超临界CO2萃取工艺及装置

合集下载

超临界萃取原理

超临界萃取原理

超临界萃取原理超临界流体萃取是当前国际上最先进的物理分离技术。

常见的临界流体中,由于CO2化学性质稳定,无毒害和无腐蚀性,不易燃和不爆炸,临界状态容易实现,而且其临界温度(31.1℃)接近常温,在食品及医药中香气成分,生理活性物质、酶及蛋白质等热敏物质无破坏作用,因而常用CO2作为作为萃取剂进行超临界萃取。

一、超临界CO2纯CO2的临界压力是7.3MPa和31.1℃时,此状态CO2被称为超临界CO2。

在超临界状态下,CO2流体是一种可压缩的高密度流体,成为性质介于液体和气体之间的单一状态,兼有气液两相的双重特点:它的密度接近液体,粘度是液体的1%,自扩散系数是液体的100倍,因而它既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和对某些物质很强的溶解能力,可以说超临界CO2对某些物质有着特殊的渗透力和溶解能力。

二、超临界CO2萃取过程超临界CO2密度对对温度和压力变化十分敏感,所以调节正在使用的CO2的压力和密度,就可以通过调节CO2密度来调整该CO2对欲提取物质的溶解能力;对应各压力范围所得到的的萃取物不是单一的,可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,与被萃取物质完全或部分分开,从而达到分离提纯的目的。

三、超临界CO2溶解选择性超临界状态下的CO2具有选择性溶解,对低分子、弱极性、脂溶性、低沸点的成分如挥发油、烃、酯、内脂、醚、环氧化合物等表现出优异的溶解性,而对具有极性集团(-OH、-COOH等)的化合物,极性基团愈多,就愈难萃取,故多元醇、多元酸及多羟基的芳香物质均难溶于超临界CO2。

对于分子量大的化合物,分子量越大,越难萃取,分子量超过500的高分子化合物几乎不溶,因而对这类物质的萃取,就需加大萃取压力或者向有效成分和超临界CO2组成的二元体系中加入具有改变溶质溶解度的第三组成粉(即夹带剂),来改变原来有效成分的溶解度。

一般来说,具有很好性能的溶剂,也往往是很好的夹带剂,如甲醇、乙醇、丙酮、乙酸乙酯等。

二氧化碳超临界萃取原理

二氧化碳超临界萃取原理

二氧化碳超临界萃取原理
超临界萃取是一种高效的二氧化碳 (CO2) 提取方法,广泛应
用于食品、药物、化妆品和生物燃料等领域。

该方法的原理基于二氧化碳在超临界状态下的特殊性质。

超临界状态指的是二氧化碳在高压高温条件下达到了液-气临
界相点以上的状态。

在这种状态下,二氧化碳同时具备气体和液体的性质,具有较高的密度和低的粘度。

这种性质使得二氧化碳可以作为一种理想的溶剂,在超临界条件下用于提取物质。

超临界萃取的过程如下:首先,将待提取物质与二氧化碳进行混合,在高压高温下形成超临界混合物。

然后,通过控制温度和压力,调整二氧化碳的密度和溶解度,使其具有选定溶解度的能力。

接着,将超临界混合物通过特定的萃取器或反应器,使待提取物质溶解到超临界二氧化碳中。

最后,通过降压和调节温度,将溶解的物质从超临界二氧化碳中迅速释放出来,获得所需的提取物质。

超临界萃取的优点在于其操作简单、清洁环保,无需添加大量化学溶剂并能高效提取目标物质。

此外,超临界萃取还能够在较低温度下进行,减少了热敏性物质的降解风险。

此外,CO2是一种非常常见和廉价的物质,易于获取和处理。

综上所述,超临界萃取是一种基于二氧化碳的高效提取方法,利用超临界二氧化碳的特殊性质,能够在较低温度下高效提取目标物质,并且具有操作简单、环保等优点。

超临界CO2流体萃取技术

超临界CO2流体萃取技术

超临界CO2流体萃取技术随着中国城镇化和工业化的加快,超临界CO2流体萃取技术就成了不可缺少的一种技术了。

这是店铺为大家整理的,仅供参考!超临界CO2流体萃取技术篇一超临界CO2流体萃取软体家具中的新型溴系阻燃剂摘要:本文以软体家具中的溴系阻燃剂为研究目标,建立了超临界CO2流体萃取/气相色谱-质谱联用法测定2,2’,4,4’,5,5’-六溴联苯(BB-153)和1,2-二溴-4-(1,2-二溴乙基)环己烷(TBECH)的检测方法。

