高一数学集合与简易逻辑测试题
高一数学集合与简易逻辑练习题
高一数学集合与简易逻辑练习题集合与简易逻辑一.选择题1、(湖南文1)已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则A .{}6,4=?N M U N M B = .C .U M N C u = )( D. NN M C u = )(2、(天津理6)设集合{}3|2||>-=x x S ,a x T |{=<x <}8+a ,R T S =?,则a 的取值范围是(A )-3<a <-1 (B )-3≤a ≤-1(C )a ≤-3或a ≥ - 1 (D )a <-3或a >- 13、(江西文1)“x y =”是“x y =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4、(江西文2)定义集合运算:{}|A B z z xy x A y B *==∈∈,,.设{}12A =,,{}02B =,,则集合A B *的所有元素之和为()A .0B .2C .3D .65、(四川理1)若集合{1,2,3,4,5}U =,{1,3}A =2,,{234}B =,,,则()U C A B = ( )(A ){2,3} (B) {1,4,5} (C) {4,5} (D) {1,5}6、(安徽理2)集合A={|lg 1y R y x x ∈=>}、B={-2,-1,1,2},则下列结论中正确的是( )(A)A ∩B={-2,-1} (B){ C R A}∪B=(-∞,0)(C)A ∪B=(0,+ ∞) (D)(C R A) ∩B={-2,-1}7、(安徽理7)a <0是方程2210ax x ++=至少有一个负数根的( )(A)必要不充分条件 (B)充分不必要条件(C)充分必要条件 (D)既不充分也不必要条件8、(浙江理2)已知},1|{},0|{,-≤=>==x x B x x A R U 则)()(A C B B C A U U =( )(A) φ (B) }0|{≤x x (C)}1|{->x x (D ) 0|{>x x 或}1-≤x 9、(浙江理3)已知b a ,都是实数,那么”“22b a >是”“b a >的 ()(A)充分而不必要条件 (B) 必要而不充分条件(C)充分必要条件(D )既不充分也不必要条件10、(广东文1)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A =(参加北京奥运会比赛的运动员),集合B =(参加北京奥运会比赛的男运动员)。
高一数学上学期集合与简易逻辑练习 试题
高一数学上学期集合与简易逻辑练习一、选择题.1.设A ={x |x 是直角三角形},B ={x |x 为等腰三角形},则A ∩B = ( ) A .¢ B .{x |x 为等腰直角三角形} C .{x |x 为等边三角形} D .{x |x 为直角三角形}2.有下列命题:①ax 2+2x -1=0不是一元二次方程;②函数y =ax 2+2x -a 的图象与x 轴一定有两个交点;③含有无限个元素的集合叫做无限集;④空集是任何非空集合的真子集.其中真命题的个数是( ) A .1个 B .2个 C .3个 D .4个3.已知U =R ,M ={x |x 2-4x +4>0},则C U M = ( ) A .R B .¢ C .{2} D .{0}4.设全集为R ,集合M ={x |x ≤0},N ={x |x >2},则集合C R (M ∪N )= ( ) A .{x |x ≤0或x >2} B .{x |0<x <2} C .{x |0≤x ≤2} D .{x |0<x ≤2} 5.不等式ax 2+bx +2>0的解集是{x |-21<x <31},则a +b = ( )A .10B .-10C .14D .-14 6.设不等式|x -2|<1的解集为A ,不等式|2x -3|>1的解集为B ,则A ∩B = ( ) A .{x |1<x <3} B .¢ C .{x |x <1或x >2} D .{x |2<x <3} 7.(x +1)(x +2)>0是(x +1)(x 2+2)>0的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件8.“|x -2|≤3”是“|x -3|≤4”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.集合A ={x |13-+x x ≤0},B ={x |≤a },若A ∩B¢,则实数a 满足 ( )A .a <3B .a ≥-3C .a ≥-2D .-2≤a <3 10.对任意实数x ,若不等式|x +5|-|x -1|>k 恒成立,则k 的取值范围是 ( ) A .{k |k >6} B .{k |k <4 = C .{k |k <-6= D .{k |-5<k <1= 11.设U ={1,2,3,4,5},若A ∩B ={2},(U A )∩B ={4},(U A )∩(U B )={1,5},则下列结论正确的是( ) A.3∉A 且3∉BB.3∉B 且3∈AC.3∉A 且3∈BD.3∈A 且3∈B12.方程mx 2+(2m+1)x+m=0有两个不相等的实数根,则实数m 的取值范围是( )。
高一数学第一章集合与简易逻辑检测
高一数学第一章集合与简易逻辑检测题1. ∈+,0.7∉.0∈{}0,0∈.其中正确的个数有( )A.4个B.3个C.2 个D.1个2, 集合∈N}C={x14x+5<0∈Q},D={绝对值小于2的质数},其中是空集的个数有( )¢A,1 个 B.2个 C,3个 D,4个3,定义集合新运算:AB={z1z=χγ(χγ+),χ∈,γ∈B )},设集合 A={0,1},B ={2,3},则集合A B 的所有元素之和为( )A.oB.6 C12 D.184设,,z χγ为非零实数,则用列举法表示w=χγχγ++z z +z z χχχγχγ++z z γγ+z zχγχγ所有的集合为__________5,用列举法表示集合{(,χγ)2γχ=-1, χ≤z}为_______________________ 6下列四个判:○1空集没有子集;○2空集是任何集合的真子集 ○3任何集合至少有两个子集○4若∅≠⊂A ,则A ≠∅,其中正确的个数有( ) A ,1个 B ,2个 C ,3个 D ,4个7满足{a}⊆M ⊂{a ,b ,c ,d}的集合M 共有( ). . ,A .6个B ,7个C , 8个D 。
15个8.已知全集U={2,3,5},集合A={2,5a -},如果uA ð={5},则a 的值为( )A ,2或8B ,-2或8C ,2D 。
89,已知集合A={-1,3,2m-1},集合B={3,2m },若B ⊆A ,则实数m=______ 10,集合M={x x=1+2a ,a N +∈},N={x 2*45,x a a a N =-+∈}, 则下列关系正确的是( ),A ,M ⊂N B ,N M ⊂C ,M=N D ,N M ⊆11.集合A={0,1},B={x x A ⊆},则集合B 中元素的个数是____________.12.若集合A,B,C 满足A ,B A B C C ==,则A 与C 之间的关系必定是( )A..,A C ⊂ B,C A ⊂ C.A C ⊆ D.C A ⊆13.图1阴影部分可用集合M,P 表示为( ).A. (M )()P M P ][()]u P M C P B ,[()][()]u u C M P M C P C ,()u MC M P D,()u P C M P14若A,B,C为三个集合,A,B B C =则一定有( ) A,A ⊆C B,C A ⊆ C,A C ≠ D,A =∅ 15,设={1x }x k N =∈,B{6,},x x x Q =≤∈则A B 等于( )A ,{1,4}B ,{1,6},C ,{4,6}D ,{1,4,6}M P。
高三数学第一章集合与简易逻辑综合能力测试试题
第一章 集合与简易逻辑综合才能测试本套试卷分第一卷(选择题)和第二卷(非选择题)两局部。
满分是150分。
考试时间是是120分钟.第一卷(选择题 一共60分)一、选择题(每一小题只有一个选项是正确的,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的。
)1.集合P ={x |x 2=1},Q ={x |mx =1},假设Q ⊆P ,那么实数m 的数值为 ( ) A .1 B .-1C .1或者-1D .0,1或者-1答案:D解析:当m =0时,Q =∅⊆P ;当m ≠0时,由Q ⊆P 知,x =1m =1或者x =1m=-1,得m =1或者m =-1.2.U ={2,3,4,5,6,7},M ={3,4,5,7},N ={2,4,5,6},那么( )A .M ∩N ={4,6}B .M ∪N =UC .(∁U N )∪M =UD .(∁U M )∩N =N答案:B解析:由题意得M ∩N ={4,5},M ∪N ={2,3,4,5,6,7}=U ,(∁U N )∪M ={3,4,5,7}≠U ,(∁U M )∩N ={2,6}≠N ,综上所述,选B.3.(2021·)空集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.假设A ∩B 非空,那么A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n答案:D解析:依题意,结合韦恩图分析可知,集合A ∩B 的元素个数是m -n ,选D. 4.(2021·)设集合A ={x |-12<x <2},B ={x |x 2≤1},那么A ∪B =( )A .{x |-1≤x <2}B .{x |-12<x ≤1}C.{x|x<2} D.{x|1≤x<2}答案:A解析:B={x|-1≤x≤1},A∪B={x|-1≤x<2}.5.假如命题“非p或者非q〞是假命题,那么在以下各结论中,正确的选项是( )①命题“p且q〞是真命题②命题“p且q〞是假命题③命题“p或者q〞是真命题④命题“p或者q〞是假命题A.②③ B.②④ C.①③ D.①④答案:C解析:∵“非p或者非q〞是假命题,∴非p和非q都是假命题,∴p和q都是真命题,故“p且q〞和“p或者q〞都是真命题.6.设全集为U,假设命题p:2021∈A∪B,那么命题┐p是( )A.2021∈A∪BB.2021∉A或者2021∉BC.2021∈(∁U A)∩(∁U B)D.2021∈(∁U A)∪(∁U B)答案:C解析:命题p即“2021∈A或者2021∈B〞,┐p为“2021∉A且2021∉B〞.应选C.总结评述:集合与简易逻辑属简单题,概念清楚那么得分不难.7.假设命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,那么命题丁是命题甲的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:B解析:“甲是乙的充分不必要条件〞⇔“甲⇒乙且乙甲〞;“丙是乙的必要不充分条件〞⇔“乙⇒丙且丙乙〞;“丁是丙的充要条件〞⇔“丙⇒丁且丁⇒丙〞,由可得“甲⇒乙⇒丙⇒丁〞,即“甲⇒丁〞,假设丁⇒甲,那么由得“丙⇒丁⇒甲⇒乙〞即“丙⇒乙〞这与矛盾,所以“丁甲〞,因此丁是甲的必要不充分条件,应选B.总结评述:①用“⇒〞表示命题间关系显得明晰直观.②“丁甲〞必须明确,否那么结论不准确.8.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否认是( )A .不存在x ∈R ,x 3-x 2+1≤0 B .存在x ∈R ,x 3-x 2+1≤0 C .存在x ∈R ,x 3-x 2+1>0 D .对任意的x ∈R ,x 3-x 2+1>0 答案:C解析:该命题的否认为其否认形式,而不是否命题,应选C.9.命题:“假设a 2+b 2=0(a ,b ∈R ),那么a =b =0”的逆否命题是( )A .假设a ≠b ≠0(a ,b ∈R ),那么a 2+b 2≠0 B .假设a =b ≠0(a ,b ∈R ),那么a 2+b 2≠0 C .假设a ≠0且b ≠0(a ,b ∈R ),那么a 2+b 2≠0 D .假设a ≠0或者b ≠0(a ,b ∈R ),那么a 2+b 2≠0 答案:D解析:“且〞的否认为“或者〞,因此逆否命题为假设a ≠0或者b ≠0,那么a 2+b 2≠0. 10.(2021·第一次联考)在△ABC 中,“sin2A =sin2B 〞是“A =B 〞的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案:B解析:由sin2A =sin2B ,得:A =B 或者A +B =π2,∴sin2A =sin2BA =B ,而A =B⇒sin2A =sin2B .11.