2018年重庆市初一数学竞赛试卷

合集下载

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。

(C) $-\frac{1}{3}$。

(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。

注:本题也可用特殊值法来判断。

2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。

(B) $1$。

(C) $0$。

(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。

苏教版初一数学4.3 用一元一次方程解决实际问题(第4课时 球赛积分问题)

苏教版初一数学4.3 用一元一次方程解决实际问题(第4课时 球赛积分问题)

4.3 用一元一次方程解决实际问题(第4课时球赛积分问题)一、单选题(共10小题)1.(2020·耒阳市期中)同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场2.(2018·宜宾市期中)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17 B.18 C.19 D.20 3.(2020·唐县期末)足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A.3场B.4场C.5场D.6场4.(2020·宾县期末)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.2 B.3 C.4 D.55.(2020·乌兰浩特期末)一次知识竞赛共有20道选择题,规定答对一道题得5分,不做或做错一题扣1分,如果某学生的得分为76分,则他做对了道题( )A.16 B.17 C.18 D.196.(2018·重庆市期末)在12月4日全国普法日中,我去某校进行了法律知识竞赛,竞赛内容是10道有关中学生应该了解的法律常识,竞赛规则规定:答对一题得5分,不答或答错一题倒扣3分,若七年级1班某同学得了34分,则该同学答对题的个数是()A.9 B.8 C.7 D.67.(2019·汉阳市期末)学校组织知识竞赛,共设20道选择题,各题分值相同.下表记录了3名参赛学生的得分情况,若参赛学生小亮只答对了16道选择题,则小亮的得分是()A.80 B.76 C.75 D.708.(2019·福州市期中)在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=329.(2018·娄底市期末)要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ). A .()1x x 1152+= B .()1x x 1152-= C .()x x 115+= D .()x x 115-=10.(2020·蚌埠市期末)有x 支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是( ) A .x(x ﹣1)=21 B .x(x ﹣1)=42 C .x(x+1)=21 D .x(x+1)=42二、填空题(共5小题)11.(2019·乌拉特前旗期末)一次数学竞赛出了15个选择题,选对一题得4分,选错或不答一题倒扣2分,小明同学做了15题,得42分.设他做对了x 道题,则可列方程为_____. 12.(2018·长春市期末)一支足球队参加比赛,组委会规定胜一场得3分,平一场得1分,该队开局9场保持不败,共积21分,则该队胜了_____场.13.(2019·石家庄市期末)在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜一场得3分,平一场得1分,则该队共胜了_____场. 14.(2018·武汉市期末)下表是2015﹣2016赛季欧洲足球冠军杯第一阶段G 组赛(G 组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.(备注:总积分=胜场积分+平场积分+负场积分)本次足球小组赛中切尔西队总积分是___分.15.(2018·道里区期末)某电台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下标记录了3个参赛者的得分情况.参赛者的得分情况.参赛者D得76分,它答对了__________道题.三、解答题(共2小题)16.(2019·广州市期中)在某校举办的足球比赛中,规定:胜一场得3分,平一场得1分,•负一场得0分.某班足球队参加了12场比赛,共得22分,已知这个球队只输了2场,那么此队胜几场,平几场?17.(2018·深圳市期末)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积______分,胜一场积______分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.一、单选题(共10小题)1.(2020·耒阳市期中)同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了( ) A .10场 B .11场C .12场D .13场【答案】D 【详解】解:设该球队胜了x 场,则平了(30-9-x )场,根据题意可得: 3x+(30-9-x )=47, 解得,x=13,∴这只球队胜了13场,平了8场. 故选D.2.(2018·宜宾市期中)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为( ) A .17 B .18C .19D .20【答案】C 【解析】设他做对了x 道题,则4(25)70,19x x x --==,所以他做对了19道题,故选C 。

2018年七年级数学竞赛

2018年七年级数学竞赛

七年级“希望杯”竞赛试卷(考试时间90分钟,满分100分)一、选择题(每小题只有一个正确选项,每小题3分,共10题,总共30分)1.x 是任意有理数,则2x x + 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.某超市为了促销,先将彩电按原价提高了40%,然后在广告中写上“××节大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么每台彩电的原价为( )A. 2150元 元 元 D. 2300元 3.设0a b c ++=,abc >0,则b c c a a ba b c+++++的值是( ) A . 3- B. 1 C. 31-或D. 31-或4.把14个棱长为1的正方体,在地面上堆叠成如图(1)所示的立方体,然后将露出的表面部分染成红色.那么红色部分的面积为 ( ). A .215.某动物园有老虎和狮子,老虎的数量是狮子的2倍。

如果每只老虎每天吃肉千克,每只狮子每天吃肉千克,那么该动物园的虎、狮平均每天吃肉 ( ) A. 625千克 B. 725千克 C.825千克 D.925千克6.假设有2016名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1…… —的规律报数,那么第2010名学生所报的数是 ( )7.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( )A 、-1B 、0C 、1D 、不存在8. 适合81272=-++a a 的整数a 的值的个数有 ………………( ) A .5 B .4 C .3 D .29. 碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为纳米的碳纳米管,1纳米=米=10-9米,则纳米用科学记数法表示为( )A 、×10-9米B 、5×10-8米C 、5×10-9米D 、5×10-10米}10、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 3个B 4个C 5个D 无数个二、填空题(每题4分,共24分) 11. 计算:201620151431321211⨯++⨯+⨯+⨯ = 。

2018年重庆市初中数学竞赛初赛试题(含解答)

2018年重庆市初中数学竞赛初赛试题(含解答)

