达朗贝尔原理

合集下载

达朗贝尔原理

达朗贝尔原理

达朗贝尔原理
达朗贝尔原理是描述在没有内部能量源的封闭系统中,各个分子之间的碰撞会导致热量传递的物理定律。

根据达朗贝尔原理,当两个物体处于不同温度时,较高温度的物体的分子运动速度较快,向较低温度的物体传递能量,使得两个物体的温度逐渐趋于平衡。

达朗贝尔原理是理解热平衡和传热过程的基础。

通过达朗贝尔原理,我们可以解释为什么将热水与冷水混合后会均匀分布热量。

在混合过程中,热水的热量会传递给冷水,使其温度升高,而热水的温度则会降低,最终两者达到热平衡。

达朗贝尔原理也可以解释热传导的现象。

当一个物体的一部分受热时,这部分的分子会增加动能,与其他部分的分子发生碰撞,并将能量传递给它们。

这样,热量就会在物体内部传导,使整个物体温度均匀。

除此之外,达朗贝尔原理还可以用来解释气体的扩散现象。

在两个容器中分别装有不同浓度的气体时,两者之间存在浓度差。

根据达朗贝尔原理,气体分子会沿着浓度梯度运动,使得浓度逐渐趋于均匀。

总的来说,达朗贝尔原理是解释热平衡、热传导和气体扩散等现象的重要物理定律,对于研究能量传递和分子运动具有重要意义。

达朗贝尔原理名词解释

达朗贝尔原理名词解释

达朗贝尔原理名词解释引言达朗贝尔原理是热传递领域中的基础原理之一。

它描述了热量是如何通过辐射传递的过程,深化了我们对热辐射现象的理解。

本文将对达朗贝尔原理进行详细解释,包括其定义、物理背景、数学表达和应用。

定义达朗贝尔原理是指在热平衡状态下,两个物体的辐射热流密度与它们的辐射特性(如温度、表面特性等)有关。

根据该原理,两个物体之间的净辐射热流密度正比于它们的体温差的四次方,并与它们的表面性质有关。

物理背景达朗贝尔原理建立在基于物体的辐射行为的基础上。

物体发出的热辐射能够传递能量,并且辐射的强度与物体的温度有关。

辐射热量的传递主要通过光子的辐射和吸收来实现,而达朗贝尔原理描述了这一现象的规律。

数学表达达朗贝尔原理的数学表达式为:q=σ⋅A⋅(T14−T24)其中,q表示两个物体之间的净辐射热流密度,σ是斯特藩-玻尔兹曼常数,A是两个物体之间的表面积,T1和T2分别是两个物体的绝对温度。

辐射特性达朗贝尔原理中涉及到物体的表面性质,这些性质对辐射热流密度产生影响。

以下是一些影响辐射特性的因素: 1. 反射率:物体的反射率决定了其对外界辐射的反射程度,反射率越高,辐射热流密度越低。

2. 吸收率:物体的吸收率决定了其对外界辐射的吸收程度,吸收率越高,辐射热流密度越高。

3. 发射率:物体的发射率决定了其自身的辐射能力,发射率越高,辐射热流密度越大。

达朗贝尔原理的应用达朗贝尔原理在很多领域都有重要的应用,下面列举了一些应用案例: 1. 热辐射计算:在热传递计算中,达朗贝尔原理通常被用于计算不同温度物体之间的热辐射传递。

2. 太阳能利用:太阳能的收集和利用依赖于太阳辐射能量的捕获,达朗贝尔原理可用于描述太阳辐射的传递和捕获过程。

3. 红外热成像:红外热成像技术通过捕捉物体的红外辐射来显示物体的温度分布情况,达朗贝尔原理为该技术的基础原理。

4. 空间热传递:在航天器和卫星中,热传递对于电子设备和舱内环境的控制非常重要,达朗贝尔原理可用于优化热传递效果。

达朗贝尔原理(动静法)

达朗贝尔原理(动静法)

§ 14-1
惯性力· 质点的达朗贝尔原理
ma F FN
F FN ma 0 惯性力 令 F ma I

F FN FI 0
质点的达朗贝尔原理:作用在质点的主动力、
约束力和虚加的惯性力在形式上组成平衡力系.
例14-1 已知:
这就是钢球在任一位置 时所受的法向反力, 显然当钢球脱离筒壁 时, FN=0 , 由此可求出其脱离角a为
rw 2 a arccos( ) g
§ 14-2
质点系的达朗贝尔原理
i 1,2,, n
Fi FNi FIi 0
质点系的达朗贝尔原理:质点系中每个质点上作用的主动
x
M A (F ) 0 :
代入FI 的数值, 有
l FI d cos P sin 0 2
Pl 2l 2 sin ( w cos 1) 0 2 3g 3g 故有=0或 arccos( ) 2 2lw
§ 14-3
刚体惯性力系的简化
用质点系的达朗贝尔原理求解质点系的动力学问 题,需要对质点内每个质点加上各自的惯性力,这些 惯性力也形成一个力系,称为惯性力系。下面用静力 学力系简化理论,求出惯性力系的主矢和主矩。 以FIR表示惯性力系的主矢。由质心运动定理及质 点系的达朗贝尔原理
m 0.1kg, l 0.3m, 60
求: 用达朗贝尔原理求解
v , FT .
v 解: F ma m I n l sin
mg FT FI 0
b
2
F
0, FT cos mg 0
F
解得
n
0, FT sin FI 0