(2021·,5分)P ={a |a =(1,0)+m (0,1),m ∈R },Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量集合,那么P ∩Q =( )A .{(1,1)}B .{(-1,1)}C .{(1,0)}D .{(0,1)}答案:A解析:由可求得P ={(1,m )},Q ={(1-n,1+n )},再由交集的含义,有⎩⎪⎨⎪⎧1=1-n m =1+n⇒⎩⎪⎨⎪⎧n =0m =1,所以选A.12.(2021·期中试题)设集合A 、B 是非空集合,定义A ×B ={x |x ∈A ∪B 且x ∉A ∩B },A ={x |y =2x -x 2},B ={y |y =2x 2},那么A ×B 等于( )A .(2,+∞)B .[0,1]∪[2,+∞)C .[0,1)∪(2,+∞)D .[0,1]∪(2,+∞) 答案:A解析:A ={x |y =2x -x 2}={x |0≤x ≤2}B ={y |y =2x 2}={y |y ≥0}∴A ∪B =[0,+∞),A ∩B =[0,2] 因此A ×B =(2,+∞),应选A.第二卷(非选择题 一共90分)二、填空题(本大题一一共4小题,每一小题5分,一共20分,请将答案填在题中的横线上.)13.设集合A ={x |(x -1)2<3x +7,x ∈R },那么集合A ∩Z 中有________个元素. 答案:6解析:由(x -1)2<3x +7可得-1<x <6,即得A =(-1,6). ∴A ∩Z ={0,1,2,3,4,5},即得集合A ∩Z 中一共有6个元素. 14.命题“假设a >b ,那么2a >2b-1”的否命题为______________. 答案:假设a ≤b ,那么2a ≤2b-1解析:写出一个命题的否命题的关键是正确找出原命题的条件和结论.15.假设命题p :不等式ax +b >0的解集为{x |x >-b a},命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b },那么“p 且q 〞“p 或者q 〞及“非p 〞形式的复合命题中的真命题是__________.答案:非p解析:命题p 为假命题,命题q 为假命题,故只有“非p 〞是真命题.16.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.假设┐p 是┐q 的必要而不充分条件,那么实数a 的取值范围是__________.答案:[0,12]解析:解|4x -3|≤1得12≤xq 得a ≤x ≤aq 是p 的必要不充分条件,即p ⇒q ,qp .∴[12,1][a ,a +1]. ∴a ≤12且a +1≥1,得0≤a ≤12.三、解答题(本大题一一共6小题,一共70分,解容许写出文字说明、演算步骤或者证明过程.)17.(本小题满分是10分)设集合A ={x |x 2+ax -12=0},B ={x |x 2+bx +c =0},且A ≠B ,A ∪B ={-3,4},A ∩B ={-3},求a 、b 、c 的值.分析:由于集合中的元素是以方程的解的形式给出的,因此要从集合中元素的特性和交、并集的含义进展考虑.解答:∵A ∩B ={-3},∴-3∈A 且-3∈B , 将-3代入方程:x 2+ax -12=0中,得a =-1, 从而A ={-3,4}.将-3代入方程x 2+bx +c =0,得3b -c =9. ∵A ∪B ={-3,4},∴A ∪B =A ,∴B ⊆A .∵A ≠B ,∴B A ,∴B ={-3}.∴方程x 2+bx +c =0的判别式△=b 2-4c =0,∴⎩⎪⎨⎪⎧3b -c =9 ①b 2-4c =0 ②由①得c =3b -9,代入②整理得:(b -6)2=0, ∴b =6,c =9.故a =-1,b =6,c =9.18.(2021·高三12月月考)(本小题满分是12分)p :方程x 2+mx +1=0有两个不相等的负实根;q :不等式4x 2+4(m -2)x +1>0的解集为R ,假设p 或者q 为真命题,p 且q 为假命题,求m 的取值范围.解析:p 为真命题⇔⎩⎪⎨⎪⎧△=m 2-4>0-m <01>0⇒m >2.q 为真命题⇔△=[4(m -2)]2-4×4×1<0⇒1<m <3.∵p 或者q 为真,p 且q 为假,∴p 与q 一真一假. 假设p 真q 假,那么m >2,且m ≤1或者m ≥3,所以m ≥3. 假设p 假q 真,那么m ≤2,且1<m <3,所以1<m ≤2. 综上所述,m 的取值范围为{m |1<m ≤2,或者m ≥3}.19.(本小题满分是12分)设全集I =R ,A ={x |x 2-2x >0,x ∈R },B ={x |x 2-ax +b <0,x ∈R },C ={x |x 3+x 2+x =0,x ∈R }.又∁R (A ∪B )=C ,A ∩B ={x |2<x <4,x ∈R },试求a 、b 的值.解析:∵A ={x |x <0或者x >2},B ={x |x 2-ax +b <0,x ∈R }={x |x 1<x <x 2,x 1、x 2∈R },C ={x |x =0},∁R (A ∪B )=C ={0},∴A ∪B ={x |x ≠0且x ∈R }.又A ∩B ={x |2<x <4,x ∈R },可得x 1=0,x 2=4. 又x 1、x 2是方程x 2-ax +b =0的两根, ∴x 1+x 2=a ,x 1x 2=b . 从而求得a =4,b =0.20.(本小题满分是12分)求关于x 的方程ax 2-(a 2+a +1)x +a +1=0至少有一个正根的充要条件.解析:方法一:假设a =0,那么方程变为-x +1=0,x =1满足条件,假设a ≠0,那么方程至少有一个正根等价于a +1a <0或者⎩⎪⎨⎪⎧a +1=0a 2+a +1a>0或者⎩⎪⎨⎪⎧a 2+a +1a>0a +1a >0△=(a 2+a +1)2-4a (a +1)≥0⇔-1<a <0或者a >0.综上:方程至少有一正根的充要条件是a >-1. 方法二:假设a =0,那么方程即为-x +1=0, ∴x =1满足条件;假设a ≠0,∵△=(a 2+a +1)2-4a (a +1) =(a 2+a )2+2(a 2+a )+1-4a (a +1) =(a 2+a )2-2a (a +1)+1=(a 2+a -1)2≥0, ∴方程一定有两个实根. 故而当方程没有正根时,应有⎩⎪⎨⎪⎧a 2+a +1a≤0a +1a ≥0,解得a ≤-1,∴至少有一正根时应满足a >-1且a ≠0, 综上,方程有一正根的充要条件是a >-1.21.(本小题满分是12分)条件p :|5x -1|>a 和条件q :12x 2-3x +1>0,请选取适当的实数a 的值,分别利用所给的两个条件作为A 、B 构造命题;“假设A 那么B 〞,并使得构造的原命题为真命题,而其逆命题为假命题,那么这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.解析:条件p 即5x -1<-a 或者5x -1>a , ∴x <1-a 5或者x >1+a5,条件q 即2x 2-3x +1>0, ∴x <12或者x >1;令a =4,那么p 即x <-35或者x >1,此时必有p ⇒q 成立,反之不然.故可以选取的一个实数是a =4,A 为p ,B 为q ,对应的命题是假设p 那么q , 由以上过程可知这一命题的原命题为真命题,但它的逆命题为假命题.(注:此题为一开放性命题,答案不唯一,只需满足1-a 5≤12,且1+a5≥1即可.)22.(2021·高考原创题)(本小题满分是12分)函数f (x )满足以下条件:(1)f (12)=1;(2)f (xy )=f (x )+f (y );(3)f (x )的值域为[-1,1].试证:14不在f (x )的定义域内.命题意图:此题主要考察利用函数的性质求值和反证法. 解析:假设14在f (x )的定义域内.那么f (14)有意义,且f (14)∈[-1,1].又由题设,得f (14)=f (12·12)=f (12)+f (12)=2∉[-1,1]与f (14)∈[-1,1]矛盾.故假设不成立,从而14不在f (x )的定义域内.总结评述:1.用反证法证明命题的一般步骤为:(1)假设命题的结论不成立,即假设命题结论的反面成立; (2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判断假设不正确,从而肯定命题的结论正确. 2.常用的正面表达词语和它的否认词语:。
高一数学同步测试(4)集合与简易逻辑
高一数学同步测试(4)—集合与简易逻辑一、选择题:1.已知全集},,,,{e d c b a U =,集合},{c b A =,},{d c B =C U ,则()A C U ∩B 等于 ( )A .},{e aB .},,{d c bC .},,{e c aD .}{c2.满足条件M ⋃{1}={1,2,3}的集合M 的个数是 ( )A .1B .2C .3D .43.设全集},91|{N x x x U ∈≤≤=,则满足{}8,7,5,3,1∩}7,5,3,1{=B C U 的所有集合B 的个数有( ) A .1个 B .4个 C .5个 D .8个4.给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1-≤q ,则02=++q x x 有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是 ( )A .①②B .②③C .①③D .③④5.已知p 是q 的必要条件,r 是q 的充分条件,p 是r 的充分条件,那么q 是p 的( )A .充分条件B .必要条件C .充要条件D .非充分非必要条件6.由下列各组命题构成“p 或q ”为真,“p 且q ”为假,非“p ”为真的是 ( )A .=0:p ,∈0:qB .p :等腰三角形一定是锐角三角形,q :正三角形都相似C .{}a p : ≠⊂{}b a , ,{}b a a q ,:∈D .:,35:q p >12是质数7.设R x ∈,则()()x x +-11>0成立的充要条件是 ( )A .-1<x <1B .x <-1或x >1C .x <1D .x <1且1-≠x8.下列命题中不正确...的是 ( )①若A ∩B=U ,那么U B A ==;②若A ∪B=,那么==B A ;③若A ∪B=U ,那么()A C U ∩()φ=B C U ;④若A ∩B=,那么==B A ;⑤若A ∩B=,那么()A C U ∪()U B =C U ;⑥若A ∪B=U ,那么U B A ==A .0个B .②⑤C .④⑥D .①④9.已知集合{}{}01|,2,1=+=-=mx x B A ,若A ∩B=B ,则符合条件的m 的实数值组成的集合是( )A .{}2,1-B .⎭⎬⎫⎩⎨⎧-21,1C .⎭⎬⎫⎩⎨⎧-1,0,21D .⎭⎬⎫⎩⎨⎧-21,110.若非空集合{}{}223,5312|≤≤=-≤≤+=x B a x a x A ,则使⊆A (A ∩B)成立的所有a 的值的集合是( )A .{}91|≤≤a aB .{}96|≤≤a aC .{}9|≤a aD .11.数集},,1{2a a a -中的实数a 应满足的条件是( )A .2,251,1,0±≠aB .2,251+≠aC .3,2,1≠aD .3,2,1,0≠a12.已知p :|2x -3|>1 , q :612-+x x >0,则p 是q 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件二、填空题: 13.命题“若ab =0,则a ,b 中至少有一个为零”的逆否命题是 .14.设⎭⎬⎫⎩⎨⎧∈∈-*Z x N x x ,56|,则A= . 15.数集{}a a a 2,22-中,a 的取值范围是 .16.所给命题:①菱形的两条对角线互相平分的逆命题;②{}R x x x ∈=+,01|2={}=0或;③对于命题:“p 且q ”,若p 假q 真,则“p 且q ”为假;④有两条边相等且有一个内角为60°是一个三角形为等边三角形的充要条件.其中为真命题的序号为 .三、解答题:17.已知集合A={x |-x 2+3x +10≥0} , B={x |k +1≤x ≤2k -1},当A∩B=φ时,求实数k 的取值范围.18.