苏教版数学高二导学案 离散型随机变量(选修2-3)
高中数学苏教版选修2-3学案:2.5 离散型随机变量的均值与方差1
§2。
5。
2离散型随机变量的均值和方差(二)学习目标1.进一步理解均值与方差都是随机变量的数字特征,通过它们可以刻划总体水平;2.会求均值与方差,并能解决有关应用题.学习过程一、自学导航复习回顾:1.离散型随机变量的均值、方差、标准差的概念和意义,以及计算公式.2.设随机变量~(,)X B n p,且() 1.6,() 1.28E X V X==,则n=,p=。
二、例题精讲例1 有同寝室的四位同学分别写一张贺年卡,先集中起来,然后每人去拿一张,记自己拿自己写的贺年卡的人数为X.(1)求随机变量X的概率分布;(2)求X的数学期望和方差.例2 有甲、乙两种品牌的手表,它们日走时误差分别为,X Y(单位:),其分布如下:X1-P0.10.80.1比较两种品牌手表的质量.Y2-1-P0.10.20.40.20.1例3 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.⑴求的分布列及数学期望;⑵记“函数2()31f x xx ξ=-+在区间[2,)+∞上单调递增”为事件A ,求事件A 的概率.例4 有一庄家为吸引顾客玩掷骰子游戏,以便自己轻松获利,以海报形式贴出游戏规则:顾客免费掷两枚骰子,把掷出的点数相加,如果得2或12,顾客中将30元;如果得3或11,顾客中将20元;如果得4或10,顾客中将10元;如果得5或9,顾客应付庄家10元;如果得6或8,顾客应付庄家20元;如果得7,顾客应付庄家30元.试用数学知识解释其中的道理.三、课堂精练P5,6,7 80P1071四、回顾小结五、课后作业《创新活页》对应练习。
高二数学选修2-3离散型随机变量的方差导学案
2.32离散型随机变量的方差学习目标1、理解各种分布的方差2、会应用均值(期望)和方差来解决实际问题自主学习:课本1.一般地,设一个离散型随机变量X 所有可能取的值是n x x x x ⋅⋅⋅321,,这些值对应的概率是n p p p p ⋅⋅⋅,,,321则________________________________________________________叫做这个离散型随机变量X 的方差;______________________________叫作离散型随机变量X 的标准差2. 离散型随机变量的方差刻画了这个离散型随机变量的_____________________________.3. 离散型随机变量X 分布列为二点分布时, ()___________D X =.4.离散型随机变量X 服从参数为n ,p 的二项分布时,()___________D X =.5. 离散型随机变量X 服从参数为,N M ,n 的超几何分布时, ()___________D X = 自学检测1.已知X ~(),B n p ,()8,() 1.6E X D X ==,则,n p 的值分别是( )A .100和0.08B .20和0.4C .10和0.2D .10和0.82.设掷1颗骰子的点数为X ,则( )A. 2() 3.5,() 3.5E X D X ==B. 35() 3.5,()12E X D X == C. () 3.5,() 3.5E X D X == D. 35() 3.5,()16E X D X ==3.一牧场的10头牛,因误食疯牛病病毒污染的饲料被感染,已知疯牛病发病的概率是0.02,若发病的牛数为X 头,则()D X 等于( )A. 0.2B. 0.196C.0.8D.0.8124. 已知随机变量X 的分布列为则X 的标准差()X σ= A. 3.56 B. C. 3.2 D. 5.王非从家乘车到学校,途中有3个交通岗,设在个交通岗遇红灯的事件是相互独立的,并且概率都是25,则王非上学路上遇红灯的数学期望是___________,方差是_______________. 6.已知随机变量X 的分布列为且() 1.1E X =,设,则()____________D X =7.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为21,ξξ,它们的分布列如下:试对这两名工人的技术水平进行比较。
高中数学新苏教版精品教案《苏教版高中数学选修2-3 2.5.1 离散型随机变量的均值》2
高中数学苏教版选修2-3第二章教学设计课题:离散型随机变量的均值许佳龙【教材地位】这节内容在选修2-3第二章,一方面,它承接了必修3的统计概率知识,另一方面,掌握好这节课的研究方法,将有助于后续离散型随机变量和方差的研究。
因此,它在知识体系上起着承上启下的作用。
离散型随机变量的均值是刻画离散型随机变量取值的平均水平的一个数字特征,是从一个侧面刻画随机变量取值的特点。
在实际问题中,离散型随机变量的均值具有广泛的应用性。
【教学目标】1、知识与技能:通过实例,理解取有限值的离散型随机变量均值〔数学期望〕的概念和意义;能计算简单离散型随机变量均值,并能解决一些实际问题。
2、过程与方法:从样本期望到离散型随机变量的期望,培养学生归纳,概况等合情推理的能力,通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的思维习惯。
3、情感态度与价值观:通过创设情境激发学生学习数学的情感,培养其严谨治学的态度,在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
【教学重难点】重点:能计算简单离散型随机变量均值〔数学期望〕难点:理解离散型随机变量均值〔数学期望〕的概念和意义【教法学法】以学生为主体,教师为主导,引导启发学生进行自主、探究、合作的学习,通过师生、生生的互动和交流获得知识,提升能力,达成学习目标。
【教辅工具】,N时,EX=nM/N.,且各次射击互不影响,这名射例2〔改编〕某人每次射击击中目标的概率为23手射击3次,记击中目标的次数的X,求X的数学期望.分析:那么X服从二项分布X~B3,23解:X的分布列为,,,设计意图:同上,由于书本上的例2原题的数据相对来说还是有一定的复杂,所以在不改变问题原理和意图的情况下改变了一定的数据,纯粹为了简化学生的计算过程,为课堂赢得更高的效率。
,且各次射击互不影响,这名射手射再改为“某人每次射击击中目标的概率为23击5次,记击中目标的次数的X,求X的数学期望〞.X~B5,23设计意图:再次进行数据上的变化,一方面可以进一步强化计算的过程以及公式的运用,同时另一方面也让学生看到数据变化后结果有对应的变化,再次引发思考和猜测。
高中数学选修2-3 离散型随机变量导学案加课后作业及答案
§2.1.1 离散型随机变量【学习要求】1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.【学法指导】引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广.【知识要点】1.随机试验:一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量.3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量.【问题探究】探究点一随机变量的概念问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2随机变量和函数有类似的地方吗?例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2013年10月1日的旅客数量;(2)2013年某天济南至北京的D36次列车到北京站的时间;(3)2013年某天收看齐鲁电视台《拉呱》节目的人数;(4)体积为1 000 cm3的球的半径长.小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值.跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值;(4)某个人的属相.探究点二离散型随机变量的判定问题1什么是离散型随机变量?问题2非离散型随机变量和离散型随机变量有什么区别?例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出.跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由.(1)白炽灯的寿命ξ;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ;(4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数.探究点三离散型随机变量的应用例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.(2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ.(3)离开天安门的距离η.(4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.【当堂检测】1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是()A.2枚都是4点B.1枚是1点,另1枚是3点C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________.【课堂小结】1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.【课后作业】一、基础过关1.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是() A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率2.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,在950 Ω~1 200 Ω之间的阻值记为X;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是()A.①②B.①③C.①④D.①②④3.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A.5 B.9C.10 D.254.某人射击的命中率为p(0<p<1),他向一目标射击,当第一次射中目标则停止射击,射击次数的取值是()A.1,2,3,…,n B.1,2,3,…,n,…C.0,1,2,…,n D.0,1,2,…,n,…5.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标6.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.二、能力提升7.如果X是一个离散型随机变量且η=aX+b,其中a,b是常数且a≠0,那么η() A.不一定是随机变量B.一定是随机变量,不一定是离散型随机变量C.一定是连续型随机变量D.一定是离散型随机变量8.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,抽取次数为ξ,则ξ=3表示的试验结果是__________________9.在一次考试中,某位同学需回答三个问题,考试规则如下:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.10.一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X,随机变量X的可能值有________个.11.设一汽车在开往目的地的道路上需经过5盏信号灯,ξ表示汽车首次停下时已通过的信号灯的盏数,写出ξ所有可能取值并说明这些值所表示的试验结果.12.某车间两天内每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内总得分为ξ,写出ξ的可能取值.三、探究与拓展13.小王钱夹中只剩有20元、10元、5元、2元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X表示这两张金额之和.写出X的可能取值,并说明所取值表示的随机试验结果§2.1.2离散型随机变量的分布列(一)【学习要求】1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念.认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.【学法指导】离散型随机变量的分布列可以完全描述随机变量所刻画的随机现象,利用分布列可以计算随机变量所表示的事件的概率.【知识要点】1.定义:一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i (i=1,2,…,n)的概率此表称为离散型随机变量X的概率分布列,简称为X的.2.离散型随机变量的分布列的性质:(1)p i 0,i =1,2,3,…,n ;(2)∑ni =1p i = .【问题探究】探究点一 离散型随机变量的分布列的性质问题1 对于一个随机试验,仅知道试验的可能结果是不够的,还要能把握每一个结果发生的概率.请问抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少?问题2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法? 问题3 离散型随机变量的分布列有哪些性质?例1 设随机变量X 的分布列P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 小结 离散型随机变量的分布列的性质可以帮助我们求题中参数a ,然后根据互斥事件的概率加法公式求得概率.跟踪训练1 (1试说明该同学的计算结果是否正确.(2)设ξ①求q 的值;②求P (ξ<0),P (ξ≤0).探究点二 求离散型随机变量的分布列例2 将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.小结 (1)求离散型随机变量的分布列关键是搞清离散型随机变量X 取每一个值时对应的随机事件,然后利用排列、组合知识求出X 取每个值的概率,最后列出分布列.(2)求离散型随机变量X 的分布列的步骤是:首先确定X 的所有可能的取值;其次,求相应的概率P (X =x i )=p i ;最后列成表格的形式.跟踪训练2 将一颗骰子掷2次,求下列随机事件的分布列. (1)两次掷出的最小点数Y ;(2)第一次掷出的点数减去第二次掷出的点数之差ξ.【当堂检测】1.下列表中可以作为离散型随机变量的分布列的是( )ABCD2.设随机变量ξ的分布列为P (ξ=i )=a ⎝⎛⎭⎫13i,i =1,2,3,则a 的值为 ( ) A .1B .913C .2713D .11133.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________.4.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.【课堂小结】1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.【课后作业】一、基础过关1.