变压器差动保护历史及思考

变压器差动保护历史及思考
变压器差动保护历史及思考

电力变压器差动保护技术的发展

及对提高可靠性的思考

董济生

一、引言

电力变压器是电网最主要的设备之一,对于电网的安全稳定运行具有极其重要的作用。由于其单体价值高,在电网中的数量多,一旦发生故障将对电网的运行造成严重后果。通常情况下,变压器保护正确动作率,远低于线路保护的正确动作率。所以历来人们对变压器保护装置的研究、配置、运行都非常重视。随着电网的飞速发展,超高压、大容量变压器的出现,对变压器的保护装置也提出了新的更高的要求。因此迫切需要对变压器保护进一步发展与完善。

本文试图通过对电力变压器差动保护技术的发展的回顾,谈提高其动作可靠性的思考。

二、变压器故障的类型及应配置的保护

变压器的运行故障主要有两类:

(1)油箱内部故障

包括各相绕组之间的相间短路、单相绕组部分线匝之间的匝间短路、单相绕组或引出线通过外壳发生的单相接地故障、铁心烧损等;

(2)油箱外部故障

包括引出线的相间短路、绝缘套管闪络或破碎引起的单相接地(通过外壳)短路等。

变压器故障会导致不正常工作状态,主要表现在:外部短路或过负荷产生过电流、油箱漏油造成油面降低、长时间油温过高、中性点过电压等。

根据变压器的故障状态,应装设下述保护:

(1)瓦斯保护

防止变压器油箱内各种短路故障、油面降低以及长时间油温过高在壳内产生的气体,其中重瓦斯跳闸、轻瓦斯发信号;(2)纵联差动保护和电流速断保护

防止变压器绕组和引出线相间短路、大电流接地系统侧绕组和引出线的单相接地短路;

(3)相间短路的后备保护,包括过电流保护、复合电压起动的过电流保护、负序过电流保护

防止变压器外部相间短路并作为瓦斯保护和差动保护的后备;

(4)零序电流保护

防止大电流接地系统中变压器外部接地短路;、

(5)过负荷保护

防止变压器对称过负荷;

(7)反应变压器油温过高的报警信号。

以上1和7是非电类参数的,其它是电类参数。其中,差动保护原理简单、易于实现,有很高的动作选择性和灵敏度,以其优越的保护性能不仅成为大容量、高电压变压器的主保护,而且在发电机、超短线路也被采用。但是由于变压器自身的特点,存在着容易误动的情况。

三、变压器差动保护误动的原因

变压器差动保护属于纵差保护,即将电气设备两端的保护装置纵向联接起来,并将两端电气量比较来判断保护是否动作,其基础是基尔霍夫定律。根据该定律,保护范围内流入与流出的电流应该相等(变压器归算到同侧),当保护范围内发生故障时,其流入与流出的电流不等,差动保护就是根据这个差电流作为动作判据。但是在实际应用中,由于变压器励磁涌流等原因的存在,导致了变压器差动保护的误动。

从理论上讲,变压器在正常运行和区外故障时,流经差动保护装置的电流应该为零。然而,由于变压器在结构和运行上的特点,实际运行中有很多因素使该电流不为零,从而产生不平衡电流。即当保护范围内无故障时也存在不平衡电流,这些不平衡电流有可能引起保护误动。以下,对不平衡电流产生的原因及消除方法予以分析。

1、稳态情况下不平衡电流产生的原因及消除方法:

在变压器稳态运行的状态下,影响差动保护误动的原因就是回路中的不平衡电流。其产生的原因大致有:

(1)因各侧绕组的接线方式不同造成电流相位不同而产生不平衡电流

我国规定的五种变压器标准联结组中,Y/D-11双绕组变压器常被使用。这种联结方式的变压器两侧电流相差30°,要使差动保护不误动就要设法调整电流互感器二次回路的接线和变比以进行相位校正,使电源侧和负荷侧的电流互感器二次电流相差180°且大小相等,这样就能消除Y/D-11变压器接线对差动保护的影响。

(2)因电流互感器计算变比与实际变比不同而产生不平衡电流

由于各侧的电流互感器变比都是标准的,如:600/5、800/5、1000/5、1200/5等,变压器的变比也是一定的,二者之间没有必然联系,所以很难完全满足二次电流相等的要求。从而在差动回路就有不平衡电流流过使保护可能误动。通常利用差动保护装置内的平衡电路环节实现平衡。如电磁型差动继电器,是通过平衡线圈进行磁补偿来消除或减小这个差值,从而消除或尽量减小不平衡电流造成的影响。

(3)因各侧电流互感器存在传变特性不同产生不平衡电流

因各侧电流互感器型号不同,其结构形式、饱和特性、励磁电流(归算到同侧)、传变特性等不同,产生的变比误差和角度误差也就不同。因此正常运行情况下差动回路中产生的两臂的不平衡电流较大时,会影响保护正确动作。在外部故障或穿越型故障时这种不平衡电流会进一步放大。因某一侧电流互感器饱和而产生大量的不平衡电流时,也有可能影响变压器差动保护的正确动作。所以应采用满足10%误差曲线要求的电流互感器,并在整定计算中予以考虑。

(4)因带负荷调整分接头而产生不平衡电流

有载调压变压器可以带负荷调整变压器分接头。改变分接头就是改变变压器的变比,对于已调整好的差动保护将产生较大的不平衡电流。由于有载调压是带负荷连续调节,而差动保护不能带电调整,所以在整定计算时必须考虑这个因素。 (5)消除零序电流对保护影响的应对措施

 变压器为Y/△接线且星形侧中性点接地时,在发生单相接地故障情况下,星形侧有穿越性零序电流流过,但在三角形侧,没有零序电流存在,那么保护装置中也将产生虚假差流,差动保护有误动可能。所以,微机变压器保护装置设计了将零序电流过滤的功能,以消除不平衡电流在保护装置中产生,防止保护误动。

(6)因差动保护电流互感器回路断线、多点接地等原因引起的不平衡电流

三、变压器励磁涌流的特点及防止误动的技术

当被保护变压器空载投入和外部故障切除后电压恢复时,以及下一级变压器空载投入时,会出现励磁电流即励磁涌流。其特点是,其大小可达相当于6-8倍额定电流。含有很大成分的非周期分量、含有大量的高次谐波分量且以二次谐波为主、波形之间有间断且偏于时间轴的一侧。涌流的大小和衰减时间与外加电压、铁芯剩磁大小与方向、回路阻抗、变压器容量和铁芯性质有关。对于三相交流变压器,由于三相之间相差120°,所以任何瞬间合闸至少有两相出现不同的励磁涌流,它对变压器差动保护的正确动作有不利影响,而在稳态运行及差动范围外发生故障时则影响不大。