2018年重庆市初中数学竞赛初赛试题(C 卷)(本卷共三个大题,考试时间120分钟,满分120分)一、选择题:(每小题5分,共35分)1.自动门开启的连动装置如图所示,∠AOB 为直角,滑杆AB 为定长100cm ,端点A 、B 可分别在OA 、OB 上滑动.当滑杆AB 的位置如图所示时,OA =80cm .若端点A 向上滑动10cm ,则端点B 滑动的距离…………………………………………………( ) A .大于10cm B .等于10cmC .小于10cmD .不能确定2.右图是同若干个小立方体组成的大立方体,阴影部位为空心的通道.若把这个大立方体的内外表面都涂上颜色,则只有一个面涂了颜色的小立方体有…………………( ) A .16个 B .18个C .20个D .22个3.用“▲”、“●”、“◆”分别表示三种物体的重量,如果▲● = ●-◆▲ = ◆●+▲,那么这三种物体的重量比▲∶●∶◆=………………………………………………( )A .2∶3∶4B .2∶4∶3C .3∶4∶5D .2∶5∶44.已知实数a 、b 、c 均不为零,且满足a +b +c =0,则1b 2+c 2-a 2 + 1c 2+a 2-b 2+ 1a 2+b 2-C 2 的值………………………………………………………………………( )A .为正B .为负C .为零D .与的取值有关5.如图,一块边长为5cm 的正方形钢板的一角被挖去一个边长为1cm 的小正方形,一条直线把这块钢板分为面积相等的两部分,则这样的直线有……………………………………………( )A .1条B .3条C .5条D .无数条6.某计算机系统在同一时间只能执行一项任务,且完成该任务后才能执行下一项任务.一项任务的相对等待时间为提交任务到完成任务的时间与计算机系统执行该任务的时间之比.现有三项任务U 、V 、W ,计算机系统执行时间分别为1秒、3秒和5秒.现同时提交三项任务,则使三项任务相对等待时间之和最小的执行顺序是…………( )A .U ,V ,WB .V ,W ,UC .W ,U ,VD .U ,W ,V7.从小到大排列的11个两两不等的自然数n 1、n 2、n 3…n 11、,它们的和为2005,那么n 6的最大值为……………………………………………………………………………( )A .328B .329C .330D .331二、填空题(每小题5分,共35分)1.已知x 2-2x -1=0,则代数式(x -1)2-(x -3)(x +3)-(x -1) (x -3)的值为__________. 2.在矩形ABCD 中,E 是BC 上的一点,且AB =2,AD =3,∠ADB =∠CDE .则BE 的长为______________. 3.a 1= 11×2×3 + 12 = 23 ,a 2= 12×3×4 + 13 = 38 ,a 3= 13×4×5 + 14 = 415 ,a 4=14×5×6+ 15 = 524 ,……,按上述规律a 999=______________.4.在半径为1的⊙O 中,P 是 AB ⌒上的一点,若∠APB =∠AOB ,则弦AB 的长为___________.5.上数学课时,老师给出一个一元二次方程x 2+ax +b =0,并告诉学生,从数字1、3、5、7中随机抽取一个作为a ,从数字0、4、8中随机抽取一个作为b .组成不同的方程共m 个,其中有实数解的方程共n 个,则nm=____________. 6.如图,平行四边形ABCD 中,对角线BD =4 3 cm ,∠ADB =30°,将BCD 沿BD 折叠,点C 落在E 处,BE 与AD 相交于H .若AH ∶DH =1∶2,则S ABCD =____________.7.若干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒中,其中只留一个盒子是空的,然后他出去了.小光进来后,从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排下下,待小明回来后,仔细查看一遍,却没有发现有人动过棋子.那么,这些棋子共有__________个. 三、解答题(共50分)1.(16分)已知关于x 的方程x 2-(m 2+2m -3)x +2(m +1)=0的两个实数根互为相反数.A BD(1)求实数m的值;(2)若关于x的方程x2-(k+m)x-3m-k-5=0的根均为整数,求出所有满足条件的实数k.2.(16分)某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头.运输公司有每次可装运一件、二件、三件这种集装箱的三种型号的货车,这三种型号的货车每次收费分别为120元、160元、180元.现要求安排20辆货车刚好一次装运完这些集装箱.问这三种型号的货车各需多少辆,有多少种安排方式?哪种安排方式所付的运费最少?最小运费是多少?3.(18分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=8cm,BC=16cm,AB=6cm.动点M、N分别从点B、C同时出发,沿BC、CD方向在BC、CD上运动,点M、N运动的速度分别为2cm/秒、1cm/秒.(1)当点M、N运动了多少秒时,MN∥BD?(2)点M在BC边上运动时,没点M运动的时间为t(秒),是否存在某一时刻t(秒),使得△AMN的面积最小?若存在,请求出t的值;若不存在,请说明理由.2004年重庆市初中数学竞赛初赛试题(C 卷)参考答案一、选择题(每小题5分,共35分)二、填空题(每小题5分,共35分)三、解答题(共50分)1.解:(1)∵ 方程的两根互为相反数∴ m 2+2m -3=0 ………………………………………………………(2分) ∴ m =-3或m =1 ……………………………………………………(4分) 当m =-3时,Δ=16>0;当m =1时,Δ=-16<0故实数m =-3 ……………………………………………………………(6分) (2)由(1)可知m =-3∴ 方程为:x 2-(k -3)x +4-k =0 ……………………………………(8分) 设方程的两根为x 1,x 2,则x 1+x 2=k -3,x 1x 2=4-k ……………(10分) ∴ x 1x 2+x 1+x 2=1,即(x 1+1)(x 2+1)=2,∵ x 1,x 2是整数∴ ⎩⎨⎧x 1+1=1x 2+1=2 或⎩⎨⎧x 1+1=-1x 2+1=-2 ∴ ⎩⎨⎧x 1=0x 2=1 或⎩⎨⎧x 1=-2x 2=-3…………(8分)∴ k =-4或k =-2 ……………………………………………………(8分)2.解:设需要装运一件、二件、三件集装箱的货车分别为辆、辆、辆………………(2分)依题意得:⎩⎨⎧x +y +z =20 (1)x+2y +3z =50 (2)……………………………(4分)(1)×3-(2),得2x +y =10 ………………………………………………(6分)∴ ⎩⎨⎧y =10-2x z =10+x∵ y ≥0,∴ 0≤x ≤5 ∴ 只能取0、1、2、3、4、5共有:⎩⎪⎨⎪⎧x =0y =10z =10 ,⎩⎪⎨⎪⎧x =1y =8z =11 ,⎩⎪⎨⎪⎧x =2y =6z =12 ,⎩⎪⎨⎪⎧x =3y =4z =13 ,⎩⎪⎨⎪⎧x =4y =2z =14 ,⎩⎪⎨⎪⎧x =5y =0z =15六种安排方式 …………………………………………………………………(10分) 设总运费为w 元,则w =120x +160y +180z=120x +160(10-2x)+180(10+x) ………………………………………(12分) =3400-20x …………………………………………………………………(14分)当x =5时,总运费最低最低运费为w =3400-20×5=3300(元) …………………………………(16分)3.解:(1)设点M 、N 运动了x 秒,MN ∥BD ,则BM =2x (cm ),CM =16-2x (cm ),CN =x (cm ) …………………(2分) 又由已知可得BD =10,过D 作DH ⊥BC 于H ,则BH =AD =8 ……(4分) ∵ CH =8,CD =BD =10,故DN =10-x ……………………………(6分) 当CM BM = CNDN时,MN ∥BD 由16-2x 2x = x 10-x,得x = 409 (秒) ……………………………(10分) (2)存在S △AMN =S 梯形ABCD -(S △ABM +S △CMN +S △ADN )……………………………(12分)=12 (8+16)×6-12 [6×2t +(16-2t)×35 t +8×(6-35 t)] ………(14分) =72-(6t +245 t -35 t 2+24-125 )=35(t 2-14t)+48=35 (t -7)2+935 (0<t <8) …………………………………………(16分) 当t =7(秒)时,S △AMN 最小,且最小值为935(cm 2) …………………(18分)。

2018年全国初中七年级数学联合竞赛答案

2018年全国初中七年级数学联合竞赛答案

2018年全国初中数学联合竞赛(初一年级)参考答案与评分标准一、选择题(1)B ;(2)C;(3)A;(4)C ;(5)A ;(6)B ;(7)B;(8)D.二、填空题(9)3-;(10)3;(11)d b a c >>>;(12)36.(13)14-;(14)9.第二试一、(本题满分15分)解:设A B 、两地间的距离为x km,根据题意得4224x -+=⨯解得=10x …………………………………………………………………12分答:A B 、两地间的距离为10km.………………………………………………………15分二、(本题满分15分)解:30(1)410(2)a b c a b c =⎧⎨=-⎩K K +2-2+-6由(2)×2—(1)得=24a c -(3)…………………………………………………3分把(3)代入(2)得=62b c -…………………………………………………6分因为a b c 、、均为非负数,所以240200a c b c c =-≥⎧⎪=-≥⎨⎪≥⎩6,23c ≤≤.……………………10分336S a b c c ==--+-7………………………………………………………………12分max 12S =-,min 15S =-,xy =180…………………………………………………15分三、(本题满分20分)解:设每船可装a 升汽油,则每升油可行驶300a 海里,设两船用了x 升汽油返回,根据题意得22a x a x a x a -+-+-=…………………………………………………………12分解得25a x =.……………………………………………………………………………14分12300()21025a a a⨯+⨯=………………………………………………………………19分答:第3艘船最远可巡逻至210海里处.………………………………………………20分四、(本题满分20分)解:不妨设a b c >>,则111a b c<<,因为6665ab bc ca abc ++=,所以11156a b c ++=,………………………………………………………………………5分所以11113c a b c c<++<,……………………………………………………………………8分所以1536c c <<,所以61855c <<,所以=2c 或3.…………………………………12分当=2c 时,111=3a b +,1112b a b b <+<,所以1123b b <<,所以36b <<,所以=4b 或5.若=4b ,则=12a ;若=5b ,则15=2a (舍).…………………………………16分当=3c 时,111=3a b +,1112b a b b <+<,……………………………………………18分所以1122b b<<,所以24b <<,所以=4b (舍).所以=18a b c ++.……………20分。

人教版2018-2019学年七年级数学竞赛试卷B(含答案)

人教版2018-2019学年七年级数学竞赛试卷B(含答案)