建立的方法灵敏、可靠、环保,可用于软体家具用软质阻燃聚氨酯泡沫中溴系阻燃剂的检测。

关键词:新型溴系阻燃剂,超临界CO2流体萃取,气相色谱-质谱联用法随着中国城镇化和工业化的加快,建筑材料的需求增长迅速。

由于溴系阻燃剂具有非常出色的阻燃性能,在电子产品、纺织品、塑料等产品中大量使用。

据统计,2005年-2010年,中国每年溴系阻燃剂的产量为7.0×107kg-8.7×107kg,未来还将以7%-8%的速度增长[1]。

研究表明某些溴系阻燃剂对人体神经系统、内分泌系统和生殖系统产生较大的危害。

斯德哥尔摩已把六溴联苯、八溴联苯醚、十溴联苯醚列入持久性有机污染物禁用名单[2]。

软体家具包括沙发、床垫、汽车内饰材料,主要成为聚氨酯。

2010年11月上海静安区一正在进行外墙节能改造的教师公寓发生大火,造成了58人死亡。

2013年12月广州建业大厦发生火灾,损失4000万。

这其中聚氨酯材料的燃烧占据了大部分原因。

由于聚氨酯具有较大的火灾危险性,众多厂家都把提高其阻燃性能列为重要目标。

国外对溴系阻燃剂的添加有严格的限制,而国内标准制定滞后,目前还没有对软质聚氨酯使用何种阻燃剂提出具体的要求,这就加大了溴系阻燃剂滥用可能性,软体家具中随着使用过程溴系阻燃剂有可能接触到人体,造成潜在伤害。

因此建立软质聚氨酯材料中的溴系阻燃剂检测方法非常有必要。

1 实验部分1.1原料与试剂聚醚多元醇(PPG-5623,羟值28.0 KOHmg/g,官能度为3,中海壳牌),白聚醚(POP CHF-628,羟值28.0KOHmg/g,官能度为3,江苏长化聚氨酯科技有限公司),甲苯二异氰酸酯(TDI 80/20,官能度为2,上海巴斯夫),二月桂酸二丁基锡(PUCAT L-33,佛山市普汇新型材料有限公司),辛酸亚锡(YOKE T-9,江苏雅克科技股份有限公司),硅油 L-540/STL DR, 2,2’, 4,4’,5,5’-六溴联苯(BB-153)和1,2-二溴-4-(1,2-二溴乙基)环己烷(TBECH)(百灵威科技有限公司),去离子水(自制)、甲醇(≥95% AR)、乙醇(≥95%,AR)、丙醇(≥95%,AR)购自广州化学试剂厂。

超临界萃取实验报告

超临界萃取实验报告

超临界萃取实验报告超临界萃取实验报告摘要:本实验旨在研究超临界萃取技术在提取天然产物中的应用。

通过使用超临界CO2作为溶剂,对某种天然植物中的有效成分进行提取,并对提取效果进行评估。

实验结果表明,超临界萃取技术在提取天然产物中具有高效、环保等优势,对于制备高纯度的天然成分具有重要意义。

引言:超临界萃取是一种基于超临界流体的提取技术,其在分离纯化天然产物中具有广泛应用。

超临界流体是指在临界温度和临界压力下,气体和液体的性质同时存在的状态。

超临界CO2是最常用的超临界流体之一,由于其低毒性、无残留、易回收等特点,成为了天然产物提取的理想溶剂。

实验方法:1. 准备样品:选择某种天然植物作为样品,将其研磨成细粉。

2. 超临界萃取装置:使用超临界萃取设备,将CO2加压至超临界状态。

3. 萃取过程:将样品放入超临界萃取器中,以一定温度和压力下进行萃取。

4. 分离回收:通过减压和降温,将提取物和溶剂分离,并回收溶剂。

实验结果:通过超临界萃取技术,我们成功地从天然植物中提取出目标成分,并对提取物进行了分析。

实验结果显示,超临界CO2对于提取目标成分具有较高的选择性和提取效率。

此外,由于超临界CO2的低温性质,提取物中的热敏性成分得到了有效保护,保持了其活性和稳定性。

讨论:超临界萃取技术相比传统的有机溶剂提取具有许多优势。

首先,超临界CO2是一种无毒、无污染的溶剂,对环境友好。

其次,超临界CO2易于回收,可以循环利用,降低了成本。

此外,超临界CO2的温度和压力可以调节,适用于不同成分的提取。

因此,超临界萃取技术在制备高纯度的天然产物中具有广阔的应用前景。

结论:本实验通过超临界萃取技术成功地提取出了天然植物中的目标成分,并对其进行了分析。

实验结果表明,超临界CO2具有高效、环保等优点,适用于提取天然产物中的有效成分。

超临界萃取技术在制备高纯度的天然产物中具有重要意义,对于开发天然药物、食品添加剂等具有广泛的应用前景。

中药超临界CO2萃取设备及技术应用

中药超临界CO2萃取设备及技术应用

用, 分析 了该 技术 在应用 中常 遇 到的 问题 , 并对其 前 景进行 了展望 。 关键 词 : 超 临界C O: 萃取 ; 设备: 应用 ; 原理 ; 展望
0 引 言
溶解度较 大 的特 点 , 又 具有气 体易 于扩散 和运动 的特 性, 其传质速率大大高于液相过程 。
超 临界 流 体 萃取 技 术 ( S u p e r c r i t i c a l F l u i d E x t r a c t i o n ,
超 临界 流体 ( S u p e r c r i t i c a l F l u i d , S C F 或S F ) 是 指 超

