微分中值定理的证明题(题目)

合集下载

微分中值定理例题

微分中值定理例题

理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。

12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

微分中值定理的证明

微分中值定理的证明

2014届本科毕业论文(设计)题目:微分中值定理的证明及其应学院:数学科学学院专业班级:数学09-3班学生姓名:迪丽尼格尔■艾来提指导教师:依力夏提答辩日期:2014年月日新疆师范大学教务处1引言 (2)1.1最大最小定理............................... 错误!未定义书签。

1.2介值性定理 .................................. 错误!未定义书签。

1.3根的存在性定理 .............................. 错误!未定义书签。

1.4 一致连续性定理 .............................. 错误!未定义书签。

1.5费马定理.................................... 错误!未定义书签。

1.6有界性定理.................................. 错误!未定义书签。

2微分中值定理错误!未定义书签。

2.1罗尔中值定理 ............................... 错误!未定义书签。

2.2拉格朗日中值定理 ............................ 错误!未定义书签。

2.3柯西中值定理 ............................... 错误!未定义书签。

3微分中值定理的证明.................................................. 错误!未定义书签。

3.1罗尔中值定理的证明......................... 错误!未定义书签。

3.2拉格朗日中值定理的证明..................... 错误!未定义书签。

3.3柯西中值定理的证明......................... 错误!未定义书签。

4微分中值定理的证明的几何解释........................ 错误!未定义书签。

考研数学一:微分中值定理(37)(22题)

考研数学一:微分中值定理(37)(22题)
证明: 对于满足 α+ =1 的正数 α , , 在 (0 , 1) 内存在 相异两点 ξ , η , 使 解
f ' () f ' () 1
利用拉格朗日中值定理得
f ( ) f ( ) f (0) f ' ( ) , (0, ) f (1) f ( ) f ' ( )(1 ) , ( ,1) 1 f ( ) f ' ( )
说明:辅助函数导数可以和原方程相差一非零因子
例4 设 f (x) 可导, λ为任意实数, 则 f (x)的任意两个零
点之间, 必有 f ( x ) f ' ( x ) 的零点
解 设 x1< x2 是 f (x) 的任意两个零点,要证:存在
ξ(x1, x2) 使

f ( ) f ' ( ) 0
f ' () 0
y y 说明:
A B
2
1) 几何意义
0 o
a
b xx
2) 罗尔定理涉及了方程根的问题
例2 若 f (x)在 0, 1上连续, 在 (0,1)内可导, 且 f (1)=0 ,
则在 (0,1) 内存在点ξ, 使
f ' ( ) f

f ( ) f ' ( ) f ' ( ) f ( ) 0, (0,1)

[ xf ( x )]' x 0, (0,1)
取辅助函数 F ( x ) xf ( x ) ,则 F(x)在 0, 1上连续, 在 (0,1)内可导,且F(0) = F(1) = 0, 根据罗尔定理, 存在 ξ(0,1) , 使

3微分中值定理与导数的应用习题

3微分中值定理与导数的应用习题

第三章微分中值定理与导数的应用1 •函数y =x2 -1在L 1,1】上满足罗尔定理条件的匕=2、若f(x)=x3在1,2】上满足拉格朗日中值定理,则在(1,2 )内存在的匕=3. f(x)=x2+x-1在区间L1,1】上满足拉格朗日中值定理的中值匕=4•函数y = In(X +1诳区间0,1】上满足拉格朗日中值定理的匕=5•验证罗尔定理对函数y =1 n sin X在区间律—1上的正确性。

T 6」6.验证拉格朗日中值定理对函数y =4x' —5x2 +x-2在区间0,1】上的正确性。

7.对函数f(x) = sinx及F(x)=x+cosx在区间〔0,—1上验证柯西中值定理的正确性。

L 2」&试证明对函数y = px2 +qx + r应用拉格朗日中值定理时的求得的点总是位于区间的正中间。

9.证明下列不得等式: ⑴ arctanx -arctan y < x - y⑶当a汕>«¥<"¥10.用洛必达法则求下列极限:X _x⑵ lim e ~eT sin XIn R +丄]⑷ li%__¥—鈕 1arcta n —x⑸1x m1x1.1 -x1⑹ lim (cot X -一) T x(7)lim (cos X)⑻ ji m^x "(J x2+1 -X) ⑵当X A1时,e x;>e .XIn (1 +x)⑴lim T X⑶ lim 沁—sina X T x-asin X — xcosx2~;x sinx11. 确定下列函数的单调区间。