若随机变量X( )A .1B .12C .13D .162.设随机变量X 的分布列为P (X =k )=m ⎝⎛⎭⎫23k,k =1,2,3,则m 的值为( )A .1718B .2738C .1719D .27193.抛掷2颗骰子,所得点数之和ξ是一个随机变量,则P (ξ≤4)等于( ) A .16 B .13 C .12D .234.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量ξ,则ξ的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 5.随机变量ξ的所有可能取值为1,2,…,n ,若P (ξ<4)=0.3,则 ( ) A .n =3B .n =4C .n =10D .不能确定6.抛掷两次骰子,两次点数的和不等于8的概率为 ( )A .1112B .3136C .536D .1127.设随机变量X 的分布列为P (X =k )=Ck (k +1),k =1,2,3,C 为常数,则P (0.5<X <2.5)=________.二、能力提升8.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A .⎣⎡⎦⎤0,13B .⎣⎡⎦⎤-13,13C .[-3,3]D .[0,1]9.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A .1220B .2755C .27220D .212510.盒中装有大小相等的10个球,编号分别是0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.11.已知随机变量ξ(1)求η1=12ξ的分布列;(2)求η2=ξ2的分布列.12.从4张已编号(1~4号)的卡片中任意取出2张,取出的卡片号码数之和为X .求随机变量X 的分布列.三、探究与拓展13.安排四名大学生到A ,B ,C 三所学校支教,设每名大学生去任何一所学校是等可能的.(1)求四名大学生中恰有两人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.§2.1.2 离散型随机变量的分布列(二)【学习要求】1.进一步理解离散型随机变量的分布列的求法、作用.2.理解两点分布和超几何分布.【学法指导】两点分布是常见的离散型随机变量的概率分布,如某队员在比赛中能否胜出,某项科学试验是否成功,都可用两点分布来研究.在产品抽样检验中,一般采用不放回抽样,则抽到次品数服从超几何分布;在实际工作中,计算次品数为k 的概率,由于涉及产品总数,计算比较复杂,因而,当产品数较大时,可用后面即将学到的二项分布来代替.【知识要点】1则称离散型随机变量X 服从2.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中*为 .如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从【问题探究】探究点一 两点分布问题1 利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?问题2 只取两个不同值的随机变量是否一定服从两点分布?例1 袋中有红球10个,白球5个,从中摸出2个球,如果只关心摸出两个红球的情形,问如何定义随机变量X ,才能使X 满足两点分布,并求分布列.小结 两点分布中只有两个对应的结果,因此在解答此类问题时,应先分析变量是否满足两点分布的条件,然后借助概率的知识,给予解决.跟踪训练1 设某项试验成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于 ( ) A .0B .12C .13D .23探究点二 超几何分布问题 超几何分布适合解决什么样的概率问题?例2 从一批含有13件正品、2件次品的产品中,不放回任取3 件,求取得次品数为ξ的分布列.跟踪训练2 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数. (1)求X 的分布列;(2)求至少有2名男生参加数学竞赛的概率. 探究点三 实际应用例3 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从这10张中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.小结 此类题目中涉及的背景多数是生活、生产实践中的问题,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等,分析题意,判断其中的随机变量是否服从超几何分布是解决此类题目的关键. 跟踪训练3 交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分布列.【当堂检测】1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为 ( ) A .C 35C 350B .C 15+C 25+C 35C 350 C .1-C 345C 350D .C 15C 25+C 25C 145C 3502.一个箱内有9张票,其号数分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率是 ( )A .13B .12C .16D .563.在掷一枚图钉的随机试验中,令X =⎩⎪⎨⎪⎧1,针尖向上0,针尖向下,如果针尖向上的概率为0.8,试写出随机变量X 的分布列为___________4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________【课堂小结】1.两点分布两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -k N -MC nN求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.【课后作业】一、基础过关1.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是 ( )A .150B .125C .1825D .14 9502.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为( )A .C 34C 248C 552B .C 348C 24C 552 C .1-C 148C 44C 552D .C 34C 248+C 44C 148C 5523.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X ,则下列概率等于C 122C 14+C 22C 226的是 ( )A .P (0<X ≤2)B .P (X ≤1)C .P (X =1)D .P (X =2) 4.在3双皮鞋中任意抽取两只,恰为一双鞋的概率为( )A .15B .16C .115D .135.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品 6.若离散型随机变量X 的分布列为:则c =________. 二、能力提升7.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X 表示直至抽到中奖彩票时的次数,则P (X =3)等于( )A .310B .710C .2140D .7408.若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=____. 9.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为________.(用式子表示)10.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.11.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.三、探究与拓展12.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计算介于20分到40分之间的概率.§2.2.1条件概率【学习要求】1.理解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P(B|A)=P(AB)P(A),也可以利用缩小样本空间的观点计算.【知识要点】1.条件概率的概念设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率.P(B|A)读作发生的条件下发生的概率.2.条件概率的性质(1)P(B|A)∈.(2)如果B与C是两个互斥事件,则P(B∪C|A)=.【问题探究】探究点一条件概率问题13张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题2如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?问题3怎样计算条件概率?问题4若事件A、B互斥,则P(B|A)是多少?例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.小结利用P(B|A)=n ABn A解答问题的关键在于明确B中的基本事件空间已经发生了质的变化,即在A事件必然发生的前提下,B事件包含的样本点数即为事件AB包含的样本点数.跟踪训练1一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率.探究点二条件概率的性质及应用问题条件概率满足哪些性质?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.小结本题条件多,所设事件多,要分清楚事件之间的关系及谁是条件,同时利用公式P(B∪C|A)=P(B|A)+P(C|A)可使有些条件概率的计算较为简捷,但应注意这个性质在“B与C互斥”这一前提下才成立.跟踪训练2在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.【当堂检测】1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于()A.18B.14C.25D.122.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________ 3.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是_______4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)【课堂小结】1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(A).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB中样本点数ΩA中样本点数,P(AB)=AB中样本点数Ω中样本点数.【课后作业】一、基础过关1.若P (A )=34,P (B |A )=12,则P (AB )等于( )A .23B .38C .13D .582.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2只球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A .59 B .110C .35D .253.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .344.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是 ( )A .110B .210C .810D .9105.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为 ( ) A .0.02B .0.08C .0.18D .0.726.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的赢率是 ( )A .15B .12C .34D .3107.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217二、能力提升8.一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球,则后两次也摸得白球的概率为________.9.以集合A ={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是________.10.抛掷红、蓝两枚骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两枚骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子点数为3或6时,问两枚骰子的点数之和大于8的概率为多少?11.把外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.三、探究与拓展12.某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第一题不会答的情况下及格的概率.§2.2.2 事件的相互独立性【学习要求】1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.【学法指导】相互独立事件同时发生的概率可以和条件概率对比理解,事件独立可以简化概率计算,学习中要结合实例理解.【知识要点】1.相互独立的概念设A ,B 为两个事件,若P (AB )= ,则称事件A 与事件B 相互独立. 2.相互独立的性质如果事件A 与B 相互独立,那么A 与 , 与B , 与 也都相互独立.【问题探究】探究点一 相互独立事件的概念问题1 3张奖券只有1张能中奖,3名同学有放回地抽取.事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“第三名同学抽到中奖奖券”,事件A 的发生是否会影响B 发生的概率?问题2 在问题1中求P (A )、P (B )及P (AB ),观察它们有何关系?总结相互独立事件的定义. 问题3 互斥事件与相互独立事件有什么区别?问题4 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立,如何证明?例1 (1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 ( )A .互斥但不相互独立B .相互独立但不互斥。
高中数学新苏教版精品教案《苏教版高中数学选修2-3 2.5.1 离散型随机变量的均值》9
四.课堂小结:
1.如果随机变量X服从两点分布,那么;
2.如果随机变量X服从二项分布,即X~B〔,〕,那么;
3.如果随机变量X服从超几何分布,即X~H〔,,〕,那么;
回忆离散型随机变量的分布列及分布列中的概率的性质
由具体问题入手,引发学生对离散型随机变量的初步认知和感悟
二.建构数学:
1离散型随机变量取值的平均值即数学期望
公式:
2拓展:
设Y=aX+b,其中a,b为常数,那么Y也是随机变量.
