 的值.【提示】x 2+ 1 x2 =(x + 1)2-2=2,x 4+ 1 xx 4=(x 2+ 1x2 )2-2=2.【答案】2,2.(a - b )2 124.【答案】由已知得 a -b =1,原式== ,或用 a =b +1 代入求值.2225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.【答案】4.【提示】将 x 2+x -1=0 变形为(1)x 2+x =1,(2)x 2=1-x ,将 x 3+2x 2+3 凑成含(1),(2)的形式,再整体代入,降次求值.26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值. 【答案】展开原式=x 4+(p -2)x 3+(q -2p -3)x 2-(3p +28)x -3q ,x 2、x 3 项系数应为零,得⎧ p - 2 = 0 ⎩q - 2 p - 3 = 0.∴ p =2,q =7.。
整式乘除复习总结练习(有知识点填空、基本题)
初二数学整式的乘除复习练习§14.1幂的运算§14.1.1同底数幂的乘法1、同底数幂的乘法公式:m n a a ∙= (m 、n 均为正整数) 同底数幂的乘法法则:同底数幂相乘,底数 ,指数 。
2、公式逆用:m na +=(m 、n 均为正整数) 一、填空题1.计算:103×105= .2.计算:(a -b )3·(a -b )5= .3.计算:a·a 5·a 7= .4. 计算:a(____)·a 4=a 20.(在括号内填数)二、选择题1.32x x ∙的计算结果是( ) A.5x ; B.6x ; C.8x ; D.9x . 2.下列各式中,①824x x x =∙,②6332x x x =∙,③734a a a =∙,④1275a a a =+,⑤734)()(a a a =-∙-.正确的式子的个数是( )A.1个;B.2个;C.3个;D.4个.三、解答题1、计算:62753m m m m m m ∙+∙+∙;2、已知8=m a ,32=n a ,求n m a+的值.§14.1.2幂的乘方1、幂的乘方公式:)(a m n = (m 、n 均为正整数) 幂的乘方法则:幂的乘方,底数 ,指数 。
2、公式逆用:mna =( )m =( )n (m 、n 均为正整数)一、选择题1.计算(x 3)2的结果是( )A .x 5B .x 6C .x 8D .x 92.下列计算错误的是( )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5D .-a+2a=a二、填空题1.12x =( )2 =( )6 =( )3 =( )4 2.(a 3)4=_____.3.若x 3m =2,则x 9m =_____. §14.1.3积的乘方1、积的乘方公式:)(ab n = (n 为正整数)积的乘方法则:积的乘方,等于把积的每一个因式分别 ,再把所得的幂 。
人教版初中数学《整式的乘法》专题突破含答案解析
专题07 整式的乘法一、单选题1.(2021·福建长乐·八年级期中)计算()42x的结果是()A.6x B.8x C.10x D.16x【答案】B【分析】根据幂的乘方公式,即可求解.【详解】解:()42x=8x,故选B.【点睛】本题主要考查幂的乘方公式,掌握幂的乘方等于底数不变指数相乘,是解题的关键.2.(2021·福建省福州延安中学八年级期中)下列运算正确的是()A.x2+x=x3B.x2+x3=5x C.x2•x3=x5D.(x2)3=x5【答案】C【分析】直接利用合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则分别化简求出答案即可得出选项.【详解】解:A、22+=+,故此选项错误;x x x xB、2323x x x x+=+,故此选项错误;C、235=,故此选项正确;x x x·D、()326=,故此选项错误;x x故选:C.【点睛】题目主要考查了合并同类项以及同底数幂的乘法运算和幂的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(2021·贵州黔西·七年级期中)已知多项式2x³-8x²+x-1与多项式3x³+2mx²-5x+3的和不含二次项,则m 的值为()A .-4B .-2C .2D .4【答案】D【分析】先把两多项式相加,令x 的二次项为0即可求出m 的值.【详解】解:2x ³-8x ²+x -1+3x ³+2mx ²-5x +3=325(28)42x m x x +--+,依题意:280m -=,解得:4m =,故选择:D【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.(2021·湖北江汉·八年级期中)若128m a =,8n a =,则m n a -值是()A .120B .-120C .16D .116【答案】C【分析】直接利用同底数幂的乘除运算法则计算得出答案.【详解】解:∵如果128m a =,8n a =,∴128168m m n n a a a -===.故选:C .【点睛】此题主要考查了同底数幂除法运算,正确掌握运算法则是解题关键.5.(2021·全国·八年级单元测试)若2x ﹣5是多项式4x 2+mx ﹣5(m 为系数)的一个因式,则m 的值是( )A .8B .﹣6C .﹣8D .﹣10【答案】C根据题意可得设4x 2+mx -5=(2x -5)(kx +b ),进而解出k 、b 再根据m=2b -5k 即可得出答案.【详解】解:∵2x -5是多项式4x 2+mx -5(m 为系数)的一个因式,设4x 2+mx -5=(2x -5)(kx +b ),∴2kx 2+(2b -5k )x -5b =4x 2+mx -5,∴2k =4,5b =5,解得k =2,b =1,∴m=2b -5k =-8.故选:C .【点睛】本题考查因式分解的应用,根据题意得出另一个因式并让每一项系数一一对应是解答本题的关键.6.(2021·全国·七年级单元测试)如图是一个由5张纸片拼成的一个大长方形,相邻纸片之间互不重叠也无缝隙,其中两张大正方形纸片大小一样,面积记为S 1,另外两张长方形纸片大小一样,面积记为S 2,中间一张小正方形纸片的面积记为S 3,则这个大长方形的面积一定可以表示为( )A .123S S +B .124S S +C .14S D .24S 【答案】A【分析】设S 3的边长为x ,S 2的长为y ,则S 1的边长为y -x ,S 2的宽为y -2x ,然后根据长方形面积公式结合整式混合运算的运算法则进行分析计算.【详解】解:设S 3的边长为x ,S 2的长为y ,则S 1的边长为y -x ,S 2的宽为y -2x ,∴大长方形的长为2y -x ,大长方形的宽为2y -3x ,∴S 大长方形=(2y -x )(2y -3x )=4y 2-6xy -2xy +3x 2=3(x2-2xy+y2)+(y2-2xy),又∵S1=(y-x)2=y2-2xy+x2,S2=y(y-2x)=y2-2xy,∴S大长方形=3S1+S2,故选:A.【点睛】本题考查了整式的混合运算的应用,掌握多项式乘多项式的运算法则,完全平方公式(a+b)2=a2+2ab+b2结构是解题关键.7.(2021·福建省福州延安中学八年级期中)已知等式(x+p)(x+q)=x2+mx+36(p,q为正整数),则m的值不可能是()A.13B.16C.20D.37【答案】B【分析】利用多项式乘多项式的法则,把等式的左边进行运算,再根据条件进行分析即可.【详解】解:(x+p)(x+q)=x2+(p+q)x+pq,∵(x+p)(x+q)=x2+mx+36,∴p+q=m,pq=36,∵36=4×9,则p+q=13,36=1×36,则p+q=37,36=2×18,则p+q=20,36=3×12,则p+q=15,36=6×6,则p+q=12,∴p+q不可能为16,即m不可能为16.故选:B.【点睛】本题主要考查多项式乘多项式,解答的关键是理解清楚题意,求得m与p+q,pq的关系.8.(2021·全国·七年级期中)如图,长为50cm,宽为x(cm)的大长方形被分割成7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y(cm).要使阴影A与阴影B的面积差不会随着x 的变化而变化,则定值y 为( )A .5B .253C .252D .10【答案】B【分析】根据图中的关系先分别表示出A 长方形的长、宽及B 长方形的长、宽,再根据长方形的面积公式表示出阴影A 的面积及阴影B 的面积,然后作差得到关于x 、y 的式子,根据“不会随着x 的变化而变化”得50-6y =0,求解即可得出答案.【详解】解:由题意可知A 长方形的长为(50-3y )cm ,宽为(x -2y )cm ,B 长方形的长为3y cm ,宽为x -50+3y ,∴阴影A 的面积为(50-3y )(x -2y )=50x -100y -3xy +6y 2,阴影B 的面积为3y (x -50+3y )=3xy -150y +9y 2,∴阴影A 的面积-阴影B 的面积=(50x -100y -3xy +6y 2)-(3xy -150y +9y 2)=(50-6y )x +50y -3y 2,∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,∴50-6y =0解之:253y =.故答案为:B .【点睛】本题考查了整式的混合运算的应用以及一元一次方程的应用,解此题的关键是能根据题意列出算式.9.(2021·全国·八年级专题练习)下列计算中,错误的个数是( ).①326(3)6x x =;②5521010(5)25a b a b -=-;③3328()327x x -=-;④23467(3)81x y x y =;⑤235x x x ×=A .2个B .3个C .4个D .5个【答案】B【分析】根据同底数幂的乘法和积的乘方的知识求解即可求得答案.【详解】解:①(3x 3)2=9x 6,故①错误;②(-5a 5b 5)2=-25a 10b 10,故②错误;③3328()327x x -=-,故③正确;④234812(3)81x y x y =;故④错误;⑤235x x x ×=;故⑤正确;①②④错误.故选择:B【点睛】此题考查了同底数幂的乘法,积的乘法及幂的乘方等知识,熟记法则是解题的关键.10.(2021·浙江浙江·七年级期中)如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+;③若x 为定值,则阴影A 和阴影B 的周长和为定值;④当15x =时,阴影A 和阴影B 的面积和为定值.A .①③B .②④C .①③④D .①④【答案】A【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y -15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x +5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A和阴影B的周长之和为2(2x+5),结合x为定值可得出说法③正确;④由阴影A,B的相邻两边的长度,利用长方形的面积计算公式可得出阴影A和阴影B的面积之和为(xy-25y+375)cm2,代入x=15可得出说法④错误.【详解】解:①∵大长方形的长为y cm,小长方形的宽为5cm,∴小长方形的长为y-3×5=(y-15)cm,说法①正确;②∵大长方形的宽为x cm,小长方形的长为(y-15)cm,小长方形的宽为5cm,∴阴影A的较短边为x-2×5=(x-10)cm,阴影B的较短边为x-(y-15)=(x-y+15)cm,∴阴影A的较短边和阴影B的较短边之和为x-10+x-y+15=(2x+5-y)cm,说法②错误;③∵阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,∴阴影A的周长为2(y-15+x-10)=2(x+y-25),阴影B的周长为2(15+x-y+15)=2(x-y+30),∴阴影A和阴影B的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5),∴若x为定值,则阴影A和阴影B的周长之和为定值,说法③正确;④∵阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,∴阴影A的面积为(y-15)(x-10)=(xy-15x-10y+150)cm2,阴影B的面积为15(x-y+15)=(15x-15y+225)cm2,∴阴影A和阴影B的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm2,当x=15时,xy-25y+375=(375-10y)cm2,说法④错误.综上所述,正确的说法有①③.故选:A.【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.二、填空题11.(2021·江苏阜宁·七年级期中)按照如图的操作步骤,若输入x 的值为-3,则输出的值是_______.【答案】17【分析】根据题目中程序流程图按顺序计算即可.【详解】解:当3x =-时;()239-=;9327⨯=;271017-=.故答案为:17.【点睛】本题考查根据程序流程图进行代数式求值,正确列出代数式并计算是解题关键.12.(2021·北京·清华附中朝阳学校八年级期中)5x a =,3y a =,则x y a -=____.【答案】53【分析】根据同底数幂除法的逆运算求解即可.【详解】解:∵5x a =,3y a =,∴53x x y y a a a -÷==,故答案为:53.【点睛】本题考查了同底数幂除法的逆运算,解题关键是熟记同底数幂除法法则,熟练运用它的逆运算解答.13.(2021·黑龙江·哈尔滨工业大学附属中学校八年级月考)已知9310a =⨯,3210b =⨯,则⋅=a b________.【答案】12610⨯【分析】根据整式的乘法:系数乘以系数,同底数的幂相乘,可得答案.【详解】解:939312(310)(210)3210610a b +⋅=⨯⨯⨯=⨯⨯=⨯,故答案为:12610⨯.【点睛】本题考查了整式的乘法,掌握系数乘以系数,同底数的幂相乘是解题的关键.14.(2021·上海市南洋模范初级中学七年级期中)若二项式3x +a 与x +2相乘,化简后结果中不出现一次项,则a 的值是 ___.【答案】-6【分析】利用多项式乘以多项式法则将已知多项式化简,合并同类项后令一次项系数等于0,即可求出a 的值.【详解】解:(3x +a )(x +2)=3x 2+6x +ax +2a =3x 2+(a +6)x +2a ,∵此多项式不含x 的一次项,∴a +6=0,即a =-6.故答案为:-6.【点睛】本题考查了多项式乘以多项式法则,解决这类问题的方法是:不含哪一项,就合并同类项后让这一项的系数等于0.15.(2021·山东沂南·七年级期中)已知9个小球,把它们分别标号为1,2,…9,现从中随机摸取两个小球,按照下面的操作步骤,若输入第一个小球上的数字a (记第二个小球上的数字为b ),输出的值为63,则=a ______.【答案】4【分析】根据题意列出代数式,结合a 和b 只能为1,2,3…9中任意一个数字,从而推导得到满足条件的a 的数值,【详解】解:由题意知:()52363a b ++=化简得:1048a b +=∵a 可以取1,2,3…9中任意一个数字∴ 10a 可能为10、20、30、40又∵b 只可取1,2,3…9中任意一个数字∴10a 只能为40此时:4,8a b ==故答案为:4.【点睛】.本题考查代数式的值,根据题意列出等量关系,进行分类讨论是解题的关键.16.(2021·黑龙江·哈尔滨市松雷中学校七年级月考)某车间一天生产零件12000套,若将当天生产的零件配套后出售,有几个销售商想合伙购买全部的成套零件后平分,在决定购买时有6个销售商退出,剩下的每个销售商都需要多分担200元,在交款时,又有8个销售商临时退出,剩下的每个销售商还需要再多分担500元,如果销售商每套零件想获得10元的利润,那么每套零件的售价是____元.【答案】12【分析】设一开始每人分担x 元,一开始销售商的个数为y 个,根据题意列出方程组,化简后解出方程的解,再求出每个经销商拿的零件套数与成本,故可求解.【详解】设一开始每人分担x 元,一开始销售商的个数为y 个,根据题意得()()()()200620050068xy x y xy x y ⎧=+-⎪⎨=++--⎪⎩化简得2006120007001498000y x y x --=⎧⎨--=⎩解得80030x y =⎧⎨=⎩∴一开始每人分担800元,一开始销售商的个数为30个所以现在每个销售商分担1500元,销售商的个数为16个则每个经销商分得零件套数为12000÷16=750套,每套成本为1500÷750=2元∴销售商每套零件想获得10元的利润,售价应为10+2=12元.故答案为:12.【点睛】此题主要考查方程组的实际应用,解题的关键是根据题意找到数量关系列方程组.17.(2021·上海松江·七年级期中)已知220x x +-=,那么代数式3231x x ++的值等于______.【答案】5【分析】根据220x x +-=可得22x x =-+,22x x +=,由此代入即可求得答案.【详解】解:∵220x x +-=,∴22x x =-+,22x x +=,∴323223121x x x x x ++=+++2()2(2)1x x x x =++-++2241x x =-++5=,故答案为:5.【点睛】本题考查了因式分解的应用以及代数式求值,熟练掌握整体代入求值是解决本题的关键.18.(2021·北京十四中八年级期中)如果n x y =,那么我们规定(),x y n =.例如:因为239=,所以()3,92=.根据上述规定,()2,8=_______,若(),16m p =,(),5m q =,(),m t r =,且满足p q r +=,则t =______.【答案】380【分析】由328=,根据规定易得(2,8)=3;由规定可得p q r m ,m ,m t ===165,根据同底数幂的运算及已知p +q =r ,即可求得t 的值.【详解】∵328=∴(2,8)=3故答案为:3;由规定得:p q r m ,m ,m t===165∴p+q m =⨯=16580∵p +q =r∴r m =80∴t =80故答案为:80【点睛】本题考查了同底数幂的运算,关键理解题意,能熟练进行同底数幂的运算.三、解答题19.(2021·四川·成都实外七年级期中)计算下列各题:(1)13513 1.252488+-+;(2)(34-)×(﹣113)﹣8÷4;(3)32﹣36×(5721293--);(4)﹣32﹣(﹣2)3×|14-|+(﹣1)2014【答案】(1)6;(2)1-;(3)69;(4)6-【分析】(1)按照有理数的加减混合运算法则计算即可;(2)按照有理数的乘除混合运算法则计算即可;(3)按照乘法分配律先分配,然后再进行计算即可;(4)按照幂的计算和绝对值的计算法则进行化简即可.【详解】解:(1)原式=1351 1.2532488⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=0+6=6(2)原式=34243⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭=12-=-1(3)原式=572 323636361293 -⨯+⨯+⨯32152824 =-++ 172824=++69=(4)原式=()19814---⨯+()921=---+6=-【点睛】本题考查有理数的加减混合运算,有理数的乘除混合运算,幂的乘方和绝对值的运算,牢记运算法则并能准确计算是解题的重点.20.(2021·福建省福州延安中学八年级期中)计算:(1)(x2y3)4+(﹣x)8(y6)2;(2)(9x2y3﹣27x3y2)÷(3xy)2.【答案】(1)2x8y12;(2)y﹣3x.【分析】(1)原式先计算乘方运算,再合并同类项;(2)原式先计算积的乘方运算,再计算多项式除以单项式求出结果即可.【详解】解:(1)原式=x8y12+x8y12=2x8y12;(2)原式=(9x2y3﹣27x3y2)÷9x2y2 =9x2y3÷9x2y2﹣27x3y2÷9x2y2 =y﹣3x.【点睛】本题考查了整式的混合运算,掌握幂的乘方(a m)n=a mn和积的乘方(ab)m=a m b m,多项式除以单项式的运算法则是解题关键.21.(2021·全国·七年级单元测试)计算(1)3m2•(2m2n)2÷6m5;(2)a(3a﹣1)+(1﹣a)(3a+2);(3)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b);(4)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn].【答案】(1)2mn2;(2)2;(3)3a2b﹣ab2;(4)mn【分析】(1)先计算乘方,再从左往右计算,即可求解;(2)先算乘法,再合并同类项,即可求解;(3)先去括号,再合并同类项,即可求解;(4)先去括号,再合并同类项,即可求解.【详解】(1)解:3m2•(2m2n)2÷6m5=3m2•4m4n2÷6m5=12m6n2÷6m5=2mn2;(2)解:a(3a﹣1)+(1﹣a)(3a+2)=3a2﹣a+3a+2﹣3a2﹣2a=2;(3)解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)=15a2b﹣5ab2+4ab2﹣12a2b,=3a2b﹣ab2;(4)解:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn,=mn.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的混合运算法则是解题的关键.22.(2021·黑龙江·哈尔滨市萧红中学八年级期中)如图,学校有一块长为(2a+b)米,宽为(2a-b)米的长方形地块,其中有两条宽为b米的甬道,学校计划将除甬道外其余部分进行绿化.(1)用含有a、b的式子表示绿化的总面积;(结果写成最简形式);(2)若a=5,b=2 ,请你计算出绿化的总面积;【答案】(1)2-;(2)6044a ab【分析】(1)长方形地块的长与宽分别减小b米后的长方形面积就是要绿化的总面积,最后化简即可;(2)把a与b的值代入(1)中化简后的代数式中,求值即可.【详解】(1)长方形地块的长、宽分别减小b米后的长方形长为2a+b-b=2a(米),宽为2a-b-b=(2a-2b)米,从而要绿化的总面积为:2a(2a-2b)=(4a2-4ab)平方米;即绿化的总面积为(4a2-4ab)平方米;(2)当a=5,b=2时,2⨯-⨯⨯=(平方米).4545260【点睛】本题考查了列代数式及求代数式的值,正确表示去掉路宽后的长方形的长与宽是关键.23.(2021·上海黄浦·七年级期中)有7张如图1规格相同的小长方形纸片,长为a,宽为b(a>b),按如图2、3的方式不重叠无缝隙地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.(1)如图2,点E、Q、P在同一直线上,点F、Q、G在同一直线上,右下角阴影部分矩形QPCG的面积为 (用含a、b的代数式表示),左上角阴影部分矩形AFQE的面积为 (用含a、b的代数式表示),矩形ABCD的面积为 .(用含a、b的代数式表示)(2)如图3,点F、H、Q、G在同一直线上,设右下角与左上角的阴影部分的面积的差为S,PC=x.①用a、b、x的代数式表示AE②当BC的长度变化时,按照同样的放置方式,如果S的值始终保持不变,那么a、b必须满足什么条件?【答案】(1)2a ,24312b b b ⨯=,22712a ab b ++(2)①4AE x b a =+-;②30a b -=【分析】(1)右下角的图形为边长为a 的正方形,左上角图形为长方形,其长宽分别为4b ,3b ,分别计算面积,找到矩形ABCD 的长宽分别为a +4b ,a +3b 计算面积即可.(2) ①AE =FQ ,PC =HG ,有FQ =HG +FH -QG ,从而得到AE ;②把S 表示出来,令与相乘的因式为零,即可得到S 与BC 长度无关.【详解】(1) 右下角的图形为边长为a 的正方形,面积为2a .左上角图形为长方形,其长宽分别为4b ,3b ,面积为24312b b b ⨯= .矩形ABCD 的长宽分别为a +4b ,a +3b ,面积为()()2243712a b a b a ab b ++=++故答案为:2a ,24312b b b ⨯=,22712a ab b ++(2) ①∵AE =FQ ,PC =HG ,有FQ =HG +FH -QG∴AE =PC +FH -QG即AE =x +4b -a②图2中,右下角的矩形长宽分别为x ,a ,则面积为xa .左上角矩形长宽分别为x +4b -a ,3b ,则面积为3b (x +4b -a ).则34S xa b x b a =-+-()整理得到,()2231233123S xa bx b ab x a b b ab=--+=--+当BC 的长度变化时,S 始终保持不变,则30a b -=时成立.【点睛】本题考查了列代数式,多项式的乘法,找准各部分图形的边长与边长之间的关系,准确表示出面积的代数式是解题的关键.24.(2021·江苏滨湖·七年级期中)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解决下列问题.(1)在图4中,黑色瓷砖有 块,白色瓷砖有 块;(2)已知正方形白色瓷砖边长为1米,长方形黑色瓷砖长为1米,宽为0.5米.现准备按照此图案进行装修,瓷砖无需切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.请回答下列问题:①铺设图2需要的总费用为 元;②铺设图n 需要的总费用为多少元?(用含n 的代数式表示)【答案】(1)20;20;(2)①1380; ②2115345230n n ++.【分析】(1)通过观察发现规律得出,第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +,将4n =代入即可求解;(2)①求得图2的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可;②求得图n 的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可;【详解】解:(1)通过观察图形可知,1n =时,黑色瓷砖的块数为8,白色瓷砖的块数为22n =时,黑色瓷砖的块数为12,白色瓷砖的块数为63n =时,黑色瓷砖的块数为16,白色瓷砖的块数为12则第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +当4n =时,黑色瓷砖的块数为20,白瓷砖的块数为20故答案为20,20(2)①图2,黑色瓷砖的块数为12,白色瓷砖的块数为6,所占用的面积为1210.561112⨯⨯+⨯⨯=(平方米)所需的费用为1250610012151380⨯+⨯+⨯=(元)故答案为1380②第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +占用的面积为4(1)10.5(1)112(1)(1)(1)(2)n n n n n n n n +⨯⨯++⨯⨯=+++=++所需的费用为24(1)50(1)10015(1)(2)115345230n n n n n n n +⨯++⨯+⨯++=++故答案为2115345230n n ++【点睛】此题考查了图形类规律的探索问题,涉及了列代数式,整式的乘法等运算,解题的关键是根据前面图形,找到规律.25.(2021·湖北江汉·八年级期中)(1)已知2x 2+6x =3,求代数式x (x +1)(x +2)(x +3)的值;(2)如果多项式4x 2+kx -7被4x +3除后余2,求k 的值.【答案】(1)214;(2)-9【分析】(1)由已知可得:332x x +=,然后把多项式分别按(3),(1)(3)x x x x +++展开即可求得代数式的值;(2)由题意可凑得商为3x -,则计算(43)(3)2x x +-+即可求得k 的值.【详解】(1)由2x 2+6x =3,得2332x x +=∴x (x +1)(x +2)(x +3)=223321(3)(32)2224x x x x ⎛⎫+++=⨯+= ⎪⎝⎭;(2)∵多项式4x 2+kx -7是二次多项式,除式4x+3是一次多项式∴多项式4x 2+kx -7被4x +3除,则商应为一次多项式∵多项式4x 2+kx -7的二次项系数为4∴商的一次项系数为1∵多项式4x 2+kx -7的常数项为-7,余数为2∴商的常数项为-3∴商为3x -∴4x 2+kx -7=2(43)(3)2497x x x x +-+=--∴k =-9【点睛】本题考查了整体法求代数式的值,多项式乘以多项式,(1)的计算需要一定的技巧,能够根据已知条件对相乘的多项式适当的组合以便运用条件;(2)则要凑,要求对多项式的乘法及除法熟练.26.(2021·北京·101中学八年级期中)(知识回顾)我们在学习代数式求值时,遇到这样一类题:代数式6351ax y x y -++--的值与x 的取值无关,求a 的值.通常的解题思路是:把x 、y 看作字母,a 看作系数,合并同类项。
专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]
专题12.2整式的乘除法【十大题型】【华东师大版】【题型1由整式乘除法求代数式的值】【题型2由整式乘除法求字母的值】【题型3利用整式乘除法解决不含某项问题】【题型4利用整式乘除法解决与某个字母取值无关的问题】【题型5利用整式乘除法解决污染问题】【题型6利用整式乘除法解决误看问题】【题型7整式乘除法的应用】【题型8整式乘除法中的规律问题】【题型9整式乘除法中的新定义问题】【题型10 整式乘除法中的几何图形问题】知识点:整式的乘法、除法1.单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(1)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏.(2)单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用.(3)单项式乘单项式的结果仍然是单项式.【注意】(1)积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值.(2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.2.单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.用式子表示:m(a+b+c)=ma+mb+mc(m,a,b,c都是单项式).【注意】(1)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号.(3)对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果.3.多项式与多项式相乘(1)法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)多项式与多项式相乘时,要按一定的顺序进行.例如(m+n)(a+b+c),可先用第一个多项式中的每一项与第二个多项式相乘,得m(a+b+c)与n(a+b+c),再用单项式乘多项式的法则展开,即(m+n)(a+b+c)=m(a+b+c)+n(a+b+c)=ma+mb+mc+na+nb+nc.【注意】(1)运用多项式乘法法则时,必须做到不重不漏.(2)多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.4.单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式.【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性.5.多项式除以单项式多式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.【注意】(1)多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.(2)多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项.(3)多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.【题型1 由整式乘除法求代数式的值】【例1】(23-24九年级上·安徽铜陵·期中)1.已知210a a +-=,则代数式()()()222a a a a +-++值为 .【变式1-1】(23-24八年级·福建泉州·期中)2.若3a b -=,4ab =-,则()()22a b -+值为 .【变式1-2】(23-24八年级·山东聊城·期中)3.如果()()5612a a -+=,那么2228a a --+的值为 .【变式1-3】(23-24八年级·福建·期中)4.已知2310x x --=,则代数式3102019x x -+值为 .【题型2 由整式乘除法求字母的值】【例2】(23-24八年级·安徽合肥·期中)5.已知(x +a )(x +b )=2x +mx +12,m 、a 、b 都是整数,那么m 的可能值的个数为( )A .4B .5C .6D .8【变式2-1】(23-24八年级·江苏扬州·期中)6.若()()2133x x x mx +-=+-,则m 值是 .【变式2-2】(23-24八年级·浙江杭州·期中)7.不论x 为何值,()()()2222222x x a x ax x a x a x a ++=+++=+++,226()()x x a x kx ++=++,则k = .【变式2-3】(23-24八年级·浙江温州·期中)8.关于x 的整式21A x =+,它的各项系数之和为∶213+=(常数项系数为常数项本身).已知B 是关于x 的整式,最高次项次数为2,系数为1.若(3),B x C C ×+=是一个只含两项的多项式,则B 各项系数之和的最大值为 .【题型3 利用整式乘除法解决不含某项问题】【例3】(23-24八年级·山东聊城·期末)9.已知多项式236M x ax =-+,3N x =+,且MN A =,当多项式A 中不含x 的2次项时,a 的值为( )A .1-B .13-C .0D .1【变式3-1】(23-24八年级·河南商丘·期末)10.已知关于x 的多项式ax b -与232x x ++的乘积的展开式中不含x 的二次项,且一次项系数为5-,则a 的值为( )A .13-B .13C .-3D .3【变式3-2】(23-24八年级·全国·专题练习)11.小万和小鹿正在做一道老师留下的关于多项式乘法的习题:2(32)()x x x a +--.(1)小万在做题时不小心将x a -中的x 写成了2x ,结果展开后的式子中不含x 的二次项,求a 的值;(2)小鹿在做题时将232+-x x 中的一个数字看错成了k ,结果展开后的式子中不含x 的一次项,则k 的值可能是多少?【变式3-3】(16-17八年级·四川成都·期末)12.已知(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项.(1)分别求m 、n 的值;(2)化简求值:(m +2n +1)(m +2n ﹣1)+(2m 2n ﹣4mn 2+m 3)÷(﹣m )【题型4 利用整式乘除法解决与某个字母取值无关的问题】【例4】(23-24八年级·湖南常德·期中)13.知识回顾:七年级学习代数式求值时,遇到过这样一类题“代数式6351ax y x y -++-- 的值与x 的取值无关,求a 的值”,通常的解题方法是:把x y 、看作字母,a 看作系数合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为0,即原式()365a x y =+-+,所以30a +=,则3a =-.理解应用:(1)若关于x 的多项式()22335m x m x ---的值与x 的取值无关,求m 值;(2)已知()()()213153A x x x y =+--+,2324B x xy -=+,且26A B -的值与x 的取值无关,求y 的值.【变式4-1】(23-24八年级·陕西咸阳·阶段练习)14.已知23A x x a =+-,B x =-,3235C x x =++,若A B C ×+的值与x 的取值无关,当4x =-时,A 的值为( )A .0B .4C .4-D .2【变式4-2】(23-24八年级·四川成都·期中)15.若代数式()()()223236x x m x x ++-+的值与x 的取值无关,则常数m = .【变式4-3】(23-24八年级·浙江金华·期末)16.若代数式()()()2253334x kx xy k x y x ----的值与y 无关,则常数k 的值为( )A .2B .―2C .4-D .4【题型5 利用整式乘除法解决污染问题】【例5】(23-24八年级·贵州遵义·期末)17.小明作业本发下来时,不小心被同学沾了墨水:()()4322222246643x y x y x y x y xy y -+¸-=-+-■,你帮小明还原一下被墨水污染的地方应该是( )A .3218x y -B .3218x y C .322x y -D .3212x y 【变式5-1】(23-24八年级·湖北十堰·期末)18.右侧练习本上书写的是一个正确的因式分解.但其中部分代数式被墨水污染看不清了.(1)求被墨水污染的代数式;(2)若被污染的代数式的值不小于4,求x 的取值范围.【变式5-2】(23-24八年级·全国·课后作业)19.小明在做练习册上的一道多项式除以单项式的习题时,一不小心,一滴墨水污染了这道习题,只看见了被除式中第一项是338x y -及中间的“¸”,污染后习题形式如下:33(8x y -)¸,小明翻看了书后的答案是“22436x y xy x -+”,你能够复原这个算式吗?请你试一试.【变式5-3】(23-24八年级·上海奉贤·期中)20.小红准备完成题目:计算(x 2x +2)(x 2﹣x ).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x 2+3x +2)(x 2﹣x );(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?【题型6 利用整式乘除法解决误看问题】【例6】(23-24八年级·山东菏泽·期中)21.某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是( )A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【变式6-1】(23-24八年级·江西萍乡·期中)22.小颖在计算一个整式乘以3ac 时,误看成了减去3ac ,得到的答案是12333--bc ac ab ,该题正确的计算结果应是多少?【变式6-2】(23-24八年级·江西九江·阶段练习)23.已知A B 、均为整式,()()221222A xy xy x y =+--+,小马在计算A B ¸时,误把“¸”抄成了“-”,这样他计算的正确结果为22x y -.(1)将整式A 化为最简形式.(2)求整式B .【变式6-3】(23-24八年级·河南南阳·阶段练习)24.甲、乙二人共同计算一道整式乘法:()()23x a x b ++,由于甲抄错为()()23x a x b -+,得到的结果为261110x x +-;而乙抄错为()()2x a x b ++,得到的结果为22910x x -+.(1)你能否知道式子中的a ,b 的值各是多少?(2)请你计算出这道整式乘法的正确答案.【题型7 整式乘除法的应用】【例7】(23-24八年级·浙江杭州·阶段练习)25.有总长为l 的篱笆,利用它和一面墙围成长方形园子,园子的宽度为a .(1)如图1,①园子的面积为 (用关于l ,a 的代数式表示).②当10030l a ==,时,求园子的面积.(2)如图2,若在园子的长边上开了长度为1的门,则园子的面积相比图一 (填增大或减小),并求此时园子的面积(写出解题过程,最终结果用关于l ,a 的代数式表示).【变式7-1】(23-24八年级·重庆·期末)26.某农场种植了蔬菜和水果,现在还有两片空地,农场计划在这两片空地上种植水果黄瓜、白黄瓜和青黄瓜.已知不同品种的黄瓜亩产量不同,其中白黄瓜的亩产量是青黄瓜的12,如果在空地种植白黄瓜、青黄瓜和水果黄瓜的面积之比为2:3:4,则水果黄瓜的产量是白黄瓜与青黄瓜产量之和的2倍;如果在空地上种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为 .【变式7-2】(23-24八年级·黑龙江哈尔滨·期中)27.一家住房的结构如图所示,房子的主人打算把卧室铺上地板,卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果这种地砖的价格为a 元/平方米,地板的价格(10)a -元/平方米,那么购买地板和地砖至少共需要多少元?【变式7-3】(23-24八年级·全国·专题练习)28.