理论力学第12章 达朗贝尔原理

理论力学第12章 达朗贝尔原理

基础部分——动力学第12 章达朗贝尔原理惯性力Jean le Rond d’Alembert (1717-1783)达朗贝尔达朗贝尔原理达朗贝尔原理具体内容:a F F m −=−='惯性力定义:质点惯性力aF m −=I 一、惯性力的概念aF m −='2222d d d d z ty m t[注意]不是真实力直角坐标自然坐标aF m −=I−a m 质点的达朗贝尔原理二、质点的达朗贝尔原理合力:NF I FI N =++F F F 注意:◆◆优点:◆可以将动力学问题从形式上转化为静力学动静法◆给动力学问题提供了一种统一的解题格式。

如何测定车辆的加速度?虚加惯性力解:达朗贝尔原理[例12-1]IF 摆式加速计的原理⇒⇒构成形式上的平衡力系质点系的达朗贝尔原理内力外力表明:惯性力系外力平面任意力系实际应用时,同静力学问题一样,选取研究对象;刚体惯性力系的简化简化方法一、质点系惯性力系的主矢与主矩无关有关二、刚体惯性力系的简化◆质心C结论:1IF2IF3IF IRFCm aF−=IR⇒交点O简化tI iF nI iF αα特殊情形:●●αOz O J M −=I 作用在O 点C m a F −=IR t I iFn I iFn IRFt IRF OM I αt I iFn I iFα[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O=(逆)①2IR ωme F =②αCz O J M −=I (与α反向)③0, 0I IR ==O M F (惯性力主矢、主矩均为零)IRF OM I α(作用于质心C )C m a F −=IR αCz C J M −=I 质心C IRF CM I α特殊情形:●●⇒[思考]εmr F =t IRrR r mF −=22n IRωε2I 21mr M C=求:惯性力系向质心C 简化的主矢?主矩?达朗贝尔原理上节课内容回顾(质点惯性力)或:质心C Cm a F −=IRαOz O J M −=I Cm a F −=IR 交点O t I iFn I iFn IRFt IRF OM I ααOz O J M −=I C m a F −=IR 交点O t I iFn I iFn IRFt IRF OM I αCm a F −=IR αCz C J M −=I质心C IRF CM I α质心C[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O =问:若向质心C 简化,则主矢?e =−∑Cx xma F 平面运动微分方程0)( e=−∑αCz C J MF 0e =−∑Cy yma F IRF CM I α⇒⇒[例12-2]解:惯性力系αt RI Fn IRFn AFt A FAM I αtRI Fn IR F nA F t AF AM I α惯性力系)解题步骤及要点:注意:F IR = ma C M I O = J Oz αα思考:AC CθASO[例12-3]先解:惯性力系m gF IR M I C F sF NαR a C =CθASOm gF IRF OxF OyM I C再惯性力系M O[例12-4]解:惯性力系 1I F OM I 2I F α)(=∑F OMα11r a =2211 α22r a =1I F OM I 2I F α[思考题] A BCD E )(118↓=g a A mgF 113T =111≥f主动力系惯性力系RFIRF OMIRF IRF OM I tI iFn I iF∑∑==ii iyzi i i zx z y m J x z m J RF IRF OM I tI iFn I iFRF IRF OM Ill F M l F M y x y x /)]()[( 2I I 2R ⋅−+⋅−ll F M l F M x y x y /)]()[(2I I 2R ⋅++⋅+−ll F M l F M y x y x /)]()[(1I I 1R ⋅++⋅+−ll F M l F M x y x y /)]()[( 1I I 1R ⋅−+⋅−xF R −约束力静动主动力惯性力动约束力I x 02=ωJ 质心过)04222≠+=−ωααωωα惯性主轴z 轴为中心惯性主轴静平衡过质心⇒动平衡中心惯性主轴⇒[例12-5]静平衡动平衡爆破时烟囱怎样倒塌θOAωα解:m g)cos 1(3θ−lg F OxF OyMI On RI F t IRF 受力分析[例12-6])]([)(sin ⋅−−+−+⋅x x l l x x l mg ααθ1()(sin mgl −θB注意:求内力(矩)时惯性力的处理!xθxAB()ml x lα−m l lαBM BxF x mg lByF12-5-1 关于惯性力系的简化OA ωαMI OnR I FtIRFOAωαMI CnRIFtRIFC 思考思考12-5-2 刚体平面运动时有关动力学量的计算mv+C12-5-3 本章知识结构框图达朗贝尔原理惯性力系的简化质点系达朗贝尔原理定轴转动的约束力一般质点系刚体静、动约束力静、动平衡课后学习建议:◆。