〔1〕Y的分布列是什么?
〔2〕EY=?
三.数学应用:
例1篮球运发动在比赛中每次罚球命中得1分,罚不中得0分.某运发动罚球命中的概率为,那么他罚球1次的得分X的均值是多少?
分析:掌握0-1分布的数学期望计算方法.
难点
重点:离散型随机变量均值〔数学期望〕的概念和意义.
难点:离散型随机变量均值〔数学期望〕的概念的引出及应用.
教法
学法
先让学生回忆求平均数的相关方法知识,由一般算法到加权平均的引出、比照,然后引出数学期望的概念,通过一些例题来讲解0-1分布、超几何分布、二项分布的数学期望计算方法.
教学过程
教师活动
学生活动
学会运用均值的定义解决问题
学生发现用定义解决问题时计算较复杂,产生要研究一般情况下的结论的动机
学生总结
作业
教后
札记
例2从批量较大的成品中随机取出3件产品进行质量检查,假设这批产品的合格率为,随机变量X表示这3件产品中的合格品数,求随机变量X的数学期望.
分析:二项分布的数学期望计算方法.
例3高三〔1〕班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,2021球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望.
(完整版)高中数学选修2-3导学案,正规模版2.1
这两种分法都不对。正确的答案是:赢了4局的拿这个钱的3/4,赢了3局的拿这个钱的1/4.
《离散型随机变量的分布列》导学案
【学习目标】
1.理解离散型随机变量的分布列的两种形式;
2.理解并运用两点分布和超几何分布.
新知3:两点分布列:
0
1
称 服从;
称 为
例2在含有5件次品的100件产品中,任取3件,试求:
(1)取到的次品数 的分布列;
(2)至少取到1件次品的概率.
变式:抛掷一枚质地均匀的硬币2次,写出正面向上次数 的分布列?
新知4:超几何分布列:
0
1
…
…
※动手试试
练1.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.
1在某项体能测试中,跑1km成绩在4min之内为优秀,某同学跑1km所花费的时间 是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?
2下列随机试验的结果能否用离散型随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.
(1)从学校回家要经过5个红绿灯口,可能遇到红灯的次数;
练2.盒中9个正品和3个次品零件,每次取一个零件,如果取出的次品不再放回,且取得正品前已取出的次品数为 .
(1)写出 可能取的值;
(2)写出 所表示的事件
【当堂检测】
1.下列先项中不能作为随机变量的是().
A.投掷一枚硬币 次,正面向上的次数B.某家庭每月的电话费
高中数学选修2-3《离散型随机变量》教学设计
《离散型随机变量》教学设计一.教学目标知识目标: 1. 理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.情感目标:二.教学重点学会合作探讨,体验成功,提高学习数学的兴趣.离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.三.教学难点对引入随机变量目的的认识,了解什么样的随机变量便于研究.四.教学方法发现式为主、讲授式为辅,讲练结合.五.教学过程教学教学内容师生活动设计说明环节创设情境投放男生追女生数学模型由学生感兴趣的设置问题情境,引出用数字表达的随机试例子出发,激发求知验.兴趣,引入课题 . 这样教师给出例子,提出问实例一:抛掷骰子, 观察出现的点数 .既符合学生由具体到题:以上实例有什么共性抽象的思维习惯,也吗?培养学生的抽象概括S={1 , 2, 3, 4,5, 6}学生观察,寻找类同思维,同时也使课堂随机试验的结果本身就具有数量性质点,回答。
的内容更加丰富,从投放类似例子:而使数学学习更加贴1.科比 3 次投罚球的得分。
近生活,很好地体现2.某人在射击训练中,射击一次,命中的环新教材改革的总体思数。
想 .3.在含有10 件次品的100 件产品中任意抽取 4 件,其中含有的次品件数。
探究发现教学环节实例 2抛掷一枚硬币, 会出现正面向上与反面向上两种可能结果。
结果可以用数字来表示吗?在前面例子的基(1)正面朝上对应数字1础上,让学生自己探教师提出问题,实验结果反面朝上对应数字0求随机试验的结果表没有数量性质怎么办?结(2)正面朝上对应数字-1示方法使学生的认知果可以用数字来表示吗?反面朝上对应数字1起点与新知识平顺的如果投掷n 此后,我们关心的是正面朝上的对接 .学生思考,讨论。
次数,应该如何定义随机变量?如果更关心教师引导学生根据第正面和反面的次数是否相等又应该如何定一个例子,去发现定义.义?猜想硬币投掷的表示结果 . 学生回答问题,答案使学生了解用随机变可能是多种的,教师应该让在这些随机试验中,可能出现的结果都可量表示一个随机试验学生充分地表达,然后根据以用一个数来表示.这个数在随机试验前是结果的多样性,同时学生的回答给与总结.否是预先确定的?在不同的随机试验中,结深化试验结果与随机果是否不变 ?变量的对应关系.随机变量:在一些试验中,试验可能出现的结果可以用一个变量X 来表示,并且 X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量. 随机变量常用字母X、Y、来表示.探索发现观察上面的表示结果,虽然不尽相同,但是他们有没有什么共同的性质?回顾函数的概念,你能对它给与简单的解释吗?根据知识建构的函数的理解:引导学生思考随机变特点,在已有的旧知函数量的定义过程,对比函数的识的基础上,类比新实数实数定义,从映射的角度对随机知识,使得学生对新类比函数的概念,提出对随机变量的理变量进行理解,进而归纳随知识的理解更加自解:即变量值域的概念.然,降低新知识的难随机变量度 .随机试验的结果实数我们把随机变量的取值范围叫做随机变量的值域 .因此上面试验中,随机变量的值域可以为{0 , 1}、{-1, 1} 或{1,2}例 1、一个袋中装有 5 个白球和 5 个意义黑球,若从中任取 3 个,则其中所含白球的个数 x 就是一个随机变量,求x 的取值范教师举例子,学生根据围,并说明x 的不同取值所表示的事件。
高中数学苏教版选修2-3学案:2.5 离散型随机变量的均值与方差2
2。
5.2离散型随机变量的方差和标准差(一)学习目标1.理解随机变量的方差和标准差的含义;2.会求随机变量的方差和标准差,并能解决一些实际问题. 学习过程一、自学导航1.复习:⑴离散型随机变量的数学期望X1x 2x … n xP1p 2p … n p ()E X ,数学期望是反映离散型随机变量的 .⑵特殊的分布的数学期望若X ~0—1分布 则E (X ) = ;若X ~B (n ,p ) 则E (X )= ; 若X ~H (n ,M ,N ) 则E (X )= .2.思考:甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用12,X X 表示,12,X X 的概率分布如下.如何比较甲、乙两个工人的技术?二、探究新知1.离散型随机变量X的方差及表示2.方差的意义:3.方差公式4.随机变量X的标准差思考:随机变量的方差和样本方差有何区别和联系?三、例题精讲例1 若随机变量X的分布如表所示:求方差()V X.例2 求第2.5.1节例1中超几何分布(5,10,30)H的方差和标准差.例3 求第2.5.1节例2中的二项分布(10,0.05)B的方差和标准差.例4 有甲、乙两名学生,经统计,他们字解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:试分析两名学生的答题成绩水平.四、课堂精练⑴课本70P1,2⑵设X ~B ( n , p ),如果E (X )= 12,V (X )= 4,求n , p⑶设X 是一个离散型随机变量,其分布列如下:求q 值,并求E (X ),V (X ).⑷甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量大致相等,而两个野生动物保护区每个季度发生违反保护条例的事件次数的分布如表,试评定这两个保护区的管理水平。
(甲) (乙)五、回顾小结六、拓展延伸 书本P71 探究拓展题七、课后作业 71P 2,3,4。
苏教版数学高二- 选修2-3教案 2.1《随机变量及其概率分布》(1)
2.1 随机变量及其概率分布教学目标1、在对具体问题的分析中,了解随机变量、离散型随机变量的意义,理解取有限值的离散型随机变量及其概率分布的概念;2、会求某些简单的离散型随机变量的概率分布,认识概率分布对于刻画随机现象的重要性。
教学重点离散型随机变量及其概率分布的概念教学难点求简单的离散型随机变量的概率分布一.问题引入1.在一块地里种下10棵树苗,成活的树苗棵数X的可能取值有;2.抛掷一颗骰子,向上的点数Y的可能取值有;3.新生婴儿的性别,抽查的结果可能是男,也可能是女.如果将男婴用0表示,女婴用1表示,那么抽查的结果Z的可能取值有.思考:上述现象有何共同点?随机变量及其表示练习: 20件产品中有5件次品,从中任取两件,可为随机变量的是_______○1取到产品的件数○2取到次品的件数○3取到正品的概率○4取到次品的概率二.例题分析例1 (1)掷一枚质地均匀的硬币一次,用X表示掷得正面的次数,则随机变量X的可能取值有哪些?(2)一实验箱中装有标号为1,2,3,3,4的五只白鼠,从中任取一只,记取到的白鼠的标号为Y,则随机变量Y的可能取值有哪些?练习:课本第52页 1★随机变量的概率分布(1)随机变量的概率分布列(2)随机变量的概率分布表★随机变量概率分布的性质(1)(2)练习:已知随机变量ξ的概率分布如下表:则(10)P ξ==_____________例2 从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的白球个数”,即1,0,X ⎧=⎨⎩当取到白球时当取到红球时,求随机变量X 的概率分布.★两点分布练习:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.6,求他罚球一次的得分的概率分布.例3 同时掷两颗质地均匀的骰子,观察朝上一面出现的点数.求两颗骰子中出现的最大点数X 的概率分布,并求X 大于2小于5的概率(25)P X <<.思考:求两颗骰子出现最小点数Y 的概率分布.练习:课本48页3三.课堂小结。
