二次根式定义
二次根式知识点总结
二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。
以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。
•平方性:对于任何非负实数a,(√a)2=a。
•唯一性:每个非负实数都有唯一的平方根。
2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。
下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。
•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。
•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。
•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。
3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。
以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。
•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。
•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。
•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。
4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。
以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。
•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。
5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。
以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。
初中数学 什么是二次根式
初中数学什么是二次根式二次根式是指含有二次根号的代数式,也可以理解为二次方程的根。
在初中数学中,学生会接触到二次根式的概念和运算。
接下来,我将详细介绍二次根式的定义、性质、运算规则以及解题技巧。
希望这篇文章能够帮助你更好地理解和应用二次根式。
一、二次根式的定义与性质1. 定义:二次根式是形如√a的表达式,其中a是一个非负实数。
如果a是一个非负实数的平方,那么√a是一个有理数;如果a不是一个非负实数的平方,那么√a是一个无理数。
2. 性质:a. 二次根式的值是非负的,即√a ≥ 0。
b. 二次根式的平方等于被开方数,即(√a)² = a。
c. 二次根式可以进行加减乘除运算,具体的运算规则将在下一部分介绍。
二、二次根式的运算规则1. 加减法运算:a. 同类项相加减:对于同类项的二次根式,可以直接对其系数进行加减运算。
例如,√2 + √2 = 2√2。
b. 不同类项相加减:对于不同类项的二次根式,无法直接进行加减运算,需要进行化简。
例如,√2 + √3 无法进行直接运算,但可以化简为√6(根据乘法公式√a * √b = √(ab))。
2. 乘法运算:a. 二次根式的乘法遵循乘法公式:√a * √b = √(ab)。
例如,√2 * √3 = √(2 * 3) = √6。
b. 多个二次根式相乘时,可以使用乘法交换律和结合律进行化简。
例如,√2 * √3 * √5 = √(2 * 3 * 5) = √30。
3. 除法运算:a. 二次根式的除法遵循除法公式:√a / √b = √(a / b)。
例如,√6 / √2 = √(6 / 2) = √3。
b. 多个二次根式相除时,同样可以使用除法公式进行化简。
例如,√30 / √2 = √(30 / 2) = √15。
三、二次根式的化简与合并1. 化简:将一个二次根式表示为最简形式。
例如,√8可以化简为2√2。
2. 合并:将多个二次根式合并为一个二次根式。
二次根式的基本定义
知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.注意理解:1、定义是从结构形式上定义的,必须含有二次根号。
根指数省略不写。
不能从化简结果上判断,如,都是二次根式。
2、被开方数是一个数,也可以是含有字母的式子。
但前提条件是必须是大于或等于0.3、如果是给定的式子,就是有意义的。
、4、形如b(a的式子也是二次根式,b与是相乘关系,当b是分数时,写成假分数。
5、式子(a表示的是非负数。
6、+b(a和形式是含有二次根式的式子,不能叫二次根式。
二次根式定义:【例1】下列各式,其中是二次根式的是_________(填序号).变式练习:1、下列各式中,一定是二次根式的是()A D2中是二次根式的个数有______个3、下列的式子一定是二次根式的是()A.B.C.D.4、式子:①;②;③;④;⑤;⑥;⑦⑧中是二次根式的代号为()A.①②④⑥B.②④⑧C.②③⑦⑧D.①②⑦⑧【例2】若是正整数,最小的整数n是()A.6 B.3 C.48 D.2变式练习:1、已知:是整数,则满足条件的最小正整数n的值是()A.0 B.1 C.2 D.52、二次根式是一个整数,那么正整数a最小值是.注意掌握:1、二次根式具有双重非负性。
(a,2、如果式子中既含有二次根式又含有分式,那么它有意义的条件是:二次根式中的被开方数是非负数,分式中的分母不为0.3、如果式子中含有零指数幂或负整数指数幂,有意义的条件是,度数不为0.【例3】式子有意义的x 的取值范围是变式练习: 1、使代数式43--x x 有意义的x 的取值范围是() A 、x>3 B 、x ≥3C 、x>4D 、x ≥3且x ≠42x 的取值范围是3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 【例4】若y=5-x +x -5+2009,则x+y=变式练习:12()x y =+,则x -y 的值为()A .-1B .1C .2D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 取什么值时,代数式1取值最小,并求出这个最小值。
二次根式的概念和性质
基础知识
1、二次根式的定义:
我们已经知道:每一个正实数有且只有两个平方根,一个记作a,称为a的。
算术平方根;另一个是a
我们把形如a的式子叫作二次根式,根号下的数a叫作被开方数.
由于在实数围,负实数没有平方根,因此只有当被开方数是非负实数时,二次根式才在实数围有意义.
2、二次根式的性质
3、二次根式的积的算数平方根的性质
4、最后的计算结果,具有以下特点:
(1)被开方数中不含开得尽方的因数(或因式);
(2)被开方数不含分母.
我们把满足上述两个条件的二次根式,叫作最简二次根式.
注意:①化简二次根式时,最后结果要求被开方数中不含开得尽方的因数.
②化简二次根式时,最后结果要求被开方数不含分母.