11-第十一章-达朗贝尔原理

11-第十一章-达朗贝尔原理

第十一章 达朗贝尔原理§11.1 质点的达朗贝尔原理=++∴=+G N F maN F令a -m G =在质点上除了作用有真实的主动力和约束反力外,再假想地加上惯性力,则这些力在形式上组成一组平衡力系,称质点的达朗贝尔原理。

11.2 质点系的达朗贝尔原理、运动刚体惯性力系的简化一、质点系的达朗贝尔原理设质点系由几个质点组成,其中一质点M i ,其质量为m i ,作用其上的主动力F i ,约束反力N i ,加速度为a i ,在该质点上加上惯性力为G i则: 0=++i i i G N F对每一个质点进行同样处理,根据加减平衡力系定理,则质点系上所有的主动力系,约束反力系,惯性力系组成了一组平衡力系。

根据静力系平衡的条件:R =0 M o =0 (主矩、主矢皆为零))()()(0=∑+∑+∑=∑+∑+∑∴i o i o i o i i i G M N M F M G N F质点系的达朗贝尔原理:质点系在运动时,作用于该质点系上的主动力系、约束反力系和惯性力系形式上构成一组平衡系。

00000:=∑=∑=∑=∑=∑=∑z y x M M M Z Y X 投影方程二、运动刚体惯性力系的简化利用达朗贝尔原理求解刚体动力学问题,需对刚体内每个质点加上它的惯性力,这些惯性力组成一组平面惯性力系,这就需要将惯性力系进行简化,求得惯性力系的主矢和对简化中心的主矩,并且在解题过程中,直接将惯性力的主矢主矩加到运动刚体上即可: (一)平动刚体惯性力系的简化平动刚体 a i =a n =a cG i =-m i a i刚体内各点的惯性力组成一组平行力系,将该惯性力系向质心c 简化:)()(=∴=⨯-=⨯∑=-⨯∑=∑=-=∑-=∑=c c cc ci i i i i i i c ci i i r M m m G M a m G M a r a r a r M M a G结论:刚体作平动时,惯性力系简化结果为通过质心c 的主矢Gc Ma G -=(二)定轴转动刚体惯性力系的简化条件:定轴转动刚体,均质,具有与转轴互相垂直的对称平面。

第7章 达朗贝尔原理

第7章 达朗贝尔原理

FIi=-miai
对于平面问题(或者可以简化为平面问题), 刚体的惯性力为面积力,组成平面力系。 对于一般问题,刚体的惯性力为体积力,
组成空间一般力系。
§7-3 刚体惯性力系的简化
二、刚体惯性力系简化结果 —— 主矢与主矩
§7-3 刚体惯性力系的简化
二、刚体惯性力系简化结果- 主矢与主矩
a
m2 g
a m1g
FI 2
(m1 g m1a m2a m2 g )r mi ar 0
§7-2
质点系的达朗贝尔原理
例 题 2
n t FI i FIi F N r ait n ai
y
(m1 g m1a m2 a m2 g )r mi ar 0
y
解:
1、分析受力:
主动力: m1g,m2g,mg
约束力: FN
2、分析运动:
B
FI1
mg
A
ait a
FI1 m1a
a
m2g
v2 ain , r
FI 2 m2 a v2 FIn mi , i r
3、施加惯性力:
FIti mi a
a m1g
FI 2
§7-2
质点系的达朗贝尔原理
体本身的质量与加速度来度量。
§7-1 惯性力 • 质点的达朗贝尔原理
二、质点的达朗贝尔原理
z F
非自由质点 A m —— 质量;
a FN
m A O
x
FR
F —— 主动力; FN —— 约束力; S —— 运动轨迹。
y
s
§7-1 惯性力 • 质点的达朗贝尔原理
二、质点的达朗贝尔原理
z

达朗贝尔原理

达朗贝尔原理

FT maB ml cos30 0
Fy 0
FN FIr sin30 mg 0
(2)
C
FN ml sin30 mg 0 MC (F ) 0
B
FN
mg
x
FT l cos30 FN l sin30 M I 0
(3)
1 2 FT l cos 30 FN l sin 30 ml 0 3
以B为基点, 则A点的加速度为
t n t n aA aA aB aAB aAB
aB
2
A
t aA t aCB
其中
a v AE 0
n A 2 A
a
n AB
2l 0
B aB

30o
将上式投影到x 轴上得
0 aB a cos30
t AB
x
aB 2l cos30
ma F FN
将上式改写成
FI m F a
F FN ma 0