苏教版数学高二 选修2-3学案 2.1 随机变量及其概率分布
2.1随机变量及其概率分布1.了解取有限值的离散型随机变量及其分布列的概念,了解分布列刻画随机现象的重要性,会求某些简单离散型随机变量的分布列.(重点、难点) 2.掌握离散型随机变量分布列的性质,掌握两点分布的特征.(重点)[基础·初探]教材整理1随机变量阅读教材P49“例1”以上部分,完成下列问题.如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.()(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()(3)随机变量是用来表示不同试验结果的量.()(4)在掷一枚质地均匀的骰子试验中,“出现的点数”是一个随机变量,它有6个取值.()【解析】(1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)√因为由随机变量的定义可知,该说法正确.(4)√因为掷一枚质地均匀的骰子试验中,所有可能结果有6个,故“出现的点数”这一随机变量的取值为6个.【答案】(1)√(2)√(3)√(4)√教材整理2概率分布列阅读教材P50~P51“例2”以上部分,完成下列问题.假定随机变量X有n个不同的取值,它们分别是x1,x2,…,x n,且P(X=x i)=p i,i=1,2,…,n,①则称①为随机变量X的概率分布列,简称为X的分布列.称表X x1x2…x nP p1p2…p n这里的p i(i=1,2,…,n)满足条件:①p i≥0(i=1,2,…,n);②p1+p2+…+p n =1.判断(正确的打“√”,错误的打“×”)(1)在概率分布列中,每一个可能值对应的概率可以为任意的实数.()(2)概率分布列中每个随机变量的取值对应的概率都相等.()(3)在概率分布列中,所有概率之和为1.()【解析】(1)×因为在概率分布列中每一个可能值对应随机事件的概率均在[0,1]范围内.(2)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(3)√由分布列的性质可知,该说法正确.【答案】(1)×(2)×(3)√教材整理3两点分布阅读教材P51,完成下列问题.如果随机变量X的分布表为X 10P p q其中0<p<1分布或两点分布,并记为X~0-1分布或X~两点分布.设某项试验的成功率是失败率的2倍,用随机变量X描述一次试验成功与否(记X=0为试验失败,记X=1为试验成功),则P(X=0)等于________.【解析】设试验失败的概率为p,则2p+p=1,∴p=13.【答案】13[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]随机变量的概念由.(1)北京国际机场候机厅中2016年5月1日的旅客数量;(2)2016年5月1日至10月1日期间所查酒驾的人数;(3)2016年6月1日济南到北京的某次列车到北京站的时间;(4)体积为1 000 cm3的球的半径长.【精彩点拨】利用随机变量的定义判断.【自主解答】(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)列车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.[再练一题]1.(1)下列变量中,是随机变量的是________.(填上所有正确的序号)①某人掷硬币1次,正面向上的次数;②某音乐网站歌曲《小苹果》每天被点播的次数;③标准大气压下冰水混合物的温度;④你每天早晨起床的时间.(2)一个口袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X,则X的可能取值构成集合________.事件{X=k}表示取出________个红球,________个白球,k=0,1,2,3,4.【解析】(1)①②④中每个事件的发生是随机的,具有可变性,故①②④是随机变量;标准大气压下冰水混合物的温度为0 ℃,是必然的,不具有随机性.(2)由题意可知,X的可能取值为0,1,2,3,4.{X=k}表示取出的4个球中含k个红球,4-k个白球.【答案】(1)①②④(2){0,1,2,3,4}k4-k随机变量的分布列及应用只,以ξ表示取出的3只球中的最大号码,写出随机变量ξ的概率分布.【精彩点拨】由本例中的取球方式可知,随机变量ξ与球的顺序无关,其中球上的最大号码只有可能是3,4,5,可以利用组合的方法计算其概率.【自主解答】随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大号码为3,则其他两只球的编号只能是1,2,故有P(ξ=3)=C22C35=110;当ξ=4时,即取出的三只球中最大号码为4,则其他两只球只能在编号为1,2,3的3只球中取2只,故有P(ξ=4)=C23C35=310;当ξ=5时,即取出的三只球中最大号码为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P(ξ=5)=C24C35=610=35.因此,ξ的分布列为ξ34 5P11031035利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意∑i=1np i=1,而且要注意p i≥0,i=1,2,…,n.[再练一题]2.设随机变量ξ的概率分布为P⎝⎛⎭⎪⎫ξ=k5=ak(k=1,2,3,4,5).求:(1)常数a的值;(2)P⎝⎛⎭⎪⎫ξ≥35;(3)P⎝⎛⎭⎪⎫110<ξ<710.【解】题目所给的ξ的概率分布表为ξ1525354555P a 2a 3a 4a 5a(1)由a+2a+3a+4a+5a=1,得a=115.(2)P⎝⎛⎭⎪⎫ξ≥35=P⎝⎛⎭⎪⎫ξ=35+P⎝⎛⎭⎪⎫ξ=45+P⎝⎛⎭⎪⎫ξ=55=315+415+515=45或P⎝⎛⎭⎪⎫ξ≥35=1-P⎝⎛⎭⎪⎫ξ≤25=1-⎝⎛⎭⎪⎫115+215=45.(3)因为110<ξ<710,所以ξ=15,25,35. 故P ⎝ ⎛⎭⎪⎫110<ξ<710=P ⎝ ⎛⎭⎪⎫ξ=15+P ⎝ ⎛⎭⎪⎫ξ=25+P ⎝ ⎛⎭⎪⎫ξ=35=a +2a +3a =6a =6×115=25.[探究共研型]随机变量的可能取值及试验结果探究1 抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?【提示】 可以.用数字1和0分别表示正面向上和反面向上.探究2 在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字?【提示】 X =0,1,2,3,4,5,6,7,8,9,10.探究3 抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?【提示】 “ξ≥4”表示出现的点数为4点,5点,6点.写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和. 【精彩点拨】分析题意→写出X 可能取的值→分别写出取值所表示的结果【自主解答】 (1)设所需的取球次数为X ,则 X =1,2,3,4,…,10,11,X =i 表示前i -1次取到红球,第i 次取到白球,这里i =1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两张卡片”;X=4,表示“取出标有1,3的两张卡片”;X=5,表示“取出标有2,3或标有1,4的两张卡片”;X=6,表示“取出标有2,4或1,5的两张卡片”;X=7,表示“取出标有3,4或2,5或1,6的两张卡片”;X=8,表示“取出标有2,6或3,5的两张卡片”;X=9,表示“取出标有3,6或4,5的两张卡片”;X=10,表示“取出标有4,6的两张卡片”;X=11,表示“取出标有5,6的两张卡片”.用随机变量表示随机试验的结果问题的关键点和注意点1.关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.2.注意点:解答过程中不要漏掉某些试验结果.[再练一题]3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2016年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.【解】(1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.[构建·体系]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是________. 【导学号:29440035】【解析】由于抽球是在有放回条件下进行的,所以每次抽取的球号均可能是1,2,3,4,5中某个.故两次抽取球号码之和可能为2,3,4,5,6,7,8,9,10,共9种.【答案】92.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【解析】甲可能在3次射击中,一次也未中,也可能中1次,2次,3次.【答案】0,1,2,33.随机变量η的分布列如下:η12345 6P 0.2x 0.350.10.150.2则x=________,P(η≤3)=________.