③今后在化简二次根式时,可以直接把根号下的每一个平方因子去掉平
方号以后移到根号外(注意:从根号下直接移到根号外的数必须是非负数).题型一、二次根式的概念和条件
【例1】
【例2】
【例3】
【例4】
【例5】
【例6】
题型二、二次根式的性质【例7】计算
【例8】
【例9】【练一练】
4、
5、
6、7、
8、
题型三积的算数平方根的性质【例10】
【例11】
【例12】
【例13】
【例14】
题型四二次根式的化简【例题精析】
【例15】
【例16】【例17】【例18】
【练一练】
4、
5、6、6、
7、。
二次根式最简定义
二次根式最简定义二次根式是数学中的一个重要概念,它是指一个形如√a的数。
在二次根式中,a代表一个非负实数。
二次根式可以用来表示一些几何问题中的长度或者表示一些物理问题中的量。
二次根式最简的定义是指将一个二次根式化简为最简形式。
化简的过程实际上是对根号下的数进行约分,使得根号下的数不能再被约分。
化简后的二次根式通常具有如下特点:1.根号下的数不含有平方数因子;2.根号下的数是一个质数;3.根号下的数为最简形式。
为了更好地理解二次根式的最简定义,我们可以通过几个例子来说明:例1:将√12化简为最简形式。
我们可以将12分解为2和6的积,即12=2*6。
然后,我们继续将6分解为2和3的积,即6=2*3。
因此,我们可以得到√12=√(2*2*3)。
接下来,我们可以将根号下的数进行约分,即将二次根式中所有平方数因子提出来。
在这个例子中,2是一个平方数因子,因此我们可以将它提出来。
√12=√(2*2*3)=2√3。
我们得到了化简后的最简形式,即√12=2√3。
例2:将√20化简为最简形式。
我们可以将20分解为2和10的积,即20=2*10。
然后,我们继续将10分解为2和5的积,即10=2*5。
因此,我们可以得到√20=√(2*2*5)。
接下来,我们进行约分,将二次根式中所有平方数因子提出来。
在这个例子中,2是一个平方数因子,因此我们可以将它提出来。
√20=√(2*2*5)=2√5。
我们得到了化简后的最简形式,即√20=2√5。
通过以上两个例子,我们可以看出,化简二次根式的过程就是将根号下的数进行约分,使其成为最简形式。
化简后的二次根式更加简洁,更符合数学中的规范形式。
需要注意的是,有些二次根式无法化简为最简形式,例如√2。
在这种情况下,我们不能再对根号下的数进行约分,因此√2就是它的最简形式。
这是因为2是一个质数,没有其他的因子可以约分。
在实际应用中,二次根式最简定义的概念经常出现在几何学和物理学等领域。
例如,在解决三角形的边长或面积问题时,常常需要使用到二次根式的最简形式。
二次根式知识点总结
二次根式知识点总结王亚平1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.2. 二次根式的性质1。
非负性:)0(≥a a 是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3。
⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算--分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化. 2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:与,b a +与b a +,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
)0,0(≥≥⋅=b a b a ab2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根.)0,0(≥≥=⋅b a ab b a3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根 。
二次根式的基本定义
知识点一:二次根式的概念 【知识要点】 二次根式的定义:形如 占 的式子叫二次根式,其中」叫被开方数,只有当」是一个非负数时, ■/-:才有意义. 注意理解:1、 定义是从结构形式上定义的,必须含有二次根号。
根指数省略不写。
不能从化简结果上判断,如都是二次根式。
2、 被开方数是一个数,也可以是含有字母的式子。
但前提条件是必须是大于或 等于0.3、 如果是给定的式子,-就是有意义的。
、4、 形如b 「(a 」「的式子也是二次根式,b 与「是相乘关系,当b 是分数时, 写成假分数。
5、 式子(^'二表示的是非负数。
6 +b (^,::和形式是含有二次根式的式子,不能叫二次根式。
二次根式定义:变式练习:1、已知:"是 整数,则满足条件的最小正整数n 的值是()A. 0B. 1C. 2D. 5 2、二次根式匚山是一个整数,那么正整数a 最小值是______________________ 1、 二次根式具有双重非负性。
-(a 」「 02、 如果式子中既含有二次根式又含有分式,那么它有意义的条件是:二次根式中的被开方数是非负数,分式中的分母不为 0.3、 如果式子中含有零指数幕或负整数指数幕,有意义的条件是,度数不为0.巫 + 1【例1】下列各式;,2二,3) - .x 2 2,4)、、4,5), (一;)2。
・,7) a 2—2a 1, 其中是二次根式的是 _____________ (填序号). 变式练习:1、 下列各式中,一定是二次根式的是( )A 、、aB 、:C 、、. a 1D 、 2、 在庙、荷b 、J x+1、J 1+X 23、 下列的式子一定是二次根式的是(A. J-x-2B .护3中是二次根式的个数有 )C.D.::A. 6B. 3C. 48D. 2【例3】来式子[一:有意义的x的取值范围是___________________ 源:学*科*网Z*X*X*K]变式练习:2 / 6二次根式整数部分小数部分:已知a是、、5整数部分,b是5的小数部分,求a •二的值。