变压器差动保护中关键的技术问题之一,就是如何区别涌流和区内故障的电流,防止励磁涌流导致的误动。回顾国内几十年来的发展情况,防止励磁涌流误动的技术大致经历了几个时期。

在电磁型继电器为主要保护装置元件的时期,差动继电器采用速饱和变流器的直流助磁特性、制动线圈的制动特性等原理防止涌流造成的误动作。在晶体管装置以及数字技术的时期,根据励磁涌流的谐波分量中以二次谐波为主的特点,采用了二次谐波制动的原理。根据励磁涌流中波形之间有间断的特点,采用了监测间断角的原理用来闭锁。

在计算机应用即微机保护的时代,又增加了新的判据原理和功能。

如基于电压/电流相似性的差动保护,可通过在特定时间段内比较变压器电源端电压和差动电流波形的相似性来区分变压器内部故障和励磁涌流,能在很短时间内动作(20ms)且不受电流互感器饱和影响。

虚拟三次谐波的差动保护是用一个虚拟的波形代替第2,5周期,该波形与第1,5周期幅值相同符号相反。由于波形对称,频谱中只有基波和奇次谐波分量,且三次谐波含量比其它谐波都大,这样就可明显提高差动保护的速度。

人工智能的差动保护。借助模糊逻辑算法计算磁通差动电流微分曲线、谐波约束条件以及比率差动特性曲线,然后对计算结果进行分析判别励磁涌流和内部故障,这种保护速度快,能在3/4周期内作出反应,可适用于各种类型的变压器。

能谱分析的差动保护。使用特殊设计的互感器捕捉暂态电流中的高频分量,进而求出原/副边的差动电流和平均电流,再抽取相应的能谱作为动作和约束条件,能谱的数值差别用于区分内部故障和外部故障。

小波变换的差动保护。应用小波分析提取涌流和故障电流的特征,具有很高的辨析度。结合神经网络对变换结果进行诊断分析将进一步提高保护的准确性和可靠性。

标积制动原理有很高的灵敏度,但它对相位特性特别敏感,容易误动。采取特殊的抗电流互感器饱和措施,即可消除这个缺点,从而提高保护动作的可靠性。

其他有代表性的鉴别励磁涌流的方法还有波形对称原理、波形叠加原理、波形相关性分析法和波形拟合法,以及比率制动原理等。

以上各种原理的变压器差动保护装置,都是针对变压器励磁涌流的某个特点研制开发的。由于篇幅的原因,在此对实现的具体电路不做详细介绍。大量运行的实践证明,这些原理以及以此而形成的保护装置,都是行之有效的,也都具有相当高的可靠性。

有一些变压器差动保护装置,属于不依赖于励磁涌流特征的方案。如磁通特性识别法,等值电路参数鉴别法等。还有利用变压器的参数模型正常情况下与变压器内部故障时的不同,提出了保护判据。由于此判据是根据变压器正常运行的模型得到的,它适合于外部故障、励磁涌流及过激磁等情况。因而,在励磁涌流、过激磁、外部故障情况下保护不会误动作

随着智能理论的发展,正在探讨各种新原理的差动保护。这些新原理、新方法的出现,将大大提高了主设备保护的灵敏度和鉴别各种故障的能力。其中微机保护的迅速成熟和应用普及体现了强大的优越性。对提高保护的可靠性具有重要作用。可以预见,随着新技术、新原理的不断发展和应用,变压器保护的功能将越来越完善,可靠性将显著提高。

四、 对提高变压器差动保护动作可靠性的思考

通过对变压器差动保护技术的回顾和分析,可以看出。差动保护的原理、判据都是简洁、明了,回路简单易实现,因此成为广泛应用的变压器的主保护。但是消除稳态和暂态情况下不平衡电流引起的误动,又是该保护普遍存在的重要技术问题。

1、实践中,对于稳态情况下存在的不平衡电流,基本上都有相应的技术方案得以解决。为防止暂态的不平衡电流,即各种原因引起的励磁涌流引起的保护误动,采用了多种技术方案,从而形成了各种原理的变压器差动保护装置。各种变压器差动保护装置都是以防止涌流误动的技术为标志。

实际运行的变压器差动保护,在防止涌流误动的技术方案中,根据涌流的特点,以及与故障电流的区别形成的装置,主要是从量和型两个方面的差别入手获取判据。量指的是涌流中与故障电流中存在的谐波分量的差别。型的方面指的是涌流与故障电流波形方面的差别。量的方面以采用以二次谐波制动原理的装置应用最为广泛;在型的方面以鉴别间断角原理来判别励磁涌流的装置历史最长。

2、随着运行经验的积累和对涌流的认识,人们发现围绕着涌流防误动是一种误区。其主要理由是:

(1)、对基于以二次谐波制动原理的装置,由于无功补偿用的并联电容或超高压长输电线分布电容的存在,使得变压器发生内部故障时也会产生很大的二次谐波,而且随着大型变压器铁心采用冷轧硅钢片后,饱和磁通倍数由1.4降至了1.2~1.3,甚至低至1.1~1.15,使励磁涌流中的二次谐波含量有时低至10%以下,这样二次谐波制动原理的制动比率就很难选取,保护就可能存在不正确动作。

(2)、对基于间断角原理的励磁涌流识别方案,也存在着由于电流互感器饱和等因素造成传变影响等问题。

该观点同时认为,由于三相变压器励磁涌流的波形特征随系统电压和等值阻抗、合闸初相角、剩磁大小和方向、绕组接线方式和中性点接地方式、三相铁心结构、铁心材料和组装工艺、磁滞回线和局部磁滞环等不同而改变,所以任何以励磁涌流特征为依据的,防止由励磁涌流而引起误动的措施均不能保证变压器差动保护不误动,差别仅是误动次数的多少。 于是,产生了不依赖涌流特征而设计的变压器差动保护方案。

3、对防止励磁涌流造成误动的其它对策

(1)短时投交叉闭锁逻辑,之后自动开放差动保护。

(2)启用以下临时定值:

①提高差动动作门槛

②降低二次谐波制动值,将制动系数降低到10%左右;

