数理方程第一章作业
数理方程练习题(1)
数理方程练习题(1)一、填空题1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是(双曲)型,取值为负对应的是(椭圆)型,取值为零对应的是(抛物)型。
2.在实际中广泛应用的三个典型的数学物理方程:第一个叫(弦自由横振动),表达式为(2tt xx u a B u =),属于(双曲)型;第二个叫(热传导),表达式为( 2t xx u a B u =),属于(椭圆)型;第三个叫(拉普拉斯方程和泊松方程),表达式为(0x x y yu u+=,(,)xx yy u u x y ρ+=-),属于(椭圆)型;二、选择题1.下列泛定方程中,属于非线性方程的是[ B ](A) 260t xx u u xt u ++=;(B) sin i t tt xx u u u e ω-+=; (C) ()220y xxxxy u x yuu +++=; (D) 340t x xx u u u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ D ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx x x t u a u t x lu t u l t u x x u x xφ?=><<?==??==?的形式解可写成[ D ](A) ()01,coscos2n n a n at n x u x t a ll ππ∞==+∑(B) ()001,coscosn n n at n x u x t a b t a llππ∞==++∑(C) ()0,cos sin cos n nn n at n at n x u x t a b l l l πππ∞=?=+∑(D) ()001,cos sin cos n n n n at n at n x u x t a b t a b l llπππ∞=??=+++??∑ 4. 若非齐次边界条件为12(0,)(),(,)()x u t t u l t t μμ==,则辅助函数可取[C ](A) ()()12(,)W x t t x t μμ=+; (B) ()()21(,)W x t t x t μμ=+;(C) ()()()12(,)W x t x l t t μμ=-+; (D) ()()()21(,)W x t x l t t μμ=-+;三、求解下列问题(1)2,0,tt xx u a u t x =>-∞<<∞ ,其中a 为常数。
数理方程30题
u(x,t) = cos at sin x
注记:如果用系数计算公式
∫ ∫ Cn
=
2 L
L sin(ξ ) sin(nξ )dξ
0
, Dn
=
2 nπa
L 0 × sin(nξ )dξ ,(n=1,2,……)
0
会得出同样结论。
例 8.用分离变量法求解双曲型方程初边值问题
⎧u ⎪⎪⎨u
[Cn
n=1
cos
nπ L
t
+
Dn
sin
nπ L
t]sin
nπ L
x
利用初值条件,得
∑ ∑ ∞ Cn
n=0
sin
nπ L
x
=
x(L −
x) , π L
∞
nDn
n=0
sin
nπ L
x
=
0
为计算系数,首先令ϕ(x) = x(L − x) ,显然ϕ(0) = 0,ϕ(L) = 0 ,且
ϕ′(x) = L − 2x ,ϕ′′(x) = −2
x x
+ +
C1 C2
⎡ ∂ξ
构造变换:
⎧ξ ⎩⎨η
= =
2 sin 4 sin
x x
+ +
cos cos
y y
,
⎢ ⎢ ⎢
∂x ∂η
⎢⎣ ∂x
∂ξ ⎤
∂y ∂η
⎥ ⎥ ⎥
=
⎡2 ⎢⎣4
cos cos
x x
∂y ⎥⎦
− sin y⎤ − sin y⎥⎦
所以, a12 = 8sin 2 y cos2 x − 18cos2 x sin 2 y + 8cos2 x sin 2 y = −2 cos2 x sin 2 y
数理方程第一章答案
u = f( − 3 ) + g(x + y) (−3 ) + ( ) = 3 代入边界条件得: (−3 ) + ( ) = 0 (2)式积分得: (−3 ) + ( ) = 3 −
(−3 ) + ( ) = 0 (3)
求得: 所以:
( )= ( )= u= ( + ) + ( −3 )
14.解下列定解问题. = , > 0, − ∞ < x < +∞ (2). (0, ) = 特征方程: 特征线 f(x + at) f(x) = u=( + )
∫ ( )
[∫ ( ) +
∫ ( )
+ ]
( ) ( )
( )]
+ ( )+
(2).