不等式082≥--ax x 与022<--b ax x 的解集分别为A ,B ,试确定a ,b 的值,使A ∩{}54|<≤=x xB ,并求出A ∪B .19.己知命题p :|3x -4|>2 , q :212--x x >0,则p 是q 的什么条件?20.写出下列命题的“非P”命题,并判断其真假:(1)若21,20m x x m >-+=则方程有实数根.(2)平方和为0的两个实数都为0.(3)若ABC ∆是锐角三角形, 则ABC ∆的任何一个内角是锐角.(4)若0abc =,则,,a b c 中至少有一为0.(5)若0)2)(1(=--x x ,则21≠≠x x 且 .21.已知全集U =R ,A ={x |x -1|≥1},B={x|23--x x ≥0},求: (1)A ∩B;(2)(CUA)∩(CUB).22.已知集合A={x |x 2+3x +2 ≥0},B={x |mx 2-4x +m -1>0 ,m ∈R}, 若A ∩B=,且A ∪B=A ,试求实数m 的取值范围.参考答案一、选择题: ABDCC BDBCB AA二、填空题:13.若a ,b 都不为零,则ab ≠0,14.{}4,3,2,1-,15.{}40,≠≠∈a a R a 且,16.②③④三、解答题:17.解析: k >4或k <218.解析:由条件可知,x =4是方程082=--ax x 的根,且x=5是方程022=--b ax x 的根,所以⎩⎨⎧==⇒⎩⎨⎧=--=--520102508416b a b a a{}24|-≤≥=∴x x x A 或,{}51|<<-=x x B , 故A ∪B {}21|-≤->=x x x 或19.解析:∵.232:,322243≤≤⌝∴<>⇔>-x p x x x 或 又∵,120212-<>⇔>--x x x x 或 q:.21≤≤-x 又∵p ⇒q ,但q ≠>p ,∴p 是q 充分但不必要条件.20.解析:⑴若21,20m x x m >-+=则方程无实数根,(真);⑵平方和为0的两个实数不都为0(假);⑶若ABC ∆是锐角三角形, 则ABC ∆的任何一个内角不都是锐角(假);⑷若0abc =,则,,a b c 中没有一个为0(假);⑸若0)2)(1(=--x x ,则1=x 或2=x ,(真).21.解析:(1)A={x|x-1≥1或x -1≤-1}={x |x ≥2或x ≤0}B ={x |⎩⎨⎧≠-≥--020)2)(3(x x x }={x |x ≥3或x <2} ∴A ∩B ={x |x ≥2或x ≤0}∩{x |x ≥3或x <2=={x |x ≥3或x ≤0}.(2)∵U =R ,∴C UA ={x |0<x <2},C UB ={x |2≤x <3}∴(C UA )∩(C UB )={x |0<x <2=∩{x |2≤x <3==∅.22.解析:由已知A={x |x 2+3x +20≥},得=⋂-≥-≤=B A x x x A 由或},12|{得:(1)∵A 非空 ,∴B=; (2)∵A={x|x 12-≥-≤x 或},∴}.12|{-<<-=x x B 另一方面,A B A B A ⊆∴=⋃,,于是上面(2)不成立,否则R B A =⋃,与题设A B A =⋃矛盾.由上面分析知,B=.由已知B={}R m m x mx x ∈>-+-,014|2,结合B=, 得对一切x 014,2≤-+-∈m x mx R 恒成立,于是, 有m m m m m ∴-≤⎩⎨⎧≤--<21710)1(4160解得的取值范围是}2171|{-≤m m。
高中数学必修1 集合与简易逻辑 训练题
第一章 集合与简易逻辑三、基础训练题1.给定三元集合},,1{2x x x -,则实数x 的取值范围是___________。
2.若集合},,012{2R x R a x ax x A ∈∈=++=中只有一个元素,则a =___________。
3.集合}3,2,1{=B 的非空真子集有___________个。
4.已知集合}01{},023{2=+==+-=ax x N x x x M ,若M N ⊆,则由满足条件的实数a 组成的集合P =___________。
5.已知}{},2{a x x B x x A ≤=<=,且B A ⊆,则常数a 的取值范围是___________。
6.若非空集合S 满足}5,4,3,2,1{⊆S ,且若S a ∈,则S a ∈-6,那么符合要求的集合S 有___________个。
7.集合}14{}12{Z k k Y Z n n X ∈±=∈+=与之间的关系是___________。
8.若集合}1,,{-=xy xy x A ,其中Z x ∈,Z y ∈且0≠y ,若A ∈0,则A 中元素之和是___________。
9.集合}01{},06{2=-==-+=mx x M x x x P ,且P M ⊆,则满足条件的m 值构成的集合为___________。
10.集合},9{},,12{2R x x y y B R x x y x A ∈+-==∈+==+,则=B A ___________。
11.已知S 是由实数构成的集合,且满足1)2;1S ∉)若S a ∈,则S a∈-11。
如果∅≠S ,S 中至少含有多少个元素?说明理由。
12.已知B A C a x y y x B x a y y x A =+====},),{(},),{(,又C 为单元素集合,求实数a 的取值范围。
四、高考水平训练题1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________。
高中一年级数学集 合与简易逻辑试题
高中一年级数学集合与简易逻辑试题一、选择题(每小题 5 分,共 60 分)1、下列对象能构成集合的是()A 高一年级视力较好的同学B 中国文学作品中著名的人物C 小于 8 的所有质数D 与 1 接近的数答案:C解析:选项 A 中“视力较好”没有明确的标准,不满足集合中元素的确定性;选项 B 中“著名”没有明确的界限,不满足集合中元素的确定性;选项 C 中小于 8 的质数有 2、3、5、7,是确定的,能构成集合;选项 D 中“与 1 接近”没有明确的标准,不满足集合中元素的确定性。
2、集合{1, 2, 3}的子集个数为()A 6B 7C 8D 9答案:C解析:集合{1, 2, 3}的子集有∅,{1},{2},{3},{1, 2},{1, 3},{2, 3},{1, 2, 3},共 8 个。
3、设集合 A ={x |-1 < x < 2},B ={x | 0 < x < 3},则 A ∪ B =()A {x |-1 < x < 3}B {x | 0 < x < 2}C {x |-1 < x < 0}D {x | 2 < x < 3}答案:A解析:A ∪ B 表示 A 和 B 中所有元素组成的集合,所以 A ∪ B ={x |-1 < x < 3}。
4、已知集合 A ={1, 2, 3},B ={2, 3, 4},则A ∩ B =()A {1, 2, 3, 4}B {2, 3}C {1, 4}D ∅答案:B解析:A ∩ B 表示 A 和 B 中共有的元素组成的集合,所以A ∩ B={2, 3}。
5、设全集 U ={1, 2, 3, 4, 5},集合 A ={1, 2, 3},B ={2, 4},则∁U(A ∩ B)=()A {1, 3, 4, 5}B {1, 2, 3, 4, 5}C {1, 3, 5}D {4, 5}答案:C解析:A ∩ B ={2},∁U(A ∩ B)表示在全集 U 中去掉A ∩ B 中的元素,所以∁U(A ∩ B)={1, 3, 4, 5}。
高一数学集合与简易逻辑测试题
[课题]第一章集合与简易逻辑测试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={x|x≤},a=3,则< >A.a AB.a AC.{a}∈AD.{a} A2.集合M={x|x=3k-2,k∈Z},Q={y|y=3l+1,l∈Z},S={z|z=6m+1,m∈Z}之间的关系是< >A.S Q MB.S=Q MC.S Q=MD.S Q=M3.若A={1,3,x},B={x2,1},且A∪B=A,则这样x的不同取值有< >A.1个B.2个C.3个D.4个4.符合条件{a}P{a,b,c}的集合P的个数是< >A.2B.3C.4D.55.若A={x|x2-4x+3<0},B={x|x2-6x+8<0},C={x|2x2-9x+a<0},<A∩B>C,则a的取值范围是< >A.a≤10B.a≥9C.a≤9D.9≤a≤106.若a>0,使不等式|x-4|+|3-x|<a在R上的解非空,则a的值必为< >A.0<a<1B.0<a≤1C.a>1D.a≥17.集合A={x|x2-5x+4≤0},B={x|x2-5x+6≥0},则A∩B= < >A.{x|1≤x≤2,或3≤x≤4}B.{x|1≤x≤2,且3≤x≤4}C.{1,2,3,4}D.{x|1≤x≤4或2≤x≤3}8.如果方程x2+<m-3>x+m的两根都是正数,则m的取值范围是< >A.0<m≤3B.m≥9或m≤1C.0<m≤1D.m>99.由下列各组命题构成"P或Q","P且Q","非P"形式的复合命题中,"P或Q"为真命题,"P且Q"为假命题,"非P"为真命题的是< >A.P:3是偶数;q:4是奇数B.P:3+2=6;q:3>2C.P:a∈{a,b};q:{a}{a,b}D.p:Q R;q:N=N+10.对于实数x、y,条件A:|x|≤1且|y|≤1;条件B:|x|+|y|≤1;条件C:x2+y2≤1.则正确的是< >A.B是C的充分不必要条件;A是C的必要不充分条件B.B是C的必要不充分条件;A是C的充分不必要条件C.C是A的必要不充分条件;C是B的充分不必要条件D.C是A的充要条件;B是A的既不充分也不必要条件11.若a、b为实数,则ab<a-b><0成立的一个充要条件是< >A.0<<B.0<<C.<D.<12.给出以下四个命题:p:若x2-3x+2=0,则x=1或x=2;q:若2≤x<3,则<x-2><x-3>≤0;r:若x=y=0,则x2 +y2=0;s:若x、y∈N,x+y是奇数,则x、y中一个是奇数一个是偶数,则< >A.p的逆命题为真B.q的否命题为真C.r的否命题为假D.s的逆命题为假二、填空题:本大题共4小题,每小题4分,共16分.13.已知集合M={x|x∈N+,且8-x∈N+},则M中只含有两个元素的子集的个数有____个.14.已知集合A={x|x2-x-2≤0},B={x|a<x<a+3},满足A B=,则实数a的取值范围是____.15."若a+b是偶数,则a、b必定同为奇数或偶数"的逆否命题为____.16.已知集合M{0,1,2,3,4},且M{0,2,4,8},则集合M中最多有____个元素.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.<本小题满分12分>已知三元素集合A={x,xy,x-y},B={0,|x|,y},且A=B,求x与y的值.18.<本小题满分12分>设集合A={|a+1|,3,5},集合B={2a+1,a2+2a,a2+2a-1},当A∩B={2,3}时,求A∪B.19.<本小题满分12分>设A={x|-2<x<-1,或x>1},B={x|x2+ax+b≤0},已知A∪B={x|x>-2},A∩B={x|1<x≤3},试求a,b的值.20.<本小题满分12分>已知不等式ax2+bx+c>0的解集为{x|0<m<x<n},求关于x的不等式cx2-bx+a<0的解.21.<本小题满分12分>已知集合A={x|1<|x-2|<2},B={x|<x-a><x-1><0,a≠1},且A∩B≠,试确定a的取值范围.22.<本小题满分14分>关于实数x的不等式与x2-3<a+1>x+2<3a+1>≤0的解集依次为A、B<1>求集合A、B<2>若A B,求此时a的取值范围.参考答案一、选择题1-12:DCCBC CACBB DA二、填空题13.21个14.a≥2或a≤-415."若a、b不同为奇数且不同为偶数则a+b不是偶数"16.3个三、解答题17.解:∵0∈B,A=B,∴0∈A∵集合A为三元素集,∴x≠xy,∴x≠0,y≠1又∵0∈B,y∈B,∴y≠0从而,x-y=0,x=y这时,A={x,x2,0},B={0,|x|,x}∴x2=|x|,x=0<舍去>或x=1<舍去>,或x=-1经验证x=-1,y=-1是本题的解.18.解:∵|a+1|=2,∴a=1或a=-3当a=1时,集合B的元素a2+2a=3,2a+1=3,由集合的元素的互异性可知,a≠1当a=-3时,集合B={-5,3,2}∴A∪B={-5,2,3,5}19.解:由A∪B={x|x>-2},A∩B={x|1<x≤3}得B={x|-1≤x≤3},根据二次不等式与二次方程的关系,可知-1与3是方程x2+ax+b=0的两根. ∴a=-<-1+3>=-2,b=<-1>×3=-320.解:m<x<n<x-m><x-n><0x2-<m+n>x+mn<0,对照-ax2-bx-c<0,∴,∴a=-k,b=k<m+n>,c=-kmn,代入cx2-bx+a<0,∴-kmnx2-k<m+n>x-k<0,mnx2+<m+n>x+1>0,∵0<m<n,∴∴所求不等式的解集为21.解:A={x|1<|x-2|<2}={x|0<x<1,或3<x<4}<1>当a>1时,B={x|1<x<a}∵A∩B≠∴a>3<2>当a<1时,B={x|a<x<1}∵A∩B≠∴a<1综合<1>、<2>可知,a的取值范围是a<1,或a>322.解:<1>A==={x|2a≤x≤a2+1}B={x|x2-3<a+1>x+2<3a+1>≤0}={x|<x-2><x-3a-1>≤0}当a≤时,B={x|3a+1≤x≤2}当a>时,B={x|2≤x≤3a+1}<2>当a≤时,若,则2a≥3a+1且a2+1≤2得a=-1当a>时,若,则2a≥2且a2+1≤3a+1得1≤a≤3 ∴a的取值范围是:a=-1,或1≤a≤3。