⑷ y =1 n(x +J 1 + x 212. 求下列函数图形的拐点及凹凸区间:⑷ y = In(x 2+1 )13. 禾U 用函数的单调性证明下列不等式:(11)lim(1-x)ta n 便'(2丿(12)tanx⑽ lim — - x -^l x「1 2 、—2x~e-1丿⑴ y = 2x 3-6x 2-18x -7⑵ y = 2x +8(X A O )x=x 3 -5x 2+3x +5/ \ -x⑵ y = xe= (x +1y +e x⑴当1 ,_______ x>0 时,1+ —x》u1+x2⑵当x>0 时,1+xl n(x+j1+x2)> J1 +x2⑶当兀 1 3 0cx£ —时,tanx〉x + -x2 314.列表讨论下列函数的单调区间,凹性区间,极值点与拐点。

微分中值定理例题

微分中值定理例题

理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。

12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

高等数学微分中值定理与导数应用习题

高等数学微分中值定理与导数应用习题

微分中值定理与导数应用一、选择题1. 设函数()sin f x x =在[0,]π上满足罗尔中值定理的条件,则罗尔中值定理的结论中的=ξ【 】 A. π B. 2π C. 3πD. 4π2. 下列函数中在闭区间],1[e 上满足拉格朗日中值定理条件的是【 】A. x lnB.x ln ln C.xln 1 D.)2ln(x -3. 设函数)3)(2)(1()(---=x x x x f ,则方程0)('=x f 有【 】A. 一个实根B. 二个实根C. 三个实根D. 无实根4. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点5. 若在区间I 上,()0,()0,f x f x '''>≤, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 6. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点7. 若在区间I 上,()0,()0,f x f x '''<≥, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 8. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点9. 若在区间I 上,()0,()0,f x f x '''>≥, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 10.函数256, y x x =-+在闭区间 [2,3]上满足罗尔定理,则ξ=【 】A. 0B. 12C. 52D. 2 11.函数22y x x =--在闭区间[1,2]-上满足罗尔定理,则ξ=【 】A. 0B. 12C. 1D. 212.函数y =在闭区间[2,2]-上满足罗尔定理,则ξ=【 】A. 0B. 12C. 1D. 2 13.方程410x x --=至少有一个根的区间是【 】A.(0,1/2)B.(1/2,1)C. (2,3)D.(1,2) 14.函数(1)y x x =+.在闭区间[]1,0-上满足罗尔定理的条件,由罗尔定理确定的=ξ 【 】A. 0B. 12-C. 1D.1215.已知函数()32=+f x x x 在闭区间[0,1]上连续,在开区间(0,1)内可导,则拉格朗日定理成立的ξ是【 】 A.± B. C. D. 13±16.设273+=x y ,那么在区间)3,(-∞和),1(+∞内分别为【 】 A.单调增加,单调增加 B.单调增加,单调减小 C.单调减小,单调增加 D.单调减小,单调减小二、填空题1. 曲线53)(23+-=x x x f 的拐点为_____________.2. 曲线x xe x f 2)(=的凹区间为_____________。

第03章微分中值定理与导数的应用习题详解

第03章微分中值定理与导数的应用习题详解

M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。

可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。

—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。

可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。

「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。

微分中值定理经典题型

微分中值定理经典题型
2
例2 设 f ( x)在U(a, )内具有二阶连续导数 ,
f (a) 0 , a h U (a, ),且
f (a h) f (a) hf (a h) (0 1),
证明:lim 1 / 2. h0
证明: f (a h) f (a) hf (a h)
f (a) h[ f (a) f (a 1 h) h] (0 1 1),
f
( x0 )
1 2
f
(1 ) x02
1 2
f
(2 )(1
x0 )2
f ( x) 1,
f
( x0 )
1 2
x02
1 (1 2
x0 )2
(
x0
1)2 2
1 4
又由 x0 [0,1] 知,
x0
1 2
1, 2
于是有
f
( x0 )
1 2
由 x0 的任意性,可知命题成立.
类似地, 若函数 f ( x) 在 [0,1] 上二阶可微,且 f ( x) a, f ( x) b,其中a, b是非负数. 证明 : x (0,1),有 f ( x) 2a b .
x
x
7 试证至少存在一点
使
证: 法2 用柯西中值定理 . 令
f ( x) sinln x , F ( x) ln x
则 f (x) , F(x) 在 [ 1 , e ] 上满足柯西中值定理条件,
因此
f (e) f (1) f ( ) , ( 1 , e ) F (e) F (1) F( )
故 方 程f ( x) 0,若 有 根必 有 唯 一 的 根,
以 下 只 须 证f (a f (a)) 0
方法1:
将f ( x)在[a,a