二次根式的定义
16.1二次根式知识点一:二次根式的定义 一般地,形如a (a ≥0)的式子叫做二次根式对于二次根式的理解:(1)二次根式的定义是从形式上界定的必须含有二次根号“”,尽管9的结果为3,但9是二次根式。
(2)二次根式的被开方数可以是一个数字,也可以是一个代数式,但必须满足被开方数是非负数,如12--x 就不是二次根式。
(3)根子数是2,2可以省略,如37不是二次根式(4)形如a b (a ≥0)的式子也是二次根式,它表示b 与a 的乘积,当b 是带分数或小数时,要写成假分数形式,如523不能写成5211的形式。
例1:下列各式中,哪些是二次根式?哪些不是二次根式? (1)327 (2)9- (3)23a (4)12+x(5)122++a a (6)12-x (21<x ) (7)2)8(- (8)x 3-(x ≤0) (9)2)1(1+x (10)1682-+-x x知识点二:次根式有意义的条件(重点) 总体上来说,在二次根式a 中,当a ≥0时,a 有意义;当a<0时,a 无意义。
从具体的情况总结如下:(1)单个二次根式如A 有意义的条件是:A ≥0;(2)多个二次根式相加,如N B A +++ 有意义的条件是:⎪⎪⎩⎪⎪⎨⎧≥≥≥000N B A(3)二次根式作为分式的分母,如AB 有意义的条件是:A>0; (4)二次根式与分式的和,如B A 1+的条件是:⎩⎨⎧≠≥00B A例2:当x 是怎样的实数时,下列各式在实数范围内有意义 ?(1)13-x (2)x --1 (3)21+-x x (4)1132+++x x (5)52+x (6)322---x x (7)x -12 (8)1213-+-x x课堂小练习:1、代数式xx --312有意义的x 的取值范围是 2、若11+x 在实数范围内有意义,则x 的取值范围是 3、如果代数式1-x x 有意义,那么x 的取值范围是 4、代数式123-x 在实数范围内有意义的x 的范围是 5、若等式1)23(0=-x 成立,则x 的取值范围是 知识点三:二次根式的性质(重点、难点)性质1: 式子a (a ≥0)具有双重非负性:它既表示二次根式,又表示非负数a 的算术平方根。
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。
二次根式
3、二次根式的双重非负性
例7 已知实数 x、y、a 满足:
x y 8 8 x y 3x y a x 2 y a 3
x、y、a .问:
以 为三边长的线段能否组成一个三角形?如果能,请 求出三角形的周长;如果不能,请说明理由.
3、二次根式的双重非负性
1 x 2 x
的图像上,
变式:如果代数式 m
有意义,那么在平面直角坐
象限.
x2 6 x m
标系中,点 P m, n 的位置在第 例4 无论x取任何实数,代数式 取值范围为 .
都有意义,则m的
2、二次根式有意义的条件
例5 设 a 8 x , b 3x 4, c x .2 a、b、c 都有意义? (1)当x取什么实数时, (2)若a、b、c 为Rt△ABC的三边长,求x的值.
a a a 0, b 0 b b
n
3、二次根式的加减: 先化简,再求值 4、根式运算法则: a b ab ,
n n n
a na n b b
最简二次根式:
0.2 x ,
12 x 12 y ,
x2 y2 ,
5ab 2
同类二次根式:
在
ab b 1 b , , , 3 中,与 a3b是同类二次根式的是 2 a ab a
a、b、c ,且 a、b、c 例8 已知△ABC的三边长分别为 满足a 2 6a 9 a b 1 c 2 5 0 .试判断△ABC的形 状.
几个非负数的和为0,则每个非负数都为0. 初中常见的三大非负数: (1)绝对值; (2)偶次方; (3)算术平方根.
变式1:若 a b+1 与 a 2b 4 互为相反数
二次根式的概念
二次根式的概念二次根式,也称为平方根,是指一个数的平方根,即找出一个数,使其平方等于给定的数。
在代数中,二次根式是非常重要的数学概念。
它们在代数运算、方程求解以及几何形状的计算中都有广泛应用。
本文将介绍二次根式的定义、性质和一些常用的求解方法。
一、二次根式的定义在数学中,二次根式是一个数学表达式,形式为√a,其中a是一个非负实数。
它表示一个数x,使得x的平方等于a。
例如,√4表示一个数x,使得x的平方等于4,因此x等于正负2。
当a是一个负实数时,二次根式通常用i来表示虚数单位。
虚数单位i定义为√-1。
因此,√-9可以表示为3i,因为(3i)^2 = -9。
二、二次根式的性质1. 非负实数的二次根式是唯一确定的。
即对于给定的非负实数a,它的二次根式√a只有一个值。
2. 二次根式满足乘法运算律。
即对于任意非负实数a和b,有√(ab)= √a * √b。
3. 二次根式满足除法运算律。
即对于任意非负实数a和b,有√(a/b) = √a / √b,其中b不等于0。
4. 二次根式满足加法和减法运算律。
即对于任意非负实数a和b,有√a ± √b不能进行合并。
三、二次根式的求解方法1. 分解因式法:如果二次根式的被开方数可以分解成两个平方数的乘积,那么可以利用分解因式的方法来求解。
例如,√12可以分解为√(4 * 3),然后再分别对4和3开方,最后得到2√3。
2. 化简法:可以将二次根式的被开方数进行化简,将其中的一个因子提取出来,并留在根号外面。
例如,√50可以化简为√(25 * 2),再对25开方得到5,最终得到5√2。
3. 有理化法:当二次根式的被开方数是一个分数时,可以利用有理化方法将其化为无理数。
有理化的方法是在分子和分母上同时乘以一个适当的数,使得分母变为一个有理数。