某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、2a ;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【题型8 整式乘除法中的规律问题】【例8】(23-24八年级·四川成都·期中)29.观察:下列等式()()2111x x x -+=-,()()23111x x x x -++=-,()()324111x x x x x -+++=-…据此规律,当()()65432110x x x x x x x -++++++=时,代数式20242x -的值为 .【变式8-1】(23-24八年级·广东揭阳·期中)30.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年11月份的日历,我们任意用一个22´的方框框出4个数,将其中4个位置上的数交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规则,结果为 .(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.【变式8-2】(23-24八年级·福建宁德·期末)31.“九章兴趣小组”开展研究性学习,对两位数乘法的速算技巧进行研究.小明发现“十位相同,个位互补”的两个两位数相乘有速算技巧.例如:()24261002346´=´´+´,结果为624;()42481004528´=´´+´,结果为2016;小红发现“十位互补,个位为5”的两个两位数相乘也有速算技巧.例如:()456510046525´=´´++,结果为2925;()357510037525´=´´++,结果为2625;(1)请你按照小明发现的技巧,写出计算6367´的速算过程;(2)请你用含有字母的等式表示小明所发现的速算规律,并验证其正确性;(3)小颖发现:小红的速算技巧可以推广到“十位互补,个位相同”的两个两位数相乘.请你直接用含有字母的等式表示该规律.友情提示:如果两个正整数和为10,则称这两个数互补.友情提示:如果两个正整数和为10,则称这两个数互补.【变式8-3】(23-24八年级·福建宁德·期中)32.下图揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律.请观察并解决问题:今天是星期五,再过7天也是星期五,那么再过451天是星期 .……1()a b a b+=+ (222)()2a b a ab b +=++……()3322333a b a a b ab b +=+++……()4a b +=【题型9 整式乘除法中的新定义问题】【例9】(23-24八年级·陕西榆林·期末)33.【问题背景】现定义一种新运算“⊙”对任意有理数m ,n ,规定:()m n mn m n =-e .例如:()1212122=´´-=-e .【问题推广】(1)先化简,再求值:()()a b a b +-e ,其中12a =,1b =-;【拓展提升】(2)若()2p q q p x y x y x y x y =-e e ,求p ,q 的值【变式9-1】(23-24八年级·浙江宁波·期中)34.定义a bad bc c d =-,如131423224=´-´=-.已知21112x A nx x +=-,1111x x B x x +-=-+(n 为常数)(1)若4B =,求x 的值;(2)若A 中的n 满足12222n +´=时,且2A B =+,求3843x x -+的值.【变式9-2】(23-24八年级·湖南株洲·期末)35.定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi + (a 、b 为实数)的数叫做复数,其中a 叫做这个复数的实部,b 叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:()()()()253251372i i i i -++=++-+=+;()()()()()()2121212212213i i i i i i i ii i+´-=´+´-+´+´-=+-+-=+--=+根据以上信息,完成下列问题:(1)计算:3i , 4i ;(2)计算:()()134i i +´-;(3)计算:23452023i i i i i i ++++++L 【变式9-3】(23-24八年级·内蒙古乌兰察布·期末)36.定义:()L A 是多项式A 化简后的项数,例如多项式223A x x =+-,则()3L A =,一个多项式A 乘多项式B 化简得到多项式C (即C A B =´),如果()()()1L A L C L A ££+.则称B 是A 的“郡园多项式”如果()()L A L C =,则称B 是A 的“郡园志勤多项式”.(1)若2A x =-,3B x =+,则B 是不是A 的“郡园多项式”?请判断并说明理由;(2)若2A x =-,24B x ax =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,则a =_____;(3)若23A x x m =-+,2B x x m =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,求m 的值.【题型10 整式乘除法中的几何图形问题】【例10】(23-24八年级·辽宁辽阳·期中)37.教科书第一章《整式的乘除》中,我们学习了整式的几种乘除运算,学会了研究运算的方法.现定义了一种新运算“Ä”,对于任意有理数a ,b ,c ,d ,规定()(),,a b c d ad bc Ä=-,等号右边是通常的减法和乘法运算.例如:()()1,32,414232Ä=´-´=-.请解答下列问题:(1)填空:()()2,34,5-Ä=______;(2)若()()221,15,2x nx x +-Ä-的代数式中不含x 的一次项时,求n 的值;(3)求()()31,22,3x x x x +-Ä+-的值,其中2410x x -+=;(4)如图1,小长方形长为a ,宽为b ,用5张图1中的小长方形按照图2方式不重叠地放在大长方形ABCD 内,其中5AB =,大长方形中未被覆盖的两个部分(图中阴影部分),设左下角长方形的面积为1S ,右上角长方形的面积为2S .当122320S S -=,求()()2,63,36a b b b a b +-Ä--的值.【变式10-1】(23-24八年级·浙江温州·期中)38.小陈用五块布料制作靠垫面子,其中四周的四块由长方形布料裁成四块得到,正中的一块正方形布料从另一块布料裁得,靠垫面子和布料尺寸简图,如图所示∶(1)用含a ,b 的代数式表示图中阴影部分小正方形的面积.(2)当224592a b +=,48ab =时,求阴影部分面积.【变式10-2】(23-24八年级·广东佛山·期中)39.如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm .(1)小长方形的较长边为 cm (用代数式表示);(2)阴影A 的一条较短边和阴影B 的一条较短边之和为(24)x y -+cm ,是 的(填正确/错误);阴影A 和阴影B 的周长值之和与x (填有关/无关),与y (填有关/无关);(3)设阴影A 和阴影B 的面积之和为S 2cm ,是否存在x 使得S 为定值,若存在请求出x 的值和该定值,若不存在请说明理由.【变式10-3】(23-24八年级·上海青浦·期中)40.如图所示,有4张宽为a ,长为b 的小长方形纸片,不重叠的放在矩形ABCD 内,未被覆盖的部分为空白区域①和空白区域②. 2EF GH =(1)用含a、b的代数式表示:AD=______________;AB=______________.(2)用含a、b的代数式表示区域①、区域②的面积;(3)当a=12,92b=时,求区域①、区域②的面积的差.1.2-【分析】由已知得21a a +=,然后对所求式子展开后进行变形,再整体代入计算即可.【详解】解:∵210a a +-=,∴21a a +=,∴()()()()22222242242142a a a a a a a a a +-++=-++=+-=´-=-,故答案为:2-.【点睛】本题考查了整式的混合运算,代数式求值,熟练掌握相关运算法则是解题的关键.2.―2【分析】本题主要考查代数式的值及多项式乘以多项式,熟练掌握各个运算是解题的关键;因此此题先把所求整式进行展开,然后再代值求解即可.【详解】解:∵3a b -=,4ab =-,∴()()22a b -+()24ab a b =+--464=-+-2=-;故答案为:―2.3.28-【分析】本题主要考查了多项式乘以多项式,代数式求值,先根据多项式乘以多项式的计算法则求出218a a --=-,再根据()--+=--+2222828a a a a 进行求解即可.【详解】解:∵()()5612a a -+=,∴2306512a a a -+-=,∴218a a --=-,∴()--+=--+=-´+=-2222828182828a a a a ,故答案为:28-.4.2022【分析】由x 2−3x−1=0,变形x 2=3x+1,利用此等式进行降次,化简整体代入计算即可.【详解】由x 2−3x−1=0,变形x 2=3x+1,x 2-3x=1,x3−10x+2019,=x(3x+1)-10x+2019,=3x2-9x+2019,=3(x2-3x)+2019,=3+2019,=2022.故答案为:2022.【点睛】本题考查代数式的值,关键是把条件等式变形会降次,会整体代入求值.5.C【分析】根据多项式乘多项式的乘法法则,求得a+b=m,ab=12,再进行分类讨论,从而解决此题.【详解】解:(x+a)(x+b)=2x+bx+ax+ab=2x+(a+b)x+ab.∵(x+a)(x+b)=2x+mx+12,∴a+b=m,ab=12.∵m、a、b都是整数,∴当a=1时,则b=12,此时m=a+b=1+12=13;当a=-1时,则b=-12,此时m=a+b=-1-12=-13;当a=2时,则b=6,此时m=a+b=2+6=8;当a=-2时,则b=-6,此时m=a+b=-2-6=-8;当a=3时,则b=4,此时m=a+b=3+4=7;当a=-3时,则b=-4,此时m=a+b=-3-4=-7;当a=12时,则b=1,此时m=a+b=12+1=13;当a=-12时,则b=-1,此时m=a+b=-12-1=-13;当a=6时,则b=2,此时m=a+b=6+2=8;当a=-6时,则b=-2,此时m=a+b=-6-2=-8;当a=4时,则b=3,此时m=a+b=4+3=7;当a=-4时,则b=-3,此时m=a+b=-4-3=-7.综上:m=±13或±8或±7,共6个.故选:C.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则、分类讨论的思想是解决本题的关键.6.2-【分析】本题主要考查了多项式乘以多项式,正确计算出22323x x x mx -=+--是解题的关键.根据多项式乘以多项式的计算法则把等式左边去括号得到m 的值即可得到答案.【详解】解:∵()()2133x x x mx +-=+-,∴22333x x x x mx +--=+-,∴22323x x x mx -=+--,∴2m =-.故答案为:2-.7.5【分析】根据多项式乘以多项式的法则展开,求出a 的值以及a 与k 的关系,然后可得答案.本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.【详解】∵2222222()()()x x a x ax x a x a x a ++=+++=+++,又∵226()()x x a x kx ++=++,∴22226()x a x a x kx +++=++,2a k \+=,26a =,3a \=,325k \=+=.故答案为:5.8.7【分析】本题考查整式的定义,多项式乘多项式,解二元一次方程.根据题意对整式B 的表述,可设2(x ax b a B =++、b 为待求的常数),计算(3)B x ×+,整理后得到关于x 的三次四项式.由于条件说乘积是只有两项,故有两项的系数为0,需分3种情况讨论计算,列得关于a 、b 的方程组,据此求解即可.【详解】解:B Q 是关于x 的整式,最高次项次数为2,二次项系数为1,\设2b B x ax =++,a 、b 为常数,(3)B x \+2()(3)x ax b x =+++322333x ax bx x ax b=+++++32(3)(3)3x a x a b x b =+++++,Q 乘积是一个只含有两项的多项式,①3030a a b +=ìí+=î,解得:39a b =-ìí=î,239B x x \=-+,各项系数之和为1397-+=;②3030a b +=ìí=î,解得:30a b =-ìí=î,23x B x \=-,各项系数之和为132-=-;③3030a b b +=ìí=î,解得:00a b =ìí=î,2x B \=.各项系数之和为1;∵712>>-;则B 各项系数之和的最大值为7.故答案为:7.9.D【分析】本题考查的是整式的乘法—多项式乘多项式,正确进行多项式的乘法是解答此题的关键.根据题意列出整式相乘的式子,再计算多项式乘多项式,最后进行合并同类项,令二次项的系数等于0即可.【详解】解:∵()()2=363MN x ax x -++322=36+3918x ax x x ax -+-+()()32336918x a x a x =+-+-+∴()()32336918A MN x a x a x ==+-+-+∵多项式A 中不含x 的2次项时,∴330a -=∴1a =故选D .10.C【分析】本题考查多项式乘以多项式,解二元一次方程组,解题的关键是明确不含x 的二次项,则二次项的系数为0.根据多项式乘以多项式法则进行运算,再将计算结果中,利用二次项系数为零与一次项的系数为5-的要求建立方程组,即可求解.【详解】解:()()232ax b x x -++;3223232ax ax ax bx bx b =++---;()()323322ax a b x a b x b =+-+--;∵多项式ax b -与232x x ++的乘积的展开式中不含二次项,且一次项系数为5-;∴3025a b a b -=ìí-=-î;解得:31a b =-ìí=-î,∴3a =-;故选:C .11.(1)2a =-(2)1k =或6-【分析】本题主要考查多项式乘以多项式,熟练掌握多项式乘以多项式计算法则是解题的关键.(1)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令二次系数为0,即可求出答案,(2)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令一次系数为0,即可求出答案.【详解】(1)解:()()2232x x x a +--42323322x ax x ax x a =-+--+4323(2)32x x a x ax a =+-+-+Q 展开后的式子中不含x 的二次项,20a \+=,解得2a =-;(2)解:①若将232+-x x 中的3看成k ,2(2)(2)x kx x +-+3222224x x kx kx x =+++--32(2)(22)4x k x k x =+++--,Q 展开后的式子中不含x 的一次项,220k \-=,1k \=.②若将232+-x x 中的2-看成k ,2(3)(2)x x k x +++3222362x x x x kx k =+++++325(6)2x x k x k =++++,Q 展开后的式子中不含x 的一次项,60k \+=,解得6k =-.③若指数2看作k ,当0k =时,原式(132)(2)x x =+-+2352x x =+-不符合题意;④若指数2看作k ,当1k =时,原式(32)(2)x x x =+-+2464x x =+-,不符合题意;1k =或6-.12.(1)m 的值为2,n 的值为3(2)2mn +8n 2﹣1;83【分析】(1)先将题目中的式子化简,然后根据()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,可以求得m 、n 的值;(2)先化简题目中的式子,然后将m 、n 的值代入化简后的式子即可解答本题.【详解】解:(1)()()2212x mx x x n ++-+=4x ﹣23x +n 2x +m 3x ﹣2m 2x +mnx +2x ﹣2x +n=4x +(﹣2+m )3x +(n ﹣2m +1)2x +(mn ﹣2)x +n∵()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,∴20210m n m +=ìí+=î﹣﹣,解得23m n =ìí=î,即m 的值为2,n 的值为3;(2)(m +2n +1)(m +2n ﹣1)+(22m n ﹣4m 2n +3m )÷(﹣m )=[(m +2n )+1][(m +2n )﹣1]﹣2mn +42n ﹣2m =2m 2n +()﹣1﹣2mn +42n ﹣2m =2m +4mn +42n ﹣1﹣2mn +42n ﹣2m =2mn +82n ﹣1当m =2,n =3时,原式=2×2×3+8×23﹣1=83.【点睛】本题考查整式的混合运算—化简求值,熟练掌握整式混合运算法则是解题的关键.13.(1)35m =(2)23y =【分析】(1)先去括号,然后合并同类项,结合多项式的值与x 的取值无关,即可求出答案;(2)先把A 进行化简,然后计算26A B -,结合多项式的值与x 的取值无关,即可求出答案.【详解】(1)解:223(35)m x m x ---22335m x m mx=--+2(53)23m x m m =-+-,Q 其值与x 的取值无关,530m \-=, 解得:35m =, 即:当35m =时,多项式223(35)m x m x ---的值与x 的取值无关;(2)解:(21)(31)(53)A x x x y =+--+Q ,2324B x xy -=+,2262[(21)(31)(53)]6(24)3A B x x x y x xy \-=+---+-+222(623153)121824x x x x xy x xy =-+----+-2212826121824x x xy x xy =----+-12826xy x =--4(32)26x y =--;26A B -Q 的值与x 无关,320y \-=,即23y =.【点睛】本题考查了整式的加减乘混合运算,准确熟练地进行计算是解题的关键.14.B【分析】此题主要考查了整式的混合运算无关型题目,代数式求值,首先根据多项式乘多项式的方法,求出A B ×的值是多少,然后用它加上C ,求出A B C ×+的值是多少,最后根据A B C ×+的值与x 的取值无关,可得x 的系数是0,据此求出a 的值,最后代入求值即可.【详解】解:23A x x a =+-Q ,B x =-,3235C x x =++,A B C\×+()()()232335x x a x x x =+--+++3232335x x ax x x =--++++5ax =+,A B C ×+Q 的值与x 的取值无关,2233A x x a x x \=+-=+,当4x =-时,()()24344A =-+´-=,故选:B .15.3【分析】此题考查整式的混合运算,先运算多项式乘以多项式和单项式乘以多项式,然后合并,进而根据与x 的取值无关得到260m -=,解方程即可.【详解】解:()()()()222232366262612262x x m x x x mx x m x x m x m ++-+=+++--=-+,∵代数式的值与x 的取值无关,∴260m -=,解得3m =,故答案为:3.16.A【分析】本题考查整式的四则混合运算,先将题目中的式子化简,然后根据此代数式的值与y 的取值无关,可知关于y 的项的系数为0,从而可以求得k 的值.【详解】解:()()()2253334x kx xy k x y x ----2222225334912kx x y kx y kx x y x =--++-222239612kx y kx x y x =-++-()22236912k x y kx x =-++-∵关于y 的代数式:()()()2253334x kx xy k x y x ----的值与y 无关,∴360k -+=,解得2k =,即当2k =时,代数式的值与y 的取值无关.故选:A.17.B【分析】利用多项式乘单项式的运算法则计算即可求解.【详解】解: ( −4x 2y 2+3xy −y ) • (−6x 2y )=24x 4y 3−18x 3y 2+6x 2y 2,∴■=18x 3y 2.【点睛】本题主要考查的是整式的除法和乘法,掌握法则是解题的关键.18.(1)24x --;(2)4x £-.