南昌大学传感器与检测技术实验报告

合集下载

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告前言:传感器多种多样,玲琅满目,可供我们选择的有很多。

压电传感器,电感涡流传感器等众多高性能传感器,被大量应用在各行各业。

特别是机床行业,以及汽车制造等行业更是应用广泛,是国内外公认的具有发展前途的高技术产业。

一、压电传感器(PT124G-210)1、传感器照片2、应用场景3、测量原理应变式压力传感器,是外界的压力,引起应变材料的几何形状发生改变,进而导致材料的电阻发生变化,检测这个电阻变化量可以测得外力的大小。

压阻式压力传感器通常是半导体压敏材料,半导体压阻式传感器在受到外力后,自身的几何形状几乎没有什么改变,而是其晶格参数发生改变,影响到禁带宽度,禁带宽度哪怕是非常微小的改变,都会引起载流子密度很大的改变,这最终引起材料的电阻率发生改变4、传感器原理压力或振动引起应变材料的几何形状发生改变,根据形变大小进行数据的显示5、比较它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。

缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。

二、涡流式传感器(ECS-3)1、传感器图片2、应用场景电涡流传感器系统广泛应用于电力、石油、化工、冶金等行业和一些科研单位。

对汽轮机、水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴的径向振动、轴向位移、键相器、轴转速、胀差、偏心、以及转子动力学研究和零件尺寸检验等进行在线测量和保护3、测量原理通过电涡流效应的原理,准确测量被测体(必须是金属导体)与探头端面的相对位置。

4、传感器原理即利用金属导体置于变化的磁场中,产生感应电流,从而在金属体内形成自行闭合的电涡流线。

5、比较特点是长期工作可靠性好、灵敏度高、抗干扰能力强、非接触测量、响应速度快、不受油水等介质的影响,常被用于对大型旋转机械的轴位移、轴振动、轴转速等参数进行长期实时监测,可以分析出设备的工作状况和故障原因,有效地对设备进行保护及预维修。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告前言:位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。

在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。

按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。

模拟式又可分为物性型和结构型两种。

常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。

数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。

这种传感器发展迅速,应用日益广泛。

一、电容式传感器1、传感器照片(luoshida-m30)2、应用场景管件材质:ABS塑料安装方式:齐平/非齐平检测距离:2-20mm/2-30mm可调节工作电压:10-40VDC输出方式:NPN/PNP NO/NC/NO+NC连接方式:2M PVC线缆3、测量原理这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。

这个外壳在测量过程中通常是接地或与设备的机壳相连接。

当有物体移向接近开关时,不论它是否为导体,由於它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。

这种接近开关检测的物件,不限於导体,可以绝缘的液体或粉状物等。

4、比较优点:温度稳定性好,结构简单,适应性强,动态响应好,可以实现非接触测量,具有平均效应:缺点:输出阻抗高,负载能力差,寄生电容影响大,输出特性非线性二、霍尔式位移传感器1、传感器照片(MIRAN-WOA-C-R角度位移)2、应用场景供电电压24V DC,输出信号有4-20MA、0-5V、0-10V等3、测量原理如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。

此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。

传感器与检测技术实验报告一

传感器与检测技术实验报告一

传感器与检测技术实验报告一、电容传感器1.传感器图片2.应用场景该传感器可以对多处样地、不同土壤深度的水分含量进行长期连续监测。

3.测量原理CSF13系列土壤水分传感器基于频率反射FDR原理,是一种电介质型传感器,由于水的介电常数非常高(80),土壤为(3-10) 。

因此当土壤中的水分含量变化时,土壤的介电常数也随之发生相当大的变化。

本系列的壤水分传感器电路把温度变化对测定的影响减小。

采用了数字化技术和耐用材料,测量精度高且价格低廉。

4.传感器原理通过100MHz频率下测量传感器.上电容的变化,从而测量插入介质的介电常数。

5.比较温度稳定性好,结构简单,适应性强,静电引力小,动态响应好,可以实现非接触测量、具有平均效应,输出阻抗高,负载能力差,寄电容影响大输出特性非线性二、压电传感器1.传感器图片2.应用场景压电式测力传感器,压电式加速度传感器3.测量原理压电效应,由于受外力作用后,回路的输入阻抗为无穷大时,压电传感器无法进行静态测量。

但现实中并不如此,因此,压电传感器只能测量动态应力。

4.传感器原理压电式传感器工作原理主要是基于压电效应,使用电气元件和其他机械把待测的压力转换成为电量,再开展相关精确测量工作的精确测量精密仪器,例如很多压力变送器和压力传感器。

压电传感器不能够应用在静态的精确测量当中,根本原因是受到外力作用后的电荷,当控制回路有无限大的输入抗阻的时候,才能够得以保存下来。

5.比较频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。

缺点是某些压电材料需要防潮措施,而且输出的直流响应差。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告一、实验目的本次实验旨在深入了解传感器与检测技术的基本原理和应用,通过实际操作和数据测量,掌握常见传感器的特性和检测方法,培养我们的实践能力和解决问题的思维。