【解析】由分布列的性质得0.2+x+0.35+0.1+0.15+0.2=1,解得x=0.故P(η≤3)=P(η=1)+P(η=2)+P(η=3)=0.2+0.35=0.55.【答案】00.554.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为________.【解析】由题意取出的3个球必为2个旧球1个新球,故P(X=4)=C23C19 C312=27 220.【答案】27 2205.袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量X 为此时已摸球的次数,求随机变量X的概率分布列.【解】随机变量X可取的值为2,3,4,P(X=2)=C12C13C12C15C14=35;P(X=3)=A22C13+A23C12C15C14C13=310;P(X=4)=A33C12C15C14C13C12=110;所以随机变量X的概率分布列为:X 23 4P 35310110我还有这些不足:(1) (2)我的课下提升方案: (1) (2)学业分层测评(建议用时:45分钟)[学业达标]一、填空题1.设随机变量ξ的概率分布为ξ -1 0 1 2 3 P110151101525则P (ξ<3)=【解析】 P (ξ<3)=1-P (ξ≥3)=1-P (ξ=3)=1-25=35. 【答案】 352.设随机变量ξ的概率分布P (ξ=i )=a ⎝ ⎛⎭⎪⎫13i ,i =1,2,3,则a =________.【解析】 由P (ξ=i )=a ⎝ ⎛⎭⎪⎫13i ,i =1,2,3,得P (ξ=1)+P (ξ=2)+P (ξ=3)=1,∴a ⎝ ⎛⎭⎪⎫13+19+127=1, ∴a =2713. 【答案】 27133.篮球运动员在比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球一次得分的概率分布为________.【答案】4.(2016·测的产品个数为ξ,则ξ=k 表示的试验结果为________.【答案】 前k 次检测到正品,而第k +1次检测到次品5.随机变量ξ的等可能取值为1,2,…,n ,若P (ξ<4)=0.3,则n =________. 【解析】 ∵ξ等可能取值为1,2,…,n . ∴P (ξ<4)=P (ξ=1)+P (ξ=2)+P (ξ=3) =1n +1n +1n =0.3, ∴n =10. 【答案】 106.若随机变量X ~0-1分布,P (X =0)=a ,P (X =1)=32a ,则a =________.【导学号:29440036】【解析】 ∵⎩⎪⎨⎪⎧a +32a =1,0≤a ≤1,0≤32a ≤1,解得a =25.【答案】 257.随机变量ξ的概率分布列为P (ξ=n )=an (n +1),n =1,2,3,4,其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<ξ<52的值为________.【解析】 ∵P (ξ=n )=a n (n +1)=⎝ ⎛⎭⎪⎫1n -1n +1a , ∴∑i =14P (ξ=i )=⎝ ⎛⎭⎪⎫11-12a +⎝ ⎛⎭⎪⎫12-13a +⎝ ⎛⎭⎪⎫13-14a +⎝ ⎛⎭⎪⎫14-15a =⎝ ⎛⎭⎪⎫1-15a =45a =1,∴a =54.∴P ⎝ ⎛⎭⎪⎫12<ξ<52=P (ξ=1)+P (ξ=2)=56. 【答案】 568.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab ,则这名运动员得3【解析】 由题中条件,知2b =a +c ,c =ab ,再由分布列的性质,知a +b +c =1,且a ,b ,c 都是非负数,由三个方程联立成方程组,可解得a =12,b =13,c =16,所以得3分的概率是16.【答案】 16 二、解答题9.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)盒中有6支白粉笔和8支红粉笔,从中任意取3支,其中所含白粉笔的支数为X ;(2)从4张已编号(1~4号)的卡片中任意取出2张,被取出的卡片编号数之和为X.【解】(1)X可取0,1,2,3.X=i表示取出i支白粉笔,(3-i)支红粉笔,其中i=0,1,2,3.(2)X可取3,4,5,6,7.X=3表示取出分别标有1,2的两张卡片;X=4表示取出分别标有1,3的两张卡片;X=5表示取出分别标有1,4或2,3的两张卡片;X=6表示取出分别标有2,4的两张卡片;X=7表示取出分别标有3,4的两张卡片.10.已知随机变量ξ的概率分布为(1)求η1=12ξ的概率分布;(2)求η2=ξ2的概率分布.【解】(1)η1=12ξ的概率分布为(2)η2=ξ21.若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X -2,则P(Y=-2)=________. 【导学号:29440037】【解析】由Y=-2,得3X-2=-2,X=0.∴P(Y=-2)=P(X=0)=0.8.【答案】0.82.设随机变量X 的概率分布为P (X =k )=ck (k +1),k =1,2,3,c 为常数,则P (0.5<X <2.5)=________.【解析】 ∵c ⎝ ⎛⎭⎪⎫11×2+12×3+13×4=1,∴c =43,∴P (0.5<X <2.5)=P (X =1)+P (X =2)=23+29=89. 【答案】 893.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是________.【解析】 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13, 由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13. 【答案】 ⎣⎢⎡⎦⎥⎤-13,134.设随机变量ξ的分布列为P (ξ=i )=i10,i =1,2,3,4,求: (1)P (ξ=1或ξ=2); (2)P ⎝ ⎛⎭⎪⎫12<ξ<72.【解】 (1)∵P (ξ=1)=110,P (ξ=2)=210,∴P (ξ=1或ξ=2)=P (ξ=1)+P (ξ=2)=110+210=310=0.3.(2)ξ=1,2,3,4,又12<ξ<72,故只有ξ=1,2,3适合,所以P⎝⎛⎭⎪⎫12<ξ<72=P(ξ=1)+P(ξ=2)+P(ξ=3)=110+210+310=0.6.。
苏教版数学高二- 选修2-3教案 2.5.1《离散型随机变量的均值》
2.5.1 离散型随机变量的均值教案一、教学目标(1)通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义;(2)能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题.二、教学重点,难点有限值的离散型随机变量均值(数学期望)的概念和意义.三、教学过程一.复习巩固1、什么叫n次独立重复试验?一般地,由n次试验构成,且每次试验互相独立完成,每次试验的结果仅有两种对立的状态,即A与A,每次试验中P(A)=p>0。
称这样的试验为n次独立重复试验,也称伯努利试验。
1).每次试验是在同样的条件下进行的;2).各次试验中的事件是相互独立的;3).每次试验都只有两种结果:发生与不发生;4).每次试验,某事件发生的概率是相同的。
2、什么叫二项分布?P(X=k)=C knk n kp q-,其中0<p<1,p+q=1,k=0,1,2,...,n则称X服从参数为n,p的二项分布,记作X~B(n,p)3、离散型随机变量的概率分布一般地,设离散型随机变量ξ可能取的值为x1,x2,……,x i,…,ξ取每一个值x i(i =1,2,…)的概率P(ξ=x i)=p i,则称下表为随机变量ξ的概率分布,由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:(1)pi≥0,i=1,2,…;(2)p1+p2+ (1)二.问题情境1.情景:前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.这样刻画离散型随机变量取值的平均水平和稳定程度呢?甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用12,X X 表示,12,X X 的概率分布如下.2.问题:如何比较甲、乙两个工人的技术?三.学生活动1. 直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,似乎甲的技术又不如乙好.这样比较,很难得出合理的结论.2. 学生联想到“平均数”,,如何计算甲和乙出的废品的“平均数”? 3. 引导学生回顾《数学3(必修)》中样本的平均值的计算方法.四.建构数学1.定义在《数学3(必修)》“统计”一章中,我们曾用公式1122...n n x p x p x p +++计算样本的平均值,其中i p 为取值为i x 的频率值.类似地,若离散型随机变量X 的分布列或概率分布如下:其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ.2.性质(1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数)五.数学运用1.例题:例1.高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X ,求X 的数学期望.分析:从口袋中摸出5个球相当于抽取5n =个产品,随机变量X 为5个球中的红球的个数,则X 服从超几何分布(5,10,30)H .解:由2.2节例1可知,随机变量X 的概率分布如表所示:从而2584807585503800700425()012345 1.66672375123751237512375123751237513E X =⨯+⨯+⨯+⨯+⨯+⨯=≈ 答:X 的数学期望约为1.6667.