绝密★启用前2018-2019学年人教版七年级数学竞赛试卷B注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共6小题,4*6=24)1.有一拉面师傅首先把一个面团搓成1.6米长的圆柱形面棍,对折,再拉长到1.6米;再对折,再拉长到1.6米;…这样对折10次,再拉长到1.6米,就做成了拉面.此时,若将手中的面条伸展开,把面条看作粗细均匀的圆柱形,它的粗细(直径)是原来面棍粗细(直径)的()A.B.C.D.2.某靶场有红、绿靶标共100个,其中红靶标的数量不到绿靶标数量的三分之一,若打中一个红靶标得10分,打中一个绿靶标得8.5分,小明打中了全部绿靶标和部分红靶标,在计算他所得的总分时,发现总分与红靶标的总数无关(包括打中的和没有打中的),则靶场有红靶标()个.A.22 B.20 C.18 D.163.编号为1到101的101个小球分放在两个盒子A和B中,40号小球在盒子A中,把这个小球从盒子A中移至盒子B中,这时盒子A中小球号码数的平均数增加了,B中小球号码数的平均数也增加了,则原来在盒子A中的小球个数为()A.70 B.71 C.72 D.734.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟5.将正整数按如图所示的位置顺序排列,根据图中的排列规律,2008应在()A.A位B.B位C.C位D.D位6.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为()A.1 B.2 C.3 D.5第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,4*6=24)7.现有长度分别12,3,4,7,8,9,10,13,14,15的线段各一条.若从中选出若干条(不截取)来拼接成正方形,则共有种不同的拼接法.8.袋中有红、黄、黑三种颜色的球各若干个,黄色球上标有数字5,黑色球上标有数字6,红色球上标的数字看不清.现从袋中拿出8个球,其中黄色球和黑色球的个数分别少于红色球的个数.已知8个球上的数字和是39,那么红色球上标的数字是;拿出黑色球的个数是.9.世界著名的莱布尼兹三角形如图所示,其排在第8行从左边数第3个位置上的数是.10.粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为mm.(,结果精确到1mm)11.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.12.一年共有12个月,闰年的二月是29天,又有4个小月,7个大月,所以闰年共有29×1+30×4×31×7=366(天).反过来思考:如果非负整数a,b,c满足等式:29a+30b+31c=366(*),那么a+b+c=,这样的数组(a,b,c)共有组,它们分别是.三.解答题(共4小题,52分)13.(12分)某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头,运输公司有每次可装运1件、2件、3件这种集装箱的三种型号的货车,这三种型号的货车每次收费分别为120元、160元、180元,现要求安排20辆货车刚好一次装运完这些集装箱.问这三种型号的货车各需多少辆?有多少种安排方式?哪些安排方式所需的运费最少?最少运费是多少?14.(12分)将正整数1、2、3、4、5、6…按下列规律进行排列:首先将这些数从“1”开始每隔一数取出,形成一列数:1、3、5、7排成一行;然后在剩下的数2、4、6、8…中从第一个数“2”开始每隔一数取出,形成第二列数:2、6、10、…排成第二行;照此下去,第三排的数由剩下的4、8、12、16、…中从第一个数“4”开始每隔一数取出4、12、20、…;如此一直继续下去,我们可以排成一张表如下表所示.(1)问32、42、72分别在表中的第几行?(2)对于表中第3列第n行的数,请你用关于n的代数式表示出来;(3)176在这个表中的第几行第几列.15.(14分)已知:五位数满足下列条件:(1)它的各位数字均不为零;(2)它是一个完全平方数;(3)它的万位上的数字a是一个完全平方数,干位和百位上的数字顺次构成的两位数以及十位和个位上的数字顺次构成的两位数也都是完全平方数.试求出满足上述条件的所有五位数.16.(14分)一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃:①能从任意一点(a,b),跳到点(2a,b)或(a,2b);②对于点(a,b),如果a>b,则能从(a,b)跳到(a﹣b,b);如果a<b,则能从(a,b)跳到(a,b﹣a).例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:(1,1)→(2,1)→(4,1)→(3,1).请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.(1)(3,5);(2)(12,60);(3)(200,5);(4)(200,6).参考答案1.解:第一次对折后长度为1.6×2米,第二次对折后长度为1.6×2×2米,第三次对折后长度为1.6×23米,第四次对折后长度为1.6×24米,第十次对折后长度为1.6×210米,设原来直径为r,则原体积为1.6πr2,现在的体积为1.6×210πR2=1.6πr2,∴==,即它的粗细(直径)是原来面棍粗细(直径)的.故选:B.2.解:设红靶x个,则绿靶(100﹣x)个,打中红的数目为k,打中了全部绿靶标得分:S=8.5(100﹣x)=850﹣8.5x,又总分=S+10x=85+10k﹣8.5x为一常数,所以10k=8.5x,又由“靶标的数量不到绿靶标数量的三分之一“知:x<即x<25,又x,k为自然数,所以x=20,k=17,即靶场有红靶标20个.故选:B.3.解:设原来盒子A中有弹珠x个,则盒子B中有弹珠(101﹣x)个.又记原来A中弹珠号码数的平均数为a,B中弹珠号码数的平均数为b.则由题意得:,由②得:a=(159+x),由③得:b=(58+x),将a、b代入①解得:x=73,即原来盒子A中有73个弹珠.故选:D.4.解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x﹣6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以.即18路公交车总站发车间隔的时间是4分钟.故选:B.5.解:被4除余数是1的排在D位,被4除余数是2的排在A位,被4除余数是3的排在B位,被4整除的排在C位.2008÷4=502,所以2008排在C位.故选:C.6.解:由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上.由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上1是奇数,沿顺时针跳两个点,落在3上.由3起跳,是奇偶数,沿顺时针跳两个点,落在5上.2﹣1﹣3﹣5﹣2,周期为4;又由2011=4×502+3,∴经过2011次跳后它停在的点所对应的数为3.故选:C.7.解:12+3+4+7+8+9+10+13+14+15=95,故正方形的边长最多为23,而组成的正方形需要4个边长,故边长最小为22.22=10+12=9+13=8+14=7+15,22=10+12=9+13=8+14=3+4+15,23=10+13=9+14=8+15=12+4+7,故边长为22的正方形有2个,边长为23的正方形有1个,共3个.故答案为3.8.解:∵黄色球和黑色球的个数分别少于红色球的个数,∴红色球只可能有4、5、6个,∴①若红色球6个,则黄色球1个,黑色球1个,则红色球标的数字为:=(舍去);②若红色球5个,黄色球1个,黑色球2个,则红色球标的数字为:=(舍去);③若红色球5个,黄色球2个,黑色球1个,则红色球标的数字为:=(舍去);④若红色球4个,黄色球1个,黑色球3个,则红色球标的数字为:=4;⑤若红色球4个,黄色球2个,黑色球2个,则红色球标的数字为:=(舍去);⑥若红色球4个,黄色球3个,黑色球1个,则红色球标的数字为:=(舍去).∴红色球上标的数字是4;拿出黑色球的个数是3.故答案为:4,3.9.解:∵第8行最后一个数是,第7行最后一个数是,第6行最后一个数是,∴第7行倒数第二个数是﹣=,第8行倒数第二个数是﹣=,∴第8行倒数第三个数是﹣=,故答案是:.10.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′•cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.11.解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.12.解:∵一年是12个月,∴a+b+c=12∴由题意得:由②×29,得29a+29b+29c=348 ③由①﹣③,得b+2c=18∴b=18﹣2c∴0≤18﹣2c≤12∴3≤c≤9且为整数.当c=3时,b=12,a=﹣3,不符合题意,应舍去.当c=4时,b=10,a=﹣2,不符合题意,应舍去.当c=5时,b=8,a=﹣1,不符合题意,应舍去.当c=6时,b=6,a=0.当c=7时,b=4,a=1.当c=8时,b=2,a=2.当c=9时,b=0,a=3.∴原方程组的解为:,,,共4组.故答案为:12,4,(0,6,6),(1,4,7),(2,2,8),(3,0,9).13.解:设需要装运1件、2件、3件集装箱的货车分别为x辆、y辆、z辆,根据题意得.,①×3﹣②得2x+y=10则因为y≥0,所以0≤x≤5,故x只能取0、1、2、3、4、5共有、、、、、,这六种安排方法:设总运费为F元,则F=120x+160y+180z=120x+160(10﹣2x)+180(10+x),所以F=3400﹣20x,当x=5时,总运费最低,最低运费为F=3400﹣20×5=3300元.14.解:(1)∵32=1×25,∴32在第6行,∵42=2×21=21×21,∴42在第2行,∵72=8×9=9×23,∴72在第4行;(2)由分析(1)可知,第3列第n行的数为5×2n﹣1;(3)∵176=11×24,∴176必在第5行,第6列.15.解:设,且a=m2(一位数),(两位数),(两位数),则M2=m2×104+n2×102+t2①由式①知M2=(m×102+t)2=m2×104+2mt×102+t2②比较式①、式②得n2=2mt.因为n2是2的倍数,故n也是2的倍数,所以,n2是4的倍数,且是完全平方数.故n2=16或36或64.当n2=16时,得mt=8,则m=l,2,4,8,t=8,4,2,1,后二解不合条件,舍去;故M2=11664或41616.当n2=36时,得mt=18.则m=2,3,1,t=9,6,18.最后一解不合条件,舍去.故M2=43681或93636.当n2=64时,得mt=32.则m=1,2,4,8,t=32,16,8,4都不合条件,舍去.因此,满足条件的五位数只有4个:11664,41616,43681,93636.16.解:(1)能到达点(3,5)和点(200,6).从(1,1)出发到(3,5)的路径为:(1,1)→(2,1)→(4,1)→(3,1)→(3,2)→(3,4)→(3,8)→(3,5).从(1,1)出发到(200,6)的路径为:(1,1)→(1,2)→(1,4)→(1,3)→(1,6)→(2,6)→(4,6)→(8,6)→(16,6)→(10,6)→(20,6)→(40,6)→(80,6)→(160,6)→(320,6)→(前面的数反复减20次6)→(200,6);(2)不能到达点(12,60)和(200,5).理由如下:∵a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数,∴由规则①知,跳跃不改变前后两数的公共奇约数.∵如果a>b,a和b的最大公约数=(a﹣b)和b的最大公约数,如果a<b,a和b的最大公约数=(b﹣a)和b的最大公约数,∴由规则②知,跳跃不改变前后两数的最大公约数.从而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数.∵1和1的公共奇约数为1,12和60的公共奇约数为3,200和5的公共奇约数为5.∴从(1,1)出发不可能到达给定点(12,60)和(200,5).。