临界温度 ( ) 和 临界 压 力 ( P c ) 状 态 下 的高 密 度 流 体 , 例 如二氧化碳 、 氨气 、 乙烯 、 丙烷、 丙烯、 水等 。 与 常 温 常 压
体 与待 分 离 的物质 接 触 , 使其 有 选 择性 地把 极 性 大小 、 沸 点 高低 由以上特 性可 以看 出 , 超 临界流 体兼有 液体和 气 和分 子量大 小的成分依次萃取 出来 。 当然 , 对应各压力 体 的双重特性 , 扩 散系数大、 黏度小 、 渗透性好 , 与液体 范 围 所 得 到 的 萃 取 物 不 可 能 是 单 一 的 , 但 可 以通 过 控 溶剂 相 比, 可 以更快 地完成传 质 , 达 到平衡 , 促进 高效 制条件得 到最佳 比例 的混合成分 , 然 后借 助减压 、 升温 分离过程 的实现 。
图 1 临 界 点 附近 的P - T t  ̄ 图
机电信息 2 0 1 4年第 8 期总第 3 9 8 期 9
I 装 备 应 用 与 研 究 ◆ z h u a n g b e i y i n g y o n g y u Y a n j i u

HA121-50-01-C型超临界萃取装置技术说明

HA121-50-01-C型超临界萃取装置技术说明

HA121-50-01-C型超临界萃取装置技术说明(一萃二分一柱CO2循环式)该装置用于高压及合适温度下进行物质萃取(固体或液体),在分离器中改变条件使溶解物质解析出以达到分离的目的。

该装置主要由:萃取釜、分离釜、精馏柱、CO2高压泵、夹带剂泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度控制系统、安全保护装置、计算机采集系统等组成。

附属设备和系统都能满足超临界萃取主系统的需求和流程图要求。

一、萃取釜:配有水夹套循环加热系统,温度可调,配固、液料用料筒材质0Cr18Ni9容积1L一套最高工作压力50MPa二、分离釜:配有水夹套循环加热系统,温度可调材质0Cr18Ni9容积0.6L二套最高工作压力30MPa三、精馏柱配有水夹套循环加热系统,温度可调材质0Cr18Ni9规格Φ35×5×2200m/m 分四节梯度控温容积1200ml,可作为第三节分离釜使用。

最高工作压力30MPa柱内根据工艺要求由用户选装相关规格填料四、CO2高压泵:流量(双柱塞)最大排量40L/h 变频可调最高工作压力50Mpa 泵头带冷却系统五、夹带剂泵:流量(双柱塞)1/4—4L/h 机械调节最高工作压力50MPa六、制冷系统:制冷量3300Kcal/h 风冷温度控制范围-5℃~+5℃满足工艺要求七、换热系统:材质0Cr18Ni9规格Φ6×1盘管最高工作压力50MPa配水夹套循环加热系统,温度可调八、净化系统:材质0Cr18Ni9最高工作压力50MPa贮罐:九、CO2材质0Cr18Ni9容积4L最高工作压力16MPa十、流量计:规格金属管浮子流量计数显远传,分别显示瞬时流量和累积流量十一、温度控制系统:控制范围室温~75℃可调(水浴)控温精度±1℃数显双屏十二、安全保护装置:1.高压泵出口配电接点压力表、设定工作压力、超压自动停泵保护。

2.高压泵萃取釜、分离釜、精馏柱、根据最高工作压力,分别配安全阀,超压自动泄压。

超临界CO2流体萃取技术

超临界CO2流体萃取技术

超临界CO2流体萃取技术美国应⽤分离公司超临界 CO2流体萃取仪⼀、超临界流体萃取技术的起源及发展超临界流体萃取(Supercritical Fluid Extraction,SFE) 作为⼀种技术应⽤于分离提取最早可追溯到1879年,当时J.B.Hannay 等就发现,⽤超临界的⼄醇可溶解⾦属卤化物,压⼒越⾼,溶解能⼒越强。

1962年E.klesper等⾸次成功⽤超临界的⼆氯⼆氟甲烷从⾎液中分离铁卟啉,1966年开始⽤超临界CO2和超临界正戊烷来分析多环芳烃、染料和环氧树酯等。

1978年klesper⼜将超临界流体技术应⽤于聚合物⼯业,从聚合物中提取各类添加剂,使超临界流体萃取技术的应⽤范围不断扩⼤。

超临界流体萃取技术在⼯业中也早有应⽤,最为典型的例⼦就是⽤CO2流体萃取咖啡⾖中的咖啡因,即脱咖啡因。

⼆、超临界流体萃取仪的⼯作原理及特点超临界流体萃取(Supercritical Fluid Extraction,SFE) 是⼀种以超临界流体作为流动相的分离技术。