例如,√(3/5)可以进行有理化,将分子和分母同时乘以√5,得到√(3/5) * (√5/√5)= √15 / 5。
四、结论本文介绍了二次根式的定义、性质和求解方法。
二次根式的基本定义
二次根式的基本定义 Revised by Petrel at 2021知识点一:二次根式的概念【知识要点】 二次根式的定义: 形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.注意理解:1、定义是从结构形式上定义的,必须含有二次根号。
根指数省略不写。
不能从化简结果上判断,如,都是二次根式。
2、被开方数是一个数,也可以是含有字母的式子。
但前提条件是必须是大于或等于0.3、如果是给定的式子,就是有意义的。
、4、形如b (a 的式子也是二次根式,b 与是相乘关系,当b 是分数时,写成假分数。
5、式子(a表示的是非负数。
6、+b(a和形式是含有二次根式的式子,不能叫二次根式。
二次根式定义: 【例1】下列各式22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________(填序号). 变式练习:1、下列各式中,一定是二次根式的是() A 、a B 、10-C 、1a +D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个3、下列的式子一定是二次根式的是( )A .B .C .D . 4、式子:①;②;③;④;⑤;⑥;⑦⑧中是二次根式的代号为( )A .①②④⑥B .②④⑧C .②③⑦⑧D .①②⑦⑧【例2】若是正整数,最小的整数n 是( )A .6B .3C .48D .2变式练习: 1、已知:是整数,则满足条件的最小正整数n 的值是( )A .0B .1C .2D .52、二次根式是一个整数,那么正整数a 最小值是.注意掌握:1、二次根式具有双重非负性。
(a,2、如果式子中既含有二次根式又含有分式,那么它有意义的条件是:二次根式中的被开方数是非负数,分式中的分母不为0.3、如果式子中含有零指数幂或负整数指数幂,有意义的条件是,度数不为0. 【例3】式子有意义的x 的取值范围是变式练习:1、使代数式43--x x 有意义的x 的取值范围是()A 、x>3B 、x ≥3C 、x>4D 、x ≥3且x ≠42221x x -+-x 的取值范围是 3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 【例4】若y=5-x +x -5+2009,则x+y= 变式练习:111x x --2()x y =+,则x -y 的值为() A .-1B .1C .2D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 211a +取值最小,并求出这个最小值。
二次根式相关的概念
二次根式相关的概念二次根式是数学中的一个重要概念,它是指具有形式√a的数,其中a表示一个实数。
在这篇文章中,我将详细介绍二次根式的相关概念,并解释其在数学中的应用。
首先,让我们正式定义二次根式。
一个二次根式可以写为√a,其中a表示一个实数。
实数可以是正数、零或负数。
二次根式可以分为两种类型: 简化的二次根式和非简化的二次根式。
一个简化的二次根式是指,它的根号下面的数没有其他平方数因子。
例如,√4是一个简化的二次根式,因为4可以分解为2的平方。
而√6就是一个非简化的二次根式,因为6不能被分解为任何平方数的乘积。
在实际计算中,我们通常喜欢使用简化的二次根式,因为它们更加简洁。
对于一个给定的非负实数a,如果存在一个实数x,使得x的平方等于a,则称x为a的平方根,记为√a。
平方根的概念是二次根式的基础,因为二次根式就是表示一个数的正平方根。
例如,√9的值是3,因为3的平方是9。
同样地,√16的值是4,因为4的平方是16。
二次根式还有一些重要的运算规则。
首先,对于任意两个非负实数a和b,可以使用以下规则进行运算:1. 加法和减法:√a ±√b = √(a ±b)2. 乘法:√a ×√b = √(a ×b)3. 除法:√a ÷√b = √(a ÷b)这些运算规则可以帮助我们简化和计算二次根式的值。
例如,我们可以使用乘法规则将√2 ×√3简化为√(2 ×3) = √6。
值得注意的是,对于负数的二次根式,存在一个虚数单位i,它表示平方根为负数的情况。
例如,√(-1) = i,因为i的平方等于-1。
负数的二次根式在复数的研究中非常重要,但在实数范围内我们通常只考虑非负实数的二次根式。
二次根式在数学中有着广泛的应用。
它们被广泛用于几何学、物理学和工程学等领域。
在几何学中,二次根式可以表示长度、面积和体积等物理量。
例如,一个正方形的边长为a,那么它的面积可以表示为√a。
二次根式的概念
二次根式的概念二次根式是数学中的一个重要概念,通常与平方根有关。
在本文中,我们将深入探讨二次根式的定义、性质以及它们在数学中的应用。
一、二次根式的定义二次根式是指具有如下形式的数学表达式:√a,其中a代表一个非负实数。
√a称为二次根号或平方根,表示满足b²=a的非负实数b。
二次根式可以进一步扩展到包含多个项的复合根式,例如:√(a+b)或√(a-b)。
这些复合根式可以通过符合基本二次根式定义的方法来求解。
二、二次根式的性质1. 非负性质:二次根式的值不会是负数。
因为二次根式的定义要求被开方数是非负实数,所以二次根式的结果也是非负的。
2. 运算性质:二次根式具有一些特殊的运算性质,例如:a) 二次根式的乘法:√a * √b = √(a*b)。
这意味着,二次根式的乘积等于这两个数的乘积的平方根。
b) 二次根式的除法:√a / √b = √(a/b)。
这表示,二次根式的商等于这两个数的商的平方根。
c) 二次根式的化简:对于某些特殊情况,我们可以将一个二次根式化简为更简单的形式,例如√(a²)等于|a|,其中|a|表示a的绝对值。