+ ( , ) = ( , ) ,u = u(x, y)
直接套用公式 6. 推导杆的微小纵振动方程 解: 设细杆截面积 S,密度 ,杨氏模量 E 取一小段 dx, 用牛顿第二定律得:
E S u ( x dx, t ) u ( x, t ) 2u ES Sdx 2 x x t
数理方程 A 参考答案 中国科学技术大学
代入原方程得:
u 1, u f ( )
u xy f ( x 2 y 2 ) 15.一端固定的半无界弦的定解问题. = , > 0, >0 ( , 0) = 0 (0, ) = sin , (0, ) =
若为cos ,则 =? 解: 为满足边界条件作以下延拓: φ(x) = sin , 由达朗贝尔公式得: u(t, x) = [sin( +
d 2 R 2 dR )0 dr 2 r dr
数学物理方程答案谷超豪
数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
新苏教版小学五年级数学下册第1单元 简易方程-课堂作业(8课时)
第1单元简易方程第1课时等式与方程一填空。
1.含有()是方程。
2.判断是不是方程,首先要看(),再看()。
3.方程()是等式,等式()是方程。
(填“一定”或“不一定”)。
二、下面哪些是等式,哪些是方程?9—X=3 20+30=50 80÷4=20y+17=38 X—14 7y=6336+x〈40 54÷x=9 30+x〉80第2课时等式的性质和解方程(1)一填空。
1.等式两边()加上或减去(),所得结果仍然是等式,这是()。
2.已知4+A=9-B,当A=1.5时,B=()。
3.如果x+15=y-7.2,那么x()y。
(填“>”或“<”)4.五年级有学生40人,有一天请假a人,这天出席了()人。
二、解方程81—X=35 32+X=46 X-47=59 45+X=56三、列方程解答。
一只家鼠的寿命是X年,已知猫的寿命是这只家鼠的5.5倍。
这只猫的寿命是11年,这只家鼠的寿命是几年?第3课时等式的性质和解方程(2)一.填一填。
1.某商店卖出100件衣服,销售总额达m元,每件衣服卖了()元。
2.每千克苹果m元,每千克梨n元,4m表示(),6n表示(),4m+6n表示()。
3.一堆煤有a吨,每车运b吨,运了4车,还剩()吨。
二.解方程。
6X=54 2X= 15.9 X÷3=4.5 4÷X=10三.列方程解决实际问题。
1.养禽场养鸡、鸭共有2000只,鸡的只数是鸭的4倍,养鸭多少只?2.于老师在体育用品商店买了5个足球,付出100元,找回22.5元,每个足球多少元?第4课时列方程解决简单的实际问题(1)1.水果店卖出5筐梨,平均每筐重30千克,这时还剩75千克的梨,水果店原有梨多少千克?2.根据题意写出等量关系,再列方程。
(1)小红身高145厘米,小华身高X厘米,小红比小华高15厘米。
小华身高X厘米+()=小红身高145厘米方程:(2)一个乒乓球的价钱是X元,一副乒乓球拍的价钱是它的20倍,一副乒乓球拍的价钱是60元。
数理方程第一章定解问题liu婧-1
二、热传导问题
所谓热传导就是由于物体内
部温度分布的不均匀, 热量要 从物体内温度较高的点处流 向温度较低的点处. 热传导问 题归结为求物体内部温度分 布规律
三维热传导方程的导出
设物体在Ω内无热源. 在Ω中任取一闭曲面 S, 以函数u(x, y,z,t )表示物体在t 时刻, M = M (x, y,z ) 处的温度. 根据Fourier 热传导定律 , 在无穷小时段dt 内流过物体的一个无穷小 面积dS 的热量dQ 与时间dt 、曲面面积dS 以 及物体温度u 沿曲面dS 的外法线n 的方向导 数三者成正比, 即
数学物理方程
第一章 绪论
第一节 引言
1. 数理方程发展历史、与其他学科的关系、研 究现状 2. 数理方程及其定解问题的求解方法 经典解、数值解、广义解。
第二节 基本概念
微分方程:含有未知函数的导数或微分的等式 分类
按自变量的个数,分为常微分方程和偏微分
方程;
按未知函数及其导数的次数,分为线性微分
2
u u u 2 u 2 a 2 2 2 a u. t x y z
2 2 2
(1.2.7)
它称为三维热传导方程。
若考虑物体内有热源,其热源密度函数为F(x, y, z, t),则 有热源的热传导方程为
ut a u f ( x, y, z, t ).