高一数学第一章集合与简易逻辑测试题
高一数学第一章集合与简易逻辑自测题班级: 姓名: 成绩:一、选择题:(本大题共12小题,每小题4分,共48分) 1. 下列命题正确的是( )A 、 {实数集}B 、 {|x x ≤C 、 {|x x ≤D 、 {|x x ⊆2.在①1⊆{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2}; ④Ø {0} 上述四个关系中,错误的个数是( )A 、1个B 、2个C 、3个D 、4个 3.已知全集}12|{≤≤-=x x U ,}12|{<<-=x x A ,}02|{2=-+=x x x B ,}12|{<≤-=x x C ,则( )A 、A C ⊆B 、 ⊆C CA U C 、CC B U =D 、CA UB = 4.已知集合}1|{≤=x x M ,}|{t x x P >=,若≠P M Ø,则实数t 应该 满足的条件是( )A 、1>tB 、1≥tC 、1<tD 、1≤t 5.下列说法正确的是( )A 、任一集合必有真子集;B 、任一集合必有两个子集;C 、若=B A Ø,则A 、B 之中至少有一个为空集;D 、若B B A = ,则B ⊆ 6.已知集合P ={}2|2,y y x x R =-+∈,Q ={}|2,y y x x R =-+∈,那么P Q =( )A 、 (0,2),(1,1)B 、 {(0,2 ),(1,1)}C 、 {1,2}D 、 {}|2y y ≤ 7.若21||<x 和31||>x 同时成立,则x 的取值范围是( )A 、3121-<<-x B 、2131<<xC 、2131<<x 或3121-<<-x D 、2131<<-x8.不等式0|12|3>---x 的解集是( )A 、{x |x <-2或x >1}B 、{x |-2<x <1}C 、{x |21<<-x }D 、R 9.方程0122=++x mx至少有一个负根,则( )A 、10<<m 或0<mB 、10<<mC 、1<mD 、1≤m10.“0232>+-x x ”是“1<x 或4>x ”的( ) A 、充分而不必要条件 B 、必要而不充分条件 C 、充要条件 D 、既不充分也不必要条件11.当0<a 时,关于x 的不等式05422>--a ax x 的解集是( ) A 、{|x a x 5>或a x -<} B 、{|x a x 5<或a x ->} C 、{|x a x a 5<<-} D 、{|x a x a -<<5}12.不等式042<-+ax ax 的解集为R ,则a 的取值范围是( )A 、016<≤-aB 、16->aC 、016≤<-aD 、0<a二、填空题:(本大题共4小题,每小题4分,共16分)13.已知集合A ={a ,b ,2},B ={2,2b ,2a }且,A =B ,则a = 14.已知全集U =R ,不等式034≥-+xx 的解集为A ,则CA U=15.不等式0)3)(4(>-+x x x 的解集是16.有下列四个命题:①、命题“若1=xy ,则x ,y 互为倒数”的逆命题; ②、命题“面积相等的三角形全等”的否命题;③、命题“若m ≤1,则022=+-m x x 有实根”的逆否命题;④、命题“若A ∩B =B ,则A ⊆B ”的逆否命题 其中是真命题的是 (填上你认为正确命题的序号)三、解答题:(本大题共4小题, 36分)17.(本题8分)若}06|{},065|{2=-==+-=ax x B x x x A ,且A B A = ,求由实数a 组成的集合18.(本题8分)用反证法证明:若a 、b 、c R ∈,且122+-=b a x ,122+-=c b y ,122+-=a c z ,则x 、y 、z 中至少有一个不小于019.(本题10分)解下列关于x 的不等式:① 23|2|<--x ② 01322<-+-x x20.(本题10分)已知集合}312|{≤≤+=x x P ,}0)1(|{2≤++-=a x a x x M ,x x y y N 2|{2-==,}P x ∈,且N N M = ,求实数a 的取值范围。
集合与简易逻辑练习题与答案
一、选择题(每小题5分,共25分)1.(2011·北京)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ).A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)析 由题设P ∪M =P ,可得M ⊆P ,∴a 2≤1,解得-1≤a ≤1.故选 C2.(2011·陕西)设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪⎪⎪x -1i <2,i 为虚数单位,x ∈R ,则M ∩N 为( ). A .(0,1) B .(0,1] C .[0,1) D .[0,1]解析 由题意得M ={y |y =|cos 2x |}=[0,1],N ={x ||x +i|<2}={x |x 2+1<2}=(-1,1),∴M ∩N =[0,1).故选 C3.(2011·山东)对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析 若y =f (x )是奇函数,则f (-x )=-f (x ),∴|f (-x )|=|-f (x )|=|f (x )|,∴y =|f (x )|的图象关于y 轴对称,但若y =|f (x )|的图象关于y 轴对称,如y =f (x )=x 2,而它不是奇函数.故选 B4.已知命题“函数f (x )、g (x )定义在R 上,h (x )=f (x )·g (x ),若f (x )、g (x )均为奇函数,则h (x )为偶函数”的原命题、逆命题、否命题、逆否命题中正确命题的个数是( ).A .0B .1C .2D .3解析 由f (x )、g (x )均为奇函数,可得h (x )=f (x )·g (x )为偶函数,反之则不成立,如h (x )=x 2是偶函数,但函数f (x )=x 2e x ,g (x )=e x 都不是奇函数,故逆命题不正确,故其否命题也不正确,即只有原命题和逆否命题正确.故选C.故选 C5.下列命题错误的是( ).A .命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题为:“若方程x 2+x -m =0无实根,则m ≤0”B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若xy =0,则x ,y 中至少有一个为零”的否定是:“若xy ≠0,则x ,y 都不为零”D .对于命题p :∃x ∈R ,使得x 2+x +1<0;则綈p :∀x ∈R ,均有x 2+x +1≥0解析 对C 选项中命题的否定是“若xy =0,则x ,y 都不为零”,C 错.命题:“若p 则q ”的否命题是:“若綈p ,则綈q ”,命题的否定是:“若p 则綈q ”.故选 C二、填空题(每小题5分,共15分)6.(2010·重庆)设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________. 解析 ∵U ={0,1,2,3},∁U A ={1,2},∴A ={0,3},即方程x 2+mx =0的两根为0和3,∴m =-3.故填 -37.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根,则使p 或q 为真,p 且q 为假的实数m 的取值范围是________.解析 令f (x )=x 2+2mx +1.则由f (0)>0,且-b 2a>0, 且Δ>0,求得m <-1,∴p :m ∈(-∞,-1).q :Δ=4(m -2)2-4(-3m +10)<0⇒-2<m <3. 由p 或q 为真,p 且q 为假知,p 、q 一真一假.①当p 真q 假时,⎩⎪⎨⎪⎧ m <-1,m ≤-2或m ≥3,即m ≤-2; ②当p 假q 真时,⎩⎪⎨⎪⎧m ≥-1,-2<m <3,即-1≤m <3. ∴m 的取值范围是m ≤-2或-1≤m <3.故填 (-∞,-2]∪[-1,3)8.已知命题p :∃x ∈R ,使sin x =52;命题q :∀x ∈R ,都有x 2+x +1>0,给出下列结论: ①命题“p ∧q ”是真命题;②命题“綈p ∨綈q ”是假命题;③命题“綈p ∨綈q ”是真命题;④命题“p ∧q ”是假命题.其中正确的是________.解析 命题p 是假命题,命题q 是真命题,故结论③④正确.故填 ③④三、解答题(每小题10分,共20分)9.设a ∈R ,二次函数f (x )=ax 2-2x -2a .设不等式f (x )>0的解集为A ,又知集合B ={x |1<x <3},A ∩B ≠∅,求a 的取值范围.解: 由f (x )为二次函数知,a ≠0.令f (x )=0,解得其两根为x 1=1a- 2+1a2, x 2=1a + 2+1a 2. 由此可知x 1<0,x 2>0.(1)当a >0时,A ={x |x <x 1或x >x 2}.A ∩B ≠∅的充要条件是x 2<3,即1a + 2+1a 2<3.∴a >67. (2)当a <0时,A ={x |x 1<x <x 2}.A ∩B ≠∅的充要条件是x 2>1,即1a+ 2+1a 2>1,解得a <-2. 综上,使A ∩B ≠∅成立的a 的取值范围是(-∞,-2)∪⎝⎛⎭⎫67,+∞.10.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎨⎧⎭⎬⎫y |y =12x 2-x +52,0≤x ≤3. (1)若A ∩B =∅,求a 的取值范围;(2)当a 取使不等式x 2+1≥ax 恒成立的a 的最小值时,求(∁R A )∩B .解:A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.(1)当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2, ∴3≤a ≤2或a ≤- 3. ∴a 的取值范围是(-∞,-3]∪[3,2].(2)由x 2+1≥ax ,得x 2-ax +1≥0,依题意Δ=a 2-4≤0,∴-2≤a ≤2.∴a的最小值为-2.当a=-2时,A={y|y<-2或y>5}.∴∁R A={y|-2≤y≤5}.∴(∁R A)∩B={y|2≤y≤4}.。
高考总复习数学《集合和简单逻辑》单元测试题(含详细解答)