3. 比较性质:我们可以通过比较两个二次根式的大小。
例如,如果a>b,那么√a>√b。
三、二次根式的应用二次根式在数学中有广泛的应用,包括但不限于以下几个方面:1. 几何学:二次根式经常出现在几何学的计算中。
例如,计算一个矩形的对角线长度时,我们可以利用二次根式来表示。
2. 物理学:物理学中的许多公式和方程涉及二次根式。
例如,求解自由落体运动中的时间或求解抛物线的轨迹等。
3. 金融学:金融学中的一些复利计算和利率计算也会涉及到二次根式。
例如,计算复利投资的未来价值或计算贷款的月均还款额等。
四、总结二次根式在数学中扮演着重要的角色,其定义、性质和应用都是我们学习数学的基础。
通过本文的介绍,我们希望读者对二次根式有更深入的理解,并能够将其运用到实际问题中。
二次根式的概念和性质
一、二次根式的概念和性质二次根式1.0a ≥)的式子叫做二次根式.说明:(1)被开方数是正数或0;(20a ≥)表示非负数a 的算术平方根. 2.二次根式的性质:(10; (2)2(0)a a =≥; (3(0)(0)(0)a a a a a a a >⎧⎪==⎨⎪-<⎩;(4)当0a ≥时,2=二、最简二次根式最简二次根式最简二次根式的定义:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式. 最简二次根式的满足条件:(1)被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式); (2)被开方数中不含能开得尽方的因数或因式; (3)分母中不含二次根式.说明:二次根式的计算结果要写成最简根式的形式.三、二次根式的加减 同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式. 二次根式的加减二次根式知识点同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.合并同类二次根式:(a b =+ 分母有理化分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.0.四、二次根式综合运算二次根式的综合运算法则:先算乘除法,再算加减法,有括号的先算括号里面的,最终结果二次根式部分要化为最简二次根式.注意:在二次根式的计算题中,如果题目中没有明确说明字母的取值范围,按照字母使二次根式有意义来计算.五、二次根式化简求值二次根式的化简求值:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,化为较为简单的一个式子(或直接得出结果),最后代入未知数的值求解,有时候也会存在整体代入的情况.注意:对与二次根式的化简求值如果字母没有明确说明取值范围,必须要进行分类讨论.六、根式的大小比较 比较大小的方法1.作差法:比较a 、b 的大小,0,0,0,a b a b a b a b >>⎧⎪-==⎨⎪<<⎩2.作商法:比较a 、b 的大小,当0,0a b >>时,可以采用作商法,1,1,1,a b a a b b a b>>⎧⎪==⎨⎪<<⎩二次根式比较大小的方法 (1)0a b >>(2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比较.(3)估算法 (4)分子有理化 (5)倒数法七、二次根式的乘除 二次根式的乘除法=0a ≥,0b ≥).=(0a ≥,0b >). 说明:利用乘除法则时注意a 、b a 、b 都非负,否则不成立.一、 单选题1、(2015中考西城二模)函数2y x=-中,自变量的取值范围是( ) A .2x ≠ B .2x ≥ C .2x > D .2x ≥-【答案】 B【解析】由二次根式有意义的条件可得20x -≥,即2x ≥,故答案为B .2、(2013初二上期末房山区)下列各式中,计算正确的是( ) A .22=B 16=±C .8D .(26=【答案】 A【解析】该题考查的是二次根式的计算.x 例题A,22=,故A正确;B16,故B错误;C,8-,故C错误;D,(212=,故D错误.所以该题的答案是A.3)A.(1a-B.(1a-C.D.(1a-【答案】B【解析】(=-B选项.1a4、(2013初二上期末平谷区)下列二次根式中,最简二次根式是()ABCD【答案】C【解析】该题考查最简二次根式.A =,被开方数含能开得尽方的因数,不是最简二次根式;故本选项错误;BCD 故选C .5、(2012初二下期末人大附中)如果最简二次根式b 那么a 、b 的值分别是( ) A .0a =,2b = B .2a =,0b = C .1a =-,1b = D .1a =,2b =- 【答案】 A【解析】该题考查的是同类二次根式的概念.同类二次根式是被开方数相同的两个最简二次根式. ∴2322b a b b a -=⎧⎨=-+⎩,解得:02a b =⎧⎨=⎩.故选A .6、下列运算中,正确的个数是( )①1251144251=;2=-;③214141161+=+④()442±=-5-A .0个B .1个C .2个D .3个【答案】B【解析】该题考查的是根式的运算.13111212=;=4,;⑤正确,故只有1个是正确的, 所以本题的答案是B .7、( )A .在9.1~9.2之间B .在9.2~9.3之间C .在9.3~9.4之间D .在9.4~9.5之间【答案】 C【解析】9()x x +是小数部分;则有:()2988x +=,即:2187x x +=,得187x ≈,0.38x ≈,9.39.4~之间,故答案为C 选项.8、(2013初一上期末人民大学附属中学)已知正整数a 、b =那么a b -的值是( ) A .2 B .3 C .4 D .5B【解析】该题考查的是根式的性质和运算.方法一:)1==因此可得6,3a b==,故a b-的值是3.