一维弦振动
固定端 u |x=0 =0 受力端 ux|x=0 = F/ρ
一维杆振动
固定端 u |x=0 = 0 自由端 ux|x=0 = 0 受力端 ux|x=0 = F/YS
数理方程题库
第一章定义和方程类型1、34233(,,)v v v xyv g x y z x x y z∂∂∂+++=∂∂∂∂ 是( D )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶 1、22(,,)vxy v g x y z z∂+=∂ 是( A )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶1、33232(,,)v v vv xyv g x y z x x y z ∂∂∂+++=∂∂∂∂ 是( C )偏微分方程A 、 一阶B 、二阶C 、 三阶D 、 四阶 2、2(,)txx u a u f x t -= (其中0>a ) 属于( A )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 2、2(,)ttxx u a u x t ϕ-= (其中0>a ) 属于( B )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合2、22(,,)tt xx u a u x y t ϕ+= (其中0>a ) 属于( C )型偏微分方程 A 、 抛物 B 、双曲 C 、 椭圆 D 、 混合 2、(,)xx yy u u f x y += (其中(,)u u x y =) 属于( C )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 4、下列方程是非线性偏微分方程的是( A )A 22()()sin u u x x y 抖+=抖 B (,)u uf x y x y抖+=抖 C 22(,)(,)cos u ua x tb x t x x t抖+=抖 D 3433(,,)v v v g x y z x x y z ∂∂∂++=∂∂∂∂ 7、下列方程是非齐次方程的是( A )A(,)(,)0u uxy f x y f x y x y 抖+=?抖, B 2,0t xx u a u a =?C 22(,)(,)0u u a x t b x t x t 抖+=抖 D 34330v v v x x y z ∂∂∂++=∂∂∂∂3、在用分离变量法求解定解问题200,0,0|0,|0|()t xx x x x l t u a u x l t u u u x ϕ===⎧=<<>⎪==⎨⎪=⎩时,得到的固有函数系为( D ) A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x ln π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n π C 、{},...2,1,sin =n x n π D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x ln π 3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧====><<=====)(|),(|0|,0|0,0,0002x u x u u u t l x u a u t t t l x x x x xx tt ψϕ时,得到的固有函数系为( B )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n πB 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos ,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x l n π3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧===><<====)(|0|,0|0,0,002x u u u t l x u a u t l x x xx t ϕ时,得到的固有函数系为( A )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、,...2,1,2)12(sin=⎭⎬⎫⎩⎨⎧-n x l n π7、给出未知函数 u 在区域Ω的边界Γ上的值0,),,(|≥Γ∈=Γt M t M u μ 的边界条件,称为第( A )类边界条件。
数理方程第一章答案
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρxESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得ux s x )()(ρx∂∂=xESu()若=)(x s 常量,则得22)(tu x ∂∂ρ=))((xu x E x∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xu x E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu ∂∂|l x ==0同理,若0=x 为自由端,则相应的边界条件为xu ∂∂∣00==x(3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
数理方程第二版 课后习题答案
第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。