二、实验设备与材料1、传感器实验箱,包含各类常见传感器,如电阻式传感器、电容式传感器、电感式传感器、光电式传感器等。

2、数字万用表、示波器。

3、实验连接导线若干。

三、实验原理1、电阻式传感器电阻式传感器是将被测量的变化转换为电阻值的变化。

常见的有应变式电阻传感器和热敏电阻传感器。

应变式电阻传感器基于电阻应变效应,当受到外力作用时,其电阻丝发生形变,从而导致电阻值的变化;热敏电阻传感器则根据温度的变化改变自身电阻值。

2、电容式传感器电容式传感器是将被测量的变化转换为电容值的变化。

主要有变极距型、变面积型和变介质型电容传感器。

其工作原理基于电容的定义式 C =εS/d,其中ε 为介质的介电常数,S 为两极板的相对面积,d 为两极板间的距离。

3、电感式传感器电感式传感器是利用电磁感应原理将被测量转换为电感量的变化。

包括自感式和互感式传感器。

自感式传感器通过改变线圈的自感系数来反映被测量;互感式传感器则是根据互感系数的变化进行测量。

4、光电式传感器光电式传感器是把被测量的变化转换成光信号的变化,然后通过光电元件转换成电信号。

常见的有光电管、光电倍增管、光敏电阻、光敏二极管和光敏三极管等。

四、实验内容与步骤1、电阻式传感器实验(1)连接应变式电阻传感器到实验电路,施加不同的外力,用数字万用表测量电阻值的变化,并记录数据。

(2)将热敏电阻传感器接入电路,改变环境温度,测量电阻值,绘制温度电阻曲线。

2、电容式传感器实验(1)分别连接变极距型、变面积型和变介质型电容传感器到实验电路,改变相应的参数,如极距、面积或介质,用示波器观察输出电压的变化。

(2)记录不同参数下的输出电压值,分析电容值与输出电压的关系。

3、电感式传感器实验(1)连接自感式传感器,改变磁芯位置或气隙大小,测量电感值的变化。

南昌大学传感器实验报告一差动变压器的应用—电子秤

南昌大学传感器实验报告一差动变压器的应用—电子秤

实验一差动变压器的应用——电子秤实验目的:了解差动变压器的实际应用所需单元及部件:音频振荡器、差动放大器、移相器、相敏检波器、低通滤波器、V/F表、电桥、砝码、振动平台。

有关旋钮初始位置:音频振荡器调至4KH Z,V/F表打到2V档。

实验步骤:(1)按图1接线,组成一个电感电桥测量系统,开启主、副电源,利用示波器观察调节音频振荡器的幅度旋钮,使音频振荡器的输出为V P-P值为lV。

图1 接线图(2)将测量系统调零,将V/F表的切换开关置20V档,示波器X轴扫描时间切换到0.1~0.5ms(以合适为宜),Y轴CHl或CH2切换开关置5V/div,音频振荡器的频率旋钮置5KHz,幅度旋钮置中间位置。

开启主、副电源,调节电桥网络中的W1,W2,使V/F表和示波器显示最小,再把V/F表和示波器Y轴的切换开关分别置2V和50mv/div,细条W1和W2旋钮,使V/F表显示值最小。

再用手按住双孔悬臂梁称重传感器托盘的中间产生一个位移,调节移相器的移相旋钮,使示波器显示全波检波的图形。

放手后,粱复原。

(3)适当调整差动放大器的放大倍数,使在称重平台上放上一定数量的砝码时电压表指示不溢出。

(4)去掉砝码,必要的话将系统重新调零。

然后逐个加上砝码,读出表头读数,记下实验数据,填入下表;(5)去掉砝码,在平台上放一重量未知的重物,记下电压表读数,关闭主副电源。

(6)利用所得数据,求得系统灵敏度及重物重量。

注意事项:(1)砝码不宜太重,以免粱端位移过大。

(2)砝码应放在平台中间部位,为使操作方便,可将测微头卸掉。

测得的未知重物的V P-P(V)为:1.27V。

实验数据处理:x=[100 80 60 40 20 0 ];y=[2.78 2.20 1.62 1.07 0.53 0.04];polyfit(x,y,1);得出A= 0.0278 B= -0.0233t=0:0.1:100;yy=0.0278*t-0.0233;plot(t,yy,x,y,'r*')得出图形:将yy=1.27代入yy=0.0278*t-0.0233中;求得t=46.5g所以被测重物的质量为46.5g实验心得这次实验是我们第一次做传感器实验。

传感与检测实验报告

传感与检测实验报告

传感与检测实验报告传感与检测实验报告一、引言传感与检测技术是现代科学和工程领域中的重要组成部分。

它涵盖了从环境监测到医学诊断等各个领域的应用。

本实验旨在通过探索传感与检测的基本原理和实际应用,加深对该领域的理解。

二、实验目的本实验的主要目的是掌握传感与检测技术的基本原理,并通过实际操作和数据分析,加深对传感与检测的理解。

具体实验目标如下:1. 理解传感与检测技术的定义和分类;2. 学习传感与检测技术的基本原理;3. 掌握传感与检测技术的实验方法和操作;4. 分析实验数据,总结实验结果。