方法二:由题知正整数a、b=9a b+-918a bab+=⎧⎨=⎩解得6a=,3b=,故a b-的值是3.故本题答案为B.二、填空题9、(2013初一上期末人民大学附属中学),则3223a ba b+=-____【答案】-18【解析】该题考查非负数的性质.==0.∴43ab=-⎧⎨=-⎩求出321823a ba b+=--.10、实数a、b a的化简结果为______【答案】b-b a该题考查的是代数式化简.由图中可得0a >,0b <,且a b <,则0a b +<a a b a a b a b =++=--+=-.11、=____________=______________. 【答案】25,9 【解析】25==,369+=12、(2013a =_________【答案】1±【解析】该题考查的是二次根式.满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 根据题意可列:22461a a +=- 解得:1a =±13、(2013.【答案】【解析】该题考查的是二次根式的计算.原式==14、(2013初一上期末人民大学附属中学+=____【答案】【解析】该题考查根式的分母有理化.++=+=三、解答题15、(2014【答案】【解析】本题考察的是根式的计算.==16、(2013初二上期末门头沟区)【答案】【解析】该题考查的是二次根式计算.原式+2=-17、(2013初二上期中C理工附)(1(2)点Q、M之间的距离是_________.(3)点M关于点Q的对称点是__________.(4)若点P、Q、M、所对应的实数分别是p、q、m,q m-+【答案】(1)P、M、Q(2)M Q-(3)2Q M-(4)p m-【解析】该题考察的是实数与数轴.(1<P,M,Q;(2)MQdM Q=-;(3)若数轴上两个点关于某个点对称,则这两个点的平均数为中间的那个点所表示的数,故点M关于点Q的对称点为2Q M-;(4q m-+()22q p m q p q=---+-p m=-18、1()2x yz++,求x、y、z的值.【答案】1,2,3x y z===P MQ【解析】1()2x y z ++得:0x y z ---1(1)1(2)10x y z -+--+--=即:2221)1)1)0++=所以:1,2,3x y z ===19、.【答案】<【解析】1==1=>∴11<- <1、(2015中考平谷一模)函数y =中自变量的取值范围是( )A .1x ≠B .1x >C .1x ≥D .1x ≥-【答案】 B【解析】根据题意可知,10x ->,即1x >.故选B .2、对于所有实数,a b ,下列等式总能成立的是( ) A.2a b =+Ba b + C 22a b+D a b =+【答案】 C【解析】因为220a b +≥22a b +,故答案为C 选项.3、(2011中考大兴一模)函数y =中,自变量x 的取值范围是___________【答案】 2x >-【解析】根据题意可知,只需20x +>,即2x >-即可.随堂练习4、实数P____【答案】1【解析】该题考查的是实数运算.由数轴可得,23p <<, ∴20p ->,30p -<, 23231p p p p -+-=-+-=.5、计算:=⨯12172_________,=--)84)(213(_________, =⨯-03.027.02_________,_____________=.【答案】24;0.18-;5-【解析】=,(24⎛--==⎝,20.090.18-=--⨯=-,4335-⨯=-6、(2013初一上期末人民大学附属中学)化简:2____【答案】43x -12 34p【解析】该题考查根式的化简.212x -+∵由题得120x -≥,12x ≤33x x =-=-.∴原式12343x x x =-+-=-. 故答案为43x -.7、设A B ==A ____B .【答案】 A B >【解析】2A =2B =< ∴22A B< ∴A B >8、(2013初二下期中北京第四中学)已知: 1x =,求223x x +-的值.【答案】 2-【解析】该题考查的是代数式求值.把1x =代入得:原式))21213=+-323=--2=-9、已知:,x y 为实数,且3y ,化简:3y -【答案】1-【解析】 由3y <得:1x =,3y <,所以31634341y y y y y y --+=---=-++-1、(2015中考大兴一模)函数y =x 的取值范围是( ) A .2x ≤且0x ≠ B .2x ≤C .2x <且0x ≠D .0x ≠【答案】 A【解析】根据题意可知,20x -≥,且0x ≠.解得2x ≤,且0x ≠. 2、若A ( )A .24a +B .22a +C .()222a +D .()224a +【答案】 A 【解析】 因为()224A a+24a =+,故答案为A 选项.3、(2015中考西城二模)若2(2)0m ++ 则m n -= .课后作业【答案】 3-【解析】因为2(2)0m +=,所以2m =-,1n =,故3m n -=-.4、在下列二次根式中,最简二次根式有____________________.【答案】【解析】由最简二次根式的定义可知是最简二次根式.5、(2012初二上期末通州区)若最简二次根式a =__________【答案】 4【解析】本题考查的是最简二次根式的定义.∴3530a a -=+≥,解得4a =.6、0,则3223a ba b+=-____【答案】-18【解析】该题考查非负数的性质.000=0=0.∴43a b =-⎧⎨=-⎩求出321823a ba b+=--.7、(2013初二下期中北京第四中学)12.(填“>”、“<”或“=”).【答案】>【解析】该题考查的是二次根式比大小.102==>102->,12>.8、(2013初二下期末清华大学附属中学)01)【答案】 011+=0……5分9、化简:(1(2【答案】(11(2【解析】(11=(2===。