略2. 求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。
从而上式为向量函数的0阶Taylor公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5. 证明具有固定方向的充要条件是。
证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。
证毕6. 证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。
充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。
如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。
证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。
解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。
解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。
证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。
数理方程第二版 课后习题答案讲解学习
数理方程第二版课后习题答案第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。
略2. 求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。
从而上式为向量函数的0阶Taylor公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5. 证明具有固定方向的充要条件是。
证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。
证毕6. 证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。
充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。
如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。
证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。
解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。
解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。
证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。
数理方程第一章、第二章习题全解
u( 0 , t) = u( l, t) = 0 现考虑初始条件,当冲量 k 作用于 x = c处时, 就相当于在这点 给出了一个初速度 , 我们考虑以 c点为中心 , 长为 2δ的一小段弦 ( c δ, c + δ) , 设弦是均匀的 , 其线密度为 ρ, 则这 一小段 弦的质量 为 2δρ, 受冲击时速度为 ut ( x, 0) , 由动量定理得
h c
x
l
h -
c(
l
-
x)
(0 ≤ x ≤ c) ( c < x ≤ l)
ut ( x, 0) = ψ( x ) = 0
则 u( x, t) 是下列定解问题的解 :
utt - a2 uxx = 0
( 0 < x < l, t > 0)
u( x, 0) = φ( x ) , ut ( x, 0 ) = ψ( x )
2 .4 习题全解
1. 设弦的两端固定于 x = 0 及 x = l, 弦的初始位称如图 2 2 所 示,初速度为零, 又设有外力作用, 求弦作横向振动时的位移函数 u( x, t) 。
解 如图 2 2 所示, 弦作横向振动时初始条件为
62
数学物理方程与特殊函数导教·导学·导考
图2 2
u( x, 0) = φ( x ) =
5. 若 F( z) , G( z) 是任意两个二次连续可微函数 , 验证
u = F( x + at ) + G( x - at )
满足方程
2u t2
=
a2
2x2u。
解 作自变量代换ξ= x + at,η= x - at, 由复合函数求导法则
有
所以 于是
u t
数理方程课后习题
包括导数的定义、求导法则、高阶导 数等基本概念,以及微分的定义、几 何意义等。
积分
包括定积分的定义、性质、计算方法 等基本概念,以及反常积分、定积分 的应用等。
微积分部分答案与解析
• 级数:包括级数的定义、性质、收敛性等 基本概念,以及正项级数、交错级数等不 同类型的级数及其判别法。
微积分部分答案与解析
矩阵运算习题
01
02
03
04
矩阵加法
掌握矩阵加法的定义和性质, 能够进行矩阵加法的计算。
矩阵乘法
理解矩阵乘法的定义和性质, 掌握矩阵乘法的计算方法。
矩阵逆
理解矩阵逆的定义和性质,掌 握求矩阵逆的方法。
行列式
理解行列式的定义和性质,掌 握行列式的计算方法。
向量运算习题
向量加法
掌握向量的加法定义和性质, 能够进行向量加法的计算。
概率论与数理统计部分答案与解析
概率论基础
包括概率的定义、性质、计算方法等 基本概念,以及条件概率、独立事件 等进阶概念。
随机变量及其分布
包括随机变量的定义、性质、分类等 基本概念,以及离散型随机变量、连 续型随机变量及其分布函数等。
概率论与数理统计部分答案与解析
• 数理统计方法:包括参数估计、假设检验、回归分析等基本方法,以及样本均值、方差、协方差等统计量及其性质。