【分析】(1)根据题意,被墨水污染的代数式=()2()(252236)x x x x ++---,再结合整式的乘法法则及加减法则解题,注意运算顺序;(2)由(1)中结果列一元一次不等式,解一元一次不等式即可解题.【详解】解:(1)由已知可得,()2()(252236)x x x x ++---2224510236x x x x x =-+---+=24x -- ;(2)由已知可得,244x -³-28x ³-解得4x £-.【点睛】本题考查整式的混合运算、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.复原后的算式为()()3322286122x y x y x y xy -+-¸-【分析】先根据被除式的首项和商式的首项可求得除式,然后根据除式乘商式等于被除式求解即可.【详解】解:338x y -Q 对应的结果为:224x y ,\除式为:3322842x y x y xy -¸=-,根据题意得:()()223322243628612x y xy x xy x y x y x y -+×-=-+-,\复原后的算式为()()3322286122x y x y x y xy -+-¸-.【点睛】本题主要考查的是整式的除法和乘法,掌握运算法则是解题的关键.20.(1)43222x x x x +--;(2)1【分析】(1)根据多项式的乘法进行计算即可;(2)设一次项系数为a ,计算()()222x ax x x ++-,根据其结果不含三次项,则结果的三次项系数为0,据此即可求得a 的值,即原题中被遮住的一次项系数.【详解】解:(1)(x 2+3x +2)(x 2﹣x )433223322x x x x x x=-+-+-43222x x x x=+--(2)设一次项系数为a ,()()222x ax x x ++-4332222x x ax ax x x=-+-+-()()432122x a x a x x=+-+--Q 答案是不含三次项的10a \-=1a \=【点睛】本题考查了多项式的乘法运算,正确的计算是解题的关键.21.A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.【详解】解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .22.222-abc a bc【分析】本题主要考查了整式乘法运算,根据一个整数减去3ac ,得到的答案是12333--bc ac ab ,得出这个整式为123333bc ac ab ac --+,然后用3ac 乘这个整式得出结果即可.【详解】解:根据题意得:1233333æö--+ç÷èøac bc ac ab ac12333æö=-ç÷èøac bc ab 222=-abc a bc .故该题正确的计算结果应是222-abc a bc .23.(1)22x y xy --;(2)B xy =-.【分析】(1)根据整式混合运算的运算顺序和运算法则进行化简即可;(2)根据题意可得22A y B x -=-,根据整式混合运算顺序和运算法则进行计算即可;本题主要考查了整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则.【详解】(1)()()221222A xy xy x y =+--+,22222222x y xy xy x y =-+--+,22x y xy =--;(2)由题意,得22A yB x -=-由(1)知22A x y xy =--,∴2222x y xy B x y ---=-,∴B xy =-.24.(1)5a =-,2b =-(2)261910x x -+【分析】(1)按照甲、乙两人抄的错误的式子进行计算,得到2311b a -=①,29b a +=-②,解关于①②的方程组即可求出a 、b 的值;(2)把a 、b 的值代入原式求出整式乘法的正确结果.【详解】(1)根据题意可知,甲抄错为()()23x a x b -+,得到的结果为261110x x +-,那么()()()222362361110x a x b x b a x ab x x -+=+--=+-,可得2311b a -=①乙抄错为()()2x a x b ++,得到的结果为22910x x -+,可知()()()222222910x a x b x b a x ab x x ++=+++=-+可得29b a +=-②,解关于①②的方程组,可得5a =-,2b =-;(2)正确的式子:()()22041253265106191x x x x x x x --=+-=+--【点睛】本题主要是考查多项式的乘法以及二元一次方程组,掌握多项式乘多项式运算法则是正确解决问题的关键.25.(1)①()2a l a -;②1200(2)增大;22al a a-+【分析】本题考查了列代数式及代数式求值,正确列出代数式是解题的关键.(1)①先用l 和a 的代数式表示出园子的长,再表示出园子的面积;②把100l =,30a =代入①中的代数式进行计算即可;(2)由园子的宽不变,长增加了,即可判断出园子的面积增大了,表示出园子的长,即可求出园子的面积.【详解】(1)解:①Q 总长为l ,宽为a ,\园子的长为:()2l a -,\园子的面积为:()2a l a -;故答案为:()2a l a -;②当100l =,30a =时,()222a l a al a -=-230100230=´-´30002900=-´30001800=-1200=;(2)解:Q 园子的宽不变,长增加了,。
整式的运算基础练习题
整式的运算基础练习题整式的运算是数学中的一个重要分支,它涉及到各种基本运算规则,如加法、减法、乘法和除法等。
下面是一些关于整式运算的基础练习题,可以帮助大家巩固和加深对整式运算的理解。
1、单项式的加法1)计算:2x + 3x = __x2)计算:5a - 2a = __a答案:(1)5x;(2)3a2、多项式的加法1)计算:2x - 3x + 4x = __x2)计算:5a + 2b + 3a = __a + __b答案:(1)3x;(2)8a;2b3、单项式的乘法1)计算:2x × 3x = __x²2)计算:5a × 4b = __ab²答案:(1)6x2(2)20ab24、多项式的乘法1)计算:(2x + 3y) × (x - y) = __x² - __xy + __y²2)计算:(3a - 2b) × (4a + 5b) = __a×__b² + __a×__b - __a ×__b² - __a×__b答案:(1)x2xy+3y2(2)12a×4b+5a×2b−3a×5b−2a×4b即48ab+10ab−15ab−8ab,最终结果为45ab。
整式的运算测试题一、选择题1、下列哪个选项是整式?()A. 2/3B. 4x/3yC. x + 2yD. √22、下列哪个选项是整式的乘法?()A. 3(x + y)B. 4x^2yC. (x + 2y)(x - 2y)D. x + 2y = 03、下列哪个选项是整式的除法?()A. (x + y)/2B. (x + 2y)(x - 2y)C. x \div 2yD. 2x^2 - x = y二、填空题1、如果 a和 b是整数,那么 a + b的值是____。
2、如果 x和 y是整数,那么 x - y的值是____。
初二数学上册综合算式专项练习题整式的乘法与除法混合运算与乘方运算
初二数学上册综合算式专项练习题整式的乘法与除法混合运算与乘方运算在初二数学上册中,整式的乘法与除法混合运算与乘方运算是一个重要的知识点。
正确掌握这些知识点能够帮助学生在解决各种实际问题时应用数学的思维方式和方法。
在本文中,我们将结合一些综合算式的专项练习题来详细介绍整式的乘法与除法混合运算和乘方运算的方法及应用。
一、整式的乘法与除法混合运算整式的乘法与除法混合运算是指在一个算式中既有乘法又有除法的运算。
在进行混合运算时,我们要注意乘法和除法的运算顺序,先乘后除,遵循“先算乘法,后算除法”的原则。
示例1:计算算式:2x^2x^3÷(−3x)(−5x^2x^5)×(−2x^2x^4)÷(−3x^2x^2)解:按照“先算乘法,后算除法”的原则,将乘法和除法分别进行。
首先,对乘法进行计算:2x^2x^3×(−5x^2x^5)×(−2x^2x^4)=2×(−5)×(−2)×x^2×x^2×x^2×x^3×x^5×x^4=40x^2x^12接下来,对除法进行计算:40x^2x^12÷(−3x)(−3x^2x^2)=40x^2x^12÷x^2÷x÷x^2=40x^9所以,算式2x^2x^3÷(−3x)(−5x^2x^5)×(−2x^2x^4)÷(−3x^2x^2)的结果为40x^9。
通过这个示例,我们可以看出,在整式的乘法与除法混合运算中,我们需要注意运算顺序,分别计算乘法和除法,最后得出结果。
二、整式的乘方运算整式的乘方运算是指对整式进行平方、立方或更高次幂的运算。
在整式的乘方运算中,我们需要用到一些乘方公式。
1. 平方公式:(x+x)^2=x^2+2xx+x^22. 立方公式:(x+x)^3=x^3+3x^2x+3xx^2+x^33. 乘方运算的性质:(x×x)^x=x^x×x^x示例2:计算x=4时,(2x+3x)^4的乘方运算。
初二数学整式的乘除的练习题
初二数学整式的乘除的练习题练习题一:计算下列各式的值:1. $\frac{1}{2}x^2 - 3x + 4$,当$x=2$时;2. $3x^3 - 4x^2 + 2x - 6$,当$x=-1$时;3. $2a^2b - 3ab^2 - ab + 4ab^2$,当$a=-3$,$b=2$时;4. $4mn + 3m^2n^2 - 2mn^3$,当$m=-2$,$n=3$时;5. $(2x+3)(x-1)$,当$x=4$时;练习题二:展开下列各式,并合并同类项:1. $(x+2)(x-3)$;2. $(3x-1)(x+4)$;3. $(2a+3b)(a-2b)$;4. $(2x+1)(3x-2) + (x-4)(2x+1)$;5. $(4-3x)(5x+1) - (3-2x)(4x-5)$;练习题三:完成下列整式的乘法或除法:1. $(2x^2 + 3x - 5) \times (4x + 2)$;2. $(3a^2 - 2a + 1) \times (2a+3)$;3. $(5x^2 - 3x + 1) \times (3x^2 + 2x - 4)$;4. $(6m^3 + 2m^2 - 4m - 3) \div (3m+1)$;5. $(9n^4 - 3n^3 + 5n^2 + 2n - 6) \div (3n-2)$;练习题四:解决下列问题:1. 小明用三个数$a+1$,$a$,$a-1$的和表示另一个数,若小明选择$a=2$,求这个数;2. 已知$x^2 - 5x + 6 = 0$,求方程的两个根;3. 某汽车从A地开往B地,AB两地间距离为120公里。
如果汽车一直以每小时60公里的速度行驶,求到达B地需要的时间;4. 三个连续的整数的和是96,求这三个整数;5. 小华用一个数的平方除以6,然后再加上10,等于3。
求这个数。
练习题五:判断下面的等式是否成立,若成立,请给出证明,若不成立,请举一个反例:1. $(2x + 3)(x - 1) = 2x^2 + x - 3$;2. $(a + b - c)(a - b + c) = a^2 - b^2 - c^2$;3. $(x - 2)^2 = x^2 - 4$;4. $(4 - x)^3 = x^3 - 4^3$;5. $(3x - 4)^2 = 9x^2 - 16$;以上是初二数学整式的乘除的练习题,希望能够帮助你巩固知识点,提高你的数学能力。
初一数学上册综合算式专项练习题整式的加减乘除练习
初一数学上册综合算式专项练习题整式的加减乘除练习练习一:整式的加法1. 计算:$3a^2 - 4ab + 2b^2 + 5a - 3b + 1$ 与 $4a^2 + 2ab - 3b^2 - 2a + 4b - 5$ 的和。
解答:首先按照指数的大小顺序排列各项,然后按照相同项进行合并:$3a^2 - 4ab + 2b^2 + 5a - 3b + 1 + 4a^2 + 2ab - 3b^2 - 2a + 4b - 5$合并同类项得:$7a^2 - 2ab - b^2 + 3a + b - 4$所以,$3a^2 - 4ab + 2b^2 + 5a - 3b + 1$ 与 $4a^2 + 2ab - 3b^2 - 2a + 4b - 5$ 的和为 $7a^2 - 2ab - b^2 + 3a + b - 4$。
2. 计算:$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1$ 与 $-3x^3 + 4xy^2 - 2x - 5y + 1$ 的和。
解答:按照指数的大小顺序排列各项,然后按照相同项进行合并:$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1 + (-3x^3) + 4xy^2 + (-2x) + (-5y) + 1$合并同类项得:$2x^3 + 2x^2y + xy^2 + 2x - 3y$所以,$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1$ 与 $-3x^3 + 4xy^2 - 2x - 5y + 1$ 的和为 $2x^3 + 2x^2y + xy^2 + 2x - 3y$。
练习二:整式的减法1. 计算:$4x^2 - 3xy + 2y^2 - 5x + 2y - 1$ 减去 $2x^2 - xy + y^2 + 3x - 3y - 2$。
解答:首先按照指数的大小顺序排列各项,然后按照相同项进行合并:$4x^2 - 3xy + 2y^2 - 5x + 2y - 1 - (2x^2 - xy + y^2 + 3x - 3y - 2)$合并同类项得:$2x^2 - 2y^2 - 8x + 5y + 1$所以,$4x^2 - 3xy + 2y^2 - 5x + 2y - 1$ 减去 $2x^2 - xy + y^2 + 3x - 3y - 2$ 的差为 $2x^2 - 2y^2 - 8x + 5y + 1$。
整式的乘除复习试题(3套)
整式的乘除过关测试A一、(时间: 40分钟, 总分: 80分) 选择题(共12小题, 每小题3分, 共36分) )可写成(13.1+m a()()a a D aa C aa a B aa A m m m m ⋅++⋅+3333....()6223124355126663)5(;1243)4(;)3(;)2(;2)1(.2y x xy b b b c c c a a a a a a n n n ==⋅=⋅=+=⋅下列计算:中正确的个数为( )A.0B.1C.2D.3 )(324,0352.3=⋅=-+y x y x 则若A.32B.16C.8D.4())的结果为(计算200920088125.0.4⨯-A.8B.-8C.-1D.无法计算)的是(下列等式中运算不正确.5()()2223243322232442.51025.842.63)2(3.y xy x y x D xy x y x x C b a ab b a B y x y x xy x xy A ++=--=-=⋅-=-()()()()的值为、,则若a a M 10M 102105108.626⨯=⨯⨯⨯ 105M 108M 92M 88M ========a D a C a B a A ,、,、,、,、()()()等于则若m n n x x mx x -++=-+,315.72 251.251.25.25.--D C B A()()()的关系是与的一次项,则展开后不含要使多项式q p x q x px x -++2.822.1.0..===+=pq D pq C q p B q p A()的值是,那么已知ab b a b a 2,3.922=-=+A.-0.5B.0.5C.-2D.2 10.计算: 得( )A.0B.1C.8.8804D.3.960111.现有纸片: 4张边长为a 的正方形, 3张边长为b 的正方形, 8张宽为a 、长为b 的长方形, 用这15张纸片重新拼出一个长方形, 那么该长方形的长为( )A.2a+3bB.2a+bC.a+3bD.无法确定()的最小值是则如果多项式p b a b a p ,2008422.1222++++= A.2005 B.2006 C.2007 D.2008 填空题(共6小题, 每小题3分, 共18分)()()=-⋅-322323.13a a 计算 。
专题1.2 整式的乘除法【十大题型】(举一反三)(北师大版)(原卷版)
专题1.2 整式的乘除法【十大题型】【北师大版】【题型1 整式乘法中的求值问题】 (1)【题型2 整式乘法中的不含某项问题】 (2)【题型3 整式乘法中的错看问题】 (2)【题型4 整式乘法中的遮挡问题】 (2)【题型5 整式乘法的计算】 (3)【题型6 整式乘法的应用】 (3)【题型7 整式除法的运算与求值】 (4)【题型8 整式除法的应用】 (5)【题型9 整式乘法中的新定义】 (6)【题型10 整式乘法中的规律探究】 (7)【题型1 整式乘法中的求值问题】【例1】(x+m)(x﹣n)=x2+ax+7(m,n为整数),则a的值可能是( )A.7B.﹣7C.8D.﹣9【变式1-1】(2022春•汝州市校级月考)若(5x+2)(3﹣x)=﹣5x2+kx+p,则代数式(k﹣p)2的值为( )A.98B.49C.14D.7【变式1-2】(2022春•诸暨市期末)若A、B、C均为整式,如果A•B=C,则称A能整除C,例如由(x+3)(x﹣2)=x2+x﹣6,可知x﹣2能整除x2+x﹣6.若已知x﹣3能整除x2+kx﹣7,则k的值为( )A.−73B.−23C.43D.23【变式1-3】(2022春•江都区期中)如果(x+a)(x+b)=x2+mx﹣12(其中a,b都是整数),那么m可取的值共有( )A.2个B.4个C.6个D.8个【题型2 整式乘法中的不含某项问题】【例2】(2022秋•黔江区期末)要使(x2﹣x+5)(2x2﹣ax﹣4)展开式中不含x2项,则a的值等于( )A.﹣6B.6C.14D.﹣14【变式2-1】(2022春•双流区校级期中)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn=﹣5,求﹣4n2+3m的值.【变式2-2】(2022秋•耒阳市校级月考)已知多项式M=x2+5x﹣a,N=﹣x+2,P=x3+3x2+5,且M•N+P 的值与x的取值无关,求字母a的值.【变式2-3】(2022春•上城区期末)若多项式x2﹣(x﹣a)(x+2b)+4的值与x的取值大小无关,那么a,b一定满足( )A.a=0且b=0B.a=2b C.ab=0D.a=b2【题型3 整式乘法中的错看问题】【例3】(2022春•潍坊期末)小明在进行两个多项式的乘法运算时,不小心把乘以(x﹣2y)错抄成除以(x﹣2y),结果得到(3x﹣y),则正确的结果是( )A.3x2﹣7xy+2y2B.3x2+7xy+2y2C.3x3﹣13x2y+16xy2﹣4y3D.3x3﹣13x2y+16xy2+4y3【变式3-1】(2022春•芦溪县期中)某同学在计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,那么正确的计算结果是多少?【变式3-2】(2022秋•云县期末)在计算(x+a)(x+b)时,甲错把b看成了6,得到结果x2+8x+12;乙错把a看成了﹣a,得到结果x2+x﹣6.你能正确计算(x+a)(x+b)吗?(a、b都是常数)【变式3-3】(2022春•河源期末)甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2﹣7x+3,乙漏抄了第二个多项式中x的系数,得到的结果是x2+2x﹣3.(1)求(﹣2a+b)(a+b)的值;(2)若整式中的a的符号不抄错,且a=3,请计算这道题的正确结果.【题型4 整式乘法中的遮挡问题】【例4】(2022秋•天津期末)在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x(﹣2x2+3x﹣1)=6x3+□+3x,“□”的地方被墨水污染了,你认为“□”内应填写( )A.9x2B.﹣9x2C.9x D.﹣9x【变式4-1】(2022秋•河南月考)今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣7xy(2y﹣x﹣3)=﹣14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□内应填写( )A.+21xy B.﹣21xy C.﹣3D.﹣10xy【变式4-2】(2022春•江都区期中)今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题3x2y(2xy2﹣xy﹣1)=6x3y3 ﹣3x2y,空格的地方被钢笔水弄污了,你认为横线上应填写 .