超临界流体是指物质⾼于其临界点,即⾼于其临界温度和临界压⼒时的⼀种物态。

它即不是液体,也不是⽓体,但它具有液体的⾼密度,⽓体的低粘度,以及介⼊⽓液态之间的扩散系数的特征。

⼀⽅⾯超临界流体的密度通常⽐⽓体密度⾼两个数量级,因此具有较⾼的溶解能⼒;另⼀⽅⾯,它表⾯张⼒⼏近为零,因此具有较⾼的扩散性能,可以和样品充分的混合、接触,最⼤限度的发挥其溶解能⼒。

在萃取分离过程中,溶解样品在⽓相和液相之间经过连续的多次的分配交换,从⽽达到分离的⽬的。

三、超临界流体萃取仪的基本流程和重要部件典型的超临界流体萃仪的⼯作流程如下图所⽰。

它⼤体上可分为三个部分即流动相系统、分离系统、和收集系统。

Micrometering ValveModifier Pump Module流动相对流动相的选择⾸先要考虑它对萃取样品的溶解能⼒,流动相的密度越⼤,其溶解能⼒越强;次外,在实际应⽤中还必需考虑流体的超临界条件、腐蚀性和毒性等。

超临界二氧化碳流体萃取技术

超临界二氧化碳流体萃取技术

超临界二氧化碳流体萃取技术摘要超临界流体萃取技术(Supercritical Fluid Extraction,简称SFE)[1]是一种发展快,运用广的新型分离技术,具有操作简单、能耗少、污染低、分散能力好、产品纯、无有机溶剂残留等优点,故又名“绿色分离技术”。

其中超临界CO2萃取技术运用最为广泛,技术最为成熟。

广泛用于医药、食品和化工工业,对于传统方法难以提取及分离的物质,更有其无可比拟的优越性。

本文主要介绍了SFE技术分离原理、主要优点、技术运用及发展现状,并对其发展前景进行展望。

关键词:超临界流体萃取技术;二氧化碳;应用;Keywords:Supercritical Fluid Extraction(SFE);CO2;Application引言超临界流体萃取技术是近30年前发展起来的一个新兴的分离技术。

超临界萃取的介质可以有很多种,例如水、二氧化碳、乙烷、己烷、一氧化氮、氨、二氯二氟、甲烷等等。

这一技术是运用了流体处于临界温度和临界压力之上时的溶解性发生特异性变化这一点,对目的物进行萃取。

即使是较小的温度、要离变化,对超临界流体的溶质溶解性都可以起很大变化,运用这一点完成了对目标物的萃取和分离。

随着人们对生活品质的追求,对食品、药物的质量与安全的要求越来越严格,在追求无毒无公害的绿色生活中,传统的食品添加剂、香料、药物成份的提取方法已经逐渐不为人们所接受。

更为安全、高效、环保的工艺手段也逐步代替了传统加工工艺,而超临界流体萃取技术即为其中突出的一种新兴分离技术,可以达到更高的安全标准的同时,满足高效的当代生产要求。

1.概述1.1超临界流体萃取技术的定义超临界流体(SCF)是指热力学状态处于临界点之上的流体。

超临界流体由于液气分界消失,是提高压力也不液化的非凝聚性气体。

兼具液体与气体物性,其密度似液体,且物质溶解度与溶剂密度成正比,故溶解能力接近液体溶剂[2]。

其黏度又似气体,具有气体易于扩散、运动特性,传质速率远高于液体。

CO2超临界萃取技术简介(程克文)

CO2超临界萃取技术简介(程克文)

