八年级轴对称图形复习课课件.ppt

合集下载

人教版八年数学上 第13章_轴对称单元复习课件(共27张PPT)

人教版八年数学上 第13章_轴对称单元复习课件(共27张PPT)
(2)轴对称:把一个图形沿着某一条直线折叠后,能 够与另一个图形重合,那么这两个图形关于这条直线 成轴对称,这条直线叫做对称轴,两个图形中的对应 点叫做对称点。
(3)图形轴对称的性质:如果两个图形关于某直线对 称,那么对称轴是任何一对对应点所连线段的垂直平
分线。
3
(4)轴对称图形的性质:轴对称图形的对称轴是任何一 对对应点所连线段的垂直平分线。
13
例1 如图,以直线AE为对称轴,画出该图形的另一部分。
B C
A D E
解:作图过程如下:
(1)分别作出点B、C关 F 于直线AE的对称点F、H。
(2)连结AF、FD、DH、 HE,得到所求的图形。
H
14
点P(a,b)关于x轴对称的点的坐标为(a,-b)
点P(a,b)关于y轴对y 称的点的坐标为(-a,b)
到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上。
4
正方形、长方形、等腰三角形、等腰梯形 和圆都是轴对称图形。有的轴对称图形有不止 一条对称轴。
5
二、题目特点:
• 判断轴对称图形或对称轴的条数 • 根据轴对称图形的性质作对称轴 • 用线段垂直平分线的性质解决计算题或进行证明说理 三、解题切入点:
4
A5E来自FG3
12
∴ AB=DB, ∠1= ∠2=60° 从而有 ∠3= ∠1=60° 在△ABF和△DBG中
∠3= ∠1
BC
∠4= ∠5
AB=DB
∴ △ABF≌ △DBG
∴BF=BG
1.如图,在△ABC中,BP、CP分别是∠ABC和 ∠ACB的平分线,且PD//AB,PE//AC,求 △PED的周长 .
3
2
B1

八年级数学上第13章《轴对称》期末复习课件(共45张ppt)

八年级数学上第13章《轴对称》期末复习课件(共45张ppt)

(D)
特殊的轴对称图形:
正方形、长方形、等腰三角形、等腰梯 形和圆都是轴对称图形。有的轴对称图形有不 止一条对称轴。
5.如何画轴对称图形的对称轴呢?
1.找到一组对应点, 2.画出以这两点为顶点的线段的垂直 平分线。
练习4:如图,已知△ABC和直线 ,作出与△ABC 关于直线 对称的图形。
八年级数学上第13章《轴对称》期末 复习课 件(共4 5张ppt )
8.如何利用坐标法画轴对称图形: 只要先求出已知图形中的
一些特殊点(如多边形的顶点) 的对称点的坐标,描出并连接 这些点,就可以得到这个图形 的轴对称图形。
八年级数学上第13章《轴对称》期末 复习课 件(共4 5张ppt )
八年级数学上第13章《轴对称》期末 复习课 件(共4 5张ppt )
练习6:填空题:1. 在⊿ ABC中,已知AB=AC,且
∠B=80° ,则∠C= ∠C=80° 度,∠A= ∠A=20° 度.
2.在⊿ABC中,已知AB=AC,且 ∠ A=50° ,则∠B= ∠B=65°度,∠C= ∠C=65°度.
3.在.等腰⊿ ABC中,如果AB=AC,且一个角等于 70° ,求另两个角的度数为 55 °和 55 °或70°和 40°.
等腰三角形的定义:两条边相等 的三角形叫做等腰三角形
9.等腰三角形的性质 1 等腰三角形的两个底角 相等(等边对等角) 2等腰三角形顶角的平分线, 底边上的中线和底边上的高相互重 合(等腰三角形三线合一)
八年级数学上第13章《轴对称》期末 复习课 件(共4 5张ppt )
八年级数学上第13章《轴对称》期末 复习课 件(共4 5张ppt )
利用轴对称,可以设计出精美的图案。请你 用所学的知识来欣赏下列美丽的图案