【变式4-3】(2022秋•岳麓区校级期中)已知x3﹣6x2+11x﹣6=(x﹣1)(x2+mx+n),其中m、n是被墨水弄脏了看不清楚的两处,请求出m2+6mn+9n2的值.【题型5 整式乘法的计算】【例5】(2022春•冠县期中)计算:(1)(x﹣2y)(x+2y﹣1)+4y2(2)(a2b)[(ab2)2+(2ab)3+3a2].【变式5-1】(2022春•西城区校级期中)求(x﹣1)(2x+1)﹣2(x﹣5)(x+2)的值,其中x=﹣2.x(4−2x)−2(3﹣2x)(4x+1).【变式5-2】(2022秋•长宁区校级期中)12【变式5-3】(2022春•海陵区校级月考)计算:(1)﹣3x2(2x﹣4y)+2x(x2﹣xy).(2)(3x+2y)(2x﹣3y)﹣3x(3x﹣2y).【题型6 整式乘法的应用】【例6】(2022春•杭州期中)如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+3b),宽为(a+2b)的大长方形,则需要A类、B类和C类卡片的张数分别为( )A.2,8,5B.3,8,6C.3,7,5D.2,6,7【变式6-1】(2022春•吴江区期末)从前,古希腊一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.变小了B.变大了C.没有变化D.无法确定【变式6-2】(2022秋•安溪县期中)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是162平方米,求通道的宽度是多少米?【变式6-3】(2022春•莲湖区期末)已知有甲、乙两个长方形,它们的边长如图所示,面积分别为S1,S2.(1)S1与S2的大小关系为:S1 S2.(2)若一个正方形的周长与甲的周长相等.①求该正方形的边长(用含m的代数式表示).②若该正方形的面积为S3,试探究:S3与S2的差(即S3﹣S2)是否为常数?若为常数,求出这个常数,如果不是,请说明理由.【题型7 整式除法的运算与求值】【例7】(2022•襄都区校级开学)先化简,再求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷xy,其中x=﹣10,y =125.【变式7-1】(2022春•秀洲区校级月考)若等式(6a 3+3a 2)÷(6a )=(a +1)(a +2)成立,则a 的值为 .【变式7-2】(2022春•萧山区月考)若A 与−12ab 的积为−4a 3b 3+3a 2b 2−12ab ,则A 为( )A .﹣8a 2b 2+6ab ﹣1B .−2a 2b 2+32ab +14C .8a 2b 2﹣6ab +1D .2a 2b 2−32ab +1【变式7-3】(2022·四川·石室佳兴外国语学校七年级阶段练习)已知多项式2x 2﹣4x ﹣1除以一个多项式A ,得商式为2x ,余式为x ﹣1,则这个多项式A =_____.【题型8 整式除法的应用】【例8】(2022秋•渝中区校级期中)某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、a 2;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【变式8-1】(2022春•抚州期末)如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a 2b ,则图2中纸盒底部长方形的周长为( )A .4abB .8abC .4a +bD .8a +2b【变式8-2】(2022春•蜀山区期中)爱动脑筋的丽丽与娜娜在做数学小游戏,两人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为﹣3xy(即A÷B=﹣3xy)(1)若丽丽报的是x3y﹣6xy2,则娜娜应报什么整式?(2)若娜娜也报x3y﹣6xy2,则丽丽能报一个整式吗?若能,则是个什么整式?说说你的理由.【变式8-3】(2022秋•思明区校级期中)【阅读材料】多项式除以多项式,可用竖式进行演算,步骤如下:①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐(或留出空白);②用被除式的第一项去除除式第一项,得到商式的第一项,写再被除式的同次幂上方;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),从被除式中减去这个积;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算2x5+3x3+5x2﹣2x+10除以x2+1的商式和余式,可以用竖式演算如图.所以2x5+3x3+5x2﹣2x+10除以x2+1的商式为2x3+x+5,余式为﹣3x+5.(1)计算(2x3﹣3x2+4x﹣5)÷(x+2)的商式为 ,余式为 ;(2)2x4﹣4x3+ax2+7x+b能被x2+x﹣2整除,求a、b的值.【题型9 整式乘法中的新定义】【例9】(2022秋•夏津县期中)阅读并解决其后的问题:我们将四个有理数a,b,c,d写成|a b c d|的形式,称它为由有理数a,b,c,d组成的二阶矩阵,a,b,c,d为构成这个矩阵的元素,我们定义矩阵的运算为:|a b c d|=ad﹣bc,对于两个矩阵相加我们定义为:|a b c d|+|m n x y|=|a+m b+n1−1|= c+x d+y|,下面是两个二阶矩阵的加法运算过程:|2−335|+|−2−4 |2+(−2)(−3)+(−4)44|=0×4﹣4×(﹣7)=28.3+15+(−1)|=|0−7(1)计算|17−516−8|+|−151216−8|的值;62|+|−1512(2)计算|2x−3x+262x+3|.25x−7|+|−2x4x+862x+3|+|−2x4x+8【变式9-1】(2022秋•兰陵县期中)定义:若A﹣B=1,则称A与B是关于1的单位数.(1)3与 是关于1的单位数,x﹣3与 是关于1的单位数.(填一个含x的式子)x2+3x−1),判断A与B是否是关于1的单位数,并说明理由.(2)若A=3x(x+2)﹣1,B=2(32【变式9-2】(2022•顺平县二模)如果一个两位数a的个位数字与十位数字都不是零,且互不相同,我们称这个两位数为“跟斗数”,定义新运算:将一个“跟斗数”的个位数字与十位数字对调,把这个新两位数与原两位数的和与11的商记ω(a),例如:a=13,对调个位数字与十位数字得到新两位数31,新两位数与原两位数的和,31+13=44,和与11的商44÷11=4,所以ω(13)=4.根据以上定义,回答下列问题:(1)计算:ω(23)= .(2)若一个“跟斗数”b的十位数字是k,个位数字是2(k+1),且ω(b)=8,则“跟斗数”b = .(3)若m,n都是“跟斗数”,且m+n=100,则ω(m)+ω(n)= .【变式9-3】(2022•渝中区校级模拟)阅读以下材料:材料一:如果两个两位数ab,cd,将它们各自的十位数字和个位数字交换位置后得到两个完全不同的新数ba,dc,这两个两位数的乘积与交换后的两个两位数的乘积相等,则称这样的两个两位数为一对“有缘数对”.例如:46×96=64×69=4416,所以,46和96是一对“有缘数对”,材料二:在进行一些数学式计算时,我们可以把某一单项式或多项式看作一个整体,运用整体换元,使得运算更简单.例如:计算(x2+3x﹣1)(x2+3x﹣8),令:(x2+3x)=A,原式=(A﹣1)(A﹣8)=A2﹣9A+8=(x2+3x)2﹣9(x2+3x)+8=x4+6x3﹣27x+8解决如下问题:(1)①请任写一对“有缘数对” 和 .②并探究“有缘数对”ab和cd,a,b,c,d之间满足怎样的等量关系.并写出证明过程.(2)若两个两位数(x2+2x+3)(x2﹣2x+4)与(x2﹣2x+5)(x2+2x+5)是一对“有缘数对”,请求出这两个两位数.【题型10 整式乘法中的规律探究】【例10】(2022春•江都区期中)探究规律,并回答问题:(1)运用多项式乘法,计算下列各题:①(x+2)(x+3)= ;②(x+2)(x﹣3)= ;③(x﹣3)(x﹣1)= ;(2)若(x+a)(x+b)=x2+px+q,则p= ,q= ;(3)根据此规律,直接写出以下结果:①(x+5)(x+7)= ;②(t+2)(t﹣1)= .【变式10-1】(2022春•永丰县期末)探究发现:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.阅读解答:比较20182019×20182016与20182017×20182018的大小.解:设20182017=a,那么20182019×20182016=(a+2)(a﹣1)=a2+a﹣2;20182017×20182018=a2+a.因为a2+a﹣2 a2+a(填<>、或=),所以20182019×20182016 20182017×20182018(填<、>、或=).问题解决:化简求代数式的值.(m+22.2018)(m+14.2018)﹣(m+18.2018)(m+17.2018),其中m=2016.【变式10-2】(2022春•包河区期末)探究规律,解决问题:(1)化简:(m﹣1)(m+1)= ,(m﹣1)(m2+m+1)= .(2)化简:(m﹣1)(m3+m2+m+1),写出化简过程.(3)化简:(m﹣1)(m n+m n﹣1+m n﹣2+…+1)= .(n为正整数,m n+m n﹣1+m n﹣2+…+1为n+1项多项式)(4)利用以上结果,计算1+3+32+33+…+3100的值.【变式10-3】(2022春•雅安期末)已知x≠1.观察下列等式:(1﹣x)(1+x)=1﹣x2;(1﹣x)(1+x+x2)=1﹣x3;(1﹣x)(1+x+x2+x3)=1﹣x4;…(1)猜想:(1﹣x)(1+x+x2+x3+…+x n﹣1)= ;(2)应用:根据你的猜想请你计算下列式子的值:①(1﹣2)(1+2+22+23+24+25+26)= ;②(x﹣1)(x2022+x2021+x2020+…+x2+x+1)= .(3)判断2100+299+298+…+22+2+1的值的个位数是几?并说明你的理由.。
初二整式的乘除练习题及过程
初二整式的乘除练习题及过程在初中数学学习中,理解和掌握整式的乘除是非常重要的一环。
本文将为大家提供一些初二整式的乘除练习题,并详细解答每道题的解题过程。
练习题1:计算以下整式的乘法和除法:(2x - 3)(3x + 4)解答:首先,我们可以使用分配律将乘法进行展开:(2x - 3)(3x + 4) = 2x * 3x + 2x * 4 + (-3) * 3x + (-3) * 4= 6x^2 + 8x - 9x - 12= 6x^2 - x - 12接下来,我们可以使用长除法进行除法运算:______________________3x + 4 | 6x^2 - x - 126x^2 + 8x_____________-9x - 12-9x - 12_____________所以,(2x - 3)(3x + 4)的乘积为6x^2 - x - 12,商为3x + 4。
练习题2:求解方程:(2x^2 - 5)(x + 3) = 0解答:根据乘积为零的性质,我们可以得到两个因式的积等于零,即:2x^2 - 5 = 0 或者 x + 3 = 0首先,解第一个方程:2x^2 - 5 = 02x^2 = 5x^2 = 5/2x = ±√(5/2)然后,解第二个方程:x + 3 = 0x = -3所以,方程(2x^2 - 5)(x + 3) = 0的解为x = -3, x = √(5/2), x = -√(5/2)。
练习题3:计算以下整式的乘法和除法:(4x^3 - 2x^2 + 3x - 1)(2x^2 + x + 2)解答:首先,使用分配律将乘法进行展开:(4x^3 - 2x^2 + 3x - 1)(2x^2 + x + 2) = 4x^3 * 2x^2 + 4x^3 * x + 4x^3 * 2 + (-2x^2) * 2x^2 + (-2x^2) * x + (-2x^2) * 2 + 3x * 2x^2 + 3x * x + 3x * 2 + (-1) * 2x^2 + (-1) * x + (-1) * 2= 8x^5 + 4x^4 + 8x^3 - 4x^4 - 2x^3 - 4x^2 + 6x^3 + 3x^2 + 6x - 2x^2 - x - 2= 8x^5 + 2x^4 + 8x^3 + 2x^2 + 5x - 2接下来,我们不再计算除法的过程,因为给定的题目只要求乘法和除法的结果,没有要求进行除法运算。
17.整式的乘法与除法(含答案)-(可编辑修改word版)
17.整式的乘法与除法知识纵横指数运算律是整式乘除的基础,有以下4 个:a m·a n=a m+n,(a m)n=a nm,(ab)n=a n b n,a m÷a n=a m-n, 学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展, 方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题求解【例1】(1)如果x2+x-1=0,则x3+2x2+3= . (第14 届“希望杯”邀请赛试题)(2) (“祖冲之杯”邀请赛试题)把(x2-x+1)6 展开后得a12x12+a11x11+……+a2x2+a1x+a0,则a12+a10+a8+a6+a4+a2+a0= .思路点拨(1)把高次项用低次多项式表示;(2)我们很难将(x2-x+1)6 的展开式写出,因此想通过展开式去求出每一个系数是不实际的,事实上,上列等式在x 的允许值范围内取任何一个值代入计算,等式都成立,考虑用赋值法解.解:(1)4 提示:x2=1-x,原式=x·x-2+2x3+3=x(1-x)+2x2+3=x2+x+3=1-x+x+3=4.(2)365 提示:令x=1,由已知等式得a12+a11+…+a2+a1+a0=1 ①令x=-1,由已知等式得a12-a11+…+a2-a1+a0=729 ②①+②,得2(a12+a10+…+a2+a0)=730,即a12+a10+…+a2+a0=365⎩【例 2】已知 25x =2000,80y =2000,则 1 + 1等于().x y1 3 A.2 B.1 C.D.(第 11 届“希望杯”邀请赛试题)221 1 x + y思路点拨 因 x 、y 为指数,我们目前无法求 x 、y 的值, + =,其实只需求 x y xy出 x+y 、•xy 的值或它们的关系,自然想到指数运算律.解:选 B 提示:25xy =2000y ①,80xy =2000x ②,①×②得(25×80)xy =2000x+y ,得 xy=x+y. 【例 3】设 a 、b 、c 、d 都是自然数,且 a 5=b 4,c 3=d 2,a-c=17,求 d -b 的值.(上海市普陀区竞赛题)思路点拨 设 a 5=b 4=m 20,c 3=d 2=n 6,这样 a,b 可用 m 的式子表示,c 、d 可用 n 的式子表示, 减少字母的个数,降低问题的难度.解:提示:设 a 5=b 4=m 20,c 3=d 2=n 6(m,n 为自然数),则 a=m 4,b=m 5,c=n 2,d=n 3,由已知得 m 4- n 2=17,即(m 2+n)(m 2-n)=17因 17 是质数 m 2+n 、m 2-n 是自然数,且 m 2+n>m 2-n⎧⎪m 2+ n = 17 故⎨⎪m 2- n = 1 解得 m=3,n=8,所以,d -b=n 3-m 5=83-35=269【例 4】已知 x 2-xy -2y 2-x -7y-6=(x -2y+A)(x+y+B),求 A 、B 的值.思路点拨 等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2 提示:展开比较对应项的系数,得到关于 A 、B 的等式.【例 5】是否存在常数 p 、q 使得 x 4+px 2+q 能被 x 2+2x+5 整除?如果存在,求出 p 、q•的值,否则请说明理由.思路点拨 由条件可推知商式是一个二次三项式(含待定系数),•根据“被除式=除式× 商式”,运用待定系数法求出 p 、q 的值,所谓 p 、q 是否存在,其实就是关于待定系数的 方程组是否有解.解:提示:假设存在满足题设条件的 p 、q 值,设(x 4+px 2+q)=(x 2+2x+5)(x 2+mx+n),•⎪ ⎪⎪⎪y 2yx4x 2x4y客厅厨房卧室卫生间即x4+px2+q=x4+(m+2)x3+(5+n+2m)x2+(2n+5m)x+5n,得⎧m + 2 = 0⎪5 +n + 2m =p⎨2n + 5m = 0 ⎪⎩5n =q⎧m =-2⎪n = 5解得⎨p = 6⎪⎩q=25故存在常数p,q 且p=6,q=25,使x4+px2+q 能被x2+2x+5 整除.学力训练一、基础夯实1.(2003年河北省中考题)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),房的主人计划把卧室以外的地面都铺上地砖, 如果他选用地砖的价格是a 元/米2,则买砖至少需要元(用含a、x、y 的代数式表示).2.若2x+5y-3=0,则4x·32y= . (2002 年绍兴市竞赛题)3.满足(x-1)200>3300 的x 的最小正整数为. (2003 年武汉市选拨赛试题)4.a、b、c、d 都是正数,且a2=2,b3=3,c4=4,d5=5,则a、b、c、d•中,•最大的一个是. (“英才杯”竞赛题)5.(2001 年TI 杯全国初中数学竞赛题)化简2n+4-2(2n)2(2n+3 )得( ).A.2n+1-18 B.-2n+1 C.7D.78 46.已知a=255,b=344,c=533,d=622,那么a、b、c、d 从小到大的顺序是( ).A.a<b<c<dB.a<b<d<cC.b<a<c<dD.a<d<b<c (北京市“迎春杯”竞赛题)7.已知a 是不为0 的整数,并且关系x 的方程ax=2a3-3a2-5a+4 有整数根,则a•的值共有( ).A.1个B.3 个C.6 个D.9 个8.计算(0.04)2003×[(-5)2003]2 得( ).1 1A.1B.-1C.52003 D.-52003(2003 年杭州市中考题)9.已知6x2-7xy-3y2+14x+y+a=(2x-3y+b)(3x+y+c),试确定a、b、c 的值.10.设a、b、c、d 都是正整数,并且a5=b4,c3=d2,c-a=19,求a-b 的值. (江苏省竞赛题)11.已知四位数2x9 y =2x·9y ,试确定2x9 y -x(x2y-1-x y-1-1)的值. (北京市竞赛题)二、能力拓展12.多项式2x3-5x2+7x-8 与多项式ax+bx+11 的乘积中,没有含x4 的项,也没有含x3•的项则,a2+b= .13.若多项式3x2-4x+7 能表示成a(x+1)2+b(x+1)+c 的形式,则a= ,b= ,•c= .14.若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a2+a4= . (2003 年北京市竞赛题)15.如果多项式(x-a)(x+2)-1 能够写成两个多项式(x-3)和(x+b)的乘积,那么a= ,b= .16.若a=2255,b=3344,c=5533,d=6622,则a、b、c、d 的大小关系是( ).A.a>b>c>dB.a>b>d>cC.b>a>c>dD.a>d>b>c17.已知a1,a2,a3,……,a1996,a1997均为正数,又M=(a1+a2+……+a1996)·(a2+a3+……+a1997),N=(a1+a2+•……+a1997)(a2+a3+……+a1996),则M 与N 的大小关系是( ).A.M=NB.M<NC.M>ND.关系不确定18.若3x3-x=1,则9x4+12x3-3x2-7x+1999 的值等于( ).A.1997B.1999C.2001D.2003 (北京市竞赛题)19.已知关于x 的整系数二次三项式ax2+bx+c,当x 取1,3,6,8 时,•某同学算得这个二次三项式的值分别为1,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A.当x=1 时,ax2+bx+c=1B.当x=3 时,ax2+bx+c=5C.当x=6 时,ax2+bx+c=25D.当x=8 时,ax2+bx+c=5020.已知3x2-x-1=0,求6x3+7x2-5x+1999 的值.2a 5 + 3a 4 + 3a 3 + 9a 2 - 5a +121.已知 a 是方程 2x 2+3x -1=0 的一个根,试求代数式的值.3a -122.已知 2a ·5b =2c ·5d =10,求证:(a -1)(d -1)=(b -1)(c -1).