三、实验原理传感与检测技术是通过感知、采集、处理和输出信号,实现对目标物理量或参数的测量和监测。

传感器是传感与检测技术的核心组成部分,它能够将非电信号转换为电信号,并通过电信号的变化来反映目标物理量或参数的变化。

在本实验中,我们将使用多种传感器,包括温度传感器、光敏传感器和压力传感器。

温度传感器能够测量环境温度的变化,光敏传感器可以感知光线的强度,压力传感器则可以测量物体受力的大小。

四、实验步骤1. 实验前准备:检查实验设备和传感器的连接情况,并确保实验仪器的正常工作。

2. 温度传感器实验:将温度传感器插入待测物体中,记录温度传感器输出的电压值,并根据标定曲线计算出对应的温度值。

3. 光敏传感器实验:将光敏传感器暴露在不同强度的光线下,记录光敏传感器输出的电压值,并根据标定曲线计算出对应的光强值。

4. 压力传感器实验:将压力传感器放置在受力物体上,记录压力传感器输出的电压值,并根据标定曲线计算出对应的压力值。

5. 数据分析:将实验数据整理并进行图表展示,分析传感器输出与目标物理量或参数之间的关系。

五、实验结果与讨论通过实验数据的分析,我们可以得出以下结论:1. 温度传感器的输出电压与环境温度呈线性关系,且具有较高的精度和稳定性。

2. 光敏传感器的输出电压与光强之间存在非线性关系,需要通过标定曲线进行转换。

3. 压力传感器的输出电压与物体受力大小呈线性关系,但在较高压力下可能存在饱和现象。

南昌大学传感器实验报告四 霍尔式传感器的静态位移特性—直流激励

南昌大学传感器实验报告四 霍尔式传感器的静态位移特性—直流激励

实验四 霍尔式传感器的静态位移特性—直流激励一、实验目的了解霍尔式传感器的原理与特性。

二、所需单元及部件霍尔片、磁路系统、电桥、差动放大器、V /F 表、直流稳压电源,测微头、振动平台。

有关旋钮的初始位置:差动放大器增益旋钮打到最小,电压表置2V 档,直流稳压电源置2V 档,主、副电源关闭。

三、实验步骤:(1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号,霍尔片安装在实验仪的振动圃盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔式传感器。

(2)开启主、副电源将差动放大器调零后,增益置接近最小,使得霍尔片在磁场中位移时V /F 表读数明显变化,关闭主,副电源,根据图1接线,W 1、r 为电桥单元的直流电桥平衡网络。

(3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置。

(4)开启主、副电源,调整W1使电压表指示为零。

(5)上下旋动测微头,记下电压表读数,建议每隔0.2mm 读一个数,将读数填入下表:作出V —X 曲线,指出线性范围,求出灵敏度,关闭主、副电源。

可见,本实验测出的实际上是磁场情况,它的线性越好,位移测量的线性度也越好,图1 接线图它的变化越陡,位移测量的灵敏度也越大。

(6)实验完毕,关闭主、副电源,各旋钮置初始位置。

四、实验数据及处理V—X曲线从图中可以看出:线性范围电压为,位移为用最小二乘法求得拟合直线方程:y=0.1851x -2.209灵敏度:a=—0.1851线性范围:-0.114V——0.146V五、心得体会通过实验我们更深程度的了解了霍尔传感器的特性。

对霍尔传感器的对线性度,灵敏度等概念也有了进一步的理解。

实验中灵敏度也是比较大的,线性度也比较好,说明霍尔传感器所在的磁感应强度比较理想。

在多次测量数据后,通过matlab工具进行数据处理,得出的曲线更接近霍尔传感器的固有特性。

但是我们实际运用的时候只是用三分之一的量程到三分之二量程这一段。

传感器检测技术实验报告

传感器检测技术实验报告

《传感器与检测技术》实验报告姓名:学号:院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员:评定成绩:审阅教师:传感器第一次实验实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。

二、基本原理电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。

电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=∆为电阻丝长度相对变化。

三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。

四、实验步骤1. 根据接线示意图安装接线。

2. 放大器输出调零。

3. 电桥调零。

4.应变片单臂电桥实验。

测得数据如下,并且使用Matlab 的cftool 工具箱画出实验点的线性拟合曲线:由matlab 拟合结果得到,其相关系数为0.9998,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确。

系统灵敏度S =ΔUΔW =0.0535V /Kg (即直线斜率),非线性误差= Δm yFS =0.0810.7×100%=0.75%五、思考题单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。

答:(1)负(受压)应变片;因为应变片受压,所以应该选则(2)负(受压)应变片。

实验三 金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的优点二、基本原理全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ∆=∆=∆=∆时,其桥路输出电压3o U EK ε=。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告一、实验目的。

本实验旨在通过对传感器与检测技术的学习和实践,掌握传感器的工作原理、应用范围以及检测技术的基本方法和实验操作技能,提高实验能力和动手能力。

二、实验仪器与设备。

1. 传感器,温度传感器、光敏传感器、压力传感器。

2. 检测设备,示波器、数字万用表、信号发生器。

3. 实验平台,Arduino开发板、实验电路板、连接线等。

三、实验内容与步骤。

1. 温度传感器实验。

a. 将温度传感器连接至Arduino开发板,并接通电源。

b. 编写Arduino程序,读取温度传感器的数据并通过串口监视器输出。

c. 调节温度传感器周围环境的温度,观察串口监视器的数据变化。

d. 记录实验数据并分析温度传感器的工作原理。

2. 光敏传感器实验。

a. 将光敏传感器连接至Arduino开发板,并接通电源。

b. 编写Arduino程序,读取光敏传感器的数据并通过串口监视器输出。

c. 调节光线强度,观察串口监视器的数据变化。

d. 记录实验数据并分析光敏传感器的工作原理。

3. 压力传感器实验。

a. 将压力传感器连接至Arduino开发板,并接通电源。

b. 编写Arduino程序,读取压力传感器的数据并通过串口监视器输出。

c. 施加不同的压力,观察串口监视器的数据变化。

d. 记录实验数据并分析压力传感器的工作原理。

四、实验结果与分析。

通过本次实验,我们成功地实现了对温度传感器、光敏传感器和压力传感器的实验操作,并获取了相应的实验数据。

通过对数据的分析,我们深入理解了传感器的工作原理和应用场景,掌握了检测技术的基本方法和实验操作技能。

五、实验总结。

本次实验使我们对传感器与检测技术有了更深入的了解,提高了实验能力和动手能力。

通过实验操作,我们不仅掌握了传感器的工作原理和应用范围,还深入理解了检测技术的基本方法和实验操作技能。

这对我们今后的学习和科研工作具有重要的意义。

六、参考文献。

1. 《传感器与检测技术》,XXX,XXX出版社,XXXX年。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告目录1.电感式传感器 (2)1.1简介 (2)1.1.1自感式传感器 (2)1.1.2差动变压式传感器 (2)1.1.3电涡流传感器 (3)1.2电感式传感器原理 (3)1.3测量原理 (3)1.4应用场景 (4)2. 电容式传感器 (4)2.1简介 (5)2.1.1分类 (5)2.2电容式传感器原理 (6)2.3测量原理 (7)2.4应用场景 (8)3优缺点比较 (8)1.电感式传感器1.1简介电感式传感器是利用线圈自感或互感的改变来实现测量的种装置。