习题的解题思路
分析问题
制定解题计划
执行解题计划
首先需要分析题目所给 条件,明确问题的类型
和所涉及的知识点。
根据问题的特点,制定 相应的解题计划,选择 合适的数学方法和公式。
按照解题计划逐步进行 计算和推导,注意每一
步的细节和准确性。
检验答案
数理方程课后习题(带答案)
T nC n co n ls atD n sin n lat
un XnTn B nsin ln x (C n cn o la ts D n sin ln a t) (C nco n la s t D nsin ln at)sin lnx
u
un
n 1
na
na n
n 1(C ncolstD nsin l t)silnx
由此可得:w (x)1
xt
dt
f()dC xA ,
a2 0 0
其中
C1 l(BAa 1 2 0 ldt0 tf()d),
数学物理方程与特殊函数
第2章习题选讲
然后用分离变量解
v(vt0,t)a2
2v x2 , 0, v(l,
t)
0,
0 x l,t 0 t 0
v(x,0) g(x) w(x), 0 x l
2 lu(x,0) n
2l
n
Dnna0
t
sin l
xdxna0x(lx)sinl
数理方程课程第一次作业讲解
第一题:
设函数u(x,y,z)及矢量
A P(x, y,z)i Q(x, y,z) j R(x, y,z)k
的三个坐标函数都有二阶连续偏导数,求证:
(1)rot( gradu) 0 (2)div(rotA) 0 2u 2u 2u (3)div( gradu) 2 2 2 x y z
u ( x dx ) u ( x) u T x x F ( x) sin t t 2 dx
2
令a2=T/
2 2u u 2 a f ( x) sin t 2 2 t x
u( x, t ) x0 0
u( x, t ) x L 0
深圳大学电子科学与技术学院
u u u u u a t t t
2u u u u u u u 2 u 2 u a a a a t t t 2 2 u 2u 2u a 2 2 2
u u u u u x x x
2u u u u u u u u u 2 x x x 2u 2u 2u 2 2 2
u 2u
深圳大学电子科学与技术学院
第二题:
若F(z)、G(z)是任意两个二次连续可微函数, 验证u=F(x+at)+G(x-at)满足方程
2 2u u 2 a 2 2 t x
数理方程习题解答
β,
α4
=
1 cosθ ,则 2
α
=
⎛ ⎜⎝
±
1, 2
1 sinθ sin β , 2
1 sinθ cos β , 2
1 2
cosθ
⎞ ⎟⎠
。
8
(3)设α
=
(α1,α2,α3 )
,则0
=
α
2 2
−
α
2 3
,取单位特征方向,α12
+
α
2 2
+
α
2 3
=1。
所以,α12
+
2α
2 2
= 1。记α1
=
cosθ , α2
问题 II:求u ∈ M = C1 (Ω) 使得它对于任意v ∈ M 都满足
∫ (∇u ⋅ ∇v + u ⋅ v − fv) dx + ∫ (a(x)uv − gv) ds = 0
Ω
∂Ω
问题 III (第三边值问题):求u ∈ C 2 (Ω) ∩ C1 (Ω) 满足以下边值问题
⎧⎪−Δu + u = f
( ) uξη
+
1 2(ξ −η)
uξ − uη
=0
(5)由特征方程sin2 xdy2 − 2 y sin xdxdy + y2dx2 = 0 解得一簇特征线
ytg x = c ,做变换ξ = ytg x ,η = y ,则由链式法则原方程化为
2
2
uηη
− 2ξ ξ2 +η2
uξξ
=0
( ) ( ) (6)由特征方程 1 + x2 dy2 + 1 + y2 dx2 = 0 解得两簇共轭特征线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
侧面绝热(与外界无热量交换) 稳恒热流 q 注入。q :热流 强度,单位时间内流过单位 面积的热量。
物理图像:
没入冰水之中(温度为零),自 由冷却
深圳大学电子科学与技术学院
第四题:
补充:j为电流面密度,ቤተ መጻሕፍቲ ባይዱ流强度I=jS。
深圳大学电子科学与技术学院
第五题:
设u1(x, t)和u2(x, t)分别是下列定解问题的解
试证明u(x, t)=u1(x, t)+u2(x, t)是下列定解问题 的解。
2 2u 2 u , 0 x L,t 0 2 a 2 t x u | x 0 1 (t ) , u | x L 2 (t ) , t 0 u | ( x) , u ( x) , 0 x L t 0 1 2 t t 0
2 2u u2 2 2 a , 0 x L,t 0 2 2 x t u2 | x 0 0 , u2 | x L 0 , t 0 u | ( x) , u2 2 ( x ) , 0 x L 2 t 0 1 t t 0
深圳大学电子科学与技术学院
第一章作业
第一题:
已知:均匀柔软弦的两端x=0和x=L固定,其单位 长度的重力为g,其中是弦的线密度, g是重力 加速度(不能忽略)。若弦的初始形状如图所示, h为已知量,然后松手,弦做微振动。要求:写出定 u 解问题。
h 0 L/2 L
x
深圳大学电子科学与技术学院
第二题:
一根均匀杆,原长为l,一端固定,另一端沿 杆的轴线方向被拉长e而静止。突然松手,任 其纵向振动。写出定解问题。
l
x
l
x
0
e
x
u
深圳大学电子科学与技术学院
第三题:
长度为L的均匀杆,侧面绝热。设杆一端的温度为零, 另一端有恒定热流q 进入 (即单位时间内通过单位面 积流入的热量为q ),已知杆的初始温度分布 为 x ( L x ) ,试写出相应的定解问题。