三、综合创新9 23. 是否存在整数 a 、b 、c,满足a ·( 10 )b ·( 16 )c =2?若存在,求出 a 、b 、c 的值;若不存在•,说明理由.( )8 9 1524.当自然数n 的个位数分别为0,1,2,……,9 时,n2,n3,n4,n5 的个位数如表所示(1)从所列的表中你能发现什么规律?(2)若n 为自然数,和数1981n+1982n+1983n+1984n 不能被10 整除,那么n 必须满足什么条件?答案1.11axy2.83.7 提示:(x-1)2>334.b5.C6.D 提示:a=(25)11,b=(34)11,c=(53)11,d=(62)11,只需比较25,34,53,62 的大小7.C 提示:x=2a2-3a-5+ 4,a│4 8.A 9.a=4,b=4,c=1 a提示:•参见例5•10.75711.提示:由条件得2│2x9 y 且9│2x9 y ,则y 的值可能为0,2,4,6,8,9│(x+y)+•11,又0≤x+y≤18,x+y=7,或x+y=16,逐一验证可得x=5,y=2,故原式=2592-5(53-5-1)=•1997.12.26 提示:x4、x3 的系数分别为 2b-5a,7a-5b+22,由2b-5a=0 及7a-5b+22=0 得 a=4,b=1013.3,-10,14 14.-120 令x=±1 代入15.-2,1 16.A 提示:作商比较17.C 提示:设a2+a3+…+a1996=x,则M=(a1+x)(x+a1997)=a1x+x2+a1a1997+a1997x.,N=(a1+x+a1997)x=a1x+x2+•a1997x, M-N=a1a1997>018.D 提示:原式=(3x3-x-1)(3x+4)+200319.C 提示:由整除性质知:(n-m)[(an2+bn+c)-(am2+bm+c)],但(6-1)(25-1),( 8-6)(50-25),(8-1)│(50-1).20.2002 提示:原式=(2x+3)(3x2-x-1)+2002(2a2+ 3a -1)(a3+ 2a -1) + 5a3 21.提示:2a2+3a-1=0,3a-1=-2a2 原式=3a -1 =5a2=-5 -2a2 222.提示:由已知有2a·5b=10=2×5,得2a-1·5b-1=1,故(2a-1·5b-1)d-1=1d-1. 同理可得(2c-1·5d-1)b-1=1b-1,从而2(a-1)×(d-1)·5(b-1)(d-1)=2(c-1)(b-1)·5(d-1)(b-1),即2(a-1)(d-1)=2(c-1)(b-1),故(a-1)(d-1)=(c-1)(b-1)⎩23.原式可化为 32a ·2-3a ·2b ·5b ·3-2b ·24c ·3-c ·5-c =2,即 2-3a+b+4c ·32a-2b-c ·5b-c =21×30×50 ⎧-3a + b + 4c = 1 ⎪故⎨2a - 2b - c = 0 ⎪b - c = 0 24.(1)以下解答仅供参考:,解得 a=3,b=2,c=2①n 5 的个位数与 n 的个位数相等;②个位数是 0,1,5,6 的自然数的任何次幂,其个位数不变;③个位数是 4,9 的自然数的乘方,其个位数字交替变化;④任何自然数,乘方后的奇偶性不变等.(2)分 n=4k,4k+1,4k+2,4k+3 为讨论(k 为自然数)当 n=4k 时,1981n 、1982n 、1983n 、1984n 的个位数字分别为 1,6,1,6,则 1981n +•1982n +1983n +1984n 的个位数字为 4,故 10(1981n +1982n +1983n +1984n );当 n=4k+1 时,1981n 、1982n 、1983n 、1984n 的个位数字分别为 1,•2,•3,•4,•则 1981n +1982n +1983n +1984n 的个位数字为 0,故 10│(1981n +1982n +1983n +1984n ),同理,当 n=4k+2、4k+3 时,10│(1981n +1982n +1983n +1984n )故当且仅当 n=4k,即 n 是 4 的倍数时,和数 1981n +1982n +1983n +1984n 不能被 10 整除.。
整式的类型题
整式的类型题包括但不限于以下几种:
1. 整式的加减:这类题目通常涉及到合并同类项、去括号等基本运算,需要熟练掌握整式的运算法则。
2. 整式的乘法:包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式等类型,需要掌握乘法分配律和结合律。
3. 整式的除法:通常涉及到单项式除以单项式、多项式除以单项式等,需要掌握除法的基本运算和变形。
4. 整式的化简求值:这类题目通常涉及到整式的加减、乘除等基本运算,需要熟练掌握运算法则和代数式的变形技巧。
5. 整式的因式分解:将一个多项式表示为几个整式的积的形式,需要掌握因式分解的基本方法和技巧。
6. 整式的幂的运算:包括幂的乘方、积的乘方等,需要掌握幂的运算法则和运算性质。
7. 整式的混合运算:这类题目通常涉及到加减、乘除、乘方等基本运算,需要熟练掌握运算顺序和运算法则。
以上是常见的整式类型题目,通过练习这些题目,可以加深对整式概念的理解,提高整式运算的能力。
14.1 整式的乘法 综合计算题(含答案)
整式的乘法 计算80道(含答案)14.1.1 同底数幂的乘法14.1.2幂的乘方14.1.3积的乘方14.1.4 整式的乘法(1)单项式乘单项式 (2)多项式乘以多项式(3)同底数幂的除法【公式回顾】1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.单项式乘以单项式:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.6.单项式乘以多项式:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).7.多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.8.单项式相除:把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.9.多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++计算练习:(1)y 4•y 3•y 2•y ; (2)(﹣x 2y 3)4; (3)82019×(﹣0.125)2019;(4)(a 3)2•(2ab 2)3. (5)(﹣x 3y 2)3 (6)5a 2•(﹣3a 3)2(7)(﹣2a n b3n)2+(a2b6)n;(8)(m﹣n)2•(n﹣m)3•(n﹣m)4 (9)2100×4100×0.12599.(10)a3•a4•a+(a2)4+(﹣2a4)2.(11)(2x2)3+x4•x2+(﹣2x2)3 (12)x•x3+x2•x2.(13)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.(14)(b2n)3(b3)4n÷(b5)n+1(15)(a2)3﹣a3•a3+(2a3)2;(16)(﹣4a m+1)3÷[2(2a m)2•a].(17)8a(a2+a+);(18)5x2y•(﹣2xy2)3.(19)7x4•x5•(﹣x)7+5(x4)4.(20)(﹣1)0+(﹣1)2020;(21)(10a2﹣5a)÷(5a).(22)(14a3﹣7a2)÷(7a);(23)(a+b)(a2﹣ab+b2)(24)3x2y•(﹣2x3y2)2;(25)(﹣2a2)•(3ab2﹣5ab3).(26)a5•a3÷a2;(27)(﹣2m)3﹣(m3)2;(28)(﹣2a2b)•(abc);(29)(﹣2x)3(2x3﹣x﹣1)﹣2x(2x3+4x2)(30)(x+3)(x﹣7)﹣x(x﹣1).(31)2xy2•(﹣3xy4)(32)(y3﹣3y2+y)÷y(33)(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2(34)a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)(35)(﹣2xy2)6+(﹣3x2y4)3;(36)﹣x2•(﹣x)3+3x3(﹣x)2﹣4(﹣x)•(﹣x4).(37)﹣b2×(﹣b)2×(﹣b3)(38)(x﹣y)3×(y﹣2)2×(y﹣2)5(39)﹣a4•a3•a+(a2)4﹣(﹣2a4)2(40)(a2b2)3÷(﹣ab3)2 (41)5x2•x4﹣(﹣2x3)2+x8÷x2(42)(43)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)(44)3x3y3•(﹣x2y2)+(﹣x2y)3•9xy2.(45)(3a2b)2•(a2)4•(﹣b2)5.(46)[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2](47)x2y3(﹣2xy3)2(48)(3m2+15m3n﹣m4)÷(﹣3m2)(49)(2x3y4﹣3x3y2z)÷x2y2(50)(x﹣y)(x2+xy+y2).(51)[(x2)3]2﹣3(x2•x3•x)2;(52)3a•(a2+2a)﹣2a2(a﹣3)(53)(x2y3)2+(﹣xy)3•xy3(54)(55)x•(﹣x)•(﹣x)4(56)y•x5+(﹣2x2)2+(﹣2x2)3(57)y4+(y2)4÷y4﹣(﹣y2)2(58)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3](59)(2×102)4(60)x•x2•x3+(x2)3﹣2(x3)2;(61)(﹣a2)3﹣3a2•a•a3(62)(x﹣y)9÷(y﹣x)6÷(x﹣y)(63)﹣2x6﹣(x)2•8x5+(2x4)3÷(﹣x)5(64)(﹣2x3y)2•(﹣2x)(65)(﹣4)2012×(0.25)2013(66)若3m=6,9n=2,求3m﹣4n+1的值.(67)(x﹣3y)(﹣6x);(68)(6x4﹣8x2y)÷(﹣2x2).(69)(﹣1+3x)(﹣3x﹣1);(70)(x+1)2﹣(1﹣3x)(1+3x).(71)已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.(72)15mn2÷5mn×m3n;(73)(3x+1)(2x﹣5).(74)(75)(x3y)•(﹣3xy2)3•(x)2.(76)(x﹣2y)(x+2y﹣1)+4y2(77)(a2b)[(ab2)2+(2ab)3+3a2].(78)(a3b4)2÷(ab2)3;(79)(﹣2x3y2﹣3x2y2+2xy)÷2xy.(80)(﹣2a2)3+2a2•a4;(81)(﹣2×105)2÷(8×105)整式的乘法计算80道参考答案与试题解析(1)原式=y10;(2)原式=x8y12;(3)原式=(﹣0.125×8)2019=﹣1;(4)原式=a6×8a3b6=8a9b6.(5)(﹣x3y2)3=﹣x9y6;(6)原式=5a2•9a6=45a8;(7)原式=4a2n b6n+a2n b6n=5a2n b6n;(8)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(9)原式=299×2×499×4×0.12599=(2×4×0.125)99×2×4=199×2×4=1×2×4=8.(10)a3•a4•a+(a2)4+(﹣2a4)2=a8+a8+4a8=6a8.(11)原式=8x6+x6﹣8x6=x6;(12)原式=x4+x4=2x4;(13)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.(14)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(15)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(16)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+2(17)8a(a2+a+)=8a•a2+8a•a+8a•=8a3+6a2+5a;(18)原式=5x2y•(﹣8x3y6)=﹣40x5y7;(19)原式=7x4•x5•(﹣x7)+5x16=﹣7x16+5x16=﹣2x16.(20)(﹣1)0+(﹣1)2020=1+1=2;(21)(10a2﹣5a)÷(5a)=2a﹣1.(22)(14a3﹣7a2)÷(7a)=14a3÷7a﹣7a2÷7a=2a2﹣a;(23)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+ba2﹣ab2+b3=a3+b3.(24)3x2y•(﹣2x3y2)2=3x2y•4x6y4=12x8y5;(25)(﹣2a2)•(3ab2﹣5ab3)=(﹣2a2)•(3ab2)﹣(﹣2a2)•(5ab3)=﹣6a3b2+10a3b3.(26)a5•a3÷a2=a5+3﹣2=a6;(27)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(28)(﹣2a2b)•(abc)=﹣a3b2c.(29)原式==﹣16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(30)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.(31)原式=﹣6x2y6;(32)原式=y2﹣y+1;(33)(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.(34)原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0.(35)(﹣2xy2)6+(﹣3x2y4)3=64x6y12﹣27x6y12=37x6y12;(36)﹣x2•(﹣x)3+3x3(﹣x)2﹣4(﹣x)•(﹣x4)=x5+3x5﹣4x5=0.(37)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(38)(x﹣y)3×(y﹣2)2×(y﹣2)5=(x﹣y)3(y﹣2)7.(39)原式=﹣a8+a8﹣4a8,=﹣4a8;(40)原式=a6b6÷a2b6=a4.(41)原式=5x6﹣4x6+x6=2x6(42)==﹣4x5y3+9x4y2﹣2x2y;(43)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)=2x2+x﹣2x﹣1﹣2(x2+2x﹣5x﹣10)=2x2﹣x﹣1﹣2x2+6x+20=5x+19.(44)原式=3x3y3•(﹣x2y2)+(﹣x6y3)•9xy2=﹣2x5y5﹣x7y5.(45)原式=9a4b2•a8•(﹣b10)=﹣9a4b2•a8•b10=﹣9a12b12.(46)原式=4(a﹣b)6+(a﹣b)6+(a﹣b)2=5(a﹣b)6+(a﹣b)2.(47)x2y3(﹣2xy3)2=x2y3•(4x2y6)=4x4y9;(48)(3m2+15m3n﹣m4)÷(﹣3m2)=﹣1﹣5mn+m2.(49)(2x3y4﹣3x3y2z)÷x2y2=2xy2﹣3xz;(50)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.(51)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(52)原式=3a3+6a2﹣2a3+6a2=a3+12a2.(53)(x2y3)2+(﹣xy)3•xy3=x4y6﹣x4y6=0;(54)=(﹣0.25)15×415+××=(﹣0.25×4)15+×=﹣1+(﹣1)×=﹣1﹣=.(55)原式=﹣x2•x4=﹣x6;(56)原式=x5y+4x4﹣8x6.(57)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4;(58)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]=(y﹣x)2•(y﹣x)7•(y﹣x)3=(y﹣x)12.(59)(2×102)4=1.6×109;(60)原式=x6+x6﹣2x6=0;(61)(﹣a2)3﹣3a2•a•a3=﹣a6﹣3a6=﹣4a6.(62)原式=(x﹣y)9÷(x﹣y)6÷(x﹣y)=(x﹣y)2=x2﹣2xy+y2;(63)原式=﹣2x6﹣•8x5+(8x12)÷(﹣x5)=﹣2x6﹣2x7﹣8x7=﹣2x6﹣10x7.(64)(﹣2x3y)2•(﹣2x)=(4x6y2)•(﹣2x)=﹣8x7y2(65)(﹣4)2012×(0.25)2013=(﹣4)2012×(0.25)2012×(0.25)=(﹣4×0.25)2012×0.25=(﹣1)2012×0.25=1×0.25=0.25(66)9n=(32)n=32n=2∴3 m﹣4n+1=3m÷34n×3=3m÷(32n)2×3=6÷4×3=(67)原式=﹣6x2+18xy;(68)原式=﹣3x2+4y.(69)原式=(﹣1)2﹣(3x)2=1﹣9x2;(70)原式=x2+2x+1﹣(1﹣9x2)=x2+2x+1﹣1+9x2=10x2+2x.(71)(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.(72)15mn2÷5mn×m3n=3n×m3n=3m3n2;(73)(3x+1)(2x﹣5)=6x2﹣15x+2x﹣5=6x2﹣13x﹣5.(74)(﹣x2y﹣xy2)•(﹣xy)2=(﹣x2y﹣xy2)•x2y2=﹣x4y3﹣x3y4.(75)原式=x3y•(﹣27x3y6)•x2=﹣x8y7.(76)原式=(x﹣2y)(x+2y)﹣x+2y+4y2=x2﹣4y2﹣x+2y+4y2=x2﹣x+2y;(77)原式=a2b(a2b4+8a3b3+3a2)=a4b5+8a5b4+3a4b.(78)(a3b4)2÷(ab2)3=a6b8÷a3b6=a3b2;(79)(﹣2x3y2﹣3x2y2+2xy)÷2xy=﹣x2y﹣xy+1.(80)(﹣2a2)3+2a2•a4=(﹣2)3(a2)3+2a6=﹣8a6+2a6=﹣6a6;(81)(﹣2×105)2÷(8×105)=4×1010÷(8×105)=40×109÷(8×105)=5×104.。
难点突破“整式乘除(提高)”压轴题50道(含详细解析)