轴对称图形复习课PPT课件

轴对称图形复习课PPT课件

第十三章 轴对称
听孙老师讲轴对称的唯一机会
一、轴对称图形
1、定义:如果一个图形沿着一条直线对折, 两侧的图形能够完全重合,这个图形就 是 轴对称图。形
折痕所在的这条直线叫做__对_称__轴_。
2、轴对称图形与轴对称的区别
轴对称图形
轴对称
图 形
区 别
(1)轴对称图形是指一 个图形。
(2)轴对称图形的对称 轴至少有一条。
垂直平分线又叫中垂线
2、垂直平分线的性质
• 线段垂直平分线上的点到线段两端点的 • 距离相等。
A

B
3、垂直平分线的判定
• 到线段两端点的距离相等的点在线段的垂 直平分线上。
A
B
三、画图
• 1、画对称轴 • 2、线段的垂直平分线 • 3、画轴对称图形
四、在平面直角坐标系中
• 点(x,y)关于x轴对称点为(x, - y)

关于y轴对称点为( - x,y)
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
41
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
(1)轴对称是指两个图形 之间的关系。
(2)只有一条对称轴。
联 如果把两个成轴对称的图形看作一个整体,那么这就 系 是一个轴对称图形。
3、轴对称的性质
m
• 1、关于某条直线对称的两个图形是全等形。

八年级轴对称图形复习课课件

八年级轴对称图形复习课课件

如何绘制具有轴对称性的图形
步骤一
找出轴线位置。
步骤二
在对称轴上标出若干点,找出 这些点的对称点。
步骤三
将所有基本图形和组合图形分 别复制到对称面。
轴对称图形的应用
美术创作
轴对称图形是美术创作中常用的手段,可以形成稳定、和谐的美感。
建筑设计
建筑中也经常运用轴对称法,使建筑物更具美感,更富有艺术感。
机械制造
机械制造中许多零部件都具有轴对称性,从而提高制造效率并降低成本。
课堂练习与总结
请同学们运用刚学到的知识,判断和绘制轴对称图形,并归纳总结轴对称图形的特点和应用。
八年级轴对称图形复习课 ppt课件
本次介绍八年级数学轴对称图形知识点,内容涵盖轴对称图形定义、特征、 分类、判断、绘制以及应用等方面。
何为轴对称图形
1 定义
轴对称图形是指通过一个轴线将图形分成的两部分互为镜像对称的图形。
2 特征
轴线是对称轴,图形两侧是镜像对称的,且对称轴垂直于图形的对称性。
轴对称图形的分类与例子
基本图形
• 正方形 • 矩形 • 正圆 • 等边三角形
组合图形
由基本图形组合而成的轴对 称图形
实际物体中的轴对 称性
如路灯、叶子、雪花等
如何判断图形是否具有轴对称性
1
观察图形轮廓
判断形是否平衡,是否对称。
找对称线
2
从两点或多点判断,或从图形特征入
手。
3
验证对称性
通过将对称轴上的点折到镜像面上, 检查是否重合。

轴对称图形ppt课件

轴对称图形ppt课件

05

教学方法:讲解、示范、实践
讲解
通过语言描述,向学生解释轴对称图形的定义、性质和特点,使学 生对轴对称图形有基本的认识。
示范
通过展示轴对称图形的制作过程或解题步骤,让学生直观地了解轴 对称图形的应用和操作方法。
实践
组织学生进行实践活动,如制作轴对称图形、解决与轴对称图形相关 的问题等,以提高学生的实际操作能力和问题解决能力。
几何学基础
轴对称图形是几何学中的基础概 念,对于理解几何学的基本原理
和性质至关重要。
对称性研究
在数学中,轴对称图形是研究对 称性的一个重要方面,对于理解 更复杂的对称概念有重要意义。
应用领域
轴对称图形在物理学、工程学、 计算机图形学等领域都有广泛的 应用,是解决实际问题的重要工
具。
04
轴对称图形的制作和创造
轴对称图形ppt课件
目录
• 轴对称图形的基本概念 • 轴对称图形的识别 • 轴对称图形的性质和特点 • 轴对称图形的制作和创造 • 轴对称图形的教学方法和技巧
01
轴对称图形的基本概念
轴对称图形的定义
01 轴对称图形
如果一个平面图形在某一条直线的两侧部分可以 完全重合,那么这个图形就被称为轴对称图形。
03 美学价值
轴对称图形在美学上具有很高的价值,被广泛应 用于建筑设计、图案设计等领域。
轴对称图形的分类
01
02
03
中心对称图形
如果一个图形关于某一点 旋转180度后与自身重合 ,则称为中心对称图形。
镜面对称图形
如果一个图形关于某一条 直线对称,则称为镜面对 称图形。
旋转对称图形
如果一个图形关于某一条 直线旋转一定角度后与自 身重合,则称为旋转对称 图形。