超临界CO2萃取压力与温度的关系图
二氧化碳超临界萃取装置
超临界CO2萃取的特点 决定了其应用范围十分广 阔。 在医药工业中,可用 于中草药有效成份的提取, 热敏性生物制品药物的精 制,及脂质类混合物的分 离; 在食品工业中,啤酒 花的提取,色素的提取等; 在香料工业中,天然 及合成香料的精制;化学 工业中混合物的分离等。
3.夹带剂 在超临界状态下,CO2具有选择性溶解。SFE-CO2对低 分子、低极性、亲脂性、低沸点的成分如挥发油、烃、酯、 内酯、醚,环氧化合物等表现出优异的溶解性,像天然植 物与果实的香气成分。对具有极性集团(-OH,-COOH等)的 化合物,极性集团愈多,就愈难萃取,故多元醇,多元酸 及多羟基的芳香物质均难溶于超临界二氧化碳。 对于分子量高的化合物,分子量越高,越难萃取,分 子量超过500的高分子化合物也几乎不溶。 而对于分子量较大和极性集团较多的中草药的有效成 分的萃取,就需向有效成分和超临界二氧化碳组成的二元 体系中加入第三组分,来改变原来有效成分的溶解度,在 超临界液体萃取的研究中,通常将具有改变溶质溶解度的 第三组分称为夹带剂。一般地说,具有很好溶解性能的溶 剂,也往往是很好的夹带剂,如甲醇、乙醇、丙酮、乙酸 乙酯。
有机溶剂萃取精酚
CO2回收基本流程图
应用茶多酚的产品
6.CO2萃取剂优点
用超临界萃取方法提取天然产物时,一般用CO2作萃取剂。 a)临界温度和临界压力低(Tc=31.1℃,Pc=7.38MPa),操作 条件温和,对有效成分的破坏少,因此特别适合于处理高 沸点热敏性物质,如香精、香料、油脂、维生素等; b)CO2可看作是与水相似的无毒、廉价的有机溶剂; c)CO2在使用过程中稳定、无毒、不燃烧、安全、不污染环境, 且可避免产品的氧化; d)CO2的萃取物中不含硝酸盐和有害的重金量,并且无有害溶 剂的残留; e)在超临界CO2萃取时,被萃取的物质通过降低压力,或升 超临界流体萃取机高温度即可析出,不必经过反复萃取操 作,所以超临界CO2萃取流程简单。 因此超临界CO2萃取特别适合于对生物、食品、化妆品 和药物等的提取和纯化。

超临界CO2萃取技术

超临界CO2萃取技术
Company Logo
二氧化碳的生产工艺
膜分离及组合分离手段,将二氧化碳分离出来, 膜分离及组合分离手段,将二氧化碳分离出来,浓集 高浓度的二氧化碳气体,加压液化后作为工业过程B 高浓度的二氧化碳气体,加压液化后作为工业过程 的原料或直接作为一种工业产品。 的原料或直接作为一种工业产品。二氧化碳固定转化 综合利用研究已经成为绿色工程学科研究的热点
Company Logo
二氧化碳的生产工艺
二氧化碳控制和综合利用技术研究已成为绿色过程工程热点之一,从绿色过 程工程角度,根据工业生态学原理,构建二氧化碳良性循环系统,流程如下:
碳循环源 过程A 过程 过程B 过程
浓缩加工 处理收集 分离纯化
来自工业过程的A的二氧化碳废气,经收集,除尘,废热利用,压缩等预处理后, 来自工业过程的 的二氧化碳废气,经收集,除尘,废热利用,压缩等预处理后,进入 的二氧化碳废气 分离纯化系统,依据不同工业气源的组成及含量,分别采取吸收,吸附, 分离纯化系统,依据不同工业气源的组成及含量,分别采取吸收,吸附,
超临界CO2 萃取技术 萃取技术Supercritical 超临界 CO2 extraction technology
南昌大学 制药091:徐换换 : 制药 学号: 学号:5801309035 2011.12.11
超临界CO2 萃取技术 超临界
1.概述 概述
2.超临界 超临界 CO2萃取原 萃取原 理 3.超临界 超临界CO2
Company Logo
典型固体物料萃取工艺流程图

Company Logo
典型固体物料萃取工艺流程图
流程中二氧化碳流体采用液态加压工艺,所以流程中有多 流程中二氧化碳流体采用液态加压工艺, 个热交换装置以满足二氧化碳多次相变需要。 个热交换装置以满足二氧化碳多次相变需要。萃取釜温度 选择受溶质溶解度大小和热稳定性的限制, 选择受溶质溶解度大小和热稳定性的限制,与压力选用范 围相比,温度选择范围要窄得多, 围相比,温度选择范围要窄得多,常用温度范围在其临界 温度附近。选择工艺条件时可按超临界溶剂的对比压力, 温度附近。选择工艺条件时可按超临界溶剂的对比压力, 对比温度和对比密度的关系,选用萃取温度和压力的范围。 对比温度和对比密度的关系,选用萃取温度和压力的范围。 普遍推荐萃取工艺条件介于对比压力在1〈Pr〈 6.对比 普遍推荐萃取工艺条件介于对比压力在 〈 〈 对比 温度在1〈 之间。 温度在 〈 Tr〈 1.4之间。 〈 之间