难点突破“整式乘除(提高)”压轴题50道(含详细解析)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 .3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 . 4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 .5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --=6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= .7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= ; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).10.对于任何实数,我们规定符号a cb d 的意义是:a cad bc b d =-.按照这个规定请你计算:当2310x x -+=时,1231x x x x +--的值.11.根据以下10个乘积,回答问题: 1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯;1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: . (2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块, 块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想.17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2)(34)53i i i ++-=-.(1)填空:3i = ,4i = .(2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值. (4)试一试:请利用以前学习的有关知识将11i i+-化简成a bi +的形式. 18.阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是 7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数)则该数可表示为10a b +,另一因数可表示为10(10)a b +-.两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数)(3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100(1)(10)a a b b ++-的运算式.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数.(1)根据计算结果填写下表:(2)已知22(3)()x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .20.阅读材料解决问题:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <. (1)用“>”或“<”填空:(1)(1)a a +-- 0,(1)a ∴+ (1)a -;(2)已知n 为自然数,(1)(4)P n n =++,(2)(3)Q n n =++,试比P 与Q 的大小;(3)已知654321654324A =⨯,654322654323B =⨯,直接写出A 与B 的大小比较结果.21.(1)如图1,阴影部分的面积是 .(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式: .(4)应用公式计算:222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯--.22.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式 .(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为a 、b 的长方形纸片拼出一个面积为(57)(94)a b a b ++长方形,则x y z ++= .23.已知将32()(34)x mx n x x ++-+展开的结果不含3x 和2x 项.(m ,n 为常数)(1)求m 、n 的值;(2)在(1)的条件下,求22()()m n m mn n +-+的值.24.如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,请写出2()m n +、2()m n -、mn 这三个代数式之间的等量关系: .(4)若6a b +=,5ab =,则求a b -的值.25.(1)若27a ab m +=+,29b ab m +=-.求a b +的值.(2)若实数x y ≠,且220x x y -+=,220y y x -+=,求x y +的值.26.如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是 .(2)用两种不同的方法求图中阴影部分的面积.【方法1】S =阴影 ;【方法2】S =阴影 ;(3)观察如图2,写出2()a b +,2()a b -,ab 这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若10x y +=,16xy =,求x y -的值.27.某同学在计算23(41)(41)++时,把3写成41-后,发现可以连续运用两数和乘以这两数差公式计算:222223(41)(41)(41)(41)(41)(41)(41)161255++=-++=-+=-=.请借鉴该同学的经验,计算:2481511111(1)(1)(1)(1)22222+++++. 28.如图,在长方形ABCD 中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a ,宽为b ,且a b >.(1)用含a 、b 的代数式表示长方形ABCD 的长AD 、宽AB ;(2)用含a 、b 的代数式表示阴影部分的面积.29.(1)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).(2)运用你所得到的公式,计算(2)(2)a b c a b c +---.30.已知a ,b ,c 为实数,且多项式32x ax bx c +++能被多项式234x x +-整除,(1)求4a c +的值;(2)求22a b c --的值;(3)若a ,b ,c 为整数,且1c a >,试确定a ,b ,c 的值.31.已知6()m n a a =,23()m n a a a ÷=(1)求mn 和2m n -的值;(2)求224m n +的值.32.(1)计算并观察下列各式:第1个:()()a b a b -+= ;第2个:22()()a b a ab b -++= ;第3个:3223()()a b a a b ab b -+++= ;⋯⋯这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则12322321()()n n n n n n a b a a b a b a b ab b -------+++⋯⋯+++= ;(3)利用(2)的猜想计算:12332222221n n n ---+++⋯⋯+++= .(4)拓广与应用:12332333331n n n ---+++⋯⋯+++= .33.你会求2018201720162(1)(1)a a a a a a -+++⋯+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:2(1)(1)1a a a -+=-23(1)(1)1a a a a -++=-324(1)(1)1a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋯+++= 利用上面的结论求(2)2018201720162222221+++⋯+++的值.(3)求201820172016255554+++⋯++的值.34.计算:(1)22(2)(22)a a a -++;3223(2)(222)a a a a -+++.(2)猜测122321(2)(2222)n n n n n a a a a a ------+++⋯++= ;(3)运用(2)的结论计算:12232132323232n n n n n -----+++⋯++35.(1)填空:()()a b a b -+=22()()a b a ab b -++=3223()()a b a a b ab b -+++=(2)猜想:1221()()n n n n a b a a b ab b -----++⋯++= (其中n 为正整数,且2)n .(3)利用(2)猜想的结论计算:98732333333-+-⋯+-+.36.(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①: ;方法②: ;(2)根据(1)写出一个等式: ;(3)若8x y +=, 3.75xy =,利用(2)中的结论,求x ,y ;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了22(2)()23m n m n m mn n ++=++.试画出一个几何图形,使它的面积能表示22(2)(2)252m n m n m mn n ++=++.37.对于任意有理数a 、b 、c 、d ,我们规定符号(a ,)(b c ⊗,)d ad bc =-, 例如:(1,3)(2⊗,4)14232=⨯-⨯=-.(1)求(2-,3)(4⊗,5)的值为 ;(2)求(31a +,2)(2a a -+⊗,3)a -的值,其中2410a a -+=.38.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼成一个长为2a b +,宽为a b +的大长方形,则需要A 、B 、C 类卡片各多少张?39.“杨辉三角”揭示了()(n a b n +为非负数)展开式的各项系数的规律.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年,请仔细观察“杨辉三角”中每个数字与上一行的左右两个数字之和的关系:根据上述规律,完成下列各题:(1)将5()a b +展开后,各项的系数和为 .(2)将()n a b +展开后,各项的系数和为 .(3)6()a b += .下图是世界上著名的“莱布尼茨三角形”,类比“杨辉三角”,根据你发现的规律,回答下列问题:(4)若(,)m n 表示第m 行,从左到右数第n 个数,如(4,2)表示第四行第二个数是112,则(6,2)表示的数是 ,(8,3)表示的数是 .40.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()(n a b n +为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着33222()33a b a a b ab b +=+++展开式中的系数等等.(1)根据上面的规律,则5()a b +的展开式.(2)利用上面的规律计算:5432252102102521+⨯+⨯+⨯+⨯+.(3)若52(1)(2)(x x ax b a ++-、b 为常数)的展开式中不含2x 和x 的项,求a 、b 的值.41.如图,大小两个正方形边长分别为a 、b .(1)用含a 、b 的代数式阴影部分的面积S ;(2)如果9a b +=,6ab =,求阴影部分的面积.42.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF 、CF 、AC .(1)用含a 、b 的代数式表示GC = ;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长;(3)若8a =,AFC ∆的面积为S ,则S = .43.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下: ①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式⨯商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.例如:计算432(671)(21)x x x x ---÷+,可用竖式除法如图:所以432671x x x ---除以21x +,商式为323521x x x -+-,余式为0.根据阅读材料,请回答下列问题(直接填空):(1)32(44)(2)x x x x --+÷-= ;(2)2(24)(1)x x x ++÷-,余式为 ;(3)322x ax bx ++-能被222x x ++整除,则a = ,b = .44.解答题(1)已知4x y +=,2xy =,求2()x y -的值(2)已知2()7a b +=,2()3a b -=,求22a b +的值(3)若22m n mn -=,求2222m n n m +的值. 45.你能化简9998972(1)(1)a a a a a a -+++⋯+++吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(1)(1)a a -+= ;2(1)(1)a a a -++= ;32(1)(1)a a a a -+++= ;⋯由此猜想:9998972(1)(1)a a a a a a -+++⋯+++=(2)利用这个结论,请你解决下面的问题:①求1991981972222221+++⋯+++ 的值;②若76543210a a a a a a a +++++++=,则a 等于多少?46.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成:2()a b +或 222a ab b ++222()2a b a ab b ∴+=++这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:332123+=?如图2,A 表示1个11⨯的正方形,即:31111⨯⨯=B 表示1个22⨯的正方形,C 与D 恰好可以拼成1个22⨯的正方形,因此:B 、C 、D 就可以表示2个22⨯的正方形,即:32222⨯⨯=而A 、B 、C 、D 恰好可以拼成一个(12)(12)+⨯+的大正方形.由此可得:332212(12)3+=+=尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:333123++= .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:3333123n +++⋯+= .(直接写出结论即可,不必写出解题过程)47.阅读下列材料,并解决后面的问题.材料:我们知道,n 个相同的因数a 相乘na a a ⋯可记为n a ,如328=,此时,3叫做以2为底8的对数,记为2log 8(即2log 83)=,一般地,若n a b = (0a >且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式?2log 4、2log 16、2log 64之间又满足怎样的关系式?(3)根据(2)的结果,我们可以归纳出:log log log a a a M N M += (0N a >且1a ≠,0M >,0)N >请你根据幂的运算法则:m n m n a a a +=以及对数的定义证明该结论.48.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()(n a b n +为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:7()a b +的展开式共有 项,()n a b +的展开式共有 项,各项的系数和是 .49.观察下列各式:3312189+=+=,而2(12)9+=,33212(12)∴+=+;33312336++=,而2(123)36++=,3332123(123)∴++=++;33331234100+++=,而2(1234)100+++=,333321234(1234)∴+++=+++; 3333312345(∴++++= 2)= .根据以上规律填空:(1)3333123(n +++⋯+= 2)[= 2].(2)猜想:333331112131415++++= .50.已知5210a b ==,求11a b +的值.难点突破“整式乘除(提高)”压轴题50道(含详细解析)参考答案与试题解析一.选择题(共1小题)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 【解答】解:令23201215555S =++++⋯+,则2320122013555555S =+++⋯++,2013515S S -=-+,2013451S =-, 则2013514S -=. 故选:D .二.填空题(共6小题)2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 510 .【解答】解:222122015(1)(1)(1)1510m m m -+-+⋯+-=,1m ,2m ,⋯,2015m 是从0,1,2这三个数中取值的一列数,1m ∴,2m ,⋯,2015m 中为1的个数是20151510505-=,1220151525m m m ++⋯+=,2∴的个数为(1525505)2510-÷=个.故答案为:510.3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 1- . 【解答】解:a bad bcc d=-, ∴原式(1)(23)2(1)3x x x x x =+---=-,2440x x -+=,2(2)0x ∴-=,解得2x =,∴原式341=-=-.4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 2或0 .【解答】解:2()(2)(2)2x m x x m x m +-=-+-+x m +与2x -的乘积是一个关于x 的二次二项式,20m ∴-=或20m =,解得2m =或0.故答案为:2或0.5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --= 2【解答】解:2222(20172018)[(2017)(2018)]15(2017)(2018)222a a a a a a -+---+----=-=-=. 故答案是:2.6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= 12017-. 【解答】解:6192x =,32192y =,6192326x ∴==⨯,32192326y ==⨯,1632x -∴=,1326y -=,11(6)6x y --∴=,(1)(1)1x y ∴--=,(1)(1)211(2017)(2017)2017x y ----∴-=-=- 7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= 49; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)【解答】解:(1)h (1)23=,()()()h m n h m h n +=, h ∴(2)224(11)339h =+=⨯=; (2)h (1)(0)k k =≠,()()()h m n h m h n +=,20172017()(2017)n n h n h k k k +∴==. 故答案为:49;2017n k +. 三.解答题(共43小题)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= 9025 ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.【解答】解:(1)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯, 295910100259025∴=⨯⨯+=.(2)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯,2(105)(1)10025100(1)25a a a a a ∴+=⨯+⨯+=++.(3)①219519201002538025=⨯⨯+=.②8981⨯ (854)(854)=+⨯- 22854=-891002516=⨯⨯+- 72002516=+- 7209=故答案为:9025、100(1)25a a ++. 9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数; (2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).【解答】解:(1)当1n =时,多项式1()a b +的展开式是一次二项式,此时第三项的系数为:1002⨯=, 当2n =时,多项式2()a b +的展开式是二次三项式,此时第三项的系数为:2112⨯=, 当3n =时,多项式3()a b +的展开式是三次四项式,此时第三项的系数为:3232⨯=, 当4n =时,多项式4()a b +的展开式是四次五项式,此时第三项的系数为:4362⨯=, ⋯∴多项式()n a b +的展开式是一个n 次1n +项式,第三项的系数为:(1)2n n -;(2)预测一下多项式()n a b +展开式的各项系数之和为:2n ;(3)当1n =时,多项式1()a b +展开式的各项系数之和为:11122+==, 当2n =时,多项式2()a b +展开式的各项系数之和为:212142++==, 当3n =时,多项式3()a b +展开式的各项系数之和为:3133182+++==, 当4n =时,多项式4()a b +展开式的各项系数之和为:414641162++++==,⋯∴多项式()n a b +展开式的各项系数之和:2n S =.10.对于任何实数,我们规定符号a cb d的意义是:a c ad bcb d=-.按照这个规定请你计算:当2310x x -+=时,1231x x xx +--的值.【解答】解:13(1)(1)3(2)21x xx x x x x x +=+-----,22136x x x =--+, 2261x x =-+-,2310x x -+=, 231x x ∴-=-,∴原式22(3)1211x x =---=-=.11.