其结构简单,无活动电触点,工作寿命长。

而且灵敏度和分辨力高,输出信号强。

线性度和重复性都比较好,能实现信息的远距离传输、记录、显示和控制。

可以测量位移、振动、压力流量、比重等参数。

电感式传感器的核心部分是可变的自感或互感,在将被测量转换成线圈自感或互感的变化时,一般要利用磁场作为媒介或利用铁磁体的某些现象。

这类传感器的主要特征是具有电感绕组。

1.1.1自感式传感器自感式传感器是利用自感量随气隙变化而改变的原理制成的,用来测量位移。

自感式传感器主要有闭磁路变隙式和开磁路螺线管式,它们又都可以分为单线圈式与差动式两种结构形式。

1.1.2 差动变压式传感器把被测的非电量变化转换为线圈互感变化的传感器称为互感式传感器。

因这种传感器是根据变压器的基木原理制成的,并且其二次绕组都用差动形式连接,所以又叫差动变压器式传感器,简称差动变压器。

1.1.3 电涡流传感器根据电涡流效应制成的传感器称为电涡流式传感器。

按照电涡流在导体内的贯穿情况,此传感器可分为高频反射式和低频透射式两类,但从基本工作原理上来说仍是相似的。

电涡流式传感器最大的特点是能对位移、厚度、表面温度、速度、应力、材料损伤等进行非接触式连续测量,另外还具有体积小、灵敏度高、频率响应宽等特点,应用极其广泛。

1.2电感式传感器原理利用电磁感应原理将被测非电量转换成线圈自感系数或互感系数的变化,再由测量电路转换为电压或电流的变化量输出,这种装置称为电感式传感器。

南昌大学传感器实验报告三热敏电阻测温演示实验

南昌大学传感器实验报告三热敏电阻测温演示实验

实验三 热敏电阻测温演示实验热敏电阻特性:热敏电阻的温度系数有正有负,因此分成两类;PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。

一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中做自动消磁元件。

有些功率PTC 也做发热元件用。

PTC 缓变型热敏电阻可用做温度补偿或温度测量。

一般的NTC 热敏电阻测温范围为:-50℃~+300℃。

热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需要考虑引线长度带来的误差,适用于远距离传输等优点。

但热敏电阻也有:非线形大、稳定性差、有老化现象、误差较大、一致性差等缺点。

一般只适用于低精度的温度测量. 实验目的:了解NTC 热敏电阻现象。

所需单元:加热器、热敏电阻、可调直流稳压电源、-15V 稳压电源、V /F 表、主副电源。

实验步骤:(1)了解热敏电阻在实验仪上的位置和符号,它是一个黑色或棕色元件,封装在双平行振动梁上片梁的表面。

(2)将V /F 表切换开关置2V 档,直流稳压电源切换开关置±2V ,按图1接线,开启主、副电源,调整W1电位器,使V /F 表指示为1V 左右,这时为室温时的V i 。

(3)将-15V 电源接入加热器,观察电压表读数的变化,电压表的输出电压:(4)由此可见,当温度 升高 时,R T 阻值 减小V i 增大 测量数据:图1 接线图sL H T Li V W W R W V ∙++=)(111数据处理;将这几组数据进行画图得出:结论:温度升高时电压大,而由公式 知,电压增大时电阻减小。

由图可知:在30摄氏度到50摄氏度这一段区间内线性比较好,上了50摄氏度之后线性度就差。

因为公式本来就是非线性的,在低温时,由于热敏电阻Rt 趋近于无穷,使电路总电阻近似等于Rt ,而在逐渐升高时,Rt 变小。

Rt 和Rw 分压。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告一、实验目的。

本实验旨在通过对传感器和检测技术的研究和实验,掌握传感器的工作原理、特性及其在检测技术中的应用,提高学生对传感器和检测技术的理论和实际操作能力。

二、实验原理。

1. 传感器的工作原理。

传感器是一种能够对被测量进行感知并将感知到的信息转换成可识别的信号输出的装置。

其工作原理一般为根据被测量的变化,通过内部的敏感元件产生相应的信号输出。

常见的传感器有温度传感器、湿度传感器、光敏传感器等。

2. 传感器的特性。

传感器的特性包括灵敏度、线性度、分辨率、稳定性等。

这些特性直接影响着传感器的检测精度和可靠性。

在实际应用中,需要根据具体的检测需求选择合适的传感器,并对其特性进行评估和测试。

3. 传感器在检测技术中的应用。

传感器在各个领域都有着广泛的应用,如工业生产、环境监测、医疗诊断等。

通过传感器的检测技术,可以实现对各种参数的实时监测和控制,为生产和生活带来便利和安全保障。

三、实验内容。

1. 温度传感器的实验。

通过连接温度传感器和数据采集系统,测量不同温度下传感器的输出信号,并分析温度传感器的特性曲线和灵敏度。

2. 光敏传感器的实验。

利用光敏传感器对不同光照条件下的光强进行测量,并观察其输出信号的变化规律,了解光敏传感器的工作原理和特性。

3. 气体传感器的实验。

使用气体传感器对不同浓度的气体进行检测,并记录传感器的输出信号,分析气体传感器的检测灵敏度和稳定性。

四、实验结果与分析。

通过实验数据的收集和分析,我们得出了不同传感器在不同条件下的输出信号变化规律,了解了传感器的特性和在检测技术中的应用。

同时,也发现了传感器在实际应用中可能存在的一些问题和局限性,为今后的实际应用提供了参考和改进的方向。

五、实验总结与展望。

通过本次实验,我们对传感器和检测技术有了更深入的了解,掌握了一定的实验操作技能和数据分析能力。

同时,也意识到了传感器技术在实际应用中的重要性和挑战,为今后的学习和研究打下了基础。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告传感器与检测技术实验报告一、引言传感器与检测技术是现代科学技术领域中的重要组成部分,它们在各个行业和领域中起着至关重要的作用。