2018-2019学年七年级学科竞赛数学试题(含答案) (4)

2018-2019学年七年级学科竞赛数学试题(含答案) (4)

2018-2019学年七年级学科竞赛数学试题(含答案)一.选择题(共6小题)1.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分2.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=()A.30 B.40 C.45 D.503.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个 B.3个 C.4个 D.5个4.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B.16号C.17号D.18号5.若k为整数,则使得方程(k﹣1999)x=2001﹣2000x的解也是整数的k的值有()A.4个 B.8个 C.12个D.16个6.四点钟后,从时针到分针第二次成90°角,共经过()分钟(答案四舍五入到整数).A.30 B.33 C.38 D.40二.填空题(共5小题)7.关于x的方程:≠0,则x=.8.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款元.9.一轮船从甲地到乙地顺流匀速行驶需4小时,从乙地到甲地逆流匀速行驶需6小时,有一木筏由甲地漂流至乙地,需小时.10.如图是在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形的边长为1,则正方形A的面积是.11.已知不论x取何数值,分式的值都为同一个定值,那么的值为.三.解答题(共5小题)12.附加题:某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15,7,11,3,14台,现在为使各校电脑台数相等,各调几台给邻校:一小给二小,二小给三小,三小给四小,四小给五小,五小给一小.若甲小给乙小﹣3台,则乙小给甲小3台,要使电脑移动的总台数最小,应做怎样安排?13.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.14.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.15.小明解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并正确求出方程的解.2018年08月19日136****0321的初中数学组卷参考答案与试题解析一.选择题(共6小题)1.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分【分析】根据题意假设该手表从4时30分走到10时50分所用的实际时间为x 小时,该手表的速度为57分/小时,再进行计算.【解答】解:慢表走:57分钟,则正常表走:60分钟,即如果慢表走:6小时20分(即380分),求正常表走了x分钟,则57:60=380:x,解得x=400,400分钟=6小时40分,所以准时时间为11时10分.故选:A.【点评】本题要注意手表的实际时间和准确时间的关系,然后找出其中关联的等量关系,得出方程求解.2.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=()A.30 B.40 C.45 D.50【分析】根据题中所给的关系,找到等量关系,由于共交电费56元,可列出方程求出a.【解答】解:∵0.50×100=50<56,∴100>a,由题意,得0.5a+(100﹣a)×0.5×120%=56,解得a=40.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.此题的关键是要知道每月用电量超过a度时,电费的计算方法为0.5×(1+20%).3.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个 B.3个 C.4个 D.5个【分析】根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的那个最小的正数求出.【解答】解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0;∴5x+1=0.8,得:x=﹣0.04<0,不符合题意,故x的值可取131,26,5,0.8共4个.故选:C.【点评】本题立意新颖,借助新运算,实际考查一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.4.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B.16号C.17号D.18号【分析】因为12月份有31天,故他们最多相差28天.又小明和小莉的出生日期都是星期五,故他们的出生日期相差7的整数倍.故他们的出生日期可能相差7、14、21、28天.【解答】解:设小明的出生日期为x号.(1)若他们相差7天,则小莉的出生日期为x+7,应有x+7+x=22,解得x=7.5,不符合题意,舍去.(2)若他们相差14天,则小莉的出生日期为x+14,应有x+14+x=22,解得x=4,符合题意;所以小莉的出生日期是14+4=18号;(3)若相差21天、28天显然不合题意.故选:D.【点评】本题用到的知识点为:都在周五出生,他们的出生日期可能相差7、14、21、28.应分情况讨论.5.若k为整数,则使得方程(k﹣1999)x=2001﹣2000x的解也是整数的k的值有()A.4个 B.8个 C.12个D.16个【分析】先把原方程变形为(k﹣1999)x+2000x=2001,得出x=,然后求出2001的因数有16个.【解答】解:原方程变形得:(k﹣1999)x+2000x=2001,∴x=,∵k为整数,∴2001的因数有:1,3,23,29,69,87,667,2001,﹣1,﹣3,﹣23,﹣29,﹣69,﹣87,﹣667,﹣2001.∴共有16个.故选:D.【点评】本题主要考查了二元一次方程的解的定义,要会用代入法判断二元一次方程的解.该题主要用的是排除法.6.四点钟后,从时针到分针第二次成90°角,共经过()分钟(答案四舍五入到整数).A.30 B.33 C.38 D.40【分析】此题可以用淘汰的方法,把度数设为未知数X,从4点到五点这段时间时针走的为30×(),分针走的为360×().【解答】解:设走了X分钟则得到方程:360×()﹣120﹣30×()=90解得:X=38答:共经过38分钟.故选:C.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.二.填空题(共5小题)7.关于x的方程:≠0,则x=a+b+c.【分析】观察等式发现x所处的位置相同,因而要将x 从分式中分解出来,并且、、因而将3分解为这三个形式,因而原等式转化为.再提取公因式,化简为.最后判断出x与a、b、c的关系.【解答】解:∵⇒∵是一元一次方程的系数∴必然是∴只能是x=a+b+c故答案为a+b+c【点评】本题考查因式分解的应用、解一元二次方程.本题同学们需注意“1”的妙用,有时为了解题的需要将1写成分式的形式,如本题中的、、.8.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款204元.【分析】先求出第一次购书时的实际定价,再根据第二次购书节省的钱数列出方程,再求解即可.【解答】解:第一次购书付款72元,享受了九折优惠,实际定价为72÷0.9=80元,省去了8元钱.依题意,第二次节省了26元.设第二次所购书的定价为x元.(x﹣200)×0.8+200×0.9=x﹣26,解得x=230.故第二次购书实际付款为230﹣26=204元.【点评】解答本题需注意第二次所购的书有九折的部分,有八折的部分,需清楚找到这两部分实际出的钱.9.一轮船从甲地到乙地顺流匀速行驶需4小时,从乙地到甲地逆流匀速行驶需6小时,有一木筏由甲地漂流至乙地,需24小时.【分析】根据顺流时:行驶速度+水流速度=总路程÷总时间,逆流时:行驶速度﹣水流速度=总路程÷总时间,可得到两个关于行驶速度和水流速度的方程组,解得水流速度,即可得漂流所需时间.【解答】解:设总路程为1,轮船行驶速度为x,水流速度为y,根据题意得:,解得y=,木阀漂流所需时间=1÷=24(小时).故答案填:24.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解,准确的找到等量关系并用方程组表示出来是解题的关键.10.如图是在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形的边长为1,则正方形A的面积是49.【分析】设右下方两个相等的正方形的边长为x,则根据题意知,正方形A的边长为x+3,此色块图为一个长方形,可根据长=长列方程.【解答】解:设右下方两个相等的正方形的边长为x,则根据题意知,正方形A 的边长为x+3,此色块图为一个长方形,则(x+2)+(x+3)=(x+1)+x+x,2x+5=3x+1,x=4,正方形A的边长为x+3=4+3=7,故正方形A的面积为7×7=49.【点评】本题考查理解题意和识别图形的能力,关键是设出左上角正方形的边长,然后表示出其他正方形的边长,根据正方形的性质,列出方程,最后求出面积.11.已知不论x取何数值,分式的值都为同一个定值,那么的值为.【分析】根据不论x取何数值,分式的值都为同一个定值,即可求得分式的定值,进而把x=1代入求得a,b的关系,从而求解.【解答】解:设=k,则ax+3=k(bx+5),∵x不论取何值该等式都成立,∴a=bk,5k=3,∴=.故答案是:【点评】本题主要考查了分式的求值,根据条件求得a,b之间的关系是解决本题的关键.三.解答题(共5小题)12.附加题:某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15,7,11,3,14台,现在为使各校电脑台数相等,各调几台给邻校:一小给二小,二小给三小,三小给四小,四小给五小,五小给一小.若甲小给乙小﹣3台,则乙小给甲小3台,要使电脑移动的总台数最小,应做怎样安排?【分析】首先用A、B、C、D、E分别表示这五所小学的位置,并设A向B调x1台电脑,B向C调x2台电脑,…,E向A调x5台电脑,进而表示出y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,利用函数最值求出即可.【解答】解:如图,用A、B、C、D、E分别表示这五所小学的位置,并设A向B 调x1台电脑,B向C调x2台电脑,…,E向A调x5台电脑,依题意有:7+x1﹣x2=11+x2﹣x3=3+x3﹣x4=14+x4﹣x5=15+x5﹣x1=50÷5=10,所以,x2=x1﹣3,x3=x1﹣2,x4=x1﹣9,x5=x1﹣5,设调动的电脑的总台数为y,则y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,这样,这个实际问题就转化为求y的最小值问题,并由上面所得结论知:当x1==3时,y的最小值为|3|+|3﹣3|+|3﹣2|+|3﹣9|+|3﹣5|=12,即调动的总台数为12.因为x1=3时,x2=0,x3=1,x4=﹣6,x5=﹣2,故一小就向二小调3台电脑,二小不调出,三小向四小调一台电脑,五小向四小调6台电脑,一小向五小调2台电脑.【点评】此题主要考查了函数的最值问题,根据已知得出y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,进而利用绝对值性质求出是解题关键.13.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.【分析】(1)从出故障地到把人都送到考场需要时间是×3;(2)汽车送第一批人的同时,第二批人先步行,可节省一些时间.【解答】解:(1)(分钟),∵45>42,∴不能在限定时间内到达考场.(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后先步行的4人相遇,5t+60t=13.75,解得.汽车由相遇点再去考场所需时间也是.所以用这一方案送这8人到考场共需.所以这8个人能在截止进考场的时刻前赶到.方案2,8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需,汽车从出发点到A处需先步行的4人走了,设汽车返回t(h)后与先步行的4人相遇,则有,解得,所以相遇点与考场的距离为:.由相遇点坐车到考场需:.所以先步行的4人到考场的总时间为:,先坐车的4人到考场的总时间为:,他们同时到达则有:,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.【点评】此题在设计方案的基础上,这样设计方案会更节省时间,汽车送第一批人的同时,第二批人先以5千米/时速度步行,汽车把第一批人送到距考场S千米的A处后,回来接第二批人.同时,第一批人也以5千米/时的速度继续赶往考场,使两批人同时到达考场,在汽车来回接人的过程中,多了第一批人在步行,显然所用时间比设计方案少,故此方案这8人都能赶到考场,且最省时间.14.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.【分析】设甲、乙两地的距离为x,汽车以每小时60千米的速度行驶了4小时30分钟,共行驶了60×4.5=270千米;车行驶了4小时30分钟后速度变为每小时40千米,则实际行驶的时间=(x﹣270)÷40+4.5小时;若按每小时60千米的速度由甲地驶往乙地需要的时间=甲、乙两地的距离÷60;由题意得:实际行驶的时间﹣按每小时60千米的速度由甲地驶往乙地需要的时间=小时.【解答】解:设甲、乙两地的距离为x千米,4小时30分钟=小时,45分钟=小时,依题可列方程:,解得:x=360.答:甲、乙两地的距离为360千米.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.15.小明解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并正确求出方程的解.【分析】把x=4代入小明粗心得出的方程,求出a的值,代入方程求出解即可.【解答】解:由题意可知:(在去分母时,方程左边的1没有乘10,由此求得的解为x=4),2(2x﹣1)+1=5(x+a),把x=4代入得:a=﹣1,将a=﹣1代入原方程得:+1=,去分母得:4x﹣2+10=5x﹣5,移项合并得:﹣x=﹣13,解得:x=13.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.。