高考总复习数学《集合和简单逻辑》单元测试题(含详细解答)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内)1.(理科)(2009年高考全国卷Ⅱ理,2)设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞) 【解析】 ∵B ={x |x -1x -4<0}={x |(x -1)(x -4)<0}={x |1<x <4},∴A ∩B =(3,4),选B.【答案】 B(文科)(2009年高考全国卷Ⅱ文,1)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则∁U (M ∪N )= ( )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}【解析】 ∵M ∪N ={1,3,5,6,7}, ∴∁U (M ∪N )={2,4,8},选C. 【答案】 C2.(2009年高考山东卷理(文))集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为 ( )A .0B .1C .2D .4【解析】 根据并集的概念,可知{a ,a 2}={4,16},故只能是a =4.选D. 【答案】 D3.(2009年江西理,3)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为 ( )A .mnB .m +nC .n -mD .m -n【解析】 U =A ∪B 中有m 个元素, ∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素, ∴A ∩B 中有m -n 个元素,故选D.【答案】 D4.(2009年北师大附中)已知集合A ,B ,I ,A ⊂I ,B ⊂I ,且A ∩B ≠∅,则下面关系式正确的是 ( )A .(∁I A )∪(∁IB )=I B .(∁I A )∪B =IC .A ∪B =ID .(∁I (A ∩B ))∪(A ∩B )=I【解析】 作出Venn 图可得出D 正确,如右图所示. 【答案】 D5.(能力题)已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+xyz|xyz |的值所组成的集合为M ,则下列判断正确的是 ( )A .0∉MB .2∈MC .-4∉MD .4∈M【解析】 当x ,y ,z 全为负时,x |x |+y |y |+z |z |+xyz|xyz |=-4;当x ,y ,z 两负一正或两正一负时, x |x |+y |y |+z |z |+xyz |xyz |=0; 当x ,y ,z 全为正时,x |x |+y |y |+z |z |+xyz|xyz |=4.故选D.【答案】 D6.若命题p :x ∈A ∩B ,则“非p ”是 ( )A .x ∈A 且x ∈B B .x ∉A 或x ∉BC .x ∉A 且x ∉BD .x ∈A ∪B【解析】 x ∈A ∩B ⇔x ∈A 且x ∈B ,“且”的否定是“或”,因此非p :x ∉A 或x ∉B .故选B.【答案】 B7.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件但不是乙的必要条件,那么 ( )A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件【解析】 根据题意画出图示,如右图,∴丙是甲的充分条件,但不是甲的必要条件.故选A. 【答案】 A8.已知关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式ax -bx -2>0的解集是 ( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(1,2)D .(2,+∞)【解析】 由题意知a >0且1是方程ax +b =0的根, ∴a +b =0,b =-a ∴ax -b x -2>0⇒ax +ax -2>0 ∴(x +1)(x -2)>0即x >2或x <-1. 【答案】 A9.已知函数f (x )=x α(α为常数)的部分对应值如下表:X 1 12f (x )122则不等式f (|x |)≤2 ( ) A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |-4≤x ≤4} 【解析】 本题考查解不等式.由f (12)=22⇒α=12,故f (|x |)≤2⇔|x |12≤2⇔|x |≤4,故其解集为{x |-4≤x ≤4}.故选D.【答案】 D10.(理科)(2009年高考重庆卷理,5)不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为 ( )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)【解析】 |x +3|-|x -1|≤|(x +3)-(x -1)|=4,即|x +3|-|x -1|的最大值是4,因此依题意有a 2-3a ≥4,(a -4)(a +1)≥0,a ≤-1或a ≥4,选A. 【答案】 A11.(理科)已知函数f (x )=⎩⎪⎨⎪⎧-x +1, x <0,x -1, x ≥0,则不等式x +(x +1)f (x +1)≤1的解集是( )A .{x |-1≤x ≤2-1}B .{x |x ≤1}C .{x |x ≤2-1}D .{x |-2-1≤x ≤2-1}【解析】 本题考查分段函数、复合函数、二次不等式等知识.原不等式化为⎩⎪⎨⎪⎧x +1<0x +(x +1)(-x -1+1)≤1或⎩⎪⎨⎪⎧x +1≥0x +(x +1)x ≤1分别解得x <-1或-1≤x ≤2-1,故原不等式解集是{x |x ≤2-1}.故选C. 【答案】 C(文科)若不等式2x 2+2kx +k4x 2+6x +3<1对于一切实数都成立,则k 的取值范围是( )A .(-∞,+∞)B .(1,3)C .(-∞,3)D .(-∞,1)∪(3,+∞)【解析】 4x 2+6x +3=4(x 2+32x )+3=4(x +34)2+34∴原不等式等价于2x 2+2kx +k <4x 2+6x +3 即2x 2+(6-2k )x +3-k >0对任意k 恒成立. ∴Δ=(6-2k )2-8(3-k )<0 ∴1<k <3.故选B.【答案】 B12.(创新预测题)对于集合M ,N ,定义M -N ={x |x ∈M 且x ∉N },M N =(M -N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R },B ={y |y =-2x ,x ∈R },则A B = ( )A .(-94,0]B .[-94,0)C .(-∞,-94)∪[0,+∞)D .(-∞,-94]∪(0,+∞)【解析】 由题意可知M N ={x |x ∈M 且x ∉N }∪{x |x ∈N 且x ∉M },即表示集合M ∪N去掉M ∩N 的部分,而A ={y |y ≥-94},B ={y |y <0},因此A ∪B =R ,A ∩B ={y |-94≤y <0},A B =(-∞,-94)∪[0,+∞),故选C.【答案】 C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在相应的位置上) 13.(2009年高考重庆卷文,11)设U ={n |n 是小于9的正整数},A ={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.【解析】 ∵U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7}, ∴∁U (A ∪B )={2,4,8}. 【答案】 {2,4,8}14.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若非p 是非q 的充分条件,则实数a 的取值范围是________.【解析】 p :-4<x -a <4⇔a -4<x <a +4, q :(x -2)(3-x )>0⇔2<x <3.又非p 是非q 的充分条件,即非p ⇒非q . 它的等价命题是q ⇒p .所以⎩⎪⎨⎪⎧a -4≤2a +4≥3⇒-1≤a ≤6.【答案】 [-1,6]15.(理科)(2009年黄冈中学模拟)已知R 上的减函数y =f (x )的图象过P (-2,3),Q (3,-3)两个点,那么|f (x +2)|≤3的解集为________.【解析】 据题意知原不等式等价于f (3)=-3≤f (x +2)≤3=f (-2),结合单调性可知-2≤x +2≤3,即x ∈[-4,1].【答案】 [-4,1](文科)若-1<a <0,则不等式(x -a )(ax -1)<0的解集为________.【解析】 方程(x -a )(ax -1)=0的两根为x 1=1a ,x 2=a ,∵-1<a <0,∴1a <a ,则不等式的解集为{x |x >a 或x <1a}. 【答案】 {x |x >a 或x <1a}16.(理科)设集合A ={(x ,y )|y ≥12|x -2|},B ={(x ,y )|y ≤-|x |+b },A ∩B ≠∅.(1)b 的取值范围是________;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是________.【解析】 (1)在同一直角坐标系中画出y =12|x -2|和y =-|x |的图象.观察图象得当把y =-|x |的图象向上平移1个单位时,两图象开始有交点,故b ≥1.(2)A ∩B 的平面区域如图阴影部分.设z =x +2y ,则y =-x 2+z2.当y =-x 2+z2过(0,b )时z 最大,∴0+2b =9,∴b =92.【答案】 (1)[1,+∞);(2)92(文科)设集合A ={(x ,y )|y ≥|x -2|,x ≥0},B ={(x ,y )|y ≤-x +b },A ∩B ≠∅. (1)b 的取值范围是________;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是________. 【解析】 由图可知,当y =-x 往右移动到阴影区域时,才满足条件,所以b ≥2;要使z =x +2y 取得最大值,则过点(0,b ),有0+2b =9⇒b =92.【答案】 (1)[2,+∞);(2)92三、解答题(本题共6大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)已知p :{x |⎩⎪⎨⎪⎧x +2≥0x -10≤0},q :{x |1-m ≤x ≤1+m ,m >0},若非p是非q 的必要不充分条件,求实数m 的取值范围.【解析】 解法一 p :即{x |-2≤x ≤10},∴非p :A ={x |x <-2或x >10},非q :B ={x |x <1-m 或x >1+m ,m >0}. ∵非p 是非q 的必要不充分条件,∴BA ⇔⎩⎨⎧m >01-m ≤-2⇒m ≥9,1+m ≥10即m 的取值范围是{m |m ≥9}.解法二 ∵非p 是非q 的必要不充分条件, ∴q 是p 的必要不充分条件. ∴p 是q 的充分不必要条件. 而p :P ={x |-2≤x ≤10}, q :Q ={x |1-m ≤x ≤1+m ,m >0}.∴PQ ⇔⎩⎨⎧m >01-m ≤-21-m ≥10⇒m ≥9.【答案】 {m |m ≥9}18.(12分)(2009年北京海淀模拟)已知集合A ={x |2x +2x -2<1},B ={x |x 2>5-4x },C ={x ||x-m |<1,m ∈R }.(1)求A ∩B ;(2)若(A ∩B )⊆C ,求m 的取值范围.【解析】 (1)∵A ={x |2x +2x -2<1}得2x +2x -2<1⇔(x +4)(x -2)<0 ∴A ={x |-4<x <2}又x 2+4x -5>0⇔(x +5)(x -1)>0 ∴B ={x |x <-5或x >1} ∴A ∩B ={x |1<x <2}. (2)∵C ={x ||x -m |<1,m ∈R } 即C ={x |m -1<x <m +1,m ∈R } ∵(A ∩B )⊆C∴⎩⎪⎨⎪⎧m -1≤1m +1≥2∴1≤m ≤2 【答案】 (1){x |1<x <2} (2)1≤m ≤219.(12分)(河北省正定中学2010届高三上学期第一次考试)已知集合A ={x |x 2-3(a +1)x+2(3a +1)<0},B ={x |x -2ax -(a 2+1)<0},(1)当a =2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围.【解析】 (1)当a =2时,A =(2,7),B =(4,5) ∴A ∩B =(4,5).(2)∵a ≠1时,B =(2a ,a 2+1);a =1时,B =φ①当a <13时,A =(3a +1,2)要使B ⊆A 必须⎩⎪⎨⎪⎧2a ≥3a +1a 2+1≤2此时a =-1. ②当a =13时A =φ,B =φ,所以使B ⊆A 的a 不存在,③a >13,A =(2,3a +1)要使B ⊆A ,必须⎩⎨⎧2a ≥2a 2+1≤3a +1此时1≤a ≤3. 综上可知,使B ⊆A 的实数a 的范围为[1,3]∪{-1}. 【答案】 (1)(4,5) (2)[1,3]∪{-1}20.