③降低后备保护定值,将复压过流降低至:0.6~1.0额定电流,时间调至0.3~0.5s。

主变投运后,自动启动第二组定值(差动保护正常定值)运行。

(3)采用自适应的比率差动。

国内有些装置,为防止外部故障电流互感器饱和,以及电流互感器暂态特性不一致出现不平衡电流产生的差流,利用检测某相三次谐波与该基波的比值大于定值,自动提高比率制动差动动作值,改变比率制动系数和最小制动电流。

以上措施能初步解决空投变压器励磁涌流跳闸问题,且是以牺牲保护灵敏性和快速性为代价的;但外部故障切除后电压恢复时的励磁涌流以及"和应涌流"跳闸问题仍难以避免。

4、对励磁涌流的研究及发展方向

 利用模糊控制中的隶属函数识别励磁涌流和故障电流。用"加权平均法"计算出的三相差流总隶属度;为用"取大一取小法"计算出的三相差流总隶属度。判断内部故障和励磁涌流,从而开放或者闭锁差动保护。

该方法的先进性在于克服了传统的二次谐波制动原理使用固定式门槛阈值的缺陷,对励磁涌流有反时限特性的自适应性功能,能正确判断励磁涌流和故障电流。计算机仿真试验结果与理论分析吻合,对于提高差动保护可靠性具有明显效果。

 5、抑制或降低涌流、提高保护可靠性

通过科研工作者的研究,涌流抑制技术在近年取得突破,其应用型产品已获得国家有关部门的检验认证,并在变电工程进行实际应用。该技术的应用能极大地抑制励磁涌流的产生,从而保障微机变压器保护的正确动作率,提高保护可靠性。

其基本原理是:通过监测电源电压波形实现对磁通的监测,进而获取在电源电压断电时剩磁的极性,并将这种极性记录下来,在下次合闸时,使偏磁(或激磁)的极性与剩磁极性相反,从而实现对励磁涌流的抑制。由此降低微机差动保护

的不平衡电流,以提高保护可靠性。

未来的发展应该是更为先进的励磁涌流与故障电流的识别技术,以及励磁涌流抑制技术的产物,微机变压器保护的可靠性将由此得到大幅度的提高。

5、另外笔者还认为,

(1)对基于不依赖涌流特征而设计的变压器差动保护方案,是差动保护的一种发展和进步。应该值得鼓励和提倡进一步研究和投入使用。但不是所有以涌流波形特征为依据的差动保护都一定会误动。所以

(2)对基于间断角原理的励磁涌流识别方案。其波形间断的特征无论电流互感器如何饱和,都不至于出现与故障电流难以区别的情况。因此应该是可靠的判据。对于波形对称鉴别原理的保护,利用涌流偏于时间轴一侧,而故障电流相互对称的特点,也不会因电流互感器如何饱和,都不至于出现与故障电流难以区别的情况。

 (3)500kv系统联络变压器大多为单相式自耦变压器,变压器内部绕组对铁芯(即地)的绝缘损坏,即单相接地故障应是变压器内部故障的主要形式。相间短路的可能性极小,因此增加反映零序电流的差动保护十分必要。反映相电流的差动保护至少在保护原理上滤掉了零序电流分量,在变压器内部发生单相接地故障时灵敏度没有反映零序电流的差动保护灵敏度高。

对于单相式自耦变压器中性点均安装有分相电流互感器,也不存在电流相位不易测量的问题。另外,对于微机保护而言,只要将中性点电流互感器接人保护中,在软件上稍作修改即可实现。

(4)对于为微机保护,采用先进的多CPU容错技术进行保护的设计开发以保证装置本身工作的可靠性,可大大降低由于硬件问题引起误动的概率。多CPU同时处理一组数据且信息共享,能及时检测、纠正因硬件故障可能引起的误动和拒动,一个CPU有故障其它正常的CPU仍可工作。

 (5)无论何种原理的差动保护,其电气参数都取自于电流互感器,因此对电流互感器的研制和使用同样需要相应的投入。近年来研制的非电磁性电流互感器,如光电式互感器,将为消除电流互感器固有缺陷提供了很好的途径。

五、结束语

本文回顾了变压器差动保护的发展历史,谈了存在的问题和解决的方法。主要的是解决涌流及电流互感器引起的不平衡电流。各种原理的变压器差动保护都对涌流采取了相应的技术措施,对防止变压器差动保护误动都起到了很好的作用。但另一方面,无论何种保护都离不开电流互感器,所以对于电流互感器的研制和合理使用,与保护装置的研制同样重要。

变压器差动保护误动分析及对策(一)

变压器差动保护误动分析及对策(一) 要:文章对微机型变压器差动保护动作的原因,从事件的形成以及保护的原理给予了详细地分析。对新建的、运行的或设备更新改造的发电厂和变电站的变压器差动保护误动提出了对策。 关键词:差动保护误动动作特性电流互感器 0引言 电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证。作为主设备主保护的微机型纵联差动(简称纵差或差动)保护,虽然经过不断的改进,但是还存在一些误动作的情况,这将造成变压器的非正常停运,影响电力系统的发供电,甚至是造成系统振荡,对电力系统发供电的稳定运行是很不利的。因此对新建或设备更新改造的发电厂和变电站的变压器差动保护误动原因进行分析,并提出了防止变压器差动误动的对策。 1变压器差动保护 变压器差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过变压器各侧电流的向量和得到,在变压器正常运行或者保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。

1.1比率差动保护的动作特性比率差动保护的动作特性见图1。当变压器轻微故障时,例如匝间短路的圈数很少时,不带制动量,使保护在变压器轻微故障时具有较高的灵敏度。而在较严重的区外故障时,有较大的制动量,提高保护的可靠性。 二次谐波制动主要区别是故障电流还是励磁涌流,因为变压器空载投运时会产生比较大的励磁涌流,并伴随有二次谐波分量,为了使变压器不误动,采用谐波制动原理。通过判断二次谐波分量,是否达到设定值来确定是变压器故障还是变压器空载投运,从而决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。对于有些大型的变压器,为了增加保护的可靠性,也有采用五次谐波的制动原理。 1.2差动速断保护的作用差动速断保护是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断的定值是按躲过变压器的励磁涌流,和最大运行方式下穿越性故障引起的不平衡电流,两者中的较大者。定值一般取(4~14)Ie。 2变压器差动保护误动作原因分析 根据变压器差动保护误动作可能性的大小,大致分为新建发电厂和变电站、运行中发电厂和变电站、设备更新改造的发电厂和变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于在分析问题时优先考虑现实问题。 2.1新建发电厂和变电站变压器差动保护误动作原因分析新建变电站的变压器差动保护误动作,在变压器差动保护误动作中占了较大的比