2018年重庆市初中数学竞赛初赛试题(A卷)

2018年重庆市初中数学竞赛初赛试题(A卷)

2018年重庆市初中数学竞赛初赛试题(A 卷)(本卷共三个大题,考试时间120分钟,满分120分)一、选择题:(第小题5分,共35分)1.计算:-22-3×(-1)×(-4)的结果为( )A .-8B .8C .-16D .162.计算(-2)2004+(-2)2005的结果为( )A .22004B .-22004C .-2D .-13.若|x |=1,|y |=2,则|x +y |的值等于( ) A .3 B .-3C .1D .1或34.如图,用图1所示的图案剪成图2所示的小图案,你认为最多能剪( ) A .10个 B .15个C .20个D .25个5.一个五位数,若前两个数字表示的两位数为x ,后三个数字表示的三位数为y ,则这个五位数可表示为( )A .1000x +yB .100x +yC .1000y +xD .100y +x6.用若干个小正方体搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的几何体不同情况的总数为( ) A .6个 B .7个C .8个D .9个7.盒中原装有6个小球,一位魔术师从中任取出若干个小球,并将每一个小球变成6个小球后,再放回盒中,然后他又从盒中任取出若干个小球,并将每一个小球又变成6个小球后,再次放回盒中,如此继续到某一时刻,魔术师停止再取球变魔术时,这时盒中小球的总个数只可能是( )A 2004个B .2005个C .2006个D .2007个二、填空题:(每小题5分,共35分)1.请按照112 ,215 ,3110 ,4117 ,……这一列数的排列规律,写出第14位上的数是__________.2.若a >1,则下列四个数:a ,1a,-a ,a 2中,最大的一个数是__________.图1▲▲▲▲▲ ▲▲▲▲▲ ▲▲▲▲▲●●●●● ●●●●●图2正视图俯视图3.计算12 +13 +23 +14 +24 +34 +15 +25 +35 +45 +……+120 +220 +……+1920 的结果是___________.4.如果在数轴上表示有理数x 的点到原点的距离小于3,那么|x -3|+|x +3|的值等于____________.5.有人规定了一种新的运算“*”,对于任意两个有理数a 、b ,都有a *b =2a -3b5 ,若6*x=35,则x 的值为_________. 6.某城市的方形街道如图所示(图中每个小方形均为相等的正方形),小明同学要从A 地沿此方形街道前往B 地,则路程最短的走法共有________种.7.如图,四边形ABCD 是一个直角梯形,∠A =∠B =90°,AB =10cm ,BC =12cm ,AD =7cm ,四个顶点处扇形的半径分别为AE =BF =3cm ,DG =CH =4cm ,则图中阴影部分的面积为___________cm 2.(答案用含π的结果表示) 三、解答题:(每小题25分,共50分)1.某城市共有10条公路两两相交,且每两条公路只有一个交点,其中仅有三条公路交于同一点.为了让行人安全地通过公路的交点,市政府决定在这些公路的每个交点处安装一套红绿灯.亲爱的同学,如果你是一个工程师,请你动脑筋算一算应准备多少套红绿灯为这10条公路的每个交点处进行安装?二、6题图AB·· 二、7题图2.10个人围成一个圆圈,每个人心里想一个数,并把这个数告诉给左右相邻的两个人,然后每个人把左右相邻的两个人告诉给自己的数的平均数亮出来.如图所示,圆周上的数都是每个人亮出来的平均数.请你求亮出数为11的人心里想的那个数是多少?三、2题图7 896 · 510· ·· ··· · ·· 1112 13 14。