本实验报告旨在介绍传感器与检测技术的基本原理、应用领域以及实验过程与结果。

二、传感器的基本原理传感器是一种能够将物理量转化为可测量信号的装置。

它通过感知环境中的物理量变化,并将其转化为电信号或其他形式的信号输出。

传感器的基本原理可以归纳为以下几个方面:1. 压阻效应:基于材料的电阻随受力变化而改变的原理。

例如,压力传感器通过测量受力物体上的电阻变化来确定压力大小。

2. 磁阻效应:基于材料的电阻随磁场变化而改变的原理。

例如,磁场传感器通过测量磁场对材料电阻的影响来确定磁场强度。

3. 光电效应:基于材料的光电特性随光照变化而改变的原理。

例如,光电传感器通过测量光照对材料电流或电压的影响来确定光照强度。

三、传感器的应用领域传感器广泛应用于各个领域,包括但不限于以下几个方面:1. 工业自动化:传感器在工业自动化中起着关键作用。

例如,温度传感器用于监测工业生产过程中的温度变化,从而保证生产质量和安全。

2. 医疗健康:传感器在医疗健康领域中有着重要应用。

例如,心率传感器用于监测患者的心率变化,从而及时发现异常情况。

3. 环境监测:传感器在环境监测中起到关键作用。

例如,气体传感器用于监测大气中的气体浓度,从而及时发现环境污染问题。

四、实验过程与结果本次实验我们选择了温度传感器作为研究对象。

实验过程如下:1. 准备实验设备:包括温度传感器、电路板、电源等。

2. 连接电路:将温度传感器与电路板连接,并接通电源。

3. 测量温度:通过电路板上的显示屏读取温度传感器测得的温度数值。

实验结果显示,温度传感器能够准确地测量环境中的温度变化,并将其转化为电信号输出。

通过实验我们验证了温度传感器的可靠性和准确性。

五、结论传感器与检测技术在现代科学技术中扮演着重要的角色。

通过本次实验,我们深入了解了传感器的基本原理、应用领域以及实验过程与结果。

《传感器与检测技术(第3版)》实验实训

《传感器与检测技术(第3版)》实验实训

附A 实验篇一、温度的感知试验1、实验目的1.学会使用万用表和示波器。

2.了解热敏电阻、铂电阻、AD590集成温度传感器工作原理,技术参数以及使用注意事项。

3.了解几种温度传感器的R-T 特性。

2、元器件准备热敏电阻、铂电阻、AD590、万用表3、实验原理(一)热敏电阻热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。

其典型特点是对温度敏感,不同的温度下表现出不同的电阻值。

本实验中使用的是负温度系数热敏电阻器(NTC),温度越高,电阻值越低。

可以通过计算,将测得的电阻值转化为温度值。

热敏电阻的电阻-温度特性可近似地用下式表示:R=R0*exp{B*(1/T-1/T0)}其中,R-温度T(K)时的电阻值,R0-温度T0(K)时的电阻值,T(K)=t(℃)+273.15。

实际上,热敏电阻的 B 值并非是恒定的,其变化大小因材料构成而异。

因此在较大的温度范围内应用时,将与实测值之间存在一定误差。

为了方便使用,常取环境温度为25℃作为参考温度(即T0=25℃)。

则NTC 热敏电阻的电阻-温度关系式可以写成:R T/R25=expB N(1/T-1/298)(二)铂电阻铂电阻用于测量时,根据电阻随温度变化的特性,要求其材料电阻温度系数大,稳定性好电阻率高,电阻于温度之间最好有线性关系。

常用的热电阻主要有铂电阻和铜电阻。

铂电阻在0~630.7℃以内时,电阻和温度的关系为:R t=R0*(1+A*T+B*T2)式中R t—温度为T 时的铂电阻阻值R0—温度为0℃是铂电阻的阻值A—常数,A=3.9083*10-3℃-1 (R0=100Ω)B—常数,B=-5.775*10-7 ℃-1 (R0=100Ω)本实验采用的是Pt100 铂电阻。

电阻值在0℃的时候,电阻阻值为100Ω。

其测量范围通常为-200~650℃。

其应用范围很广,可用于医疗、电机、工业、温度计算、卫星、气象、阻值计算等高精温度设备上。

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告
目录
1. 传感器的概念
1.1 传感器的作用
1.2 传感器的分类
2. 检测技术的发展
2.1 检测技术的定义
2.2 检测技术的应用领域
2.3 检测技术的未来趋势
1. 传感器的概念
1.1 传感器的作用
传感器是一种能够感知并转换物理量或化学量等各种被测量信息为电信号或其他所需形式信息的器件。