超临界萃取工艺流程图及操作

超临界萃取工艺流程图及操作

超临界萃取实验1.超临界萃取工艺流程图2.实验步骤2.1开机前的准备工作(1) 首先检查电源、三相四线是否完好无缺。

(AC380V/50HZ)(2) 冷冻机及储罐的冷却水源是否畅通,冷箱内为30%的乙二醇+70%的水溶液。

(3) CO2气瓶压力保证在5~6MPa的气压,且食品级净重大于等于22kg。

(4) 检查管路接头以及各连接部位是否牢靠。

(5) 将每个热箱内加入冷水,不宜太满,离箱盖2公分左右。

(6) 萃取原料装入料筒,原料不应装太满。

离过滤网2~3公分左右。

(7) 将料筒装入萃取缸,盖好压环及上堵头。

(8) 如果萃取液体物料需加入夹带剂时,将液料放入携带剂罐,可用泵压入萃取缸内。

2.2开机操作顺序(1) 先开电源开关,三相电源指示灯都亮,则说明电源已接通,再启动电源的(绿色)按钮。

(2) 接通制冷开关,同时接通水循环开关。

(3) 开始加温,先将萃取缸、分离Ⅰ、分离Ⅱ、精馏柱的加热开关接通,将各自控温仪调整到各自所需的设定温度。

如果精馏柱参加整机循环需打开与精馏柱相应的加热开关。

(4) 在冷冻机温度降到0℃左右,且萃取缸、分离Ⅰ、分离Ⅱ、温度接近设定的要求后,进行下列操作。

如萃取缸40℃,分离Ⅰ50℃,分离Ⅱ35℃,其中萃取缸与分离Ⅰ温度小于等于75℃,分离Ⅱ温度不变。

(5) 开始制冷的同时将CO2气瓶通过阀门2进入净化器、冷盘管和贮罐,CO2进行液化,液态CO2通过泵、混合气、净化器进入萃取缸(萃取缸已装样品且关闭上堵头),等压力平衡后,打开放空阀门4,慢慢放掉残留空气以降低部分压力后,关闭放空阀。

(6) 加压力:先将电极点拨到需要的压力(上限),启动泵Ⅰ绿色按钮,打开变频器上的RUN,如果反转时,按一下触摸开关FWD/PEV。

当压力加到接近设定压力(提前1MPa左右),开始打开萃取缸后面的节流阀门,具体怎么调节,根据下面不同流向:①萃取缸→分离器Ⅰ→分离Ⅱ→回路从阀门3进萃取缸,阀门5、7进入分离Ⅰ,阀门9、10进入分离Ⅱ,阀门13、12、1回路循环;调节阀门7控制萃取缸压力,调节阀门10控制分离Ⅰ压力,调节阀门12控制分离Ⅱ压力。