说明:一般地,根据超几何分布的定义,可以得到0()r n rnM N Mnr Nr C C M E X n C N --===∑. 例2.从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X 表示这10件产品中不合格品数,求随机变量X 的数学期望()E X .解:由于批量较大,可以认为随机变量~(10,0.05)X B ,1010()(1),0,1,2, (10)k k k P X k p C p p k -===-=随机变量X 的概率分布如表所示:故10()0.5kk E X kp===∑即抽10件产品出现不合格品的平均件数为0.5件.说明:例2中随机变量X 服从二项分布,根据二项分布的定义,可以得到:当~(,)X B n p 时,()E X np =.例3.设篮球队A 与B 进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定A 、B 在每场比赛中获胜的概率都是12,试求需要比赛场数的期望. 分析:先由题意求出分布列,然后求期望解:(1)事件“4X =”表示,A 胜4场或B 胜4场(即B 负4场或A 负4场),且两两互斥.4400044411112(4)()()()()222216P X C C ==⨯⨯+⨯⨯=;(2)事件“5X =”表示,A 在第5场中取胜且前4场中胜3场,或B 在第5场中取胜且前4场中胜3场(即第5场A 负且4场中A 负了3场),且这两者又是互斥的,所以33431141441111114(5)()()()()22222216P X C C --==+=(3)类似地,事件“6X =”、 “7X =”的概率分别为33532252551111115(6)()()()()22222216P X C C --==+=,33633363661111115(7)()()()()22222216P X C C --==+=比赛场数的分布列为故比赛的期望为()4567 5.812516161616E X =⨯+⨯+⨯+⨯=(场)这就是说,在比赛双方实力相当的情况下,平均地说,进行6场才能分出胜负.2.练习:1、已知随机变量ξ的分布列为求E(ξ)2、抛掷一枚硬币,规定正面向上得1分,反面向上得-1分,求得分X的数学期望。
离散型随机变量教学案 选修2-3
2. 1.1离散型随机变量【教学目标】1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.【教学重难点】重点:随机变量、离散型随机变量、连续型随机变量的意义难点:随机变量、离散型随机变量、连续型随机变量的意义【教学过程】一、复习引入:某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件在上面的随机试验中,可能出现的结果如何用一个数来表示?这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?定义1:随机变量随机变量表示思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X看作一个随机变量,其值域是利用随机变量可以表达一些事件.说出随机变量取值表示什么事件.{X=0}{X =4}{X< 3 }“抽出 3 件以上次品”如何用 X 表示呢?定义2:离散型随机变量思考3:1.电灯的寿命X是离散型随机变量吗?2.某林场树木最高达30米,则林场树木的高度 是离散型随机变量吗?连续型随机变量:如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.4.离散型随机变量与连续型随机变量的区别与联系: 用变量表示随机试验的结果; 结果可以按一定次序一一列出 结果不可以一一列出思考4:判断下列各量是否是随机变量,是否是离散型随机变量,说明理由: (1)信息台一天接到的咨询电话个数(2)从10张编好号码的卡片中任意抽出一张,被抽出卡片的号码 (3)某林场树木最高达30米,任取一颗林木的高度 (4)体积为27立方米的正方体的棱长 三、讲解范例:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η. 解:(1)(2)例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:四、当堂检测1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( ) A .①; B .②; C .③; D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( ) A .3n =; B .4n =; C .10n =; D .不能确定 3.抛掷两次骰子,两个点的和不等于8的概率为( ) A .1112; B .3136; C .536; D .1124.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和五、小结 :随机变量、离散型随机变量、连续型随机变量的概念随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数; 随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量课后练习与提高1.10件产品中有4件次品,从中任取2件,可为随机变量的是( ) A .取到产品的件数 B.取到次品的件数 C.取到正品的概率 D.取到次品的概率2.有5把钥匙串成一串,其中有一把是有用的,若依次尝试开锁,若打不开就扔掉,直到打开为止则试验次数ξ的最大取值为( ) A.5 B.2 C.3 D.43.将一颗骰子掷2次,不是随机变量为( ) A.第一次出现的点数 B.第二次出现的点数 C.两次出现的点数之和D.两次出现相同的点数的种数4离散型随机变量是_________________.5.一次掷2枚骰子,则点数之和ξ的取值为_______________.2. 1.2离散型随机变量的分布列【教学目标】1. 知道概率分布列的概念。
苏教版高中数学选修2-3 2.5.1 离散型随机变量的均值 学案
_2.5随机变量的均值和方差2.5.1 离散型随机变量的均值[对应学生用书P38]设有12个西瓜,其中4个重5 kg,3个重6 kg,5个重7 kg.问题1:任取一个西瓜,用X 表示这个西瓜的重量,试想X 的取值是多少? 提示:x =5,6,7.问题2:x 取上述值时,对应的概率分别是多少? 提示:412,312,512.问题3:试想西瓜的平均质量该如何表示? 提示:5×412+6×312+7×512.1.离散型随机变量的均值(或数学期望) (1)定义:若离散型随机变量X 的概率分布为则称x 1p 1+x 2p 2+…+x n p n 为离散型随机变量X 的均值或数学期望,也称为X 的概率分布的均值,记为E (X )或μ,即E (X )=μ=x 1p 1+x 2p 2+…+x n p n .其中,x i 是随机变量X 的可能取值,p i 是概率,p i ≥0,i =0,1,2,…,n ,p 1+p 2+…+p n =1.(2)意义:刻画离散型随机变量取值的平均水平和稳定程度. 2.两种常见概率分布的均值(1)超几何分布:若X ~H (n ,M ,N ),则E (X )=nMN .(2)二项分布:若X ~B (n ,p ),则E (X )=np .1.随机变量的均值表示随机变量在随机试验中取值的平均水平,又常称随机变量的平均数,它是概率意义下的平均值,不同于相应数值的算术平均数.2.离散型随机变量的均值反映了离散型随机变量取值的平均水平,它是一个常数,是随机变量的多次独立观测值的算术平均值的稳定性,即由独立观测组成的随机样本的均值的稳定值.而样本的平均值是一个随机变量,它随着观测次数的增加而趋于随机变量的均值.[对应学生用书P38][例1] 2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率; (2)求取出的4个球中恰有1个红球的概率;(3)设X 为取出的4个球中红球的个数,求X 的分布列和数学期望.[思路点拨] 首先确定X 的取值及其对应的概率,然后确定随机变量的概率分布及数学期望.[精解详析] (1)设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件A ,B 相互独立,且P (A )=C 23C 24=12,P (B )=C 24C 26=25.故取出的4个球均为黑球的概率为 P (AB )=P (A )P (B )=12×25=15.(2)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C ,D 互斥,且P (C )=C 23C 24·C 12·C 14C 26=415,P (D )=C 13C 24·C 24C 26=15.故取出的4个球中恰有1个红球的概率为 P (C +D )=P (C )+P (D )=415+15=715.(3)X 可能的取值为0,1,2,3.由(1),(2)得P (X =0)=15,P (X =1)=715,P (X =3)=C 13C 24·1C 26=130.从而P (X =2)=1-P (X =0)-P (X =1)-P (X =3)=310.所以X 的分布列为故X 的数学期望E (X )=0×15+1×715+2×310+3×130=76.[一点通] 求离散型随机变量X 的均值的步骤: (1)理解X 的意义,写出X 可能取的全部值; (2)求X 取每个值的概率;(3)写出X 的概率分布表(有时可以省略);(4)利用定义公式E (X )=x 1p 1+x 2p 2+…+x n p n 求出均值.1.