FI ma
FN
FI具有力的量纲, 且与质点的质量有关,称其为质点 的惯性力。它的大小等于质点的质量与加速度的乘 积, 方向与质点加速度的方向相反。
一、质点的达朗贝尔原理
则有
F FN FI 0
即:在质点运动的任一瞬时, 作用于质点上的主动力、
即:作用在质点系上的所有外力与虚加在每个质点 上的惯性力在形式上组成平衡力系。这是质点系达 朗贝尔原理的又一表述。
(e)
(e)
称ΣFIi为惯性力系的主矢, ΣMO(FIi) 为惯性力 系的主矩。
三、刚体惯性力系的简化
用质点系的达朗贝尔原理求解质点系的动力学问题, 需要对质点内每个质点加上各自的惯性力,这些惯性 力也形成一个力系,称为惯性力系。下面用静力学力 系简化理论,求出惯性力系的主矢和主矩。

理论力学第十四章达朗贝尔原理(动静法)课件

理论力学第十四章达朗贝尔原理(动静法)课件

动静法的物理意义
物理背景
实际应用
达朗贝尔原理反映了牛顿第二定律在 静力学中的应用,通过引入惯性力, 将动力学因素考虑到平衡问题中。
在工程实际中,达朗贝尔原理广泛应 用于分析高速旋转的机械、振动系统 以及瞬态动力学问题。
意义阐述
通过动静法,我们可以分析在某一瞬 时,运动系统由于惯性作用而产生的 力,从而更准确地描述系统的平衡条 件。
03
在应用动静法时,要确 保惯性力与主动力相平 衡,避免出现误差。
04
在求解方程时,要注意 解的物理意义和实际情 况是否相符。
04
CATALOGUE
达朗贝尔原理的应用实例
简单实例解析
总结词
通过一个简单的实例,介绍达朗 贝尔原理的基本应用。
详细描述
以一个单摆为例,运用达朗贝尔 原理分析其运动状态,通过对比 理论计算和实验结果,验证达朗 贝尔原理的正确性。
具体推导过程
在受力分析的基础上,列出系统的平 衡方程。
解出未知数,得到系统的运动状态。
将动静法应用于平衡方程,将惯性力 与主动力相平衡。具体来说,就是在 平衡方程中加入惯性力项,使得该力 与主动力相平衡。
推导过程中的注意事项
01
确定研究对象和系统时 要明确,避免出现混淆 。
02
在建立平衡方程时,要 确保所有力的方向和大 小都正确。
理论力学第十四章 达朗贝尔原理(动静 法)课件
contents
目录
• 达朗贝尔原理概述 • 达朗贝尔原理的基本概念 • 达朗贝尔原理的推导过程 • 达朗贝尔原理的应用实例 • 达朗贝尔原理的扩展与深化
01
CATALOGUE
达朗贝尔原理概述
达朗贝尔原理的定义

达朗贝尔定理

达朗贝尔定理

达朗贝尔定理
达朗贝尔(Jean le Rond d'Alembert)定理或称达朗贝尔原理是指,在刚体静力学中,一个刚体在平衡状态下,其任一点的受力与其对该点的矩(即力乘以距离)相等。

换句话说,如果一个刚体处于平衡状态,那么作用在这个刚体上的所有力的矩之和为零。

这个定理是由法国数学家达朗贝尔在他的著作《静力学原理》中提出的。

它是刚体静力学的基本原理之一,对于分析刚体的平衡状态和设计刚体结构具有重要意义。

达朗贝尔定理的数学表达式为:对于一个刚体,如果它处于平衡状态,则对于任一点,作用在该点的所有力的矢量和为零。

用数学语言表达,如果M是刚体上所有力矩的矢量和,则对于任一向量v,有M·v = 0。

这个原理可以应用于分析和设计各种刚体结构,例如桥梁、建筑、机械零件等。

通过应用达朗贝尔定理,工程师可以确保他们的设计符合刚体静力学原理,从而确保结构的稳定性和安全性。

达朗贝尔原理

达朗贝尔原理

ma = F + FN
将上式改写成
FI m F FN a
F + FN − ma = 0

FI = − ma
FI具有力的量纲, 且与质点的质量有关,称其为质点 的惯性力。它的大小等于质点的质量与加速度的乘 积, 方向与质点加速度的方向相反。
一、质点的达朗贝尔原理
则有
F + FN + FI = 0
即:在质点运动的任一瞬时, 作用于质点上的主动力、 约束反力和假想加在质点上的惯性力构成形式上的
1 3 3 maB = mg 2 16
1 13 FN = mg − maB tan 30 = mg 2 16
三、刚体惯性力系的简化
1. 刚体作平移
M IO = ∑ ri × FIi = ∑ r i × (− mi ai ) = ( − ∑ mi ri ) × aC = − mrC × aC
式中,rC为质心C到简化中心O的 矢径。若选质心C为简化中心, 主矩以MIC表示,则rC=0,有
1 FI1 rC O C
ω α
M IC = − J C α
三、刚体惯性力系的简化
FI =-maC
M IC = − J C α
结论: 有质量对称平面的刚体,平行于此平
面运动时,刚体的惯性力系简化为在此平面 内的一个力和一个力偶。这个力通过质心, 其大小等于刚体的质量与质心加速度的乘积, 其方向与质心加速度的方向相反;这个力偶 的矩等于刚体对过质心且垂直于质量对称面 的轴的转动惯量与角加速度的乘积, 转向与 角加速度相反。
三、刚体惯性力系的简化
3. 刚体作平面运动(平行于质量对称面) 工程中,作平面运动的刚体常 常有质量对称平面,且平行于此平 MIC aC 面运动。当刚体作平面运动时,其 C 上各质点的惯性力组成的空间力系, FIR 可简化为在质量对称平面内的平面 力系。 取质量对称平面内的平面图形如图所示, 取质心 C为基点, 设质心的加速度为aC,绕质心转动的角速 度为 ω,角加速度为 α ,与刚体绕定轴转动相似,此 时惯性力系向质心C简化的主矩为