变压器继电保护灵敏度探讨 刘宇

变压器继电保护灵敏度探讨刘宇 发表时间:2019-08-07T10:34:09.030Z 来源:《基层建设》2019年第11期作者:刘宇 [导读] 摘要:随着供电系统的不断发展,加强继电保护措施保障供电系统的安全稳定运行成为迫切需求。 国网临汾供电公司山西临汾 041000 摘要:随着供电系统的不断发展,加强继电保护措施保障供电系统的安全稳定运行成为迫切需求。如何快速、正确地校验变压器继电保护的灵敏度,对继电保护定值整定工作非常重要。本文简单分析了供电系统中的继电保护措施,并对变压器差动保护灵敏度校验进行探讨。 关键词:继电保护;变压器;灵敏度 一、变压器的继电保护基本原则 1、经济性 经济性是指在经济上以最少的投资达到最高程度的保护原则。 2、灵敏性 灵敏性是指保护装置对其保护区内发生故障或不正常运行状态的反应能力,用灵敏系数来衡量。 3、选择性 选择性是指当供电系统发生故障时,首先由故障设备或线路本身保护且出故障,当故障设备或线路的保护或断路器拒动时应由相邻设备或线路的保护将故障切除。 4、可靠性 可靠性指在该保护装置规定的保护范围内,发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护不应该动作的情况下,则不应该误动作。可靠性主要指保护装置本身的质量和运行维护水平而言,可以用拒动率和误动率来衡量,当两者愈小则保护的可靠性愈高。为保证可靠性应采用由可靠的硬件和软件构成的装置,并应具有必要的自动监测、闭锁报警等措施。 5、速动性 速动性是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装置速动保护充分发挥零序瞬时段保护及相间速断保护的作用,减少继电器固有动作时间和断路器跳闸时间等方面入手来提高速动性。 二、继电保护措施 1、变压器瓦斯保护 当变压器油箱内发生各种短路故障时,由于短路电流和短路点电弧的作用,变压器油和绝缘材料受热分解,产生大量气体,从油箱流向油枕上部,故障愈严重,产生气体越多,流向油枕的气流和油流速度也越快,利用这种气体来实现的保护称气体保护,也叫瓦斯保护。瓦斯保护是变压器内部故障的主保护。当变压器内部发生轻微故障时,气体产生的速度较缓慢,汇集于继电器内,达到一定量后触动继电器,发出信号,即所谓的轻瓦斯;当变压器内部发生严重故障时,产生强烈的瓦斯气体,使继电器动作于跳闸,断开变压器电源侧各断路器,即所谓的重瓦斯。瓦斯保护动作迅速、灵敏可靠且结构简单,可以反应出油箱内的一切故障,但它不能反应油箱外部电路的故障,所以不能作为保护变压器内部故障的唯一保护装置。 2、电流速断保护 对于2000~10000KVA及以下较小容量的变压器,若灵敏系数满足要求,应采用电流速断保护。电流速断保护反应变压器绕组和引出线的相间短路,对中性点直接接地侧绕组和引出线的接地短路及绕组匝间短路也能起到保护作用。它按被保护设备的短路电流整定,当短路电流超过整定值时,保护装置动作。电流速断保护一般没有时限,切除故障快,但不能保护线路全长,即存在保护的死区。电流速断保护装设在变压器的电源侧,由瞬动的电流继电器构成。 3、纵联差动保护 纵联差动保护是变压器的主保护,同属于相间短路保护,用来保护变压器内部及引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。对于10000KVA及以上厂用备用变压器和单独运行的变压器,以及2000KVA以上用电流速断保护灵敏性不符合要求的变压器,应装设纵联差动保护。它是利用基尔霍夫电流定理工作的,反应被保护区两侧电流差而动作,不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,可以瞬时动作。如果故障程度比较轻,差动保护可以预警后并延长故障继续发生的时间,为专业人员的维修提供一定的时间差,同时差动保护还可以利用已经编好的程序,对小型故障进行自动的排除等。如果故障程度比较严重,差动保护会直接报警并且断电,避免短路后经济损失情况的发生。由于差动保护具有以上的优势,目前供电系统广泛采用该技术,它将成为未来继电保护的一种趋势。 4、过电流保护 过电流保护是作为瓦斯保护和差动保护的后备保护,可以准确反应出变压器短路所导致的过电流。过电流保护装置一般是装在电力变压器的电源侧,并且根据变压器的要求装配不同的保护装置。升降压变压器处可以装配复合电压起动的过电流保护,大接地电流系统中,可以在变压器外部装配零序电流保护,作为主变压器保护的后备保护。过电流保护的具体启动方式应该根据相配备的变电器的相应数据进行合理选择,没有统一的标准,可以根据供电系统的不同需求装配不同的过电流保护装置。 5、过励磁保护 现代供电系统由与工作电压过高,电力变压器的额定磁密接近饱和。频率降低时与电压升高时,变压器都很容易出现过励磁,导致铁心的温度上升影响绝缘性能。安装励磁保护装置,可将变压器的过励磁引起的过电流反应出来,从而可防止变压器绝缘老化,提高变压器的使用效能。 6、过负荷保护 过负荷保护能够反应变压器正常运行时所出现的过负荷情况。过负荷装置仅在变压器有可能过负荷的情况下才装设,通常能够检测出过负荷的信号。它的基本工作原理为:一相上进行一个电流继电器的装设,并经过一定时间延长动作于信号来进行过负荷保护