(广东高考)已知离散型随机变量X 的分布列为则X 的数学期望E (X )=________. 解析:E (X )=1×35+2×310+3×110=32.答案:322.若对于某个数学问题,甲、乙两人都在研究,甲解出该题的概率为23,乙解出该题的概率为45,设解出该题的人数为X, 求E (X ).解:记“甲解出该题”为事件A ,“乙解出该题”为事件B ,X 可能取值为0,1,2. P (X =0)=P (A B )=P (A )·P (B ) =⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-45=115, P (X =1)=P (A B )+P (A B ) =P (A )P (B )+P (A )P (B )=23×⎝⎛⎭⎫1-45+⎝⎛⎭⎫1-23×45=25, P (X =2)=P (AB )=P (A )P (B )=23×45=815.所以,X 的分布列如下表:故E (X )=0×115+1×25+2×815=2215.[例2] 甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,记甲击中目标的次数为X ,乙击中目标的次数为Y .(1)求X 的概率分布; (2)求X 和Y 的数学期望.[思路点拨] 甲、乙击中目标的次数均服从二项分布. [精解详析] (1)P (X =0)=C 03⎝⎛⎭⎫123=18; P (X =1)=C 13⎝⎛⎭⎫123=38; P (X =2)=C 23⎝⎛⎭⎫123=38; P (X =3)=C 33⎝⎛⎭⎫123=18. 所以X 的概率分布如下表:(2)由(1)知E (X )=0×18+1×38+2×38+3×18=1.5,或由题意X ~B ⎝⎛⎭⎫3,12,Y ~B ⎝⎛⎭⎫3,23, 所以E (X )=3×12=1.5,E (Y )=3×23=2.[一点通] 超几何分布和二项分布是两种特殊的而且应用相当广泛的分布列,解题时如果能发现是这两种分布模型,就可以直接利用规律写出分布列,求出均值.3.某运动员投篮命中率为p =0.6. (1)求一次投篮时命中次数X 的数学期望; (2)求重复5次投篮时,命中次数Y 的数学期望. 解:(1)投篮一次,命中次数X 的概率分布如下表:则E (X )=p =0.6.(2)由题意,重复5次投篮,命中的次数Y 服从二项分布,即Y ~B (5,0.6). 则E (Y )=np =5×0.6=3.4.一个箱子中装有大小相同的1个红球,2个白球,3个黑球.现从箱子中一次性摸出3个球,每个球是否被摸出是等可能的.(1)求至少摸出一个白球的概率;(2)用X 表示摸出的黑球数,写出X 的概率分布并求X 的数学期望.解:记“至少摸出一个白球”为事件A ,则事件A 的对立事件A 为“摸出的3个球中没有白球”,则P (A )=C 34C 36=15,P (A )=1-P (A )=45,即至少摸出一个白球的概率等于45.(2)X 的所有可能取值为0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13·C 23C 36=920,P (X =2)=C 23·C 13C 36=920,P (X =3)=C 33C 36=120.X 的概率分布为所以E (X )=0×120+1×920+2×920+3×120=32,即X 的数学期望为32.[例3] (判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望.[思路点拨] (1)第4局甲当裁判的前提是第2局甲胜,第3局甲参加比赛且负. (2)X 的取值为0,1,2.[精解详析] (1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛,结果为甲负”,A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)P (A 3)=18,P (X =2)=P (B -1·B 3)=P (B -1)P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1-18-14=58,E (X )=0·P (X =0)+1·P (X =1)+2·P (X =2)=98.[一点通] 解答此类题目,应首先把实际问题概率模型化,然后利用有关概率的知识去分析相应各事件可能性的大小,并列出概率分布表,最后利用有关的公式求出相应的概率及数学期望.5.某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元,设一年内E 发生的概率为p ,为使公司收益的期望值等于a 的10%,公司应要求投保人交多少保险金?解:设保险公司要求投保人交x 元保险金,以保险公司的收益额X 作为随机变量,则不难得出其概率分布表如下:E (X )=x (1-p )+(x -a )p =x -ap ,由题意可知x -ap =0.1a ,解得x =(0.1+p )a .即投保人交(0.1+p )a 元保险金时,可使保险公司收益的期望值为0.1a .6.现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为34,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为23,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中两次的概率;(2)求该射手的总得分X 的分布列及数学期望.解:(1)记“该射手恰好命中两次”为事件A ,“该射手第一次射击甲靶命中”为事件B ,“该射手第二次射击甲靶命中”为事件C ,“该射手射击乙靶命中”为事件D .由题意知,P (B )=P (C )=34,P (D )=23,所以P (A )=P (BC D -)+P (B C -D )+P (B -CD ) =P (B )P (C )P (D -)+P (B )P (C -)P (D )+P (B -)P (C )P (D ) =34×34×⎝⎛⎭⎫1-23+34×⎝⎛⎭⎫1-34×23+⎝⎛⎭⎫1-34×34×23=716. (2)根据题意,X 的所有可能取值为0,1,2,3,4.P (X =0)=P (B -C -D -)=⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23=148, P (X =1)=P (B C -D -)+P (B -C D -)=34×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×34×⎝⎛⎭⎫1-23=18. P (X =2)=P (BC D -)+P (B -C -D )=34×34×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-34×23=1148, P (X =3)=P (B C -D )+P (B -CD )=34×⎝⎛⎭⎫1-34×23+⎝⎛⎭⎫1-34×34×23=14, P (X =4)=P (BCD )=34×34×23=38.故X 的分布列是所以E (X )=0×148+1×18+2×1148+3×14+4×38=176.1.求随机变量X 的数学期望,关键是正确求出X 的分布列,在求X 取每一个值的概率时,要联系概率的有关知识,如古典概型、互斥事件的概率、独立事件的概率等.2.对于aX +b 型的随机变量,可利用均值的性质求解,即E (aX +b )=aE (X )+b ;也可以先列出aX+b的概率分布表,再用均值公式求解,比较两种方式显然前者较方便.。
高中数学苏教版选修2-3 精品导学案:2.5 离散型随机变量的均值与方差3
§2.5.1离散型随机变量的均值学习目标1.了解离散型随机变量的期望的意义,2.会根据离散型随机变量的分布列求出期望.3.能计算简单离散型随机变量均值,并能解决一些实际问题.学习过程一、自学导航1.情景:前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.如何刻画离散型随机变量取值的平均水平和稳定程度呢?甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用12,X X 表示,12,X X 的概率分布如下. 1Xk p 0.70.1 0.1 0.1 2Xk p0.5 0.3 0.22.问题: 如何比较甲、乙两个工人的技术?二、探究新知1.数学期望定义2.性质三、例题精讲例1 高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望.例2 从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为E X.0.05,随机变量X表示这10件产品中不合格品数,求随机变量X的数学期望()例3 设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是12,试求需要比赛场数的期望.四、课堂精练1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,他连续罚球3次;(1)求他得到的分数X的分布列;(2)求X的期望.2.据气象预报,某地区下个月有小洪水的概率为0.25,有大洪水的概率为0.01.现工地上有一台大型设备,为保护设备有以下三种方案:方案1 运走设备,此时需花费3800元;方案2 建一保护围墙,需花费2000元.但围墙无法防止大洪灾,若大洪灾来临,设备受损,损失费为60000元;方案3 不采取措施,希望不发生洪水,此时大洪水来临损失60000元,小洪水来临损失1000元.试选择适当的标准,对种方案进行比较.五、回顾小结六、课后作业课本671,2,3,4P,71P第1题教学反思在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