重庆市2018-2019学年下期第二阶段考试七年级数学试题及答案

重庆市2018-2019学年下期第二阶段考试七年级数学试题及答案

重庆市2018-2019学年下期第二阶段考试七年级数学试题总分:150分时间:120分钟一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D四个答案,其中只有一个是正确,请将答题卡...上对应题目正确答案的标号涂黑.1.如图,四幅汽车设计标志中,可以看作由“基本图案”经过平移得到的是()A B C D2.如图,点O在直线DB上,OA⊥OC,∠1=27°,则∠2的度数为()A.153° B.127° C.117° D.113°(第2题)(第6题)(第7题)3.下列不等式的变形不正确的是()A.若a>b,则a+3>b+3 B.若﹣a>﹣b则a<b:C .若﹣x<y,则x>﹣2y D.若﹣2x>a,则x >﹣a4.估计315﹣1在哪两个整数之间()A.0和1B.1和2 C.2和3 D.3和45.已知⎩⎨⎧==12yx是二元一次方程12=+myx的一个解,则m的值为()A.-5B.3C.-3D.56.将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个 B.4个C.3个D.2个7.如图所示是一个运算程序,若输入α的值为4的算术平方根,则输出的结果为()A.26 B. 6 C.4- D.24-8.若第四象限内的点P(yx、),满足3||=x,252=y,则点P的坐标是()A.(3,-5)B.(5,-3)C.(-3,5)D.(-5,3)9.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,正确的是().A.⎩⎨⎧+==-)1(249xyyxB.⎩⎨⎧+==+)1(249xyyxC.⎩⎨⎧==-)1-(249xyyxD.⎩⎨⎧==+)1-(249xyyx10.如图,在直角三角形ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将△ABC沿直线BC平移2个单位得到三角形DEF,连接AE.有下列结论:①∠DAC=∠F;②DE⊥AC;③EC=2;④点D到直线EF的距离为2.4.其中正确的结论有( ).A.①②③B.①②④C.①③④D.②③④(第10题)(第11题)11.如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),……,按这样的运动规律,动点P第2019次运动到点().A.(2019,-2)B.(2018,-2)C.(2019,0)D.(2018,0)12.从0,1,23,2,25,3这六个数中,任取一个数作为m的值,恰好使得关于yx,的二元一次方程组⎩⎨⎧=+=-322yxmyx有整数解,且使关于x的一元一次不等式xmx3-26<-有两个正整数解成立的所有的m之和为().A.29 B.211C.5D.4 二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.如果点P )45,2++m m (在y 轴上,那么点P 的坐标是 .14.已知方程42)1(3-=+-x 的解也是不等式532<-a x 的一个解,则a 的取值范围是 . 15.已知2a ﹣1的平方根是±3,b +2的立方根是1,则ab = . 16. 对y x 、定义一种新运算“P ”,规定:P (y x 、)=yx byax ++3(其中b a 、均为非零常数),这里等号右边是通常的四则运算.例如:P (0,1)=b b a =+⨯⨯+⨯10310.已知P (1,﹣1)=﹣5,P (4,2)=1.则a +b= . 17.如图,AB ∥DE ,∠ABC 的角平分线BP 和∠CDE 的角平分线DK 的反向延长线交于点P且∠P ﹣2∠C =57°,则∠C = o .18.假设巴南万达广场地下停车场有5个出入口,每天早晨675%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年五一节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过 小时车库恰好停满.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程写在答题卡中对应的位置上.19.(1)计算:223)2(21--64-⨯)((2)解不等式:1312523-+≥-x x . 20.如图,直线AB 、CD 相交于O 点,OE ⊥AB ,OF 平分∠DOB ,∠EOC :∠COA =1:4,求∠EOF 的度数.四、解答题(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程写在答题卡中对应的位置上.21.如图,在平面直角坐标系中,P (b a ,)是四边形ABCD 的边BC 上一点,四边形ABCD 经平移后点P 的对应点为P 1(3,4+-b a ).(1)请画出上述平移后的四边形A 1B 1C 1D 1,并写出A 1、B 1、C 1、D 1的坐标; (2)求出平移后四边形A 1B 1C 1D 1的面积.22. 已知关于y x 、的二元一次方程组⎪⎩⎪⎨⎧=-=-10)3(2-132y x y x (1)解该方程组;(2)若上述方程组的解是关于y x 、的二元一次方程2=+by ax 的一组解,求代数式a b 46-的值.23. 如图,已知AF //DE ,∠AFG=∠1=50o. (1) 证明:EG //BC ;(2) 若AH 平分∠FAC ,交BC 于点H ,过点A 作AM //EG ,且∠H =12o,求∠ACB 的度数.24.商场销售A 、B 两种品牌的T 恤,4月份第一周售出A 品牌T 恤3件和B 品牌T 恤4件,销售额为1000元,第二周售出A 品牌T 恤17件和B 品牌T 恤8件,销售额为4200元. (1)求A 、B 两种品牌T 恤的售价各是多少元?(2)已知4月份A 品牌T 恤和B 品牌T 恤的销售量分别为1000件、500件,5月份是T 恤销售的旺季,为拓展市场、薄利多销,商场决定5月份将A 品牌T 恤和B 品牌T 恤的销售价格在4月份的础上分别降低%m ,%21m ,5月份的销售量比4月份的销售量分别增长30%、20%.若5月份的销售额不低于233000元,求m 的最大值.25.我们用][a 表示不大于a 的最大整数,例如:2]5.2[=,3]3[=,3]5.2[-=-;用><a 表示大于a 的最小整数,例如:35.2>=<,54>=<,15.1->=-<.解决下列问题:(1)=-]7.4[ ,>=<3.6 .(2)若5][=x ,则x 的取值范围是 ;若1->=<y ,则y 的取值范围是 .(3)已知x,y 满足方程组⎩⎨⎧->=<->=<+12][243][2y x y x ,求x,y 的取值范围.五、解答题(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程写在答题卡中对应的位置上.(1)求点A 、B 、C 的坐标;(2)点P 从点A 出发以每秒1个单位的速度沿AB 向点B 匀速运动,同时点Q 从点B 出发以每秒3 个单位的速度沿BA 向终点A 匀速运动,当点Q 到达终点A 时,点P 、Q 均停止运动,设点P 运动 的时间为t(t >0)秒,线段PQ 的长度为y ,用含t 的式子表示y ,并写出相应的t 的取值范围; (3)在(2)的条件下,过点P 作x 轴的垂线PM ,使PM =PQ ,是否存在t 值使点O 为PQ 中点? 若存 在求t 值并求出此时△CMQ 的面积;若不存在,请说明理由.重庆市2018-2019学年下期第二阶段考试七年级数学试题答案一、选择题1—4:BCDB 5—8:CADA 9—12:DBBA 二、填空题13. (0,-6) 14.37->a 15. —116. 8 17. 22 18. 1532三、解答题19. (1)原式=2414⨯- ----------------3分 =27--------------------------4分 (2)解:15)12(5)23(3-+≥-x x ----------1分 1551069-+≥-x x6155109+-≥-x x ----------2分 4-≥-x ----------3分 4≤x ----------4分 20. 解:∵OE ⊥AB ∴∠EOB=∠EOA=90O ----------1分 ∵ ∠EOC :∠C OA =1:4 ∴设∠EOC=x o,∠C OA=4x o∴x+4x=90 x=18∴∠EOC =18o,∠C OA =72o-------------4分∴∠BOD=∠E OA =72o-------------5分∵o F 平分∠DOB∴∠BOF =o 36BOD 21=∠ ---------6分∴∠EOF=∠FOB+∠BOE=36o+90o=126o-----------8分21.(1)A 1(-1,2) B 1(-2,4) C 1(-4,5) D 1(-5,2) ---------4分作图 -------------6分(2)2152121232213121S 1111D C B A =⨯⨯+⨯+⨯+⨯⨯=)(四边形 --------------10分22.(1)解:整理得:⎩⎨⎧=-=-42623y x y x-①-②得:2x=2 x=1 ----------------------3分把x=1带入②得:y=23-------------------------5分 ∴方程组的解为⎪⎩⎪⎨⎧==23-1y x ---------------------6分 (3)把⎪⎩⎪⎨⎧==23-1y x 带入方程得:2a-3b=4 ------------------8分 ∴原式=-2(2a-3b )=-2×4=-8 --------------------------10分 23.(1)证明:∵AF //DE ,∠AFG =50o.∴∠E=∠AFG=50o. ------------2分∵∠1=50o.∴∠1=∠E=50o. -------------3分 ∴EG//BC -----------------4分(2) ∵AM//EG∴∠AFG =∠FAM=50o. ----------5分由(1)得:∵EG//BC∴AM//BC,∠H=12o∴∠MAH=∠H=12o-----------6分 ∴∠FAH=∠MAH+∠FAM=12o+50o=62o---------7分∵AH 平分∠FAC∴∠HAC=∠FAH=62o----------------8分∴∠MAC =∠HAC+∠MAH=62o+12o=74o----------------9分 ∵AM//HB∴∠ACB=∠MAC=74o-------------------10分24.解:(1)设A 品牌的T 恤售价x 元/件,B 品牌的T 恤y 元/件, 根据题意知,, -------------------2分解得,, --------------------------4分答:A 、B 两种品牌T 恤的售价各是200元和100元; -----------5分(2)1000(1+30%)×200(1﹣m %)+500(1+20%)×100(1﹣m %)≥233000,-----7分解得,m ≤30, -----------9分 即:m 的最大值为30. ---------------10分25.(2)65<≤x ; 12--<≤y ----------4分(3)解方程组得:⎩⎨⎧>=<-=44][y x ------------8分∴y x 、的取值范围是: 34--<≤x ;43<≤y ---------10分26. 解:(1)由题意得:a+4=0,4-a-b=0 ∴a=-4,b=8∵OC-OA=2,得:OC=4+2=6∴点A 的坐标为(-4,0),点B 的坐标为(8,0),点C 的坐标为(0,6)--------3分(2)由(1)知:AB=OA+OB=12,AP=t ,BQ=3t 当P 、Q 两点相遇时的t 的值为:33112=+÷)(秒,当点Q 到达终点A 时,点P 、Q 均停止运动, ∴t 的最大值为4312=÷秒 (1)当30≤<t 时,如图1,PQ=AB-AP-QB=12-t-3t=12-4t.即:y=12-4t(30≤<t ); -------------5分 (2)当43≤<t 时,如图2, PQ=AP+BQ-AB=4t-12即:y=4t-12(43≤<t ); --------------7分 (3)存在t 值使点O 为PQ 中点,∵点O 为PQ 中点, ∴30≤<t ,OP=OQ ,即:OA-AP=OB-BQ∴4-t=8-3t,得:t=2 -------------8分 当t=2时,AP=2,OP=2,OQ=2,PQ=4,PM=PQ=4, (1)点M 在x 轴上方时,如图3,过点C 作CN ⊥PM,得:四边形CNPQ 是梯形,,=8; ---------------------------------10分 (2)点M 在x 轴下方,如图4.过点C 作CN ⊥PM,得:四边形CNPQ 是梯形,,-------------------------------------12分三角形CMQ 的面积为:8或16.。