14 达朗贝尔原理 d'Alemberts Principle

14 达朗贝尔原理 d'Alemberts Principle

(2)生活经验: 在地板上推动柜子
二、刚体绕定轴转动
⒈刚体具有与转轴垂直的质量对称面
设刚体具有质量对称面S,且S与转轴z垂 直并交于O点, C为刚体的质心。
选取与z轴平行的细长圆柱体为单元体, 刚体转动时,每根单元体均作圆周平移。 设第 i 根单元体的质心 Ci 在对称面上, 至转轴的距离为ri 。 根据平动刚体惯 性力系的简化,该单元体的惯性力通 过Ci点, 且 FIi= FIi + FIin
Chapter 14 d'Alemberts Principle


• 达朗贝尔原理由法国科学家达朗贝尔(J. le Rond D‘Alembert 1717--1783)在其著作《动力学专论》 中提出。
• 达朗贝尔原理将非自由质点系的动力学方程用静 力学平衡方程的形式表述。或者说,将事实上的 动力学问题转化为形式上的静力学平衡问题,即 所谓“动静法”。
例1 图示飞轮质量为m,平均半径r,以匀角速 度 绕其中心轴转动。设轮缘较薄,质量均匀 分布,轮辐的质量可以忽略。若不考虑重力的 影响,求轮缘各横截面的张力。
ω
分析
要求飞轮轮缘横截面的张力,可考虑用假想截面截取部分 轮缘,则这部分轮缘在截面的张力及虚加的惯性力作用下 处于“平衡”。 •见后续
已知飞轮m,r,,求轮缘各横截面的张力。 用假想截面A、B 截取四分之一轮缘为研究对象。 解: 截面A、B处的张力TA、TB为外力, 将轮缘分成无数微元弧段,弧长为 ω ds = r d, 对每段虚加惯性力FIi m mr 2 2 n r d r d FIi mi ai 2 r 2 根据质点系达朗贝尔原理,TA 、 TB 与 惯性力FIi组成形式上的平衡力系, 列出“平衡方程”,得 ∑Fx = 0,

达朗贝尔原理名词解释

达朗贝尔原理名词解释

达朗贝尔原理名词解释
达朗贝尔原理(Darwin's Principle)是英国著名的生物学家达尔文(Charles Darwin)提出的一种进化论原理,其主要内容是:物竞天择,适者生存的竞争性进化原理。

物竞天择:指的是竞争性进化中,有竞争性优势的物种有更好的存活率,在很多环境中可以更容易适应,更有可能保持并延续优势。

适者生存:是指从竞争中脱颖而出并能存活下来的物种,所有的物种都是在不断朝着进化好的方向发展,能够获得优势并在某个环境中适应性更强的物种可以在竞争性环境中存活下来。

竞争性进化:竞争性进化是指环境对不同物种的要求在变化,而物种在竞争环境中根据其优势特征,寻求新的环境能够存活下来。

竞争性进化是物种演化的重要部分,在不断变化的环境中会更容易保持优势特征,从而使得竞争性进化得以延续。

- 1 -。

11理论力学达朗贝尔原理

11理论力学达朗贝尔原理

三、 质点系的达朗贝尔原理
设质点系由n个质点组成,其中任意质点i的质量为mi, 加速度为ai。
(1)若把作用于此质点上的所有力分为主动力的合
力Fi、约束力的合力FNi,再虚拟加上此质点的 惯性力FIi= –miai。
由质点的达朗贝尔原理,有
Fi+ FNi+ FIi =0 (11-3) 该式表明:质点系中每个质点上作用的主动力、
F x 0,FIi cosi FA 0OFLeabharlann y 0,FIi sini FB 0

FIi = miain
m
2R
Ri
R 2
R Δθi
θi
FIi
B
x
FB
19
11.1 惯性力•达朗贝尔原理
令 Δθi
0,有
FIi
cosi
2 0
m
2
R 2
cosd
mR 2 2
FIi
sini
2 0
m
2
R 2 sind
例11-3 飞轮质量为m,半径为R,以匀角速度ω定轴 转动,设轮辐质量不计,质量均布在较薄的轮缘上,不考 虑重力的影响,求轮缘横截面的张力。
y
A
R O
B
x
18
11.1 惯性力•达朗贝尔原理
解:由于对称,取四分之一轮 缘为研究对象,如图所示。
轮缘横截面张力设为FA、FB。
y
FA
A
取圆心角为Δθi的微小弧段, 每段 加惯性力FIi。 列平衡方程
FIi 0

i 1 n
i 1 n
MO (Fi(e) ) MO (FIi ) 0
i 1
i 1
(14-4)