苏教版高中数学选修2-3《离散型随机变量的方差和标准差》参考教案2
备课 时间教学 课题教时 计划1教学 课时1教学 目标 (1)理解随机变量的方差和标准差的含义;(2)会求随机变量的方差和标准差,并能解决一些实际问题.重点难点 理解方差和标准差公式所表示的意义,并能解决一些实际问题.教学过程一.问题情境甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用12,X X 表示,12,X X 的概率分布如下.1X 0 1 2 3k p0.7 0.10.10.1 2X 0 1 2 3k p0.50.30.2二.学生活动如何比较甲、乙两个工人的技术?我们知道,当样本平均值相差不大时,可以利用样本方差考察样本数据与样本平均值的偏离程度.能否用一个类似于样本方差的量来刻画随机变量的波动程度呢? 三.建构数学1.一般地,若离散型随机变量X 的概率分布如表所示:X 1x2x…n xP1p2p…n p则2()(())i x E X μμ-=描述了(1,2,...,)i x i n =相对于均值μ的偏离程度,故2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()V X 或2σ. 2.方差公式也可用公式221()ni i i V X x p μ==-∑计算.3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()V X 的算术平方根称为X 的标准差,即()V X σ=.思考:随机变量的方差和样本方差有何区别和联系? 四.数学运用 1.例题:例1.若随机变量X 的分布如表所示:求方差()V X 和标准差()V X .X 0 1P1p -p解:因为0(1)1p p p μ=⨯-+⨯=,所以22()(0)(1)(1)(1)V X p p p p p p =--+-=-,()(1)V X p p =-例2.求第2.5.1节例1中超几何分布(5,10,30)H 的方差和标准差. 解:第2.5.1节例1中超几何分布如表所示:X 012345P258423751807523751855023751380023751700237514223751数学期望53μ=,由公式221()ni i i V X x p μ==-∑有22584807585503800700425()01491625()2375123751237512375123751237513V X =⨯+⨯+⨯+⨯+⨯+⨯- 2047500.9579213759=≈故标准差 0.9787σ≈.例3.求第2.5.1节例2中的二项分布(10,0.05)B 的方差和标准差. 解::0.05p =,则该分布如表所示:X 0 1 2345k p 001010(1)C p p - 11910(1)C p p -22810(1)C p p -33710(1)C p p -44610(1)C p p -55510(1)C p p -X 6 7 8910k p 66410(1)C p p - 77310(1)C p p -88210(1)C p p -99110(1)C p p -1010010(1)C p p -由第2.5.1节例2知()0.5E X μ==,由221()ni i i V X x p μ==-∑得2200102119210100210101000.050.9510.050.95...100.050.950.5C C C σ=⨯⨯+⨯⨯++⨯⨯-0.7250.250.475≈-= 故标准差0.6892σ≈.说明:一般地,由定义可求出超几何分布和二项分布的方差的计算公式:当~(,,)X H n M N 时,2()()()(1)nM N M N n V X N N --=-,当~(,)X B n p 时,()(1)V X np p =-. 例4.有甲、乙两名学生,经统计,他们字解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:甲分数X 甲80 90 100概率0.2 0.6 0.2试分析两名学生的答题成绩水平.解:由题设所给分布列数据,求得两人的均值如下:X E ⨯⨯⨯甲()=800.2+900.6+1000.2=90,X E ⨯⨯⨯乙()=800.4+900.2+1000.4=90方差如下:222()(8090)0.2(9090)0.6(10090)0.240V X =-⨯+-⨯+-⨯=甲乙分数X 乙80 90 100概率 0.4 0.20.4222V X=-⨯+-⨯+-⨯=()(8090)0.4(9090)0.2(10090)0.480乙由上面数据可知()(),()(),这表明,甲、乙两人所得分数的平=<E X E X V X V X乙乙甲甲均分相等,但两人得分的稳定程度不同,甲同学成绩较稳定,乙同学成绩波动大.2.练习:五.回顾小结:1.离散型随机变量的方差和标准差的概念和意义;2.离散型随机变量的方差和标准差的计算方法;3.超几何分布和二项分布的方差和标准差的计算方法课外作业教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§2.1.1离散型随机变量
【三维目标】
知识与技能:1.理解随机变量的意义;
2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;
3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.
过程与方法:通过实例,理解随机变量与离散性随机变量的含义
情感态度与价值观:通过学习,体会用数学工具研究随机现象的意义,体会数学的应用价值【学习重点】随机变量、离散型随机变量、连续型随机变量的意义
【学习难点】对随机变量含义的理解.
【学法指导】认真阅读本章的篇头语与本节课的教材,按要求完成导学案
【知识链接】
1、什么是随机事件?什么是基本事件?
在一定条件下可能发生也可能不发生的事件,叫做随机事件。
试验的每一个可能的结果称为基本事件。
2、什么是随机试验?
凡是对现象或为此而进行的实验,都称之为试验。
如果试验具有下述特点:
试验可以在相同条件下重复进行;每次试验的所有可能结果都是明确可知的,并且不止一个;每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果,它被称为一个随机试验,简称试验。
例如
1、某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可以用数字表示;
2、某次产品检验,在含有5件次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由数字表示
在上面例子中,随机试验有下列特点:
①试验的所有可能结果可以用一个数来表示;
②每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.
【学习过程】
A问题1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?
B问题2:试归纳随机变量的概念?随机变量常用什么表示?
C问题3:随机变量和函数有类似的地方吗?随机变量的值域是什么?
B问题4:一个袋中装有10个红球,5个白球,从中任取个4球,其中所含红球的个数X是一个随机变量,写出随机变量的值域
B 问题5:利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?
B 问题6:试归纳离散型随机变量的概念?
B 问题7:电灯的寿命X 是离散型随机变量吗?为什么?
C 问题8:在研究电灯泡的使用寿命是否超过1000 小时时,定义如下的随机变量:
⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.
随机变量Y 是一个离散型随机变量吗?为什么?
拓展:连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量
如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值
离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出
注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上
(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量
例1、写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果
(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;
(2)某单位的某部电话在单位时间内收到的呼叫次数η
C例2、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?
【达标检测】
B1、下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果。
⑴抛掷两枚色子,所得点数之和;
⑵某足球队在五次点球中射进的球数;
⑶任意抽取一瓶标有2500 ml 的饮料,其实际量与标记量之差;
⑷从学校到家要经过5个红绿灯口,可能遇到红灯的次数;
⑸在优、良、中、及格和不及格5个等级的测试中,某同学可能获得的成绩
C2、在掷骰子试验中,如果我们仅关心掷出的点数是否为偶数,应如何定义随机变量?
D3、某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费η也是一个随机变量
(1)求租车费η关于行车路程ξ的关系式;
(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?。