(12分)(衡水中学2010届下学期第一次调研考试高三年级数学试卷)已知关于x 的不等式ax -5x 2-a<0的解集为M .(1)当a =9时,求集合M ;(2)若3∈M 且5∉M ,求实数a 的取值范围.【解析】 (1)当a =9时,由原不等式得9x -5x 2-9<0⇔x -59(x -3)(x +3)<0 ∴x <-3或59<x <3.∴M =(-∞,-3)∪(59,3)(2)3∈M ⇔3a -532-a <0⇔a -53a -9>0⇔a <53或a >9,5∉M ⇔5a -552-a <0不成立,5a -552-a <0⇔a -1a -25>0⇔a <1或a >25. ∴5∉M ⇔a <1或a >25不成立⇔1≤a ≤25.综上得1≤a <53或9<a ≤25.【答案】 (1)(-∞,-3)∪(59,3)(2)1≤a <53或9<a ≤2521.(12分)已知三个不等式:①|2x -4|<5-x ;②x +2x 2-3x +2≥1;③2x 2+mx -1<0.若同时满足①和②的x 值也满足③,求m 的取值范围.【解析】 设不等式|2x -4|<5-x ,x +2x 2-3x +2≥1,2x 2+mx -1<0的解集分别为A ,B ,C ,则由|2x -4|<5-x 得,当x ≥2时,不等式化为2x -4<5-x ,得x <3, 所以有2≤x <3.当x <2时,不等式化为4-2x <5-x ,得x >-1, 所以有-1<x <2,故A =(-1,3).x +2x 2-3x +2≥1⇔x +2x 2-3x +2-1≥0⇔-x 2+4xx 2-3x +2≥0⇔x (x -4)(x -1)(x -2)≤0⇔0≤x <1或2<x ≤4,即B =[0,1)∪(2,4].若同时满足①②的x 值也满足③,则有A ∩B ⊆C . 设f (x )=2x 2+mx -1, 则由于A ∩B =[0,1)∪(2,3), 故结合二次函数的图象, 得⎩⎪⎨⎪⎧f (0)<0f (3)≤0⇒⎩⎪⎨⎪⎧-1<018+3m -1≤0⇒m ≤-173,∴m 的取值范围是m ≤-173.22.(14分)(蚌埠二中2010届高三8月份月考数学(理科)试题)设函数f (x )=|x -a |,g (x )=ax (a >0).(1)解关于x 的不等式f (x )<g (x );(2)设F (x )=f (x )-g (x ),若F (x )在(0,+∞)上有最小值,求a 的取值范围.【解析】 (1)不等式等价于⎩⎪⎨⎪⎧(a +1)x -a >0(1-a )x -a <0,当a >1时,不等式的解集得{x |x >aa +1}; 当a =1时,此时不等式的解集是{x |x >aa +1};当0<a <1时,此时不等式的解集是{x |a a +1<x <a1-a};综合得,当a ≥1时,不等式的解集为{x |x >a a +1},当0<a <1时,不等式的解集为{x |aa +1<x <a 1-a}(2)F (x )=|x -a |-ax =⎩⎪⎨⎪⎧(1-a )x -a (x ≥a )-(a +1)x +a (0<x ≤a )由于a >0,F (x )在(0,a ]上为减函数,因此,要使F (x )在(0,+∞)上有最小值,必须而且只需F (x )在[a ,+∞)上为常数函数或增函数,因此1-a ≥0,∴0<a ≤1.【答案】 (1){x |a a +1<x <a1-a} (2)0<a ≤1。
高一数学集合与简易逻辑单元检测题 试题
国家级示范高中中学高一数学集合与简易逻辑单元检测题本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
一、选择题:(每一小题5分,一共60分)1、设集合M={m|m ≤10},a=2+3,那么( ) (A)a ⊂M (B)a ∉M (C){a}∈M (D){a}⊂M2、设集合M={S|S=x 2-7x+12, x ∈R},N={t|t=y 2+3y+2, y ∈R},那么M 、N 之间的关系是( ) (A)M=N (B)M N (C)N M (D)M ≠N 3、集合A={a 2, a+1, -3},B={a -3, 2a -1, a 2+1},假设A ⋂B={-3},那么a 的值是( ) (A)0 (B)1 (C)2 (D)-14、假设8x 2+6x -9>0,那么此时不等式|2x+3|>|4x -3|的解集是( ) (A)0<x<3 (B)34<x<3 (C)-32<x<3 (D)∅ 5、假设|x+m|≤n+1的解集是:{x|-1≤x ≤5},那么m+n 的值是( ) (A)-1 (B)0 (C)1 (D)2 6、假设1x <2与|x|>13同时成立,那么x 满足( ) (A)-13<x<12 (B)x<-13 (C)x>12 (D)x<-13或者x>127、同时满足(1)m ⊆{1, 2, 3, 4, 5},(2)假设a ∈m ,那么6-a ∈m 的非空集合的有( ) (A)16 (B)15 (C)7 (D)68、设集合A={x|0<x ≤2},B={x|x ⊆A},那么A 、B 之间的关系是( ) (A)A ∈B (B)A ⊆B (C)B ∈A (D)B ⊆A9、关于x 的不等式(m -2)x 2+2(m -2)x -4<0的解集是R ,那么m 的范围是( )(A)(-2, 2] (B)[-2, 2] (C)(-∞, -2)⋃[2, +∞) (D)(-∞, -2]⋃(2, +∞) 10、A 、B 是两个非空集合,x ∈(A ⋃B)是x ∈(A ⋂B)的( )⊂ ⊂(A)充分但不必要条件 (B)必要但不充分条件(C)充要条件 (D)既非充分又非必要条件11、假设非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},那么能使A⊆A⋂B成立的a的集合是( )(A)[1, 9] (B)[6, 9] (C)(-∞, 9] (D)∅12、命题P:假设x∈A,那么y∈B,那么命题⌝P与命题P的否命题是( )(A)⌝P:假设x∈A,那么y∉B,P的否命题:x∈A,那么y∉B(B)⌝P:假设x∈A,那么y∉B,P的否命题:x∉A,那么y∉B(C)⌝P:假设x∉A,那么y∉B,P的否命题:x∈A,那么y∉B(D)⌝P:假设x∉A,那么y∉B,P的否命题:x∉A,那么y∉B二、填空题:(每一小题4分,一共16分)13、假如mx2-x+n>0的解集为:{x|-2<x<1},那么m= , n= 。
高一数学集合与简易逻辑专题练习
第一章 集合与简易逻辑检测卷一、选择题(''12448⨯=)1、下面有四个命题①{}∅是空集 ②若,a N -∉则a N ∈ ③ {1,2}{(1,2)}= ④ 空集没有子集 ⑤ 任何一个集合必有真子集,其中正确的命题的个数是( )A 0个B 1个C 2个D 3个2、已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A.{}6,4=⋂N MB.()U C N M U = .C M N U = D.()U C M N N =3、设2{12},{560},A x x B x x x =+≤=-+≥则,A B 之间的关系是( ).A A B ≠⊃ .B A B = .C A B ≠⊂ .D A B =∅ 4、下列四个命题中真命题的个数为( )(1)“若0xy =,则00x y ==且”的逆否命题(2)“正方形是菱形”的否命题(3)“若22ac bc >,则a b >”的逆命题(4)“若2m >,则不等式220x x m -+>的解集是R ”.A 0个 .B 1个 .C 2个 .D 3个5、已知集合5{12},{1},1M x x N x x =-≤=≥+则M N =( ) A {14}x x -≤≤ B {13}x x -<≤ C {13}x x -≤< D {13}x x -≤≤6、不等式23440x x -<-≤解集是( ) A 13{01}22x x x -<≤≤<或 B {01}x x x ≤≥或 C 13{}22x x -<< D 13{}22x x x ≤-≥或 7、已知下列四个命题:①A B A B ≠⊆⊂是的充分不必要条件; ②π为无理数或有理数是假命题;③1122x x ><是的充要条件; ④若,x y 是实数,则22""""x y x y ≠≠是的必要不充分条件,其中假命题的个数是( ).A 1个 .B 2个 .C 3个 .D 4个8、不等式31115x x ++>的解集为( ) A {23}x x x <->或 B {23}x x -<< C {11}x x -<< D {13}x x <<9、对任意实数x ,不等式22(2)0ax ax a +-+<恒成立,则a 的取值范围是( ).A 10a -≤< .B 10a -≤≤ .C 10a -<≤ .D 10a -<<10、不等式组2124x a x a ⎧>+⎨<+⎩解集非空,则实数a 的取值范围是( ).A 13a -<< .B 31a -<< .C 13a a <->或 .D 31a a <->或11、若{1},{}M x x N x x p =≤=>,则M N =∅的一个充分不必要条件为( ).A 1p ≥ .B 2p > .C 1p ≤ .D 2p <12、当a x <-2时,不等式142<-x 成立,则正数a 的取值范围是( ).A 25->a .B 250-≤<a .C 25-≥a .D 23+>a二、填空题(''4312⨯=)13、集合{}{}260,22,A x x x B x x =--<=-<则A B = ; 14、不等式2(3)(10)0(1)x x x x--≥-的解集为 ; 15、"2"t ≠是2"4"t ≠的 条件16、若不等式02≤+-ax x 和012>-+x ax 中至少有一个成立,则a 的取值范围是 ;三、解答题(''41040⨯=)17、已知全集253{1},{11},{1}22U x x x A x x B x x =-≥-=->=≥--; (1)求A B (2)求)(B C A U18、解关于x 的不等式①2111x x +->- ②256x x -<19、解关于x 的不等式222,()ax x ax a R -≥-∈20、已知221:12,:210(0),3x p q x x m m --≤-+-≤> 若p q ⌝⌝是的必要而不充分条件,求实数m 的取值范围.。
高一上数学单元测试题(一)集合与简易逻辑
高一(上)数学检测题集合与简易逻辑(满分:150分,时间:120分钟)命题:唐仲伦班级 姓名 学号 分数一、选择题 :本大题共12题;每小题5分共60分。
1、已知}2|{≥∈=x R x M ,π=a ,则下列四个式子 ① M a ∈ ② M a ⊆}{ ③ M a ⊆ ④ π=M a }{ ,其中正确的是( )A 、①②B 、①④C 、②③D 、①②④2、设全集}2,1,0{},0,1,2{},2,1,0,1,2{=--=--=B A U 则=B A C U )(( )A 、}0{B 、}1,2{--C 、}2,1{D 、}2,1,0{3、已知,0:,0:≠≠ab q a p 则p 是q 的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分又不必要条件4、已知集合}4,3,2,1{=A ,那么A 的真子集的个数是( )A 、15B 、16C 、3D 、45、如果命题“p 或q ”是假命题,那么( )A 、命题“非p ”与命题“非q ”的真值相同B 、命题p 与命题“非q ”的真值相同C 、命题q 与命题“非p ”的真值相同D 、命题“非p 且非q ”是真命题6、不等式21≥-xx 的解集是( ) A 、}1|{-≤x x B 、}1|{-≥x x C 、}01|{>-≤x x x 或 D 、}01|{<≤-x x7、已知},|{},11|{2x y y N xx M ==<=则=N M ( )A 、ΦB 、}1|{>x xC 、}0|{<x xD 、}10|{><x x x 或8、方程0122=++x ax 至少有一个负的实根的充要条件是( )A 、1<aB 、10≤<aC 、1≤aD 、100≤<<a a 或9、考察下列每组对象哪几组能够成集合?(B )(1)比较小的数;(2)不大于10的非负偶数;(3)所有三角形;(4)高个子男生;A .(1)(4) B.(2)(3) C.(2) D.(3)10.下列关系中表述正确的是 ( D )A .B .C .D .11.已知全集 U={1,2,3,4,5},A={1,5},BCUA,则集合B 的个数是(C )A .5 B. 6 C. 7 D. 812 . 如果集合A={x|ax2+2x +1=0}中只有一个元素,则a 的值是 ( B )A .0B .0 或1C .1D .不能确定二、填空题:本大题共4小题;每小题5分,共20分。