达朗贝尔原理(动静法)课件

达朗贝尔原理(动静法)课件
惯性力问题
在研究具有加速度的物体时,可以利用达朗贝尔原理引入惯性力的概念,从而将 动力学问题转化为静力学问题,简化求解过程。
复杂系统的应用
多体系统动力学
在多体系统动力学中,达朗贝尔原理可以用于分析多个相互 作用的物体组成的复杂系统的运动规律。通过引入虚拟力, 可以将多体系统动力学问题转化为多个单体动力学问题的组 合。
案例二:机械设备的动静法优化
总结词
机械设备性能的优化是提高生产效率和降低能耗的关键,动静法能够分析机械设备的动态性能,提出 优化方案。
详细描述
在机械设备的运行过程中,动态性能对其稳定性和效率具有重要影响。达朗贝尔原理的动静法能够对 机械设备的动态性能进行深入分析,发现潜伏的问题并提出优化方案,从而提高设备的运行效率和稳 定性。
控制系统
在控制系统中,达朗贝尔原理可以用于分析系统的稳定性。 通过引入虚拟控制力,可以判断系统在受到干扰时是否能够 保持稳定。
04
达朗贝尔原理的案例分 析
案例一:桥梁结构的动静法分析
总结词
桥梁结构的稳定性与安全性是关键,动静法能够全面评估桥梁在不同载荷下的性能。
详细描述
桥梁作为交通要道,需要承受各种载荷,如车辆、风、地震等。达朗贝尔原理能够通过动静法分析桥梁在不同载 荷下的响应,从而评估其稳定性与安全性,为桥梁设计提供根据。
在振动分析中,动静法可用于 研究系统的自由振动和受迫振 动,分析系统的固有频率和振
型。
在稳定性分析中,动静法可用 于研究系统的稳定性和失稳条 件,预测系统的动态行为。
在控制系统分析中,动静法可 用于研究系统的动态响应和调
节性能,优化控制策略。
动静法的优缺点
动静法的优点在于其简单易行,能够 方便地引入虚拟惯性力,从而简化动 力学问题的分析过程。同时,动静法 能够直接得出系统的动力学方程,方 便进行数值计算和仿真分析。

理论力学-达朗贝尔原理

理论力学-达朗贝尔原理
达朗伯原理提供了按静力学平衡方程的形式给出质点系动力学方 程的方法,这种方法称为动静法。这些方程也称为动态平衡方程。
第五章 达朗贝尔原理
§ 5-2 惯性力系的简化
惯性力系的简化 刚体常见运动情况下
惯性力的主矢和主矩
第五章 达朗贝尔原理
§ 5-2 惯性力系的简化
一、 惯性力系的简化
对于作任意运动的质点系,把实际所受的力和虚加惯性力各自向
● 对转轴的主矩
Mz* Jz
具有质量对称平面的刚体绕垂直 于质量对称平面的固定轴转动时,惯 性力系向固定轴简化的结果,得到合 力偶的力偶矩即为惯性力系的主矩, 其大小等于刚体对转动轴的转动惯量 与角加速度的乘积,方向与角加速度 方向相反。
z
M*z
F
* n
a
t C
O
y
C a
n C
x
F
* t
第五章 达朗贝尔原理
具有质量对称平面的刚体作平面运动,并且运动平面与
质量对称平面互相平行。这种情形下,惯性力系向质心简化
的结果得到一个合力和一个合力偶,二者都位于质量对称平
面内。 ● 主矢
M*C F*
合力的矢量即为惯性力系的 主矢,其大小等于刚体质量与质 心加速度大小的乘积,方向与质 心加速度方向相反。
F* maC
C
ri
例题 5-1
由式(1)和(2)解得
FNA
m ( gc ah ) bc
m ( gb ah ) FNB b c
第五章 达朗贝尔原理
F* C a
h
FB
mg
Bc
b
A
FNB
FNA
§5-3 动静法应用举例
无ABS系统时,刹车会产生侧滑现象

[理学]达朗贝尔定理

[理学]达朗贝尔定理
第五章 达朗贝尔原理
达朗贝尔原理又称为“动静法”
研究对象是动力学问题 所用的方法是静力学方法
引入惯性力 用达朗贝尔原理处理问题的关键:惯性力系的简化 达朗贝尔原理为解决非自由质点系的动力学问 题提供了有别于动力学普遍定理的另外一类方法。 引进惯性力的概念,进而应用静力学方法研究动 力学问题. 达朗贝尔原理一方面广泛应用于刚体动力学求解 动约束力;另一方面又普遍应用于弹性杆件求解 动应力。