2018年全国初中数学竞赛试题及答案

2018年全国初中数学竞赛试题及答案

若关于 m 的方程有正整数解,则
9 4n(n 1) 8 (2 n 1)2 l 2 ( l 为正整数),
即 l 2 (2n 1)2 8,[ l (2n 1)][( l (2 n 1)] 8

l (2n 1) 8 l (2n 1) 4
所以
,或

l (2n 1) 1 l (2n 1) 2
解得: n
5 4
所以 PQ= yp
yQ
( a2
3a
4)
(a2
3a
4) =
2
2a
8
即当 a= 0(属于 -2≤ a≤2)时, PQ 的最大值为 8。
12.已知 a , b 都是正整数,试问关于 x 的方程 x 2 abx 1 ( a b) 2
把它们求出来;如果没有,请给出证明.
-4
Q
-6
B
-8
-10
0 是否有两个整数解?如果有,请
但不多于 8 个,红球不少于 2 个,黑球不多于 3 个,那么上述取法的种数是(

( A )14
( B) 16
(C) 18
(D )20
解:选( B )。只用考虑红球与黑球各有 4 种选择:红球( 2,3,4,5 ),黑球( 0,1,2,3 )共 4× 4= 16 种
3.已知 a 、 b 、 c 是三个互不相等的实数,且三个关于 x 的一元二次方程 ax 2 bx c 0 ,
综上,存在正整数 a= 1, b=3 或 a=3, b=1,使得
方程 x 2 abx 1 (a b) 0 有两个整数解为 x1 1, x2 2 。 2
DE
13.如图,点 E, F 分别在四边形 ABCD 的边 AD , BC 的延长线上,且满足

重庆市第一届初中数学竞赛试题

重庆市第一届初中数学竞赛试题

或石 万 干
l
泰 忐
,
.
不 全等
也就

当证明 中
,
将所证 式 子 变 形到
(1)
:
0《 ( 劣 一 2 ) . + ( , + l ) 2《 2 0

a
,
b
,
c
为 不全 相 等 的 正 数 即可
不 等 式》 中 例 功
1
不必 要
各不
+ d )
:

,
以下证 明可 简 化为

相等

.,
M (2
,
,
一 l ) 在二 2 + 夕 2 , 5 2以

3,
1
c
一一 之 一
’i
.’
、 ·
.
1一

9
.
一竿
(
,
,
一加
,
+

一牛 , = a + 口
,
3
《 不 等 式》
·
《 沙旱 音
)《 1 5
中 例 H 若 二+ 护 《
5
,
求证
5
由上 证 明 知
,
条件 为 (b+
,
c
)

(e+
,
a
)

一 与 x 盆+ 夕2 一 2 ( 2 劣 一 , (
( a + b )不 全等
不填得 1分

每 一 题填

(C ) (D )
9.
(二 l
g
:
=

人教版2018-2019学年七年级数学竞赛试卷A(含答案)

人教版2018-2019学年七年级数学竞赛试卷A(含答案)

绝密★启用前2018-2019学年人教版七年级数学竞赛试卷A注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共6小题,4*6=24)1.根据图中骰子的三种不同状态显示的数字,推出?处的数字是()A.1 B.2 C.3 D.62.如图,∠1=65°,∠2=85°,∠3=60°,∠4=40°,则∠5=()A.45°B.50°C.55°D.60°3.n个连续自然数按规律排成下表这样,从2003到2005,箭头的方向应为()A.↑→B.→↑C.↓→D.→↓4.平面上六条直线两两相交,其中仅有3条直线经过同一点,则它们彼此截得不重叠线段有()条.A.36 B.33 C.24 D.215.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+F=1D,则A×B=()A.B0 B.1A C.5F D.6E6.将1,2,3,4,…,12,13这13个整数分为两组,使得一组中所有数的和比另一组中所有数的和大10,这样的分组方法()A.只有一种B.恰有两种C.多于三种D.不存在第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,4*6=24)7.设p,q均为质数,且p+q=99,则p、q的积pq=.8.计算:[(11++)﹣(12++)]÷[(11﹣﹣)﹣(12﹣﹣)]=.9.某文具店只有8元一支和9元一支两种规律的钢笔,甲、乙两人到该店购买钢笔,已知两人购买的支数相同,且一共花费了172元,则每人在该店购买了支钢笔.10.假设a,b,c,d都是不等于0的数,对于四个数ac,﹣bd,﹣cd,﹣ab,考察下述说法:①这4个数全是正数;②这4个数全是负数;③这4个数中至少有一个为正数;④这4个数中至少有一个为负数;⑤这4个数的和必不为0其中正确说法的序号是.(把你认为正确说法的序号都填上)11.一只蚂蚁从原点出发,在数轴上爬行,向右爬行12个单位长度后,向左爬行22个单位长度;再向右爬行32个单位长度后,向左爬行42个单位长度.这样一直爬下去,最后向右爬行92个单位长度后,向左爬行102个单位长度,到达A点则A点表示的数是.12.在密码学中,称直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码.对于英文,人们将26个字母按顺序分别对应整数0到25,现有4个字母构成的密码单词,记4个字母对应的数字分别为x1,x2,x3,x4,已知:整数x1+2x2,3x2,x3+2x4,3x4除以26的余数分别为9,16,23,12,则密码的单词是.三.解答题(共4小题,52分)13.(12分)某租赁公司拥有100辆汽车,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月公司需要维护费150元,未租出的车每辆每月公司需要维护费50元.(1)已知1月份每辆车的月租金为3600元时,能租出多少辆车?(2)已知2月份的维护费开支为12900元,问该月租出了多少辆车?(3)比较1、2两月的月收益,哪个月的月收益多?多多少?(4)试推测,当每辆车的月租金定为多少元时,租赁公司的月收益最大?(第4问只要求写出结果,不要求写出推算过程)、(注:月收益等于该月的租金与维护费之差).14.(12分)已知非负实数x,y,z满足,记W=3x+4y+5z.求W的最大值与最小值.15.(14分)有三堆石子的个数分别为20、10、12,现进行如下操作:每次从三堆的任意两堆中分别取出1粒石子,然后把这2粒石子都加到另一堆上去.问:能否经过若干次这样的操作,使得(1)三堆石子的石子数分别为4、14、24;(2)三堆石子的石子数均为14.如能满足要求,请用最少的操作次数完成;如不能满足,请说明理由.16.(14分)在△ABC中,A(3,0),B(0,4),C(0,0).(Ⅰ)已知AB的长可能是4,4,5,5,5,5,试通过测量或者估算,写出你认为正确的那个值(只须写出结果);(Ⅱ)设P是△ABC内一点,且到三边的距离相等,试求点P的坐标(要写出过程);(Ⅲ)坐标平面上到直线AB,BC,CA等距离的点一共有多少个?它们分别在哪些象限?如果第四象限存在满足条件的点,试求出它的坐标.(前两问只须写出结果,第三问要写出过程)参考答案1.解:根据图1可知,1和4,5点相邻,根据图2可知,1和2,3点相邻,∴图3中的下面为1,∴“?”处的数是6点.故选:D.2.解:如图,连接BC,在△EBC中,∠3+∠ECB+∠EBC=180°,∴∠ECB+∠EBC=180°﹣∠3=180°﹣60°=120°.在四边形ABCD中,∠1+∠2+∠4+∠EBC+∠ECB+∠5=360°,∴∠5=360﹣∠1﹣∠2﹣∠4﹣(∠EBC+∠ECB)=360°﹣65°﹣85°﹣40°﹣120°=50°.故选:B.3.解:从表中的图象可知2003=500×4+3,2004=(500+1)×4,2005=(500+1)×4+1,则2003是一组中的第四个数,2004是下一组中的第一个数,2005是第二个数.所以箭头方向为:→↓.故选:D.4.解:由题意得:有3条直线经过同一点,则每一条直线都被其他5条直线截成4段,此时共有4×6=24条线段,但是因为其中有3条直线经过同一点,那么就少了3条线段,所以它们彼此截得不重叠线段有24﹣3=21条.故选:D.5.解:∵A×B=10×11=110,110÷16=6余14,∴用十六进制表示110为6E.故选:D.6.解:1+2+…+13=91,分为两组,一组的和为x,另一组的和为x﹣10,x+x﹣10=91,x=,∵x为整数,∴没法分,故选:D.7.解:∵p+q=99,∴p,q为一个奇数、一个偶数,∵p,q均为质数,在所有偶数中只有2是质数,∴p=2或q=2,当p=2时,q=99﹣2=97;当q=2时,p=99﹣2=97,∴pq=2×97=194.故答案为:194.8.解:原式=[11++﹣12﹣﹣]÷[11﹣﹣﹣12++],=(﹣+﹣)÷(﹣﹣﹣),=﹣÷(﹣),=.故此题应该填.9.解:设两人共买了x只8元的钢笔,y只9元的钢笔,每人买了n只(x、y、n均为整数),根据题意得:8x+9y=172①,x+y=2n②,由①②得:x=18﹣172,y=172﹣16n,因为xy均为整数,则x=18﹣172≥0,y=172﹣16n≥0,解得:9≤n≤10,因为n也为整数,则n=10.答:每人在该店购买了10支钢笔.10.解:假设a>0,b>0,c>0,d>0;则ac>0,﹣bd<0,﹣cd<0,﹣ab<0可以排除①②⑤.故答案为③④11.解:规定向右为正,向左为负,依题意,得12﹣22+32﹣42+…+92﹣102,=(1﹣2)(1+2)+(3﹣4)(3+4)+…+(9﹣10)(9+10),=﹣(1+2+3+4+…+9+10),=﹣55.故本题答案为﹣55.12.解:(1)从题中知x1,x2,x3,x4是四个英文字母的明码,所以它们只是代码,与数字没有关系,不要被1,2,3,4混淆(2)从题中知a对应0,b对应1,…z对应25.(明码加1得到字母的序号)(3)计算x1,x2,x3,x4的数值.从“整数x1+2x2,3x2,x3+2x4,3x4除以26的余数分别为9,16,23,12”中找答案.首先发现3x4的余数是12这项比较好算,推测3x4可能是12,x4可能是4,x4可能代表“e”.然后根据x3+2x4除以26的余数是23,推测整个式子的数值可能是23,把x4的值代入,得到x3的值为15,代表p.3x2除以26的余数是16,而16无法被3整除,考虑16+26,即42,猜测x2为42除以3,得14,代表o同样方法可以推测x1的值为7,代表h(4)检验单词的正确性,hope合适.故答案为hope.13.解:(1)月租金为3600元时,未租出的车辆数为(3600﹣3000)÷50=12辆,故租出了100﹣12=88辆.(2)设2月份租出了x辆,则150x+50(100﹣x)=12900,解得x=79,因此2月份租出了79辆车.(3)1月份的收益为(3600﹣150)×88﹣50×12=303000元,2月份的月租金为3000+50×21=4050元,所以2月份的月收益为4050×79﹣12900=307050元,故2月份收益多,多4050元.(4)月租金为4050元时,收益最大.14.解:设=k,则x=2k+1,y=﹣3k+2,z=4k+3,∵x,y,z均为非负实数,∴,解得﹣≤k≤,于是W=3x+4y+5z=3(2k+1)﹣4(3k﹣2)+5(4k+3)=14k+26,∴﹣×14+26≤14k+26≤×14+26,即≤W≤.∴W的最大值是35,最小值是.15.解:设20个为A堆,10个为B堆,12个为C堆,(1)为达到用最少的操作次数完成,并且满足从两堆中取出,考虑思路是有两组石子的数目要降低,∴因此需以如下方式调配石子:X=10﹣﹣>A=4 降6,Y=20﹣﹣>B=14 降6,Z=12﹣﹣>C=24 升12,∴需要6次,(2)不能满足,∵为达到三堆石子的石子数均为14,三堆石子需分别满足降6,升4,升2,意味着有两堆石子的数目要升高,这与题目不符,∴不满足.16.解:(Ⅰ)根据A(3,0),B(0,4),可以只计测量得出答案;也可以利用勾股定理求出:AB=5;(Ⅱ)由于点P在第一象限,且到两坐标轴的距离相等,则设P(a,b),则S△P AB+S△PBC+S△PCA=S△ABC=6,即5a+4a+3a=12,所以a=1,故所求点P的坐标为(1,1).(Ⅲ)一共有4个点,除上述P点外,还有三点,它们分别在第一象限,第二象限,第四象限.显然,第四象限的点可设为Q(b,﹣b),其中b>0.由于S△QAB+S△QBC﹣S△QCA=S△ABC=6,所以5b+4b﹣3b=12,b=2,故所求点Q的坐标为(2,﹣2).。