第一章轴对称图形(复习课)079PPT课件

第一章轴对称图形(复习课)079PPT课件
①在BC上取一点D,使BD<CD,连结AD; ②作线段AF,使AF与AB关于AD所在的直线对称; ③作线段AE,使E在BC上,且AF与AC关于AE所在的
直线对称; ④连结DF,EF. (2)通过观察和测量,猜想△DEF是什么三角形.
等腰三角形、梯形的 轴对称性
回顾与复习
等腰三角形的性质: A
= (
P
且PC=PD
O
∴点P在∠AOB的平分线上.
DB
简单应用
1. 指出下列图案是否是轴对称图形, 如果是请指出有几条对称轴
(5)
(6)
简单应用
2. 下列说法正确的是( B )
⑴ 全等的两个图形一定对称.
⑵ 成轴对称的两个图形一定全等. √
⑶ 若两个图形关于某直线对称,则它们 的对应点一定位于对称轴的两侧.
线段的垂直平分线 上的点到线段两端 的距离相等.
A
·P
a
B
练:《补充》/17(1)
动脑筋
12 如图,要在河边
修建一个水泵站, 向张庄、李庄送水. 修
在河边什么地方,可使使用的水管B最短?
A

· ·P
a
把问题转化成第10题的形式画图。
练:《补充》/17(2) 课本38页/9
练一练
《课本》37-38页 复习巩固/1.2.3.4.5,9
4
形,首先应确定 对称轴,然后找
·D2

出对称点。且点D 必须在格点上
·A ·B
综上所述:
·D 3
·D1
方格纸中符合要求的点D有4个。
8.分别画出(1)(2)(3)中,已知△ABC 关于直线l 的对称△A′B′C′
l
A

第2章 轴对称图形复习 苏科版八年级数学上册课件

第2章 轴对称图形复习 苏科版八年级数学上册课件

轴对称图形、成轴对称定义
轴对称图形的应用—镜面与反射
轴对称图形性质
P42
轴对称图形、成轴对称定义
轴对称图形的应用—镜面与反射
轴对称图形性质
P42
轴对称图形、成轴对称定义
轴对称图形的应用—镜面与反射
轴对称图形性质
角度相等:入射角=反射角 对称轴垂直反射面
轴对称图形、成轴对称定义
轴对称图形的应用—镜面与反射
P44
轴对称图形、成轴对称定义
轴对称图形的应用—翻折与抠图
轴对称图形性质
P44
轴对称图形、成轴对称定义
轴对称图形的应用—镜面与反射
轴对称图形性质 民间良方 对称轴方向
镜面与实物平行 前后、左右颠倒
镜面与实物垂直
前后、上下颠倒
轴对称图形、成轴对称定义
轴对称图形的应用—镜面与反射
轴对称图形性质
P42
轴对称图形性质
补充
轴对称图形、成轴对称定义
轴对称图形的应用—翻折与抠图
轴对称图形性质
关键 翻折前后对应边角相等,折痕所在直线是对称轴
考点一:利用全等性质求边、角(周长) 解题要点:对应边相等,对应角相等
考点二:翻折抠图 解题方法:还原→折痕所在直线为对称轴
轴对称图形、成轴对称定义
轴对称图形的应用—翻折与抠图
轴对称图形性质
补充
下课啦
轴对称图形性质
P42
轴对称图形、成轴对称定义
轴对称图形的应用—翻折与抠图
轴对称图形性质
P43
轴对称图形、成轴对称定义
轴对称图形的应用—翻折与抠图
轴对称图形性质
P43
轴对称图形、成轴对称定义
轴对称图形的应用—翻折与抠图