超临界co2萃取精油工艺流程

超临界co2萃取精油工艺流程

超临界CO2萃取精油工艺流程如下:
1. 将含有目标精油的植物原料清洗干净,切片,放入密闭的萃取容器中。

2. 将容器连接到超临界CO2流路系统,同时保持超临界CO2流速稳定。

3. 在一定的压力和温度条件下,萃取目标精油物质。

当萃取达到预设时间或预设浓度时,停止萃取。

4. 分离提取出的超临界CO2和精油,可以获得较为纯净的精油产品。

5. 最后进行精油分装、贴标、包装,即可进入市场。

以上是基本流程,实际操作时可能还需要考虑以下因素:
1. 目标植物原料的特性,如种类、厚度、含油量等,需要选择适合的萃取设备、压力、温度和萃取时间。

2. 萃取容器的材质选择,一般推荐使用不锈钢材质,以防止萃取液的腐蚀。

3. 萃取过程中的安全控制,包括压力、温度的控制和监测,以及紧急泄放和消防系统的设置。

4. 精油的质量控制,包括萃取过程中的杂质去除,以及精油分离后的纯度检测。

5. 环保问题,超临界CO2萃取过程会产生少量废气和废液,需要采取相应的环保措施。

请注意,实际操作时需要根据具体情况进行调整和优化。

同时,为了保证工艺流程的顺利进行,需要专业的技术人员进行操作和管理。

超临界二氧化碳萃取技术

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。

关键词:超临界二氧化碳萃取分离技术基本原理前言超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。

它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。

早在1897年,人们就已经认识到了超临界萃取这一概念。

当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。

例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。

但直到20世纪60年代,才开始了其工业应用的研究。

目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。

1超临界萃取的原理当液体的温度和压力处于它的临界状态。

如图1是纯流体的典型压力—温度图。

图中,AT表示气—固平衡的升华曲线,BT表示液—固平衡的熔融曲线,CT表示气-液平衡的饱和液体的蒸汽压曲线,点T是气-液-固三相共存的三相点。

按照相率,当纯物的气-液-固三相共存时,确定系统状态的自由度为零,即每个纯物质都有自己确定的三相点。

将纯物质沿气-液饱和线升温,当达到图中的C时,气-液的分界面消失,体系的性质变得均一,不再分为气体和液体,称点C为临界点。

与该点相对应的临界温度和压力分别称为临界温度T0和临界压力P。

图中高于临界温度和临界压力的有影阴的区域属于超临界流体状态。

在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。

超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。

这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。

利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。

co2超临界萃取法

co2超临界萃取法

CO2超临界萃取法CO2超临界萃取法是一种用于提取天然产物和分离化合物的高效且环保的技术。

它利用二氧化碳(CO2)在超临界状态的特性,结合适当的温度和压力条件,实现对目标物质的选择性提取。

1. 原理CO2超临界萃取法基于CO2的物理性质,当温度和压力超过临界点时,CO2会变成超临界流体,具有密度和溶解能力的特点。

在这种状态下,CO2既具有气体的扩散性和低粘度,又具有液体的溶解能力和高密度,因此可以有效地溶解多种化合物。

2. 过程CO2超临界萃取法的过程通常包括以下几个步骤:(1)预处理:将原料进行干燥、粉碎等预处理步骤,以增加提取效率。

(2)萃取器:将预处理后的原料放入萃取器中,与CO2超临界流体接触。

(3)溶解:CO2超临界流体在与原料接触的同时,通过溶解作用将目标化合物从原料中提取出来。

(4)分离:将溶解了目标化合物的CO2超临界流体转移到分离器中,通过降压或改变温度,使CO2从溶解状态向气体状态转变,从而使提取的目标化合物得以分离。

(5)回收:分离后的目标化合物可通过冷凝或其他方法进行回收,而CO2则可以回收再利用。

3. 优势CO2超临界萃取法相对于传统的有机溶剂萃取方法具有以下优势:(1)环保性:CO2是一种无毒、无害、无残留的天然物质,不会对环境造成污染。

(2)高效性:CO2超临界流体具有较高的溶解度和扩散性,可以快速有效地提取目标物质。

(3)选择性:通过调节温度和压力等条件,可以实现对目标化合物的选择性提取,减少杂质的干扰。

(4)可控性:CO2超临界萃取法的温度和压力可以根据需要进行调节,以适应不同的提取要求。

(5)可回收性:CO2可以回收再利用,降低了成本和资源消耗。

4. 应用领域CO2超临界萃取法在许多领域都有广泛的应用,包括:(1)药物制剂:用于从天然药物中提取有效成分,制备药物制剂。

(2)食品工业:用于提取植物油、香料、咖啡因等天然产物。

(3)香精和化妆品:用于提取香精和化妆品中的活性成分。

超临界二氧化碳萃取的过程及设备

超临界二氧化碳萃取的过程及设备

超临界⼆氧化碳萃取的过程及设备3.2 超临界流体萃取过程的设计与开发除了在⼀些⾷品提取⼯业中实现超临界流体萃取的⼯业化外,其在⾼附加值产品分离中也展现出新的活⼒,特别是在制药⼯业中,其重要性也⽇显增加。

尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使⽤范围也会⽇渐扩⼤。

但是SCFE 的使⽤可⾏性是与过程的规模、产品的价值、是否需⽤⽆毒溶剂的⼀些因素有关。

因此,只有进⾏周密的设计后,才能定量权衡上⾯提出的种种因素。

⼀旦得出具有可⾏性的设计,便会吸引到企业界和研究者的重视和关注。

当前,不仅仅是国外的⼀些学者和专家作了扼要⽽实⽤的综述[1],⽽且在国内召开的“超临界流体技术学术及应⽤研讨会”上有多篇论⽂专门讨论了SCFE的⼯艺与设备设计。

早⼋⼗年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。

有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,⽽且还要作其他单元操作,如对液液萃取的设计进⾏⽐较,从经济上确定何种过程有优势,从⽽便于在进⼀步的投资中作出判断。

可以说,⽬前SCFE已如其他⽐较成熟的单元操作⼀样,设计、仿真和优化(design,simulation and optimization)的⼯作已全⾯开展,这也从-个侧⾯表明SCFE的实⽤性正在受到越来越多的科技⼯作者的关注。

3.2.1 超临界流体萃取⼯业装置的开发步骤图3-16⽰出了任⼀扩散分离过程科学开发的流程⽰意图。

在步骤2中确定所涉及物料的特征后,⼀般情况下,若选⽤传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采⽤预设计的⽅法。

在开发过程中直接进⾏实验研究。

但SCFE 是新技术,对其了解不多。

为了能和其他分离过程作出⽐较,必须在此前作出预设计或过程仿真、优化,其流程如图3-16所描述。

按照科学开发的原则,不管采⽤何种分离过程,理应先进⾏仿真,再作实验验证,有利于省时省⼒。

新型CO2超临界萃取装置

新型CO2超临界萃取装置

HA221-40-11型新型超临界流体萃取装置、概述:超临界萃取是现代化工分析和食品提纯中出现的最新学科,是目前国际上新兴的一种先进的分离工艺。

所谓超临界流体是指热力学状态处于临界点(Pc、Tc)之上的流体,临界点是气、液界面刚刚消失的状态点,超临界流体具有十分独特的物理、化学性质,它的密度接近于液体,粘度接近于气体,而扩散系数大、粘度小、介电常数大等特点,使其分离效果较好,是很好的溶剂。

超临界萃取则是在模拟合适的压力、温度条件下,在萃取缸中使溶剂与萃取物充分接触、置换,溶质扩散到溶剂中,通过改变分离器中的操作模拟环境,使溶解物质析出,达到分离的最终目的。