传感器在工业控制、环境监测、医疗设备等领域发挥着关键作用,可以实现对各种参数的监测和控制。

1.2 传感器的分类
传感器可以根据其感知的被测量信息类型、工作原理、测量范围等不同特征进行分类。

常见的传感器分类包括光学传感器、压力传感器、温度传感器、湿度传感器等,每种传感器都有其特定的工作原理和适用场景。

2. 检测技术的发展
2.1 检测技术的定义
检测技术是利用各种传感器和仪器设备对特定参数或特征进行监测和测量的技术。

通过检测技术,可以获取被测量物体的信息,实现对其状态和性能的评估。

2.2 检测技术的应用领域
检测技术广泛应用于工业生产、环境保护、医疗诊断、安防监控等各个领域。

在工厂生产中,检测技术可以帮助监测设备运行状态和产品质量,提高生产效率;在医疗领域,检测技术可以用于疾病诊断和治
疗监测,提升医疗水平。

2.3 检测技术的未来趋势
随着科技的不断发展,检测技术也在不断创新和进步。

未来,检测技术可能会更加智能化、便捷化和精准化,例如结合人工智能技术实现自动化检测、远程监控等功能,为各个领域带来更加便利和高效的检测解决方案。

传感器与检测技术实验报告二

传感器与检测技术实验报告二

传感器与检测技术实验报告前言:常用的光学传感元件有光电散射、反射、直通等。

激光器和光纤传感设备也属于光传感器的一类。

光学传感器大多是有传感器的光电传感器通过反射或阻挡光束而进行探测。

这些传感器成本低、通用性强、可靠性高,是制造过程中使用最为广泛的传感器之一。

我将分析其中的光敏电阻GL3516以及硅光电池 LXD1010CE,具体内容如下。

一、光学检测【光敏电阻GL3516】1、传感器照片2、应用场景3、测量原理光敏电阻的工作原理是基于内光电效应。

在半导体光敏材料两端装上电极引线,将其封装在带有透明窗的管壳里就构成光敏电阻,为了增加灵敏度,两电极常做成梳状。

用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。

通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。

入射光消失后,由光子激发产生的电子—空穴对将复合,光敏电阻的阻值也就恢复原值。

在光敏电阻两端的金属电极加上电压,其中便有电流通过,受到一定波长的光线照射时,电流就会随光强的增大而变大,从而实现光电转换。

光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也加交流电压。

半导体的导电能力取决于半导体导带内载流子数目的多少。

4、传感器原理光敏电阻是用硫化隔或硒化隔等半导体材料制成的特殊电阻器,表面还涂有防潮树脂,具有光电导效应。

光敏电阻的工作原理是基于内光电效应,即在半导体光敏材料两端装上电极引线,将其封装在带有透明窗的管壳里就构成光敏电阻。

5、比较光敏电阻GL3516具有很好的价格优势,对使用要求不高的情况下,光敏电阻GL3516更适合二、典型用于光度计【硅光电池 LXD1010CE】1、传感器图片2、应用场景3、测量原理硅光电池的工作原理是光生伏特效应.它是一个大面积的光电二极管,它可把入射到它表面的光能转化为电能。

当光照射在硅光电池的PN结区时,会在半导体中激发出光生电子空穴对.PN结两边的光生电子空穴对,在内电场的作用下,属于多数载流子的不能穿越阻挡层,而少数载流子却能穿越阻挡层.结果,P区的光生电子进入N区,N区的光生空穴进入P区,使每个区中的光生电子一空穴对分割开来.光生电子在N区的集结使N区带负电,光生电子在P区的集结使P区带正电.P区和N区之间产生光生电动势.当硅光电池接入负载后,光电流从P区经负载流至N区,负载中即得到功率输出。

《传感器与检测技术》温度测量实验报告

《传感器与检测技术》温度测量实验报告

《传感器与检测技术》温度测量实验报告课程名称:传感器与检测技术实验类型:验证型实验实验项目名称:温度测量一、实验目的和要求(必填)PN 结温度传感器测温实验:了解PN 结温度传感器的特性及工作情况。

热电偶测温性能实验:了解热电偶测量温度的性能与应用范围。

二、实验内容和原理(必填)PN 结温度传感器测温实验:晶体二极管或三极管的PN 结电压是随温度变化的。

例如硅管的PN 结的结电压在温度每升高1ºC 时,下降约 2.1mV,利用这种特性可做成各种各样的PN 结温度传感器。

它具有线性好、时间常数小(0.2~2 秒),灵敏度高等优点,测温范围为-50ºC~+150ºC。

其不足之处是离散性大,互换性较差。

热电偶测温性能实验:热敏电阻分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。

一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,有些功率PTC 也作为发热元件用。

PTC 缓变型热敏电阻可用于温度补偿或作温度测量。

一般的NTC 热敏电阻测温范围为:-50ºC — +300ºC。

热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需要考虑引线长度带来的误差,适用于远距离传输等优点。

但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。

一般只适于低精度的温度测量。

三、需用器件与单元:加热器、热敏电阻、可调直流稳压电源、+15V 不可调直流稳压电源、电压/频率表、主、副电源、液晶温度表。

三、主要仪器设备PN 结温度传感器测温实验:需用器件与单元:主、副电源、可调直流稳压电源、+15V 不可调直流稳压电源、差动放大器、电压放大器、电压/频率表、加热器、电桥、液晶温度表、PN 结传感器。

热电偶测温性能实验:K 型、E 型热电偶、温度测量控制仪、温度源、差动放大器、电压表、直流稳压电源+15V。

南昌大学传感器与检测技术实验报告

南昌大学传感器与检测技术实验报告

南昌大学实验报告学生姓名:学号:专业班级:实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验一差动变压器的应用——电子秤一、实验目的1.了解差动变压器的实际应用二、实验器材音频振荡器、差动放大器、移相器、相敏检波器、低通滤波器、V/F表、电桥、砝码、振动平台。

三、实验内容及步骤(1)按下图1接线,组成一个电感电桥测量系统,开启主、副电源,利用示波器观察调节音频振荡器的幅度旋钮,使音频振荡器的输出为V值为lV。

P-P(2)将测量系统调零,将V/F表的切换开关置20V档,示波器X轴扫描时间切换到0.1~0.5ms(以合适为宜),Y轴CHl或CH2切换开关置5V/div,音频振荡器的频率旋钮置5KHz,幅度旋钮置中间位置。

开启主、副电源,调节电桥网络中的W1,W2,使V/F表和示波器显示最小,再把V/F表和示波器Y轴的切换开关分别置2V和50mv/div,细条W1和W2旋钮,使V/F表显示值最小。