二次根式
二次根式一、定义1.二次根式:形如式子a (a ≥0)叫做二次根式。
说明:(1)二次根式的概念是从形式上界定的,必须含有二次根号“ ”,“ ”的根指数是2,一般把根指数2省略。
(2)二次根式中的被开方数既可以是一个数,又可以是一个带有字母的式子,但必须注意a ≥0是a 为二次根式的前提;(3)形如b (a ≥0)的式子也是二次根式b 与a 是相乘的关系,要注意当b 是分数时,不能写成带分数的形式。
二、性质1.二次根式的性质:(1)a (a ≥0)即一个非负数的算术平方根是一个非负数。
(2)(a )2=a (a ≥0);即一个非负数的算术平方根的平方等于它本身。
(3)==a a 2 即任意一个数的平方的算术平方根等于它本身的绝对值。
2、典型例题例1、如果 是二次根式,那么m,n 应满足的条件是( )例2、求下列二次根式中字母的取值范围例3、 - ; =例4、如果a+ =1,那么a 的取值范围是()。
例5、若化简|1-x|- 的结果是2x-5,则x 的取值范围是() 例6、要使式子有意义,则M 的取值范围是( )a (a >0)a -(a <0)0 (a =0);例7、已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()例8、已知a,b为两个连续的整数,且a>则a+b=( )例9、 + =( )例10、=·成立的条件是()+|x+y-2|=0,则x-y=()例11、如果=成立,那么()A. m≥3B. m﹥3C.0≤m≤3D. m≥0例12、已知数a,b=b-a,则 ( )A. a>bB. a<bC. a≥bD. a≤b例13、x为何值时,在实数范围内有意义()A. x>1B. x<0C. x≥1D. x≤0例14、 =3-a,则3与a的大小关系是( )A. 3>aB. 3<aC. 3≥aD. 3≤a例15、如果x<-4,那么|2- |的值是( )A. 4+xB. -xC. -4-xD. x例16、若有意义,则m能取的最小整数值是()A. m=0B. m=1C. m=2D. m=3三、化简、运算1、二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a ≥0,b ≥0);此法可推广到多个二次根式相乘的情况即 · ·= (a ≥0,b ≥0,c ≥0)b ≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算。
二次根式的定义和基本性质
二次根式的定义和基本性质二次根式,也称为平方根,是数学中常见的一种运算。
它的定义和基本性质在代数学和几何学中有着广泛的应用。
本文将介绍二次根式的定义,并探讨其基本性质。
在此之前,我们先来了解一下二次根式的定义。
二次根式的定义:二次根式是指一个数的平方根,如√x表示x的平方根,其中x为一个非负实数。
当x小于0时,√x是一个虚数。
在计算平方根时,我们通常提取其中的正根,即非负实数解。
基本性质:1. 非负数的平方根:对于非负实数a,它的平方根√a是一个非负实数。
例如,√9 = 3,因为3的平方等于9。
2. 平方根的乘法:对于非负实数a和b,有以下运算规则:√(a * b) = √a * √b例如,√(4 * 9) = √4 * √9 = 2 * 3 = 63. 平方根的除法:对于非负实数a和b(b不等于0),有以下运算规则:√(a / b) = √a / √b例如,√(25 / 4) = √25 / √4 = 5 / 2 = 2.54. 平方根的加法与减法:对于非负实数a和b,有以下运算规则:√a ± √b 通常不能进行化简,可以合并成一个复合根。
例如,√2 + √3 无法化简,但可以合并为一个复合根√(2 + 3) = √55. 平方根的乘方:对于非负实数a和正整数n,有以下运算规则:(√a)^n = a^(1/n)例如,(√9)^2 = 9^(1/2) = 36. 平方根的传递性:对于非负实数a和b,如果a小于b,则√a小于√b。
例如,√4小于√9,因为4小于9。
通过以上基本性质,我们可以在实际问题中用到二次根式。
例如,在几何学中,可以通过求解平方根来计算物体的边长或面积;在代数学中,平方根可以用来求解方程的解等。
需要注意的是,对于负数的平方根,我们引入了虚数单位i。
虚数单位i定义为√(-1),它满足i^2 = -1。
负数的平方根被称为虚数,属于复数的一种。
虚数在物理学和电气工程等领域有着重要的应用。
二次根式的概念与计算
二次根式的概念与计算二次根式,也称为平方根,是数学中的基本概念之一。
它指的是一个数的平方根,即找到一个数,使得这个数的平方等于给定的数。
在本文中,我们将介绍二次根式的定义、性质以及如何进行计算。
一、二次根式的定义二次根式是指形如√a的表达式,其中a是非负实数。
读作“根号a”,表示求一个非负实数x,使得x的平方等于a。
例如,√25表示求一个数x,使得x的平方等于25,显然x=5,所以√25=5。
二、二次根式的性质1. 非负实数的二次根式是唯一的。
例如,√16=4,而不会有其他的非负实数满足x^2=16。
2. 若a≥0,则有√a≥0。
即二次根式的值不会是负数。
3. 二次根式可以进行加减运算。
例如,√9+√16=3+4=7。
4. 二次根式可以进行乘法运算。
例如,√9*√16=3*4=12。
5. 二次根式可以进行除法运算。
例如,√16/√4=4/2=2。
6. 若a>b≥0,则有√a>√b。
即较大的数的二次根式值更大。
三、二次根式的计算方法1. 化简二次根式:如果二次根式中的被开方数存在平方因子,可以将其化简。
例如,√36=√(6^2)=6。
2. 合并同类项:对于同根号下的数可以进行合并。