变压器差动保护原理及调试的探讨

变压器差动保护原理及调试的探讨 摘要:本文通过对变压器的工作原理和差动保护原理进行相关的分析,并且着 重讨论计算方法和相位补偿等问题,在了解过这些问题之后,才能够对变压器差 动保护装置的原理和如何调试该装置进行相应的讨论。只有通过一步一步的推导,才能够计算出一个完整的、科学的算法,才能够在VisualBasic6.0的编程中进行更为精确的计算,然后再进一步开发出相应的变压器差动保护装置。该系统具有操 作简单和互动性良好的优点,使用者能够很好的对其进行操作,并且能够保证数 据的准确性。该系统提升了工作人员现场调试的效率,并且有效的指导了工作人 员们应该如何进行有效的变压器调试工作,这对于变压器的调试工作是十分有利的。 关键词:差动保护装置;变压器;原理;调试 引言:变压器差动保护作为变压器的主保护,具有十分重要的意义,变压器 的差动保护装置成为安装作业阶段的重中之重,由于变压器的安装工作会直接影 响到变压器后期的使用效果,所以要格外注重变压器的差动保护装置,该装置是 维护变压器正常运行的关键。所以,一定要掌握差动保护装置的工作原理,除此 之外,其调试工作也是十分重要的。 一、微机变压器差动保护原理 1.差动保护的动作曲线和动作判据 变压器差动保护是按比较各侧电流大小和相位而构成的一种保护。当变压器 内部故障时,有差动电流流过差动回路,当电流达到整定值时差动继电器动作, 跳开变压器各侧的断路器。变压器在正常运行或外部故障时,在理想情况下,流 过差动回路的电流为零,差动继电器不动作。微机型变压器差动保护动作特性多 采用具有二段折线形的动作特性曲线。 2.制动电流的取得 对于双绕组变压器,制动电流常用以下两种取得方法。制动电流取高、低压 侧TA二次电流相量差的一半,即Is=12I?h-I?l制动电流取高、低压侧TA二次电流幅值的最大值,即Is=maxI?h,I?lll对于三绕组变压器,制动电流取法与双绕组变 压器的基本相同。 3.微机变压器保护相位的校正 双绕组变压器常采用Y,d11接线方式,则变压器两侧电流相位差为30°,为 保证在正常运行或外部短路故障时高压侧电流与低压侧电流呈反向关系,必须进 行相位校正。对于Y,y,d11接线方式的三绕组变压器也应通过相位校正的方法 保证星形侧与三角形侧电流呈反向关系。对于微机保护,变压器两侧电流相位差 由软件进行相位校正,两侧电流互感器二次接线同为星形接线法,称为“内转角” 方式。 二、大型变压器差动保护系统常规调试方法与内容 1.变压器差动保护系统的形式 大型变压器差动保护的基本原理,是利用安装在变压器高低压两侧的电流互 感器,监测比较输入输出的电流的相位和大小,当发现电流不平衡时,启动差动 继电器给出跳闸信号,保护变压器,形成所谓的纵向差动保护,变压器差动保护 系统有由继电器为主要控制元件组成的继电保护系统,以及由微机运算控制的综 合微机保护系统。

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

变压器差动保护

第二节变压器差动保护 1.概述 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电机上的应用是比较简单的,但是作为变压器内部故障的主保护,差动保护将有许多特点和困难。 变压器有两个和更多个电压等级,构成差动保护所用电流互感器的额定参数各不相同,由此产生的差动保护不平衡电流将比发电机大得多。 变压器每相原副边电流之差(正常运行时的励磁涌流)将作为变压器差动保护不平衡电流的一种来源,特别是当变压器过励磁运行时,励磁电流可达变压器额定电流的水平,势必引起差动保护误动作。更有甚者,在空载变压器突然合闸时,或者变压器外部短路被切除而变压器端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小可与短路电流相比拟,在这样大的不平衡电流下,要求差动保护不误动,是一个相当复杂困难的技术问题。 正常运行中的变压器,根据电力系统的要求,需要调节分接头,这又将增大变压器差动保护的不平衡电流。 变压器差动保护能反应高、低压绕组的匝间短路,而匝间短路时虽然短路环中的电流很大,但流入差动保护的电流可能不大。 变压器差动保护还应能反应高压侧(中性点直接接地系统)经高阻接地的单相短路,此时故障电流也较小。 综上所述,差动保护用于变压器,一方面由于各种因素产生较大和很大的不平衡电流,另一方面又要求能反应具有流出电流的轻微匝间短路,可见变压器差动保护要比发电机差动保护复杂得多。 2.配置原则 对变压器引出线、套管及内部的短路故障,应装设相应的保护装置,并应符合下列规定: (1) 10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动 保护。6.3MVA及以下单独运行的重要变压器,亦可装设纵联差动保护。 (2) 10MVA以下的变压器可装设电流速断保护和过电流保护。2MVA及以上的变压器,当电 流速断灵敏系数不符合要求时,宜装设纵联差动保护。 (3) 0.4MVA及以上,一次电压为10kV及以下,线圈为三角-星形连接的变压器,可采用两 相三继电器式的过流保护。 (4) 以上所述各相保护装置,应动作于断开变压器的各侧断路器。 3.要求达到的性能指标 (1) 具有防止区外故障误动的制动特性; (2) 具有防止励磁涌流引起误动的功能; (3) 宜具有TA断线判别功能,并能选择闭锁差动或报警,当电流超过额定电流的 1.5~2倍 时可自动解除闭锁; (4) 动作时间(2倍整定值时)不大于50ms; (5) 整定值允差±5%。 4.原理及其微机实现 4.1四方 4.1.1 保护原理 变压器差动包括主变差动、发变组差动、厂用变差动、起/备变差动、励磁变差动等,对于高压侧为500kV的一个半开关接线方式,发变组差动及主变差动保护应反应四侧的电流量。

电力变压器差动保护原理与研究

变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。 变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 1)励磁涌流 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同