高一数学复习测试题集合与简易逻辑试题
集合与简易逻辑 复习检测题一、选择题(本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、{}6|<∈=x N x S ,{}3,2,1=A ,{}5,4,2=B ,那么( S A ) ( S B )等于 (A){}5,4,3,,1 (B){}5,4,3,1,0 (C){}5,4,3,2,1 (D){}02、设集合{}21|<≤-=x x A ,{}a x x B <=|,若φ≠B A ,则a 的取值范围是(A )2<a (B )2->a (C )1->a (D )21≤<-a 3、{}0|≠+=b ax x A ,{}0≠+=d cx x B ,R U =,则{}0))((|=++d cx b ax x =(A)(RA ) ( RB ) (B) ( R A ) B (C) A ( R B ) (D) ( R A ) ( R B )4、不等式012262≥---x x x 的解集是 (A)⎭⎬⎫⎩⎨⎧≥<≤-23212|x x x 或 (B)⎭⎬⎫⎩⎨⎧≤<-≤23212|x x x 或 (C)⎭⎬⎫⎩⎨⎧≤<-≤22123|x x x 或(D)⎭⎬⎫⎩⎨⎧≤≤-232|x x 5、已知2|32|≤-x 的解集与{}0|2≤++b ax x x 的解集相同,则(A) 45,3-==b a (B) 45,3=-=b a (C) 45,3==b a (D) 417=+b a6、不等式2||2<-x x 的解集是(A){}21|>-<x x x 或 (B){}21|<<-x x (C)R x ∈ (D)φ 7、复合命题s 具有p 或q 的形式,已知p 且r 是真命题,则(A)s 的真假与q 的真假有关 (B)s 的真假与r 的真假有关 (C)s 是假命题 (D)s 是真命题8、已知;1|32:|>-x p 061:2>-+x x q ,则p 是q 的(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)即不充分也不必要条件9.已知集合M 有3个真子集,集合N 有7个真子集,那么M ∪N 的元素个数为 (A )有5个元素 (B )至多有5个元素 (C )至少有5个元素 (D )元素个数不能确定 10.设x ,y ,z 是非零实数,若||||||||xyz xyzz z y y x x a +++=,则所有不同的a 值组成的集合为( )(A ){4,-4} (B ){0,4} (C ){0} (D ){4,-4,0}二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上。
(完整版)集合与简易逻辑试卷及详细答案
(完整版)集合与简易逻辑试卷及详细答案集合与简易逻辑⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.每⼩题中只有⼀项符合题⽬要求)1.集合M={x|lg x>0},N={x|x2≤4},则M∩N=( )A.(1,2) B.[1,2)C.(1,2] D.[1,2]2.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表⽰的集合等于()A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}3.已知?Z A={x∈Z|x<6},?Z B={x∈Z|x≤2},则A与B的关系是() A.A?B B.A?BC.A=B D.?Z A?Z B4.已知集合A为数集,则“A∩{0,1}={0}”是“A={0}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列选项中,p是q的必要不充分条件的是()A.p:a+c>b+d,q:a>b且c>dB.p:a>1,b>1,q:f(x)=a x-b(a>0,且a≠1)的图像不过第⼆象限C.p:x=1,q:x2=x D.p:a>1,q:f(x)=log a x(a>0,且a≠1)在(0,+∞)上为增函数6.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数.则下列命题中为真命题的是() A.(⾮p)或q B.p且qC.(⾮p)且(⾮q) D.(⾮p)或(⾮q) 7.下列命题中,真命题是()B.?x∈R,2x>x2C.a+b=0的充要条件是ab=-1D.a>1,b>1是ab>1的充分条件8.已知命题p:“x>3”是“x2>9”的充要条件,命题q:“ac2>bc2”是“a>b”的充要条件,则()A.“p或q”为真B.“p且q”为真C.p真q假D.p,q均为假9.命题p:?x∈R,x2+1>0,命题q:?θ∈R,sin2θ+cos2θ=1.5,则下列命题中真命题是()A.p∧q B.(⾮p)∧qC.(⾮p)∨q D.p∧(⾮q)10.已知直线l1:x+ay+1=0,直线l2:ax+y+2=0,则命题“若a=1或a=-1,则直线l1与l2平⾏”的否命题为() A.若a≠1且a≠-1,则直线l1与l2不平⾏B.若a≠1或a≠-1,则直线l1与l2不平⾏C.若a=1或a=-1,则直线l1与l2不平⾏D.若a≠1或a≠-1,则直线l1与l2平⾏11.命题“?x∈[1,2],x2-a≤0”为真命题的⼀个充分不必要条件是() A.a≥4 B.a≤4C.a≥5 D.a≤512.设x,y∈R,则“|x|≤4且|y|≤3”是“x216+y29≤1”的()A.充分⽽不必要条件B.必要⽽不充分条件C.充分必要条件D.既不充分也不必要条件⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分,把答案填在题中横线上)13.已知集合A={1,a,5},B={2,a2+1}.若A∩B有且只有⼀个元素,则实数a的值为________.14.命题“?x∈R,x2+ax-4a<0”为假命题,是“-16≤a≤0”的________条件.15.设全集U=A∪B={x∈N*|lg x<1},若A∩(?U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=________.16.若f(x)=x2-2x,g(x)=ax+2(a>0),?x1∈[-1,2],?x0∈[-1,2],使g(x1)=f(x0),则a的取值范围是________.三、解答题(本⼤题共6⼩题,共70分,解答应写出⽂字说明、证明过程或演算步骤)17.(本⼩题满分10分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A??R B,求实数m的取值范围.18.(本⼩题满分12分)已知命题“?x∈R,|x-a|+|x+1|≤2”是假命题,求实数a的取值范围.19.(本⼩题满分12分)已知集合E={x||x-1|≥m},F={x|10x+6>1}.(1)若m=3,求E∩F;(2)若E∪F=R,求实数m的取值范围.20.(本⼩题满分12分)已知全集U=R,⾮空集合A={x|x-2x-(3a+1)<0},B={x|x-a2-2x-a<0}.(1)当a=12时,求(?U B)∩A;(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.21.(本⼩题满分12分)设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+1x+1的值域,集合C为不等式(ax-1a)(x+4)≤0的解集.(1)求A∩B;(2)若C??R A,求a的取值范围.22.(本⼩题满分12分)已知命题p:⽅程2x2+ax-a2=0在[-1,1]上有解;命题q:只有⼀个实数x0满⾜不等式x20+2ax0+2a≤0,若命题“p或q”是假命题,求a的取值范围.答案:⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.每⼩题中只有⼀项符合题⽬要求)1.答案C解析因为M={x|x>1},N={x|-2≤x≤2},所以M∩N={x|12解析依题意知A={0,1},(?U A)∩B表⽰全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表⽰的集合等于{-1,2},选A.3.答案A4.D.既不充分也不必要条件答案 B解析∵“A∩{0,1}={0}”得不出“A={0}”,⽽“A={0}”能得出“A∩{0,1}={0}”,∴“A∩{0,1}={0}”是“A={0}”的必要不充分条件.5.解析B选项中,当b=1,a>1时,q推不出p,因⽽p为q的充分不必要条件.C选项中,q为x=0或1,q不能够推出p,因⽽p为q的充分不必要条件.D选项中,p、q可以互推,因⽽p为q的充要条件.故选A.6.答案D解析由于命题p是真命题,命题q是假命题,因此,命题綈q是真命题,于是(綈p)或(綈q)是真命题.7.答案D解析∵a>1>0,b>1>0,∴由不等式的性质,得ab>1.即a>1,b>1?ab>1.8.答案A解析由x>3能够得出x2>9,反之不成⽴,故命题p是假命题;由ac2>bc2能够推出a>b,反之,因为1c2>0,所以由a>b能推出ac2>bc2成⽴,故命题q是真命题.因此选A.9.答案D解析易知p为真,q为假,⾮p为假,⾮q为真.由真值表可知p∧q假,(⾮p)∧q假,(⾮p)∨q假,p∧(⾮q)真,故选D.10.答案A解析命题“若A,则B”的否命题为“若綈A,则綈B”,显然“a=1或a =-1”的否定为“a≠1且a≠-1”,“直线l1与l2平⾏”的否定为“直线l1与l2不平⾏”,所以选A.11.答案C解析命题“?x∈[1,2],x2-a≤0”为真命题的充要条件是a≥4,故其充分不必要条件是实数a的取值范围是集合[4,+∞)的⾮空真⼦集,正确选项为C.12.答案B⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分,把答案填在题中横线上)13.答案0或-2解析若a=2,则a2+1=5,A∩B={2,5},不合题意舍去.若a2+1=1,则a=0,A∩B={1}.若a2+1=5,则a=±2.⽽a=-2时,A∩B={5}.若a2+1=a,则a2-a+1=0⽆解.∴a=0或a=-2.14.答案充要解析∵“?x∈R,x2+ax-4a<0”为假命题,∴“?x∈R,x2+ax-4a≥0”为真命题,∴Δ=a2+16a≤0,即-16≤a≤0.故为充要条件.15.答案{2,4,6,8}解析A∪B={x∈N*|lg x<1}={1,2,3,4,5,6,7,8,9},A∩(?U B)={m|m=2n+1,n =0,1,2,3,4}={1,3,5,7,9},∴B={2,4,6,8}.16.答案(0,1 2]解析由于函数g(x)在定义域[-1,2]内是任意取值的,且必存在x0∈[-1,2],使得g(x1)=f(x0),因此问题等价于函数g(x)的值域是函数f(x)值域的⼦集.函数f(x)的值域是[-1,3],函数g(x)的值域是[2-a,2+2a],则有2-a≥-1且2+2a≤3,即a≤12,⼜a>0,故a的取值范围是(0,12].三、解答题(本⼤题共6⼩题,共70分,解答应写出⽂字说明、证明过程或演算步骤)17 答案 (1)2。
高一数学同步测试(4)—集合与简易逻辑
