人教版七年级上册数学 代数式单元测试题(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)
1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:
(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;
(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________
①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________
②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.
【答案】(1)3;8或﹣4
(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,
∴点B、C在数轴上表示的数分别为﹣2、3.
;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,
∵OC=2OB,
∴3+2t=2× ,
∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),
解得t=,或t=,
故所求t的值为或
;;5.
【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,
解得m=8或﹣4,
即点Q表示的数是8或﹣4.
故答案为3,8或﹣4。(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.
故答案为|﹣2﹣x|+|3﹣x|,5.
【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;
(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;
①根据OC=2OB列出方程,解方程即可求解;
②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.
2.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类
①若a≠0,b=c=0,则称该整式为P类整式;
②若a≠0,b≠0,c=0,则称该整式为PQ类整式;
③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;
(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;
(2)说明整式x2﹣5x+5为“PQ类整式;
(3)x2+x+1是哪一类整式?说明理由.
【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.
若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
故答案是:a=b=0,c≠0;a=0,b≠0,c≠0
(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)
=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.
即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”
(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),
∴该整式为PQR类整式.
【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.
(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.
3.在一个m(m≥3,m为整数)位的正整数中,若从左到右第n(n≤m,n为正整数)位上的数字与从右到左第n位上的数字之和都等于同一个常数k(k为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.
(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位
上的数字为s(1≤s≤9,s为整数),百位上的数字为t(0≤t≤9,t为整数),是整数,求这个四位“对称等和数”;
(2)已知数A,数B,数C都是三位“对称等和数”.A= (1≤a≤9,a为整数),设数B
十位上的数字为x(0≤x≤9,x为整数),数C十位上的数字为y(0≤y≤9,y为整数),若A+B+C=1800,求证:y=﹣x+15.
【答案】(1)解:设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b 为整数),
由题意得:s+b=t+a=4,
∴b=4﹣s,a=4﹣t,
∵四位数为能被11整除,
∴ =1000s+100t+10a+b,
=1000s+100t+10(4﹣t)+4﹣s,
=999s+90t+44,
=1001s+88t+44+2t﹣2s,
=11(91s+8t+4)+2(t﹣s),
∵91s+8t+4是整数,
∴2(t﹣s)是11的倍数,即t﹣s是11的倍数,
∵1≤s≤9,
∴﹣9≤﹣s≤﹣1,
∵0≤t≤9,
∴﹣9≤t﹣s≤8,
∴t﹣s只能为0,即t=s,
∵是整数,4﹣s≥0,4﹣t≥0,
∴s=t=2或s=t=4,
当s=t=2时,a=b=2,
当s=t=4时,a=b=0,
综上所述,这个四位“对称等和数”有2个,分别是:2222,4400
(2)解:证法一:
证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),
∴2a=1+5,a=3,
∴A=135,
由题意设:B= ,C= ,则b+c=2x,d+e=2y,
∵A+B+C=1800,
∴B+C=1800﹣135=1665,
∴ =1665,
∴15≤b+d≤16,
①当b+d=15时,x+y=16,c+e=5,