八年级数学轴对称课件ppt

八年级数学轴对称课件ppt
角都等于600 。 2、性质②: 等腰三角形的顶角平分线、底边上的中线、底
边上的高互相重合。(三线合一)
3、等腰三角形的判定: 判定定理:如果一个三角形有两个角相等,那么这
两个角所对的边也相等。(等角对等边) 推论①:三个角都相等的三角形是等边三角形。 推论②:有一个角是600的三角形是等边三角形。
本章目录
16.1轴对称图形 16.2线段的垂直平分线 16.3等腰三角形 16.4角的平分线
16.1(轴对称图形)知识点回顾
• 1、轴对称图形:把一个图形沿着一条直线 折叠,如果直线两旁的部分能够完全重 合,那么这个图形就叫做轴对称图形。 这条直线叫做对称轴。
• 2、轴对称:把一个图形沿一条直线折叠, 如果它能与另一个图形完全重合,那么 这两个图关于这条直线成轴对称。
A
D
B
C
5、已知,如图AB=AB=CD AD=BD 则∠BAC=
1080
A
B
C
D
16.4角平分线的性质与判定: 1、性质定理: 角平分线上的点到角两边的距离相等。 2、判定定理: 到角两边距离相等的点在角的平分线。
1、如图,在△ABC中,∠ABC的角平分线交 AC于P,一个同学马上就得到PA=PC,你觉 得对吗?
(2)当汽车行驶到什么位置时,与村庄M、N的距离相等? M
A
P3
B
N
答:如图 ,当汽车行驶到P3时,与村庄M、N的距离相等。
根据:线段的垂直平分线上的点到这条线段两个端点的距离 相等。
例2 已知如图:一辆汽车在直线公路AB上由A向B行驶,M、
N分别表示位于公路AB两侧的村庄,
(3)当汽车行驶到什么位置时,到村庄M、N的距离之和
A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有对称点。 如果把成轴对称的两个图形看成是一
个整体,这个整体就是一个轴对称图形; 如果把一个轴对称图形的两旁的部分看成 两个图形,这两个部分图形就成轴对称。
2、轴对称的性质和几个简单的轴对称 图形的性质,是这部分的重点知识,应引 起足够的重视。
3、轴对称的实际应用应提高到足够 的地位。
4、用对称的眼光看问题,解决问题, 指导辅助线的添加。
第十四章 轴对称图形复习课
如皋市新民初中 初二数学备课组
一、知识概况
本章着重研究轴对称的概念, 性质,轴对称的作图,应用,以及 轴对称图形和几个常见的轴对称图 形的性质和判定。
(一)轴对称和轴对称图形
1、概念
如果把一个图形沿着某一条直线折叠 后,能够与另一个图形重合,那么这两个 图形关于这条直线成轴对称,这条直线叫 做对称轴,两个图形中的对应点叫做对称 点。
A
B
D
C
A
C′
思路点拨:
B
D
C
由于翻折后的图形与翻折前的图形关
于折痕对称;所以C、C′关于直线AD对称,
AD垂直平分CC′,
又处于对称位置的元素(线段、角) 对应相等,这为问题解决提供了条件。
A
C′ O
解:
(1)画CO垂直AB,并延 长到C′,使得OC′=OC,
B
D
C 点C′即为所求。
(2)连结C′D,由对称性得CD=CD′, ∠CDA=∠CDA=60°;所以∠BDC=60°,
即∠BOB’’=2α
小结点评:
(1)作两个成对称图形的对称轴,只需 将对称点的垂直平分线作出即可。
(2)成轴对称的两个图形的对应元素相 等是解题的关键。
(3)补全对称图形中所缺的部分,是添 加辅助线的重要思考方向。
例4:如下图,由小正方形组成的L形图中, 请你用三种方法分别在下图中添画一个小正
方形使它成为一个轴对称图形:
(4)由(2)-(1)得BC=8cm.
小结点评:
(1)分析题意时,要将复杂条件简单化、 具体化。
(2)当条件中有线段的垂直平分线时, 要主动去寻找相等线段。
例2:如图,AD是△ABC的中线,∠ADC= 60°,把△ADC沿直线AD折过来, C落在C′ 的位置, (1)在图中找出点C′,连结BC′; (2)如果BC=4,求BC′的长。
讲练平台
A
例1:如图,如果△ACD的周长为17cm, D
△ABC的周长为25cm,根据这些条件, 你可以求出哪条线段的长?
B
E
C
思路点拨:
(1)△ACD的周长=AD +CD+AC=17;
(2)△ABC的周长=AB+AC+BC=25;
(3)由DE是BC的垂直平分线得:BD=CD;所以AD+CD= AD+BD=AB。
小结点评:
设计图案问题,要注意设计的要求, 注意从多个角度思考问题,本题中的对 称轴的位置可以是水平的,也可以是竖 直的,还可以是斜的,特别是后者,我 们常常容易忽视。
做完这类题目,还要注意检验,看 是否符合题目的全部要求。
练习2.如图,在一个规格为4×8的球台上,
MN对称,△A’B’C’和△A’’B’’C’’关于直
线EF对称。
(1)画出直线EF; 思路点拨:
M
A
A’
由于连结对称点的线
段被对称轴垂直平分,所 B
以连结对称点的线段,作
C
B’ B’’
A’
C’