主矩 M gO M O (Fgi )
n [M O (Fgi ) M O (Fgi )]
d 2 ri ai 2 dt
ai ri
M O (Fgi ) mi ai r i mi ri2 J z
J z mi ri2
Fy 0 :
2 0
dFg sin F1 0
D2 π D2 2 F1 A cos cos 0 A 2 Av2 4 2 4
§ 5-2 刚体惯性力系的简化
1.刚体作平动
Fgi mi ai mi ac
合力大小:
Fg2
在任意瞬时,作用于质点系的主动力、约束力和
该点的惯性力所构成力系的主矢等于零,该力系 对任一点O的主矩也等于零。 考虑到上式中的求和可以对质点系中任何一部分进 行,而不限于对整个质点系,因此,该式并不表示仅 有6个平衡方程,而是共有3n个独立的平衡方程。同 时注意,在求和过程中所有内力都将自动消去。
M gO M gC
1 2 J O ml 3 1 J C ml 2 12
Fi FN i Fgi 0
M O ( Fi ) M O ( FN i ) M O ( Fgi ) 0

达朗贝尔原理

达朗贝尔原理

达朗贝尔原理静力学研究物体在力系的作用下的平衡条件,动力学则研究物体的机械运动与作用力之间的关系,两者研究对象的性质不同,似乎没有什么共同之处。

然而让·勒龙一达朗贝尔在1743年提出了一个研究动力学问题的新的普遍方法,即用静力学研究平衡的方法来研究动力学问题,这就是达朗贝尔原理,也称为动静法。

达朗贝尔原理像一座桥梁一样把静力学和动力学连接起来。

达朗贝尔(Jean le Rond d’Alembert,1717—1783),诞生于1717年11月17日,是18世纪法国启蒙运动的领袖人物之一,法国数学家、力学家、哲学家。

他出生后即被遗弃在巴黎的一座教堂附近,后被一玻璃匠夫妻收养。

达朗贝尔于1738年获得法学学位,但并未从事法律职业,相反他潜心研究科学并很快在事业上取得了成功。

在力学方面,他于1743年发表了《论动力学》,提出了著名的“达朗贝尔原理”,作为牛顿第二定律的另一种表述形式,把动力学简化为静力学问题。

他运用这种方法研究了天体力学中的三体问题,并把它推广到流体动力学中。

在数学和天文学方面,他是偏微分方程论的创始人之一。

提出用极限的概念代替牛顿的“最初和最终比”。

他运用偏微分方程研究弦振动问题,解释了天文学上岁差和章动的原因。

并于1761 1780年间陆续出版了《数学论丛》共8卷。

在哲学方面,他是百科全书派的代表之一。

1746年,他与著名哲学家D.狄德罗一起编撰法国《百科全书》,负责撰写数学与自然科学及部分音乐方面的条目。

1754年,他被选为法兰西学院院士,1772年任学院终身秘书,对法兰西学院的发展有巨大影响。

13.1惯性力·质点的达朗贝尔原理设一质点的质量为m,加速度为a,作用在质点上的主动力为F,约束力为FN,如图13—1所示。

由牛顿第二定律,有具有力的量纲,称为质点的惯性力,它的方向与质点加速度的方向相反。

式(13—2)可以解释为:作用在质点上的主动力、约束力和虚加的惯性力组成平衡力系。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