再用手按住双孔悬臂梁称重传感器托盘的中间产生一个位移,调节移相器的移相旋钮,使示波器显示全波检波的图形。

放手后,粱复原。

图1 接线图(3)适当调整差动放大器的放大倍数,使在称重平台上放上一定数量的砝码时电压表指 示不溢出。

(4)去掉砝码,必要的话将系统重新调零。

然后逐个加上砝码,读出表头读数,记下实 验数据,填入下表;四 数据处理对上述数据用最小二乘法进行拟合得到拟合直线如下图2所示:图2 添加砝码质量与电压示数的关系(1)由最大非线性误差max ΔL 1.03398088 6.96=⨯-=g而满量程输出为:122FS Y g =。

故得该电子称的线性度为:max100% 5.7%L FSL Y γ∆=⨯= (2)由通过最小二乘拟合得到的直线方程为: 1.0339 1.1071U M =+, 故该电子称的灵敏度为: 1.0339y xk ∆==∆五 实验总结与心得体会1. 实验过程中差动变压器一次侧不能接直流电压激励,否则会损害传感器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告实验课程:传感器与检测技术学生姓名:苏文斌学号:6100311200专业班级:自动化114班2014年 6月5日目录实验一差动变压器的应用实验二热电偶的原理及分度表的应用实验三热敏电阻测温演示实验实验四霍尔式传感器的静态位移特性南昌大学实验报告学生姓名: 苏文斌 学 号: 6100311200 专业班级: 自动化114班 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩:实验一 差动变压器的应用——电子秤一、实验目的:1、了解差动变压器的实际应用。

2、根据理论知识熟悉差动变压器工作原理。

二、实验耗材:音频振荡器、差动放大器、移相器、相敏检波器、低通滤波器、V /F 表、电桥、砝码、振动平台。

三、实验步骤:有关旋钮初始位置:音频振荡器调至4KH Z ,V/F 表打到2V 档。

按图1接线,组成一个电感电桥测量系统,开启主、副电源,利用示波器观察调节 音频振荡器的幅度旋钮,使音频振荡器的输出为V P-P 值为lV 。

将测量系统调零,将V/F 表的切换开关置20V 档,示波器X 轴扫描时间切换到0.1~0.5ms (以合适为宜),Y 轴CHl 或CH2切换开关置5V/div ,音频振荡器的频率旋钮置5KHz,幅度旋钮置中间位置。

开启主、副电源,调节电桥网络中图1 接线的W1,W2,使V/F表和示波器显示最小,再把V/F表和示波器Y轴的切换开关分别置2V和50mv/div,细条W1和W2旋钮,使V/F表显示值最小。

再用手按住双孔悬臂梁称重传感器托盘的中间产生一个位移,调节移相器的移相旋钮,使示波器显示全波检波的图形。

放手后,粱复原。

适当调整差动放大器的放大倍数,使在称重平台上放上一定数量的砝码时电压表指示不溢出。

去掉砝码,必要的话将系统重新调零。

然后逐个加上砝码,读出表头读数,记下实验数据,填入下表;曲线图如下:去掉砝码,在平台上放一重量未知的重物,记下电压表读数,关闭主副电源。

利用所得数据,求得系统灵敏度及重物重量。

四、注意事项:(1)砝码不宜太重,以免粱端位移过大。

(2)砝码应放在平台中间部位,为使操作方便,可将测微头卸掉。

五、实验心得本次实验是我们第一次进行传感器与检测技术的实验,实验开始对实验仪器比较好奇,进行了各种尝试,最后按照实验指导书进行了连线,但是遇到了实验仪器存在问题,不能进行实验,进过与其他小组同学的合作之后才得以完成,本次实验我们不仅仅第一次见识到了这样的实验仪器,并且通过实验加强了自己对理论知识的理解,差动变压器的应用相对而言比较广泛,这也加强了我们自己动手能力。

南昌大学实验报告学生姓名:苏文斌学号:6100311200 专业班级:自动化114班实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验二热电偶的原理及分度表的应用一、实验目的:1、了解热电偶的原理及现象。

2、掌握和熟悉热电偶的理论知识。

二、实验仪器:+15V 不可调直流稳压电源、差动放大器、电压表、加热器、热电偶、水银温度计(自备)、主、副电源。

三、实验步骤:1、了解热电偶在实验仪上的位置及符号,实验仪所配的热电偶是由铜-康铜组成的简易热电偶,分度号为T。

实验仪有二个热电偶,它封装在双平行梁的上片梁的上表面(在梁表面中间二根细金属丝焊成的一点,就是热电偶)和下片梁的下表面,二个热电偶串联在一起产生热电势为二者的总和。

2、按图4接线、开启主、副电源,调节差动放大器调零旋钮,使电压表显示零,记录下自备温度计的室温(此时的温度为冷端温度)。

图四3、将+15V直流电源接入加热器的一端,加热器的另一端接地(加热时间不要超过2 分钟)。

观察电压表显示值的变化,待显示值稳定不变时记录下电压表显示的读数E。

4、用自备的温度计测出上梁表面热电偶处的温度t并记录下来。

(注意:温度计的测温探头不要触到应变片,只要触及热电偶处附近的梁体即可)。

5、根据热电偶的热电势与温度之间的关系式: ( , ) ( , Eab t to = Eab t tn ) + Eab(tn ,to ) 计算热端温度为t,冷端温度为0℃时的热电势, ( , ) o Eab t t ,根据计算结果,查分度表得到温度t。

6、热电偶测得温度值与自备温度计测得温度值相比较。

(注意:本实验仪所配的热电偶为简易热电偶、并非标准热电偶,只要了解热电势现象)7、实验完毕关闭主、副电源,尤其是加热器+15V 电源(自备温度计测出温度后马上拆去+15V电源连接线),其它旋钮置原始位置。