变压器差动保护

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

变压器差动保护历史及思考

电力变压器差动保护技术的发展 及对提高可靠性的思考 董济生 一、引言 电力变压器是电网最主要的设备之一,对于电网的安全稳定运行具有极其重要的作用。由于其单体价值高,在电网中的数量多,一旦发生故障将对电网的运行造成严重后果。通常情况下,变压器保护正确动作率,远低于线路保护的正确动作率。所以历来人们对变压器保护装置的研究、配置、运行都非常重视。随着电网的飞速发展,超高压、大容量变压器的出现,对变压器的保护装置也提出了新的更高的要求。因此迫切需要对变压器保护进一步发展与完善。 本文试图通过对电力变压器差动保护技术的发展的回顾,谈提高其动作可靠性的思考。 二、变压器故障的类型及应配置的保护 变压器的运行故障主要有两类: (1)油箱内部故障 包括各相绕组之间的相间短路、单相绕组部分线匝之间的匝间短路、单相绕组或引出线通过外壳发生的单相接地故障、铁心烧损等; (2)油箱外部故障 包括引出线的相间短路、绝缘套管闪络或破碎引起的单相接地(通过外壳)短路等。 变压器故障会导致不正常工作状态,主要表现在:外部短路或过负荷产生过电流、油箱漏油造成油面降低、长时间油温过高、中性点过电压等。 根据变压器的故障状态,应装设下述保护: (1)瓦斯保护 防止变压器油箱内各种短路故障、油面降低以及长时间油温过高在壳内产生的气体,其中重瓦斯跳闸、轻瓦斯发信号;(2)纵联差动保护和电流速断保护 防止变压器绕组和引出线相间短路、大电流接地系统侧绕组和引出线的单相接地短路; (3)相间短路的后备保护,包括过电流保护、复合电压起动的过电流保护、负序过电流保护 防止变压器外部相间短路并作为瓦斯保护和差动保护的后备; (4)零序电流保护 防止大电流接地系统中变压器外部接地短路;、 (5)过负荷保护 防止变压器对称过负荷; (7)反应变压器油温过高的报警信号。 以上1和7是非电类参数的,其它是电类参数。其中,差动保护原理简单、易于实现,有很高的动作选择性和灵敏度,以其优越的保护性能不仅成为大容量、高电压变压器的主保护,而且在发电机、超短线路也被采用。但是由于变压器自身的特点,存在着容易误动的情况。 三、变压器差动保护误动的原因 变压器差动保护属于纵差保护,即将电气设备两端的保护装置纵向联接起来,并将两端电气量比较来判断保护是否动作,其基础是基尔霍夫定律。根据该定律,保护范围内流入与流出的电流应该相等(变压器归算到同侧),当保护范围内发生故障时,其流入与流出的电流不等,差动保护就是根据这个差电流作为动作判据。但是在实际应用中,由于变压器励磁涌流等原因的存在,导致了变压器差动保护的误动。 从理论上讲,变压器在正常运行和区外故障时,流经差动保护装置的电流应该为零。然而,由于变压器在结构和运行上的特点,实际运行中有很多因素使该电流不为零,从而产生不平衡电流。即当保护范围内无故障时也存在不平衡电流,这些不平衡电流有可能引起保护误动。以下,对不平衡电流产生的原因及消除方法予以分析。 1、稳态情况下不平衡电流产生的原因及消除方法: 在变压器稳态运行的状态下,影响差动保护误动的原因就是回路中的不平衡电流。其产生的原因大致有: (1)因各侧绕组的接线方式不同造成电流相位不同而产生不平衡电流 我国规定的五种变压器标准联结组中,Y/D-11双绕组变压器常被使用。这种联结方式的变压器两侧电流相差30°,要使差动保护不误动就要设法调整电流互感器二次回路的接线和变比以进行相位校正,使电源侧和负荷侧的电流互感器二次电流相差180°且大小相等,这样就能消除Y/D-11变压器接线对差动保护的影响。 (2)因电流互感器计算变比与实际变比不同而产生不平衡电流

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。 ②电流互感器计算变比与实际变比不同 由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。

变压器纵差动保护动作电流的整定原则是什么

变压器纵差动保护动作电流的整定原则是什么? .(1)大于变压器的最大负荷电流; (2)躲过区外短路时的最大不平衡电流; (3)躲过变压器的励磁涌流。 39.什么是自动重合闸?电力系统为什么要采用自动重合 闸? 答:自动重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。电力系统运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性故障一般不到10%。因此,在由继电保护动作切除短路故障之 后,电弧将瞬间熄灭,绝大多数情况下短路处的绝缘可以自动恢复。因此,自动将断路器重合,不仅提高了供电的安全性,减少了停电损失,而且还提高了电力系统的暂态稳定水平,增大了高压线路的送电容量。所以,架空线路要采用自动重合闸装置。 什么是主保护、后备保护、辅助保护? 答:主保护是指能满足系统稳定和安全要求,以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是指当主保护或断路器拒动时,起后备作用的保护。后备保 护又分为近后备和远后备两种:(1)近后备保护是当主保护拒动时, 由本线路或设备的另一套保护来切除故障以实现的后备保护(2)远后 备保护是当主保护或断路器拒动时,由前一级线路或设备的保护来切 除故障以实现的后备保护. 辅助保护是为弥补主保护和后备保护性能的不足,或当主保护及后备 保护退出运行时而增设的简单保护。 、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分)

变压器差动保护原理

主变差动保护 一、主变差动保护简介 主变差动保护作为变压器的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障 ,差动保护是输入的两端CT 电流矢量差,当两端CT 电流矢量差达到设定的动作值时启动动作元件。 差动保护是保护两端电流互感器之间的故障(即保护范围在输入的两端CT 之间的设备上),正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同,两者刚好抵消,差动电流等于零;故障时两端电流向故障点流,在保护内电流叠加,差动电流大于零。驱动保护出口继电器动作,跳开两侧的断路器,使故障设备断开电源。 二、纵联差动保护原理 (一)、纵联差动保护的构成 纵联差动保护是按比较被保护元件(1号主变)始端和末端电流的大小和相位的原理而工作的。为了实现这种比较,在被保护元件的两侧各设置一组电流互感器TA1、TA2,其二次侧按环流法接线,即若两端的电流互感器的正极性端子均置于靠近母线一侧,则将他们二次的同极性端子相连,再将差动继电器的线圈并入,构成差动保护。其中差动继电器线圈回路称为差动回路,而两侧的回路称为差动保护的两个臂。 (二)、纵联差动保护的工作原理 根据基尔霍夫第一定律,0 =∑ ? I ;式中∑? I 表示变压器各侧电流的向量和,其物理意义是:变 压器正常运行或外部故障时,若忽略励磁电流损耗及其他损耗,则流入变压器的电流等于流出变压器的电流。因此,纵差保护不应动作。 当变压器内部故障时,若忽略负荷电流不计,则只有流进变压器的电流而没有流出变压器的电流,其纵差保护动作,切除变压器。见变压器纵差保护原理接线。

(1)正常运行和区外故障时,被保护元件两端的电流和的方向如图1.5.5(a)所示,则流入继电器的电流为 继电器不动作。 (2)区内故障时,被保护元件两端的电流和的方向如图1.5.5(b)所示,则流入继电器的电流为 此时为两侧电源提供的短路电流之和,电流很大,故继电器动作,跳开两侧的断路器。 由上分析可知,纵联差动保护的范围就是两侧电流互感器所包围的全部区域,即被保护元件的全部,而在保护范围外故障时,保护不动作。因此,纵联差动保护不需要与相邻元件的保护在动作时间和动作值上进行配合,是全线快速保护,且具有不反应过负荷与系统震荡及灵敏度高等优点。 三、微机变压器纵差保护的主要元件介绍 主要元件有:1)比率差动保护元件,2)励磁涌流闭锁元件,3)TA饱和闭锁元件,4)TA断线闭锁(告警)元件,5)差动速断元件,6)过励磁闭锁元件 下面对各个元件的功能和原理作个简要的介绍:

35/6(10)kV降压变压器电流速断保护与差动保护的选用探讨

35/6(10)kV降压变压器电流速断保护与差动保护的选用探讨 文章介绍了变压器电流速断保护的基本性能以及与纵联差动保护的选用探讨,从而得出这种保护的选用条件。 标签:变压器;电流速断保护;纵联差动保护;灵敏度 1 在传输和分配电能时离不开变压器,变压器的作用是改变电压的大小,使之满足传输和分配电能时对不同电压数值的具体需要。当远距离输送电能时,如果传输的功率一定,则电压愈高,电流就愈小。而减小电流即可以减少传输电能时在线路中的电能和电压的损耗,又可以减小导线面积,降低线路建设的投资。用电负荷由于不同的用途,也会需要不同的电压。在分配电能时,常常需要改变电压的数值,因此,变压器有升压和降压的不同用途、不同电压等级之分。我们知道:变压器是根据电磁感应电动势原理发明和制造的。根据法拉第电磁感应定律,电磁感应电动势E的大小为:E=4.44fNφ。 式中:f-磁通φ的变化频率,1/s; N-线圈匝数; φ-变压器铁芯中磁通最大值 E-线圈的感应电动势,V 变压器的变比:一次线圈和二次线圈的电压比; 感应电动势与线圈的匝数、电压的关系为:U1/U2=E1/E2=N1/N2;即利用线圈的N1和N2匝数不同,可以获得不同的电压比值。称这个电压比值为变压器的一、二次电压的“电压比”。 由于变压器的铁芯有足够大的面积,线圈有足够多的匝数,为了产生主磁通,一次线圈中流过的电流不需很大。亦即变压器的励磁电流(等于空载电流)数值较小。若将其忽略不计,则变压器带上二次负荷后,一、二次电流之比近似等于变压器一、二次线圈匝数比的倒数,亦即等于变压器电压比的倒数。即:I1/I2=N2/N1=U2/U1。 通过以上的关系式可看出:至于是升压变压器,还是降压变压器,只是变压器的线圈匝数不同了[1]。 变压器按照升降电压不同可分为:升压变压器和降压变压器,降压变压器是变压器的一种,两种变压器从电压情况来分析是截然相反的。升压变压器副线圈比原线圈匝数多,降压变压器则副线圈比原线圈匝数少。主要降压变压器输入端电压:460V、380V、220V、400V;输出端电压:380V、220V、110V、36V、

变压器差动保护论文

1 绪论 随着电力系统的出现,继电保护技术就相伴而生。与当代新兴科学技术相比,电力系统继电保护是相当古老了,然而电力系统继电保护作为一门综合性科学又总是充满青春活力,处于蓬勃发展中。之所以如此,是因为它特别注重理论与实践并重,与基础理论、新理论、新技术的发展紧密联系在一起,同时也与电力系统的运行和发展息息相关。电力系统自身的发展是促进继电保护发展的内因,是继电保护发展的源泉和动力,而相关新理论、新技术、新材料的发展是促进继电保护发展的外因,是电力系统继电保护发展的客观条件和技术基础。 1.1 变压器差动保护的发展简述 电流差动保护原理是由C H Merz和B.Price在1904年提出的[1],其理论基础是基尔霍夫电流定律,它是电力变压器的主保护,也是各种电气元件使用最广泛的一种保护方式。 自上世纪70年代微处理器的出现,元件保护进入到微机保护时代。 国外在70年代即对变压器个别保护的计算机实现开展研究。80年代国外开始研制发电机及变压器整套微机保护。1989年波兰Korbasiewcz发表了发电机变压器组微机保护系统。1990年印度Verma等也发表了变压器全套微机保护的研究成果。到90年代见到正式商业产品,如Siemens及ABB 公司均已有微机发变组全套保护。 我国微机元件保护的研制,是从80年代开始的[2]。1987年在我国首先研制成微机式发电机失磁保护系统,在此基础上于1989年开发研制成发电机全套微机保护,并于1994年研制成我国第一套适用60万KW及以下容量水、火发电机变压器组全套微机保护。随后,国内又研制成用于水轮机发电机变压器组的微机保护。1988年后有多家研制成了变压器微机保护。 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电

变压器差动保护基本原理与逻辑图

变压器差动保护的基本原理及逻辑图 发布日期:2009-5-19 11:07:16 (阅2761次) 关键词: 变压器差动保护励磁涌流 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电 等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。

关于变压器差动保护研究报告——最终版

关于变压器差动保护装置接线的研究 杨利民炼钢作业部公辅区 摘要:文章就天车滑触线接地短路引起变压器差动保护动作故障,展开对差动保护的原理、变压器接线组别与差动保护CT接线关系以及如何测量变压器接线组别做了简要说明,同时着重从CT、二次线路、保护定值、谐波等方面介绍了防止差动保护误动的措施,最终归纳了差动保护动作后,排除故障的思路。 关键词:差动保护,变压器,CT,接线组别 THE INVESTIGATION ON WIRING OF TRANSFORMER DIFFERENTIAL PROTECTION DEVICE ABSTRACT:This paper makes a simple explain about the principle of differential protection,the relationsbetweenconnection mode of transformer and connection of CT,and how to measure connection mode of transformer on short circuittroubleof cranepower supplyline which works by touching leads to differential protecting of transformer, at the same time it introducesmethod of preventingprotection on CT, control line,protection fixed value, harmonic etc, at last concluding the way of getting rid oftrouble after differential protection. KEYWORDS:DIFFERENTIAL PROTECTION,TRANSFORMER, CT, CONNECTION MODE 0 前言 继电保护是随着电力系统的发展而发展起来的。20世纪初随着电力系统的发展,继电器开始广泛应用于电力系统的保护。从2O世纪5O年代到90年代末,在40余年的时间里,继电保护完成发展的4个阶段,从电磁式保护装置到晶体管式继电保护装置、到集成电路继电保护装置、再到微机继电保护装置。 近年来随着电子技术、计算机技术、通信技术的飞速发展,基于微机的差动保护应用越来越广泛,成为电力工程界越来越关注的课题。文章就施工中存在的真实案例谈一谈差动保护如何接线问题,并对差动保护的灵敏性、可靠性、选择性以及防止勿动的措施作简要的介绍。 1 差动保护误动的现象 炼钢作业部给480T天车供电2#变压器2008年正式投入运行,变压器容量10000kV A,20 08年12月12日、20日,2009年3月7日连续3次天车滑线接地放炮导致差动保护动作跳闸。期间对变压器、高压柜进行多次实验检查,均未发现异常。 2 差动保护误动原因分析 差动保护是继电保护的一种,是根据“电路中流入节点电流的总和等于零”原理制成的。它