根据以下10个乘积,回答问题:1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯; 1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来; (3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-; 222020200⨯=- ⋯(4分)例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-. (或221129(209)(209)209⨯=-+=-(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯(3)①若40a b +=,a ,b 是自然数,则220400ab =. ②若40a b +=,则220400ab =. ⋯(8分)③若a b m +=,a ,b 是自然数,则2()2mab .④若a b m +=,则2()2mab .⑤若a ,b 的和为定值,则ab 的最大值为2()2a b +. ⑥若11223340n n a b a b a b a b +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⋯(10分) ⑦若112233n n a b a b a b a b m +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⑧若a b m +=,a ,b 差的绝对值越大,则它们的积就越小.说明:给出结论①或②之一的得(1分);给出结论③、④或⑤之一的得(2分); 给出结论⑥、⑦或⑧之一的得(3分). 12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯; 1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-;222020200⨯=-.(4分) 例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-.(5分) (或221129(209)(209)209⨯=-+=-.5分)(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯.(7分)(3)①若40a b +=,a 、b 是自然数,则220400ab =.(8分) ②若40a b +=,则220400ab =.(8分)③若a b m +=,a 、b 是自然数,则2()2mab .(9分)④若a b m +=,则2()2mab .(9分)⑤若11223340n n a b a b a b a b +=+=+=+=.且 112233||||||||n n a b a b a b a b ----,则112233n n a b a b a b a b .(10分)⑥若112233n n a b a b a b a b m +=+=+=+=.且112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯.(10分)说明:给出结论①或②之一的得(1分);给出结论③或④之一的得(2分); 给出结论⑤或⑥之一的得(3分).13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?【解答】解:(1)设28和2012都是“神秘数”,设28是x 和2x -两数的平方差得到, 则22(2)28x x --=, 解得:8x =,26x ∴-=, 即222886=-,设2012是y 和2y -两数的平方差得到, 则22(2)2012y y --=, 解得:504y =, 2502y -=,即222012504502=-, 所以28,2012都是神秘数.(2)22(22)(2)(222)(222)4(21)k k k k k k k +-=+-++=+, ∴由22k +和2k 构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为21k +和21k -, 则22(21)(21)842k k k k +--==⨯,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方; (2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值. 【解答】解:(1)242x x -+的三种配方分别为:2242(2)2x x x -+=--,2242(4)x x x x -+=+-,22242x x x -+=-;(2)222()a ab b a b ab ++=+-,222213()24a ab b a b b ++=++;(3)222324a b c ab b c ++---+,222213()(33)(21)44a ab b b b c c =-++-++-+,222213()(44)(21)44a ab b b b c c =-++-++-+,22213()(2)(1)024a b b c =-+-+-=,从而有102a b -=,20b -=,10c -=,即1a =,2b =,1c =,4a b c ∴++=.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: 22(2)(2)252a b a b a ab b ++=++. .(2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块,块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=【解答】解:(1)图③可以解释为等式:2222(2)(2)242252a b a b a ab ab b a ab b ++=+++=++ 故答案为:22(2)(2)252a b a b a ab b ++=++. (2)22(3)(2)273a b a b a ab b ++=++ 故答案为:2;7;3. (3)224m n xy -= ∴①正确;x y m +=∴②正确;x y m +=,x y n -=()()x y x y mn ∴+-=,即22x y mn -=,故③正确;22222222()()222()m n x y x y x y x y +=++-=+=+∴④正确.故答案为:①②③④.16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= 2 ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想. 【解答】解:(1)2log 42=,2log 164=,2log 646=;(2)222log 4log 16log 64+=;(3)猜想log log log ()a a a M N MN +=.证明:设1log a M b =,2log a N b =,则1b a M =,2b a N =, 故可得1212b b b b MN a a a +==,12log ()a b b MN +=, 即log log log ()a a a M N MN +=. 17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似. 例如计算:(2)(34)53i i i ++-=-. (1)填空:3i = i - ,4i = . (2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值.(4)试一试:请利用以前学习的有关知识将11ii+-化简成a bi +的形式. 【解答】解:(1)21i =-, 321i i i i i ∴==-=-,4221(1)1i i i ==--=,(2)①2(2)(2)4145i i i +-=-+=+=; ②22(2)4414434i i i i i +=++=-++=+;(3)()3(1)x y i x yi ++=--, 1x y x ∴+=-,3y =-,2x ∴=,3y =-;(4)21(1)(1)(1)21(1)(1)22i i i i i i i i i ++++====--+.18.阅读理解题 阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数) 则该数可表示为10a b +,另一因数可表示为10(10)a b +-. 两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.) 问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 10a a + .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数) (3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出. 如:100(1)(10)a a b b ++-的运算式.【解答】解:(1)47432⨯+=,4312⨯=,44733212∴⨯=.(2)十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为10a a +, 另一因数的十位数字是b ,则该数可以表示为10(10)b b +-. 故答案为10a a +、10(10)b b +-.(3)设其中一个因数的十位数字为a ,个位数字也是a 则该数可表示为10a a +,设另一因数的十位数字是b ,则该数可以表示为10(10)(b b a +-,b 表示1到9的整数). 两数相乘可得:(10)[10(10)]10010(10)10(10)a a b b ab a b ab a b ++-=+-++- 100100(10)ab a a b =++- 100(1)(10)a b a b =++-.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数. (1)根据计算结果填写下表:。
整式的乘除知识点及题型复习
整式运算考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数)③=n ab )( (n 是正整数) ④=÷nm a a (a ≠0,m 、n 都是正整数,且m>n ) ⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
同底数幂相除,底数不变,指数相减。
例:在下列运算中,计算正确的是( )(A )326a a a ⋅= (B )235()a a =(C )824a a a ÷=(D )2224()ab a b =练习:1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。
3、23132--⎛⎫-+ ⎪⎝⎭= 。
4、322(3)---⨯- = 。
5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122x x-=; D .633()()a a a -÷-=- 6、计算()8pm n a aa ⋅÷的结果是( )A 、8mnp a - B 、()8m n p a ++ C 、8mp np a+- D 、8mn p a+-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。
A 、①②B 、①③C 、②③D 、②④ 8、在①5x x ⋅ ②7x y xy ÷ ③()32x - ④()233x y y ÷中结果为6x 的有( )A 、①B 、①②C 、①②③④D 、①②④ 提高点1:巧妙变化幂的底数、指数 例:已知:23a =,326b =,求3102a b+的值;1、 已知2a x =,3bx =,求23a bx-的值。
专题15 整式的乘法-重难点题型(举一反三)(学生版)
专题整式的乘法-重难点题型【【例1】(2021•开平区一模)已知等式(x+p)(x+q)=x2+mx+36(p,q为正整数),则m的值不可能是()A.37B.13C.20D.36【变式1-1】(2021春•潍坊期末)若(x+a)(x﹣5)=x2+bx﹣10,则ab﹣a+b的值是()A.﹣11B.﹣7C.﹣6D.﹣55【变式1-2】(2020秋•播州区期末)若x+y=2,xy=﹣1,则(1﹣2x)(1﹣2y)的值是.【变式1-3】(2021春•江都区期中)在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.【题型2 整式乘法中的不含某项问题】【例2】(2021春•蜀山区校级期中)关于x的代数式(mx﹣2)(2x+1)+x2+n化简后不含有x2项和常数项.(1)分别求m,n的值.(2)求m2020n2021的值.【变式2-1】(2021春•通川区校级月考)若多项式x2+mx﹣8和x2﹣3x+n的的乘积中不含x2和x3的项,求m+n的值.【变式2-2】(2021春•金牛区校级月考)已知(x3+mx+n)(x2﹣3x+4)展开式中不含x3和x2项.(1)求m、n的值;(2)当m、n取第(1)小题的值时,求(m+n)(m2﹣mn+n2)的值.【变式2-3】(2021春•太湖县期末)【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;【能力提升】(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.【题型3 整式乘法的计算】【例3】(2020秋•河北区期末)计算:(1)−12x2y⋅(13x3y2−34x2y+16)(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)【变式3-1】(2021春•九龙坡区校级期中)计算:(1)2x2y(x−12y+1);(2)(x﹣2y)(y﹣x).【变式3-2】(2021春•海陵区校级月考)计算:(1)﹣3x2(2x﹣4y)+2x(x2﹣xy).(2)(3x+2y)(2x﹣3y)﹣3x(3x﹣2y).【变式3-3】(2021春•未央区月考)小奇计算一道整式的混合运算的题:(x﹣a)(4x+3)﹣2x,由于小奇将第一个多项式中的“﹣a”抄成“+a”,得到的结果为4x2+13x+9.(1)求a的值.(2)请计算出这道题的正确结果.【题型4 整式乘法的应用】【例4】(2021春•铁西区期中)有一电脑程序:每按一次按键,屏幕的A区就会自动减去a,同时B区就会自动加上3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16(如图所示).例如:第一次按键后,A,B两区分别显示:25﹣a,﹣16+3a.(1)那么第二次按键后,A区显示的结果为,B区显示的结果为.(2)计算(1)中A、B两区显示的代数式的乘积,并求当a=2时,代数式乘积的值.【变式4-1】(2021春•碑林区校级期中)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.(1)求铺设草坪的面积是多少平方米;(2)当a=10,b=4时,需要铺设草坪的面积是多少?【变式4-2】(2021春•成都期末)(1)如图是小颖家新房的户型图,小颖的爸爸打算把两个卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖的价格为每平方米a元,那么购买地砖至少需要多少元?(2)如果房屋的高度是h米,现在需要在客厅和两个卧室四周的墙上贴墙纸,那么至少需要多少平方米的墙纸?如果某种墙纸的价格为每平方米b元,那么购买所需的墙纸至少要多少元?(计算时不扣除门、窗所占的面积,忽略墙的厚度)【变式4-3】(2021春•莲湖区期末)已知有甲、乙两个长方形,它们的边长如图所示,面积分别为S1,S2.(1)S1与S2的大小关系为:S1S2.(2)若一个正方形的周长与甲的周长相等.①求该正方形的边长(用含m的代数式表示).②若该正方形的面积为S3,试探究:S3与S2的差(即S3﹣S2)是否为常数?若为常数,求出这个常数,如果不是,请说明理由.【知识点2 整式的除法】【例5】(2021春•上城区期末)一个长方形的面积是15x3y5﹣10x4y4+20x3y2,一边长是5x3y2,则它的另一边长是()A.2y3﹣3xy2+4B.3y3﹣2xy2+4C.3y3+2xy2+4D.2xy2﹣3y3+4【变式5-1】(2020•台湾)计算2x2﹣3除以x+1后,得商式和余式分别为何?()A.商式为2,余式为﹣5B.商式为2x﹣5,余式为5C.商式为2x+2,余式为﹣1D.商式为2x﹣2,余式为﹣1【变式5-2】(2020秋•袁州区校级期中)已知一个长方形的面积是6a2﹣4ab+2a,且它的一条边长为2a,则长方形的周长为.【变式5-3】(2021春•潍坊期末)若多项式A除以2x2﹣3,得到的商式为3x﹣4,余式为5x+2,则A=.【题型6 整式乘法中的规律探究】【例6】(2020秋•邹城市期末)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…(1)分解因式:x5﹣1=;(2)根据规律可得(x﹣1)(x n﹣1+…+x+1)=(其中n为正整数);(3)计算:(3﹣1)(350+349+348+…+32+3+1).【变式6-1】(2021春•包河区期末)探究规律,解决问题:(1)化简:(m﹣1)(m+1)=,(m﹣1)(m2+m+1)=.(2)化简:(m﹣1)(m3+m2+m+1),写出化简过程.(3)化简:(m﹣1)(m n+m n﹣1+m n﹣2+…+1)=.(n为正整数,m n+m n﹣1+m n﹣2+…+1为n+1项多项式)(4)利用以上结果,计算1+3+32+33+…+3100的值.【变式6-2】(2021春•合肥期中)观察以下等式:(x+1)(x2﹣x+1)=x3+1(x+3)(x2﹣3x+9)=x3+27(x+6)(x2﹣6x+36)=x3+216…(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.【变式6-3】(2020秋•石狮市校级月考)探究应用:(1)计算:(x﹣1)(x2+x+1)=;(2x﹣y)(4x2+2xy+y2)=.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母a、b的等式表示该公式为:.(3)下列各式能用第(2)题的公式计算的是.A.(m+2)(m2+2m+4)B.(m﹣2n)(m2+2mn+2n2)C.(3﹣n)(9+3n+n2)D.(m﹣n)(m2+2mn+n2)(4)设A=109﹣1,利用上述规律,说明A能被37整除.。
整式的加减乘除运算练习题
整式的加减乘除运算练习题在代数学中,整式是指由字母和常数通过加减乘除以及乘方运算组成的代数表达式。
整式是代数学中的基础概念,对于学习代数和解决实际问题至关重要。
本文将为您提供一系列整式的加减乘除运算练习题,帮助您提高整式运算的能力。
一、加法运算整式的加法运算是指将两个或多个整式相加的过程。
在加法运算中,我们需要注意项的合并。
练习题1:将下列整式进行加法运算,并将结果写成整式的最简形式。
1. 5x^2 + 3xy + 2y^2 + x^2 + 4xy - y^22. 7a + 3ab - 2b + 2a - 3ab + 5b3. 4x^3 - 2x^2y + xy^2 - 3x^3 + 5x^2y - 2xy^2二、减法运算整式的减法运算是指将两个整式相减的过程。
在减法运算中,我们需要注意运用括号用法和项的合并。
练习题2:将下列整式进行减法运算,并将结果写成整式的最简形式。
1. 3x^2 + 5xy - 2y^2 - (2x^2 - 4xy + y^2)2. (4a - 3b) - (2a + 5b)3. 5x^3 - x^2y + 2xy^2 - (3x^3 - 2x^2y + xy^2)三、乘法运算整式的乘法运算是指将两个或多个整式相乘的过程。
在乘法运算中,我们需要注意运用分配律和合并同类项。
练习题3:计算下列整式的乘法,并将结果写成整式的最简形式。
1. (3x + 2y)(4x + y)2. (2a - 3b)(a + b)3. (5x^2 + 2xy - y^2)(3x - y)四、除法运算整式的除法运算是指将一个整式除以另一个整式的过程。
在除法运算中,我们需要注意运用长除法和合并同类项。
练习题4:将下列整式进行除法运算,并将结果写成整式的最简形式。
1. (4x^2 + 6xy + 2y^2) ÷ (2x + y)2. (8a^2 - 2ab + b^2) ÷ (2a - b)3. (10x^3 - 4x^2 + 2xy) ÷ (2x - y)综合练习题:综合运算练习题5:计算下列整式的综合运算,并将结果写成整式的最简形式。