附表如下:四、实验数据:室温:29℃E=0.171mV测得温度T=40℃又Eab(T,Tn)=E/(150*2)=0.570mVEab(T,T0)=Eab(T,Tn)+Eab(Tn,T0)=0.570mV+1.155mV=1.725mV查表得T的理论值为:T=43℃五、实验思考:1、为什么差动放大器接入热电偶后需再调差放零点?答:因为热电偶的自由端与工作端处在室温。

2、即使采用标准热电偶按本实验方法测量温度也会有很大误差,为什么?答:热电偶测量温度时,其冷端保持温度恒定(冰点温度),热端接触待测物体,此时产生温差电动势。

但由于冷端处于室温环境中,热端与冷端温差并非热端与冰点的温差,因此必须加入冷端补偿电路,此时测得的电动势才与摄氏温度一一对应。

但由于本实验中冷端温度为室温且没有用冷端补偿器,所以导致测量温度有很大误差。

六、实验心得:本次实验的原理是热电偶的原理,在次之前我们在理论课部分进行了详细的学习,热电偶的热电势不仅仅与热端温度有关,而且和冷端温度也有关系,只有冷端温度恒定的时候,才能通过测量热电势得到热端温度,否则需要通过补偿导线将冷端延长到一个温度恒定的地方,所以本次实验我们的理论知识还是比较充分,但是实验过程中还是遇到了一些问题,实验数据也出现了一些误差,但是通过本次实验对理论知识进行了衣服呢验证,有一定收获。

南昌大学实验报告学生姓名: 苏文斌 学 号: 6100311200 专业班级: 自动化114班 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩:实验三 热敏电阻测温演示实验一、实验目的:了解NTC 热敏电阻现象。

二、实验单元:加热器、热敏电阻、可调直流稳压电源、-15V 稳压电源、V/F 表、主副电源。

三、实验步骤:(1)了解热敏电阻在实验仪上的位置和符号,它是一个黑色或棕色元件,封装在双平行振动梁上片梁的表面。

(2)将V/F 表切换开关置2V 档,直流稳压电源切换开关置±2V ,按图1接线,开启主、副电源,调整W1电位器,使V/F 表指示为1V 左右,这时为室温时的V i 。

(3)将-15V 电源接入加热器,观察电压表读数的变化,电压表的输出电压:(4)由此可见,当温度升高时,R T 阻值下降,V i 升高四、实验思考:如果你手中有这样一个热敏电阻,想把它作为一个0~50℃的温度测量电图1 接线图sL H T Li V W W R W V ∙++=)(111路,你认为该怎样实现?答;让热敏电阻和某一定值电阻Rv串联,在低温时,由于热敏电阻Rt趋近于无穷,使电路总电阻近似等于Rt,而在高温是,Rt趋近于0,电路的总电阻等于Rv,热电特性曲线是非线性的,单笔单个热敏元件要平坦。

接电路时,要注意用三线制或四线制接法。

五、实验思考:在理论课程中,我们对于半导体热敏电阻有了一定的了解,按照热敏电阻率随着温度变化的特性不同,热敏电阻分为正温度系数(PTC)负温度系数(NTC)临界温度系数(CTR)三种,本次实验是研究负温度系数(NTC热敏电阻现象),阻值下降,明所以通过本次实验对其进行验证,确实是得到了当温度升高时,RT显的负温度系数。

通过本次实验也加深了对热敏电阻的理解。

南昌大学实验报告学生姓名:苏文斌学号:6100311200 专业班级:自动化114班实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验四霍尔式传感器的静态位移特性—直流激励一、实验目的:了解霍尔式传感器的原理与特性。

二、实验部件:霍尔片、磁路系统、电桥、差动放大器、V/F表、直流稳压电源,测微头、振动平台。

三、实验准备:差动放大器增益旋钮打到最小,电压表置2V档,直流稳压电源置2V档,主、副电源关闭。

四、实验步骤:(1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号,霍尔片安装在实验仪的振动圃盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔式传感器。

(2)开启主、副电源将差动放大器调零后,增益置接近最小,使得霍尔片在磁场中位移时V/F表读数明显变化,关闭主,副电源,根据图1接线,W1、r 为电桥单元的直流电桥平衡网络。

图1 接线图(3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置。

(4)开启主、副电源,调整W1使电压表指示为零。

(5)上下旋动测微头,记下电压表读数,建议每隔0.2mm读一个数,将读数填入下表:曲线如下:用最小二乘法处理数据:令:Y=A+Bx有实验数据可得:A=-0.48 B=0.2所以 Y=0.2x-0.48由此可以得出灵敏度:k=dy/dx=0.2可见,本实验测出的实际上是磁场情况,它的线性越好,位移测量的线性度也越好,它的变化越陡,位移测量的灵敏度也越大。

(6)实验完毕,关闭主、副电源,各旋钮置初始位置。

五、注意事项:(1)由于磁路系统的气隙较大,应使霍尔片尽量靠近极靴,以提高灵敏度。

(2)一旦调整好后,测量过程中不能移动磁路系统。

(3)激励电压不能过大,以免损坏霍尔片。

(±4V就有可能损坏霍尔片)六、实验心得:本次实验是我们传感器与检测技术的最后一个实验,对于霍尔式传感器理论课中没有详细讲解,但是对于气筒霍尔效应及其霍尔电势的原理高中有着一定的知识,这一次实验刚开始数据测量总是存在一定的问题,经过学长的指导之后实验顺利完成,经过曲线拟合比较之后,验证得到测出的实际上是磁场情况,它的线性越好,位移测量的线性度也越好,它的变化越陡,位移测量的灵敏度也越大。

在这次实验中自己也学习到了课堂上所没有学习到的东西。

相关文档
最新文档