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准精品2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题:(本题满分42分,每小题7分)1.已知$a=1+\frac{1}{2+1}$,$b=3-2$,$c=6-2$,那么$a,b,c$的大小关系是()A。

$a<b<c$B。

$a<c<b$XXX<a<c$D。

$b<c<a$答】C.因为 $\frac{1}{2+1}=\frac{1}{3}$,所以$a=1+\frac{1}{3}=\frac{4}{3}$,$b=1$,$c=4$。

因为 $\frac{1}{3}<1$,所以$a<\frac{4}{3}+1=\frac{7}{3}<c$,所以 $b<a<c$。

2.方程$x^2+2xy+3y^2=34$的整数解$(x,y)$的组数为()A。

3B。

4C。

5D。

6答】B.方程即$(x+y)^2+2y^2=34$,显然$x+y$必须是偶数,所以可设$x+y=2t$,则原方程变为$2t^2+y^2=17$。

因为$2t^2\leq 16$,所以$t=\pm 2$,从而可求得原方程的整数解为$(x,y)=(-7,3),(1,3),(7,-3),(-1,-3)$,共4组。

3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,$CE=1$,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A。

$\frac{65}{26}$B。

$\frac{3}{3}$C。

$\frac{2}{5}$D。

$\frac{9}{4}$答】D.过点C作$CP\parallel BG$,交DE于点P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年重庆市初一数学竞赛试卷
(满分120分,时间120分)
一、填空题:(每小题4分,共32分) 1.计算:=+-⨯--
-)221
(213122 ; 2.计算:2002)2002
1
1()4
11()3
11()2
11(-
⨯⨯-⨯-⨯-⨯ ; 3.分解因式:(x-3)(x-5)-3= ; 4.方程312=--x x 的解是 ; 5.四个连续正整数的倒数之和等于
20
19
则这四个正整数分别是 ; 6.在长度分别为1cm,2cm,3cm,…,6cm 的6条线段落中,任取其中三条构成一个三角形,那么最多可以构成不同的三角形 个。

7.符号[x]表示不超过x 的最大整数,{x}表示x 的正的小数部分,那么方程2[x]+5{x}+3=0的解为 。

二、选择题:(每小题4分,共32分) 1、如果x<-2,则x +-11等于( )
(A )x+2 (B)-(x+2) (C)x (D)-x
2、已知2)(,111m
n
n m n m n m -+=
-则的值为( ) (A )0 (B )1 (C )2 (D )3 3、任意两个质数的和一定是( )
(A )偶数 (B )质数 (C )合数 (D )不能确定
4、已知ΔABC 中,∠C=32°,∠A 、∠B 的外角平分线分别交对边的延长线于D 、E 两点,且AC=AD ,则∠E=( )
(A )10° (B )16° (C )20° (D )24°
5、已知的值为则1
,0134
2
2
+=+-a a a a ( ) (A )
21 (B )52 (C )91 (D )7
1
6、已知m,n 为自然数,且294m=n 3,则m 的最小值是( )
(A )2942 (B )756 (C )252 (D )504 7、如图,P 是等边三角形ABC 内一点,∠APB 、∠BPC 、∠CPA 的度数比为5∶6∶7,以AP 为边作正ΔAPD ,连接DC ,则ΔPDC 的三个内角度数比为( )
(A )2∶3∶4 (B )3∶4∶5 (C )4∶5∶6 (D )5∶6∶7
8、把1、2、……、2000这2000个自然数任意排列为
19993221200021,,,,a a a a a a a a a -+++-- 使得的和最大,
则这个最大值为( )
(A)2002000 (B )2001999 (C )1999999 (D )2000000 三、解答题:(16分)
某校初二年级有A 、B 、C 三个课外活动小组,各组人数相等,但A 中的女生比B 中的女生多4名,B 中的女生比C 中的女生多1名.如果从A 调10人去B 中,再从B 调10人去C 中,最后从C 调10人回A 中,结果各组的女生人数都相等.已知从C 调入A 的学生中只有2名女生.问分别从A,B 调出的人数中各有几名女生?
四、解答题:(20分)
如图,ΔABC 中,D 是AB 的中点,AE=2EC ,BE 、CD 交于点P ,已知ΔABC 的面积是12平方单位。

求四边形ADFE 的面积。

(要求写出证明和计算过程)
C
B
A E D
F
五、解答题:(20分)
某校初一年级招收新生共甲、乙、丙三个班,新年联欢会上,不同班级但相互认识的同学互送贺年片一张。

已知甲班人数为50人,乙班、丙班分别收到来自甲班的贺年片数不超过本班人数的一半,而乙班收到来自丙班的贺年片不超过15张。

问本年级中,在其它两班都没有熟人(熟人指认识的人)的学生不少于多少人?。

相关文档
最新文档