例如,√2+√8=√2+√(4*2)=√2+2√2=3√2。
3. 有理化分母:将分母为二次根式的分式转化为分母为有理数的分式。
例如,1/√3=√3/3。
4. 进行四则运算:对于二次根式的加减乘除运算,可以根据性质进行计算。
例如,(√5+√3)^2=5+2√15+3=8+2√15。
总结:二次根式是数学中的重要概念之一,它表示一个数的平方根。
在计算中,我们可以根据二次根式的性质进行化简、合并、有理化分母以及进行四则运算。
通过掌握二次根式的概念和计算方法,我们可以更加灵活地运用它们解决实际问题。
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。
其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。
1) 二次根式有意义的条件是被开方数为非负数。
据此可以确定字母的取值范围。
2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。
若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。
3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。
4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。
二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。
(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。
(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。
应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。
该性质常与配方法结合求字母的值。
2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的定义
1.若在实数范围内有意义,则x的取值范围是___________________
2.
若代数式在实数范围内有意义,则x的取值范围为__________________
3.下列各式:,,,(a>0),其中是二次根式的有()
A.1个 B.2个 C.3个 D.4个
4.若代数式有意义,则实数x的取值范围是__________________
5
.使代数式
+有意义的整数x有
()
A.5个 B.4个 C.3个 D.2个
6.下列各式一定是二次根式的是()
A .
B .
C .
D .
7.下列各式中无论x为任何数都没有意义的是()
A .
B .C
.
D .
8.下列选项中,使根式有意义的a的取值范围为a<1的是()
A .
B .C
.
D .
9.使得有意义的a有()
A.0个 B.1个 C.无数个D.以上都不对
10
.要使二次根式在实数范围内有意义,
则实数x的取值范围在数轴上表示正确的是()
A .B
.
C
.
D .
11.在下列式子:①②(x﹣2)0③中,x不可以取到2的是()
A.只有①B.只有②C.①和②D.①和③12.下列说法正确的是()
A.若a<0,则<0 B.x实数,且x2=a,则a>0
C .有意义时,x≤0 D.0.1的平方根是±0.01 13.下列二次根式里,被开方数中各因式的指数都为1的是()
A .
B .
C .
D .
14
.要使式子有意义,则x的取值范围是__________________
15.要使二次根式有意义,字母x必须满足的条件是()
A.x≥1 B.x>0 C.x≥﹣1 D.任意实数16.下列式子一定是二次根式的是()
A .
B .
C .
D .
17.若二次根式有意义,则字母x应满足的条件是__________________
18.二次根
式中x的取值范围是__________________
19.下列各式中①;②;③;
④
(x≥1);
⑤;⑥一定是二次根式
的有()个.
A.3 B.4 C.5 D.6
20.若+有意义,则(﹣n)2的平方根是__________________
21.已知
y=
+﹣3,则5xy的值是
__________________
22
.若在实数范围内有意义,则x的取
值范围是__________________
23.下列式子是二次根式的有()
①;②(a≥0);③(m,n同号且n≠0);④;⑤.
A.0个 B.1个 C.2个 D.3个
24.使代数式+有意义的a的取值范围为__________________
25.使式子有意义的实数m()A.不存在B.只有一个C.只有两个D.有无数个
26.如果﹣是二次根式,那么x应满足的条件是__________________
27
.要使式子有意义,x的取值范围是
__________________
28.已知实数a,b满足|2017﹣a |+=a,则代数式a﹣20172=__________________
29.若a,b 为实数,且,则a+b的值为__________________
30.已知x、y为实数,且
y=
﹣+4.+= __________________
31.已
知,则x y的值为
__________________
32.若二次根式无意义,则x的取值范围是.
33.若代数式+有意义,则实数x的取值范围是.
34.已知a满足|2017﹣a |+=a,则a﹣20172的值是.
35.已知a满足|2017﹣a |+=a,那么a ﹣20172的值是.
36
.若
与有意义,则x的取值范围是.
37.已知y
>
++2
,求+3﹣2x的值.
38.已知:a,b是等腰三角形的两条边长,且a,b 满足b=4+
,求此三角形的周长。