该设备广泛应用于生物、制药、食品等领域。

二、超临界CO2?萃取特点:1、临界温度低,适用于热敏性化合物的提取和纯化。

2、可提供惰环境,避免产物氧化,不影响萃取物的有效成份。

3、萃取速度快,无毒、不易燃,使用安全,不污染环境。

4、无溶剂残留,无硝酸盐和重金属离子。

三、超临界CO2萃取装置构成:该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。

超临界CO2萃取装置的基本流程1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路;2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路;3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路;4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。

四、超临界CO2萃取装置的组合形式:一萃一分式、一萃二分式、一萃二分一柱式二萃二分式、二萃二分一柱式、四萃二分式、四萃二分一柱式注:可根据用户特殊组合流程五、超临界CO2萃取装置的可利用资源:沙棘籽油、小麦胚芽油、枸杞籽油、葡萄籽油、灵芝孢子粉油、猕猴桃籽油、薏米仁油、核桃油、林蛙籽油、鱼油、松花粉油、菜花粉油月见草油、当归油、川芎油、丁香油、苍术油、莪术油、白芷油、红花油、白果粉油、肉豆蔻油、薄荷油、五味子油、车前子油、柴胡油、霍香油、紫苏叶油、紫草素、野菊花油、丹参提取物、穿心莲提取物、姜黄油色素、番茄红素、蜂蛟、抗生素脱溶、泽泻油、蛋黄粉磷脂、厚朴取物、乳香提取物、草珊瑚提取物、香附油、熊果酸、鱼腥草油姜油、辣椒红色素、虾皮红色素、花椒油、胡椒油树脂、洋葱根油、大蒜油、啤酒花浸膏、烟叶精油六、主要技术参数:1、最高萃取压力:40MPa2、萃取容积:10L40MPa、1L/50MPa 2套3、分离釜容积:3L、2L /30MPa 2套4、精馏柱:?Φ45×5×2700/30MPa??分四节梯度控温5、萃取温度:常温~85℃可调6、最大流量:0~50L/h50MPa可调泵头带冷却7、双柱塞泵:4L/h50MPa可调8、电源:三相伍四线制???? 380V/50HZ?? 总功率18Kw?南通仪创实验仪器有限公司。

超临界萃取

超临界萃取

超临界CO2萃取实验报告实验目的:利用CO超临界萃取的方法分离脂溶性物质,进而分离葡萄籽油。

2实验原料:未经发酵的龙眼葡萄籽。

实验过程:(一)原料的预处理:将葡萄籽用机器打碎,然后过30目的筛。

(二)实验参数设定:本试验采取5L萃取釜,进样量1760g。

萃取釜I参数:温度45℃压力25MP分离釜I参数:温度59.4℃压力10MP分离釜II参数:温度35.3℃压力5MP(三)萃取流程:CO2 (储瓶)→高压泵→萃取釜→分离釜I→分离釜II(四)实验数据:分离釜I:1h 113.6006g 分离釜II:1h 14.0951g1.5h 170.3456g 1.5h 20.2236g3h 233.0497g 3h 26.4163g 实验结果与分析:计算公式:萃取率=萃取量/加样量*100% (加样量1760g)计算结果:分离釜I:1h 6.455% 分离釜II:1h 0.8009%1.5h 9.679% 1.5h 1.149%3h 13.24% 3h 1.501% 分析:经观察随着时间的延长萃取率变化趋于减缓。

超临界CO2萃取技术的原理与特征一、超临界萃取:该技术是一种新型的萃取分离技术,利用液体(溶剂)在临界点附近某一区域(超临界区)内,与待分离混合物中的溶质具有异常相平衡行为和传播性能,且对溶质溶解能力随压力和温度的改变而在相当宽的范围内变动这一特性而达到溶质分离的一项技术。

二、超临界CO2萃取基本原理:超临界流体是处于临界温度和临界压力以上的高密度流体,没有明显的气液分界面,既不是气体也不是液体,性质介于气体与液体之间,具有优异的溶剂性质,黏度低,密度大,有较好的流动性质,传热和溶解性能。

液体处于超临界状态时,其密度接近于液体密度!并且随流体压力和温度的改变发生十分明显的变化!而溶质在超临界流体中的溶解度随超临界流体密度的增大而增大" SFE-CO2正是利用这种性质!在较高压力下!将溶质溶解于SF- CO2中!然后降低SF- CO2溶液的压力或升高SF- CO2溶液的温度!使溶解于SF- CO2中的溶质因其密度下降溶解度降低而析出!从而实现特定溶质的萃取[4]"三、超临界CO2流体萃取技术特点(一)CO2的临界温度(Tc=31.3!) 和临界压力(Pc=7.38M Pa)低!可在接近室温的环境下进行萃取!不会破坏生物活性物质! 并能有效地防止热敏性物质的氧化和逸散!特别适合于分离提取低挥发性和热敏性物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档