其垂直平分线,即为两个
图形的对称轴。
N
C’’
(2)直线MN与EF相交于点O,试探究
∠BOB’’与直线MN、EF所夹锐角α的数
如果把一个图形沿着一条直线折叠, 直线两旁的部分能够互相重合,那么这个 图形叫做轴对称图形,这条直线叫做对称 轴。
2、轴对称的性质:
成轴对称的两个图形全等;如果两个 图形成轴对称,那么对称轴是对称点连线 的垂直平分线。
(二)几个轴对称图形的性质:
1、线段、射线、直线。
线段是轴对称图形,它有两条对称轴, 它的对称轴是它所在的直线,和线段的垂 直平分线。
所以, △C′BD是等边三角形,
所以,BC′=BD=2。
小结点评:
1、翻折变换后得到的图
A
C′
形与原图形关于折痕对称;对
应点的连线段被折痕垂直平分;
B
D
C
2、解决翻折问题,要注意隐含在图形中的相 等线段、相等角,全等三角形;因为一切处于对 称位置的线段相等,角相等,三角形全等。
3、从对称角度完善图形,让隐含条件显现 出来,这是这部分题目添加辅助线的一个重要规 律。
C’

△A’’B’’C’’的对称轴。
结B’O。
N O C’’ F
∵△ABC和△A’B’C’关于MN对称,
∴∠BOMபைடு நூலகம்∠B’OM
又∵△A’B’C’和△A’’B’’C’’关于EF对称,
∴∠B’OE=∠B’’OE。
∴∠BOB’’=∠BOM+∠B’OM+∠B’OE+∠B’’OE
=2(∠B’OM+∠B’OE)=2α。
量关系。
M
A
A’
思路点拨:
F
从对称角度来看,
B C
B’ B’’ C’
连结OB、OB”的对称线 A’ 段OB′,可以得到两 ’ 组角相等,问题容易
N
C’’ 得到解决。
O
E
解:(1)如图,连结B’B’’。 作线段B’B’’的垂直平分线
M
A
A’ E
EF。 则直线EF是△A’B’C’和
B C
B’ B’’
A’
5、正多边形
6、圆
二、重、难点剖析
1、轴对称和轴对称图形的区别和联系。
区别: 轴对称是指两个图形沿某直线对折能够完
全重合,而轴对称图形是指一个图形的两个部 分沿某直线对折能完全重合。对称轴只有一条。
轴对称是反映两个图形的特殊位置、大小 关系;轴对称图形是反映一个图形的特性。对 称轴可能会有多条。
联系: 两部分都完全重合,都有对称轴,都
课堂练习
练习1.将一正方形纸片按图中⑴、⑵的方 式依次对折后,再沿⑶中的虚线裁剪,最后 将⑷中的纸片打开铺平,所得图案应该是下 面图案中的( )
A
B
C
D
小结点评:
这类问题主要训练空间想象能力。 我们可以实际操作,也可以倒推,还可 以在头脑中进行思维实验,不过后者能 力的要求比较高。
例3.如图,△ABC和△A’B’C’关于直线
线段垂直平分线上的点到线段两端的 距离相等;到线段两端的距离相等的点在 线段的垂直平分线上。
2、角:
角是轴对称图形,它的对称轴是它 的角平分线所在的直线。
角平分线上的点到角的两边的距离 相等;到角的两边的距离相等的点在这 个角的平分线上。
3、等腰三角形→等边三角形
4、等腰梯形
从对称的角度理解等腰三角形和等腰 梯形的性质和识别方法。
相关文档
最新文档