35kv变压器差动保护分析

摘要变压器的差动保护是反应变压器各端电流互感器二次电流流入差动继电器的电流差而动作的。在保护范围内无故障时,差动继电器内不平衡电流应接近于零。但在某些情况下,保护范围内无故障时差动继电器内仍有较大的不平衡电流。本文对变压器差动保护的这个特点进行介绍,并简单分析了变压器差动保护两种误动作的原因。 关键词变压器差动保护不平衡电流误动原因分析 引言差动保护是用某种通信通道将电气设备两端的保护装置纵向联接起来,并将两端的电气量进行比较,从而判断保护是否动作。根据基尔霍夫定律,保护范围内流入与流出的电流应该相等(变压器应该归算到同侧)。当保护范围内发生故障时,其流入与流出的电流就不相等了。差动保护就是根据这个不平衡电流动作的。因此,这种保护方法有很高的动作选择性和灵敏度,适用于保护大容量、强电流、高电压及对灵敏度要求高的电气设备。所以,这种方法广泛用于保护大容量、高电压的变压器,并以其优越的保护性能成为大容量、高电压变压器的主要保护方法。然而值得注意的是,由于变压器在结构和运行上具有一些特点,因此在实际运行中保护范围内无故障时,差动保护装置也具有较大的不平衡电流,这种不平衡电流可能引起差动保护装置的误动作。另外,即使考虑了变压器差动保护的这些特点并加以修正,由于这种保护装置的复杂性在有些情况下也常出现一些误动作现象。本文将就变压器差动保护两种误动作的原因加以简单的分析。 一、变压器差动保护的特点 1、变压器励磁涌流的存在 变压器励磁电流(激磁电流)仅流经变压器的某一侧,因此通过电流互感器反应到差动回路中将形成不平衡电流。稳态运行时,变压器的励磁电流不大,只有额定电流的2-5%。在差动范围外发生故障时,由于电压降低,励磁电流减小。所以这两种情况下所形成的不平衡电流都很小,对变压器的差动保护影响不大。 但是,当变压器空载投入和外部故障切除后电压恢复的情况下,则可能出现很大的励磁电流即励磁涌流。这个现象的存在是由于变压器铁心饱和及剩磁的存在引起的,具体分析如下:当二次侧开路而一次侧接入电网时,一次电路的方程为 u1=umcos(wt+α)=i1R1+N1dφ/dt (1) u1:一次电压, um:一次电压的峰值, α:合闸瞬间的电压初相角, R1:变压器一次绕组的电阻, N1:变压器一次绕组的匝数, φ:变压器一次侧磁通。 由于i1R1相对比较小 诜治鏊蔡 坛跏冀锥慰梢院雎圆患?lt;BR>所以 u mcos(wt+α)= N1dφ/dt dφ= ( um/ N1) cos(wt+α) dt 积分,得 φ=( um/ N1) sin(wt+α)+c φ=φm sin(wt+α)+c φm为主磁通峰值,c为积分常数。 设铁芯无剩磁当t=0时,φ=0 所以c=-φmsinα 所以空载合闸磁通为 φ=φm sin(wt+α) -φmsinα(2) 由(2)式可得空载合闸磁通的大小与电压的初相角α有关考虑最不利情况 当α=900时,电压过零

变压器差动保护

变压器主保护 (一)变压器的基本结构及联结组别 1.1:电力变压器主要是由铁芯及绕在铁芯上的两个或两个以上的绝缘绕组构成。为增强各绕组之间的绝缘及铁芯,绕组散热的需要,将铁芯置于装有变压器油的油箱中。然后,通过绝缘套管将变压器各绕组引到变压器壳体之外。 大型电力变压器均为三相三铁芯柱式变压器或者由三个单相变压器组成的三相组式变压器。 1.2:将变压器同侧的三个绕组按一定的方式连接起来,组成某一联结组别的三相变压器。双绕组变压器的主要联结组别有:YNy,YNd,Dd及Dd-d。分析表明,联结组别为Yy的变压器,运行时某侧电压波形要发生畸变,从而使变压器的损耗增加,进而使变压器过热。因此,为避免油箱壁局部过热,超高压大容量的变压器均采用YNd的联结组别。 YNd联结组别的变压器中YN连接的绕组为高压侧绕组,而呈d连接的绕组为低压侧绕组,前者接大电流接地系统(中性点直接接地系统),后者接小电流接地系统(中性点不接地或经消弧线圈接地的系统)。 1.3:在实际运行的变压器中,最多的即为YNd11联结组别的,以其为例,介绍一下联结组别的含义: Y代表变压器高压绕组接成Y形,N代表中性点接地,D代表低压绕组接成d, 11代表低压侧的线电压或线电流分别滞后高压侧对应线电压或线电流(即三角形侧超前星型侧30度),相当于时钟的11点,故又叫11点接线方式。 (二)瓦斯保护: 变压器的主保护主要由瓦斯保护和差动保护构成,简单介绍一下瓦斯保护 瓦斯保护:瓦斯保护是变压器油箱内绕组短路故障及异常的主要保护。其原理是:变压器内部故障时,在故障点产生有电弧的短路电流,造成油箱内局部过热并使变压器油分解,产生气体(瓦斯),进而造成喷油,冲击气体继电器,瓦斯保护动作。瓦斯保护分轻瓦斯和重瓦斯两种,轻瓦斯保护作用于信号,重瓦斯保护作用于跳闸。重瓦斯保护是油箱内部故障的主保护,它能反映变压器内部的各种故障。当变压器组发生少数匝间短路时,虽然故障点的故障电流很大,但在差动保护中产生的差流可能不大,差动保护可能拒动,此时,靠重瓦斯保护切

相关文档
最新文档