α O
有质量对M称O面 F且i转e 轴垂直M此O面F的Ii 定轴0转动
的刚体, 其上达朗伯惯性力系向对称面与
C
定轴的交点O简化可得一力和一力偶.
FI
M IO
惯性力: FI M aC
惯性力偶: M IO JO
3. 刚体平面运动( 刚体有质量对称面且运动平面平行于此面).
刚体平面运动是随质心的平动和绕质心 的转动的合成. 其上的达
下面, 我们将对常见的几种运动的刚体上的达氏惯性力进行简化.
§14 – 3 刚体惯性力系的简化
1. 刚体的平动
FI C
刚体作平动, 其上所有点的加速度矢都相等. 因而惯性力系是一同向平行力系. 这个力系 与重力系类似, 其合力过质心C .
a a
C
i
F I
F Ii
mi ai
mi a C M a C
§13 – 1 惯性力 . 质点的达朗贝尔原理
1. 达朗贝尔惯性力:
FI
定义: F I ma
m
F
FN ma
▲: 达朗贝尔惯性力是在惯性参考系下定 义的惯性力, 惯性力中所含的加速度是绝 对加速度 , 在合成运动的分析中, 它是相 对, 牵连和科氏加速度的总和.
2. 质点的达朗贝尔原理:
由动力学基本方程
这个‘ 平衡力系’ 显然是一个空间的平衡力系. 根据空间力系的 平衡理论 , 就是: 系统中的所有质点的达朗贝尔惯性力和外力系的 矢量和为零( 主矢为零), 以及这些力对任意点的矩的矢量和为零( 主 矩为零). 用数学式表示, 即是:
e
F i F Ii 0
M
O
F
e
i
M O
F Ii
0
a
1
M IO
JO
JO
r
1.2 0.2
6(
N .m )
D
MC (F) 0 :
FD'
dFI Rd 2 R
dFIx Rd 2Rcos
T1
ω
(2)式可写成:
2 2 R2 cosd
2T1
0
2
RdFIθx2 R 2 sin
2
2T1
0
2
O
T2
T1 2 R2
m
m2 R
2R
T1 T2
2
质点系的每一个质点的达朗贝尔惯性力构成一达朗贝尔惯性力系. 一般情况下是一个较复杂的空间力系. 运用达朗贝尔原理求解质点 系或刚体动力学问题的关键是将此惯性力系进行简化和等效代替.
朗贝尔惯性力系向其对称面内简化可分成两部分: 平动的惯性力系
和绕质心转动的惯性力系. 平动的惯性力系向质心简化可得一力; 绕
质心转动的惯性力系可简化为一力偶 . α
FI
M IC
惯性力: FI M aC
C
惯性力偶: M IC JC
aC 注意:有质量对称面且转轴垂直此面的刚
体的定轴转动是刚体平面运动的特例,故
G
L 2
sin
PS
sin
0
L mo ( PS G 2 ) sin
例二.( 书上 例13 – 3 )飞轮的质量为m ,半径为R ,以匀角速度
ω绕O轴转动.设轮缘较薄, 质量均匀分布,轮辐的质量不计.不考虑
重力的影响,求轮缘横截面的张力.
解:取半圆环为研究对象:
ω
O
mo (F ) 0 : T1 T2 1 X 0: cdFIx 2T1 0 2
它有六个空间投影方程用于具体问题的计算. 如果的平面问 题便是三个.
例一. 重P 的物块A ( 不计尺寸) 沿与铅垂面夹角为θ 的悬臂梁下滑. 梁重为G, 均质, 长OB = L . 不计摩擦. 求: 当物块A 滑至距固定端 为S 米时, 固定端的约束反力.
YO
mO O XO FI
θ L/2
G
解: 先求物块A的惯性力
P a P cos g
a g cos FI ma P cos
A 以整体为对象,由达朗贝尔原理
a
X 0 : XO FI sin 0
B P
XO P cos sin
Y 0 : YO G FI cos P 0
YO G P sin2
mo( F ) 0 :
mo
刚体平面运动的惯性力系的简化方法也
适合于这样的定轴转动的刚体.
▲: 达朗贝尔原理的应用 (1) 动载荷下求约束反力及加速度; (2) 多自由度系统或多约束系统下求加速度及约束反力。
例一. 绞车的质量为80kg, 装在钢梁上的铰支座O 上. 梁的两端视为
简支. 梁为均质 , 质量为800kg , 尺寸如图示. 绞车鼓轮对O点的 转动
ma F F N
F F N ma 0
即是: F F N F I 0
当非自由质点运动时, 作用在质点上的主动力、约束反力和 达朗贝 尔惯性力在形式上组成一平衡力系. —这就是质点的达朗贝尔原理.
§13 – 2 质点系的达朗贝尔原理
运动的质点系的每一瞬时, 系统中的所有质点的达朗贝尔惯性力 与作用于系统的外力在形式上组成平衡力系. -这就是质点系的达 朗贝尔原理.
达朗贝尔原理提供了用静力学的平衡方 程求解动力学问题的方法, 所以也称‘ 动 静法’ . 达朗贝尔原理的运用首先是将有 关的运动量转化成达朗贝尔惯性力系, 这 其间达朗贝尔惯性力系的简化和等效代 替是重要的一步. 其后便是运用静力学平 衡方程式的求解技巧. 用达朗贝尔原理求 解约束反力和加速度问题是很有效的.
平动刚体上的达朗伯惯性力系向质心简化可得一力. 此力 的大小等于刚体的质量乘以质心或任意一点的加速度, 方 向与加速度相反.
2. 刚体的定轴转动( 刚体有质量对称面, 且转轴垂直于质量对称
面):对于转轴垂直于质量对称面的定轴转动的刚体, 首先其上的达朗
伯惯性力系可以简化成质量对称面上的平面力系. 进而向转轴的O
点简化 , 可得一力和一力偶.
由力系的简化理论可知: 此力的作用线过O
ainmriOiC
a C
ω
a
t i
点, 量值为惯性力系的矢量和( 主矢); 此力 偶作用在刚体上, 量值为惯性力系诸力对O 点的力矩的代数和( 对O点的主矩).
F I mi a i Ma C e
F i F Ii 0
惯量J0 = 1.2 kg.m²,鼓轮的半径r = 0.2 m , 绳索的质量不计.求: 当绞
车以加速度a= 1m/s²提升质量为2000kg 的工件时, 求支座C 、D处
的动反力及全反力.
解: (1) 先求动反力
M IO O r α
C
A
3.8m
4.2m
FC'
a
m
FI ma 2000 1 2000( N )
相关文档
最新文档