高一数学同步测试(4)—集合与简易逻辑一、选择题:1.已知全集},,,,{e d c b a U =,集合},{c b A =,},{d c B =C U ,则()A C U ∩B 等于 ( )A .},{e aB .},,{d c bC .},,{e c aD .}{c2.满足条件M ⋃{1}={1,2,3}的集合M 的个数是 ( )A .1B .2C .3D .43.设全集},91|{N x x x U ∈≤≤=,则满足{}8,7,5,3,1∩}7,5,3,1{=B C U 的所有集合B 的个数有( ) A .1个 B .4个 C .5个 D .8个4.给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1-≤q ,则02=++q x x 有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是 ( )A .①②B .②③C .①③D .③④5.已知p 是q 的必要条件,r 是q 的充分条件,p 是r 的充分条件,那么q 是p 的( )A .充分条件B .必要条件C .充要条件D .非充分非必要条件6.由下列各组命题构成“p 或q ”为真,“p 且q ”为假,非“p ”为真的是 ( )A .=0:p ,∈0:qB .p :等腰三角形一定是锐角三角形,q :正三角形都相似C .{}a p : ≠⊂{}b a , ,{}b a a q ,:∈D .:,35:q p >12是质数7.设R x ∈,则()()x x +-11>0成立的充要条件是 ( )A .-1<x <1B .x <-1或x >1C .x <1D .x <1且1-≠x8.下列命题中不正确...的是 ( )①若A ∩B=U ,那么U B A ==;②若A ∪B=,那么==B A ;③若A ∪B=U ,那么()A C U ∩()φ=B C U ;④若A ∩B=,那么==B A ;⑤若A ∩B=,那么()A C U ∪()U B =C U ;⑥若A ∪B=U ,那么U B A ==A .0个B .②⑤C .④⑥D .①④9.已知集合{}{}01|,2,1=+=-=mx x B A ,若A ∩B=B ,则符合条件的m 的实数值组成的集合是 ( )A .{}2,1-B .⎭⎬⎫⎩⎨⎧-21,1 C .⎭⎬⎫⎩⎨⎧-1,0,21 D .⎭⎬⎫⎩⎨⎧-21,1 10.若非空集合{}{}223,5312|≤≤=-≤≤+=x B a x a x A ,则使⊆A (A ∩B)成立的所有a 的值的集合是( )A .{}91|≤≤a aB .{}96|≤≤a aC .{}9|≤a aD .11.数集},,1{2a a a -中的实数a 应满足的条件是( )A .2,251,1,0±≠aB .2,251+≠aC .3,2,1≠aD .3,2,1,0≠a12.已知p :|2x -3|>1 , q :612-+x x >0,则p 是q 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件二、填空题: 13.命题“若ab =0,则a ,b 中至少有一个为零”的逆否命题是 .14.设⎭⎬⎫⎩⎨⎧∈∈-*Z x N x x ,56|,则A= . 15.数集{}a a a 2,22-中,a 的取值范围是 .16.所给命题:①菱形的两条对角线互相平分的逆命题;②{}R x x x ∈=+,01|2={}=0或;③对于命题:“p 且q ”,若p 假q 真,则“p 且q ”为假;④有两条边相等且有一个内角为60°是一个三角形为等边三角形的充要条件.其中为真命题的序号为 .三、解答题:17.已知集合A={x |-x 2+3x +10≥0} , B={x |k +1≤x ≤2k -1},当A∩B=φ时,求实数k 的取值范围.18.不等式082≥--ax x 与022<--b ax x 的解集分别为A ,B ,试确定a ,b 的值,使A ∩{}54|<≤=x xB ,并求出A ∪B .19.己知命题p :|3x -4|>2 , q :212--x x >0,则p 是q 的什么条件?20.写出下列命题的“非P”命题,并判断其真假:(1)若21,20m x x m >-+=则方程有实数根.(2)平方和为0的两个实数都为0.(3)若ABC ∆是锐角三角形, 则ABC ∆的任何一个内角是锐角.(4)若0abc =,则,,a b c 中至少有一为0.(5)若0)2)(1(=--x x ,则21≠≠x x 且 .21.已知全集U =R ,A ={x |x -1|≥1},B={x|23--x x ≥0},求: (1)A ∩B;(2)(CUA)∩(CUB).22.已知集合A={x |x 2+3x +2 ≥0},B={x |mx 2-4x +m -1>0 ,m ∈R}, 若A ∩B=,且A ∪B=A ,试求实数m 的取值范围.参考答案一、选择题: ABDCC BDBCB AA二、填空题:13.若a ,b 都不为零,则ab ≠0,14.{}4,3,2,1-,15.{}40,≠≠∈a a R a 且,16.②③④三、解答题:17.解析: k >4或k <218.解析:由条件可知,x =4是方程082=--ax x 的根,且x=5是方程022=--b ax x 的根,所以⎩⎨⎧==⇒⎩⎨⎧=--=--520102508416b a b a a {}24|-≤≥=∴x x x A 或,{}51|<<-=x x B , 故A ∪B {}21|-≤->=x x x 或19.解析:∵.232:,322243≤≤⌝∴<>⇔>-x p x x x 或 又∵,120212-<>⇔>--x x x x 或 q:.21≤≤-x 又∵p ⇒q ,但q ≠>p ,∴p 是q 充分但不必要条件.20.解析:⑴若21,20m x x m >-+=则方程无实数根,(真);⑵平方和为0的两个实数不都为0(假);⑶若ABC ∆是锐角三角形, 则ABC ∆的任何一个内角不都是锐角(假);⑷若0abc =,则,,a b c 中没有一个为0(假);⑸若0)2)(1(=--x x ,则1=x 或2=x ,(真).21.解析:(1)A={x|x-1≥1或x -1≤-1}={x |x ≥2或x ≤0}B ={x |⎩⎨⎧≠-≥--020)2)(3(x x x }={x |x ≥3或x <2}∴A ∩B ={x |x ≥2或x ≤0}∩{x |x ≥3或x <2=={x |x ≥3或x ≤0}.(2)∵U =R ,∴C UA ={x |0<x <2},C UB ={x |2≤x <3}∴(C UA )∩(C UB )={x |0<x <2=∩{x |2≤x <3==∅.22.解析:由已知A={x |x 2+3x +20≥},得=⋂-≥-≤=B A x x x A 由或},12|{得:(1)∵A 非空 ,∴B=; (2)∵A={x|x 12-≥-≤x 或},∴}.12|{-<<-=x x B 另一方面,A B A B A ⊆∴=⋃,,于是上面(2)不成立,否则R B A =⋃,与题设A B A =⋃矛盾.由上面分析知,B=.由已知B={}R m m x mx x ∈>-+-,014|2,结合B=,得对一切x 014,2≤-+-∈m x mx R 恒成立,于是, 有m m m m m ∴-≤⎩⎨⎧≤--<21710)1(4160解得的取值范围是}2171|{-≤m m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[课题]第一章集合与简易逻辑测试题
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.集合A={x|x≤},a=3,则( )
A.a A
B.a A
C.{a}∈A
D.{a} A
2.集合M={x|x=3k-2,k∈Z},Q={y|y=3l+1,l∈Z},S={z|z=6m+1,m∈Z}之间的关系是( )
A.S Q M
B.S=Q M
C.S Q=M
D.S Q=M
3.若A={1,3,x},B={x2,1},且A∪B=A,则这样x的不同取值有( )
A.1个
B.2个
C.3个
D.4个
4.符合条件{a}P{a,b,c}的集合P的个数是( )
A.2
B.3
C.4
D.5
5.若A={x|x2-4x+3<0},B={x|x2-6x+8<0},C={x|2x2-9x+a<0},(A∩B)C,则a的取值范围是( )
A.a≤10
B.a≥9
C.a≤9
D.9≤a≤10
6.若a>0,使不等式|x-4|+|3-x|<a在R上的解非空,则a的值必为( )
A.0<a<1
B.0<a≤1
C.a>1
D.a≥1
7.集合A={x|x2-5x+4≤0},B={x|x2-5x+6≥0},则A∩B= ( )
A.{x|1≤x≤2,或3≤x≤4}
B.{x|1≤x≤2,且3≤x≤4}
C.{1,2,3,4}
D.{x|1≤x≤4或2≤x≤3}
8.如果方程x2+(m-3)x+m的两根都是正数,则m的取值范围是( )
A.0<m≤3
B.m≥9或m≤1
C.0<m≤1
D.m>9
9.由下列各组命题构成“P或Q”,“P且Q”,“非P”形式的复合命题中,“P或Q”为真命题,“P且Q”为假命题,“非P”为真命题的是( )
A.P:3是偶数;q:4是奇数
B.P:3+2=6;q:3>2
C.P:a∈{a,b};q:{a}{a,b}
D.p:Q R;q:N=N+
10.对于实数x、y,条件A:|x|≤1且|y|≤1;条件B:|x|+|y|≤1;条件C:x2+y2≤1.则正确的是( )
A.B是C的充分不必要条件;A是C的必要不充分条件
B.B是C的必要不充分条件;A是C的充分不必要条件
C.C是A的必要不充分条件;C是B的充分不必要条件
D.C是A的充要条件;B是A的既不充分也不必要条件
11.若a、b为实数,则ab(a-b)<0成立的一个充要条件是( )
A.0<<
B.0<<
C.<
D.<
12.给出以下四个命题:p:若x2-3x+2=0,则x=1或x=2;q:若2≤x<3,则(x-2)(x-3)≤0;r:若x=y=0,则x2+y2=0;s:若x、y∈N,x+y是奇数,则x、y中一个是奇数一个是偶数,那么( )
A.p的逆命题为真
B.q的否命题为真
C.r的否命题为假
D.s的逆命题为假
二、填空题:本大题共4小题,每小题4分,共16分.
13.已知集合M={x|x∈N+,且8-x∈N+},则M中只含有两个元素的子集的个数有____个.
14.已知集合A={x|x2-x-2≤0},B={x|a<x<a+3},满足A B=,则实数a的取值范围是____.
15.“若a+b是偶数,则a、b必定同为奇数或偶数”的逆否命题为____.
16.已知集合M{0,1,2,3,4},且M{0,2,4,8},则集合M中最多有____个元素.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知三元素集合A={x,xy,x-y},B={0,|x|,y},且A=B,求x与y的值.
18.(本小题满分12分)
设集合A={|a+1|,3,5},集合B={2a+1,a2+2a,a2+2a-1},当A∩B={2,3}时,求A∪B.
19.(本小题满分12分)
设A={x|-2<x<-1,或x>1},B={x|x2+ax+b≤0},已知A∪B={x|x>-2},A∩B={x|1<x≤3},试求a,b的值.
20.(本小题满分12分)
已知不等式ax2+bx+c>0的解集为{x|0<m<x<n},求关于x的不等式cx2-bx+a<0的解.
21.(本小题满分12分)
已知集合A={x|1<|x-2|<2},B={x|(x-a)(x-1)<0,a≠1},且A∩B≠,试确定a的取值范围.
22.(本小题满分14分)
关于实数x的不等式与x2-3(a+1)x+2(3a+1)≤0的解集依次为A、B
(1)求集合A、B
(2)若A B,求此时a的取值范围.
参考答案
一、选择题
1-12:DCCBC CACBB DA
二、填空题
13.21个14.a≥2或a≤-415.“若a、b不同为奇数且不同为偶数则a+b不是偶数”16.3个
三、解答题
17.解:∵0∈B,A=B,∴0∈A
∵集合A为三元素集,∴x≠xy,∴x≠0,y≠1
又∵0∈B,y∈B,∴y≠0
从而,x-y=0,x=y
这时,A={x,x2,0},B={0,|x|,x}
∴x2=|x|,x=0(舍去)或x=1(舍去),或x=-1
经验证x=-1,y=-1是本题的解.
18.解:∵|a+1|=2,∴a=1或a=-3
当a=1时,集合B的元素a2+2a=3,2a+1=3,
由集合的元素的互异性可知,a≠1
当a=-3时,集合B={-5,3,2}
∴A∪B={-5,2,3,5}
19.解:由A∪B={x|x>-2},A∩B={x|1<x≤3}得
B={x|-1≤x≤3},根据二次不等式与二次方程的关系,可知-1与3是方程x2+ax+b=0的两根.
∴a=-(-1+3)=-2,b=(-1)×3=-3
20.解:m<x<n(x-m)(x-n)<0x2-(m+n)x+mn<0,对照-ax2-bx-c<0,
∴,∴a=-k,b=k(m+n),c=-kmn,代入cx2-bx+a<0,
∴-kmnx2-k(m+n)x-k<0,mnx2+(m+n)x+1>0,
∵0<m<n,∴
∴所求不等式的解集为
21.解:A={x|1<|x-2|<2}={x|0<x<1,或3<x<4}
(1)当a>1时,B={x|1<x<a}
∵A∩B≠∴a>3
(2)当a<1时,B={x|a<x<1}
∵A∩B≠∴a<1
综合(1)、(2)可知,a的取值范围是a<1,或a>3
22.解:(1)A==
={x|2a≤x≤a2+1}
B={x|x2-3(a+1)x+2(3a+1)≤0}={x|(x-2)(x-3a-1)≤0}
当a≤时,B={x|3a+1≤x≤2}
当a>时,B={x|2≤x≤3a+1}
(2)当a≤时,若,则2a≥3a+1且a2+1≤2得a=-1
当a>时,若,则2a≥2且a2+1≤3a+1得1≤a≤3
∴a的取值范围是:a=-1,或1≤a≤3。