微积分中值定理习题课

微积分中值定理习题课

ek f ( ) ek kf ( ) 0
[e kx f ( x ) (e kx ) f ( x )]x 0
[e
kx
f ( x )]x 0.
1
设f (x)在[a, b]上连续, 在(a, b)内可导, 且
f (a ) f (b) 0, f ( x ) 0, x (a , b). 证明: f ( ) k. 对任意的实数k, 存在点 (a b), 使 f ( ) 证 设g( x ) ekx f ( x ) [e kx f ( x )]x 0 ; 则(1) g( x )在[a, b]上连续 ;(2) g( x )在(a, b)内可导
设函数 f (x)在[0, 3]上连续,在(0, 3)内可导, 且f (0) f (1) f ( 2) 3, f ( 3) 1. 试证必存在 (0,3), 使f ( ) 0. x 在 f[( 在 [0, 2]上连续 , 证 因为 因为 ff(( (x)在 cx , )3] 上连续 , c)) [0, 1 3] f上连续 ( 3), 且 ,f 所以 且在 2]上必有最大值 M和最小值 必存在 ,于是 在(c,[0, 3)内可导 , 所以由Rolle 定理知,m m (cf,3 (0 (M , ), m f f 1) 0 M (( )) 0,3 使 . , m f ( 2) M . f (0) f (1) f ( 2) m M. 故 3 由介值定理知,至少存在一点 c [0,2], 使
综上, 存在 (a, b), 使得h( ) 0.
6分
4
考研数学(一、二、三)11分
(1) 证明拉格朗日中值定理: 若函数 f (x)在
[a, b]上连续, 在(a, b)内可导, 则存在 (a , b ), 使得f (b) f (a ) f ( )(b a ). (2) 证明: 若函数f ( x )在x 0处连续, 在(0, ) ( x ) A, 则f (0)存在, ( 0)内可导, 且 lim f

微分中值定理的证明题

微分中值定理的证明题

证:将上等式变形得:
作辅助函数
f
(x)
由拉格朗日定理得:

f
1 eb b

(1) b 1
1
xe x
ba

11
ba
1 a
,则
f (1) a
1
ea
即: aeb bee (1 )e (a,b)


(1
f
1
e
1
1 b
ba
(x)
f
1

(1 )
)e

在[1
1
1
1
e
,
ba
1
f ( ) 1 f ( ) 1
f ()
1
5. 设 f (x) 在[0,2a]上连续, f (0) f (2a) ,证明在[0,a]上存在 使得
f (a ) f ( ) .
【分析】 f (x) 在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根 的存在性定理证明。辅助函数可如下得到
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

微分中值定理题目

微分中值定理题目

例1设()x f '在[]b a ,上存在,且()()b f a f '<',而r 为()a f '与()b f '之间的任一值,则在()b a ,内存在一点ξ,使得()r f ='ξ[7].例2设()x f 在()+∞,a 内可导,且()()A x f x f x a x ==+∞→→+lim lim ,试证:至少存在一点 ()+∞∈,a ξ,使得()0='ξf [7].例3设函数()x f 在[]b a ,上可导,且()()0_<'⋅'+b f a f ,则在()b a ,内至少存在一个ξ,使得()0='ξf [7].例4()x f 在[]b a ,上连续,在()b a ,内二阶可导,且()()()b f c f a f ==,()b c a <<, 试证:至少存在一个()b a ,∈ξ,使得()0=''ξf [2].例5设()x f 在[]1,0上有三阶导数,()()010==f f ,设()()x f x x F 3=,证明:存在 ()1,0∈ξ使得()0='''ξF .例6设()x f 在[]b a ,上可微,且()x f 在a 点的右导数()0<'+a f ,在b 点的左导数 ()0<'-b f ,()()c b f a f ==,证明:()x f '在()b a ,内至少有两个零点.例7设()x f 在R 上二次可导,()0>''x f ,又存在一点0x ,使()00<x f ,且 ()0lim <='-∞→a x f x ,()0lim >='+∞→b x f x ,证明:()x f 在R 上有且仅有两个零点. 例8()[]1,0在x f 上二次可导,()()010==f f ,试证明:存在()1,0∈ξ,使得()()()ξξξf f '-=''211[4].例9设()[]1,0在x f 上连续,在()1,0上可导, ()()010==f f ,121=⎪⎭⎫ ⎝⎛f .证明: 至少存在一点()1,0∈ξ使得()1='ξf .例10设函数()x f 在闭区间[]b a ,上连续,在开区间()b a ,上二次可微,连结()()a f a ,与()()b f b ,的直线段与曲线()x f y =相交于()()c f c ,,其中b c a <<.证明在()b a ,上至少存在一点ξ,使得()0=''ξf [1].例11设()x f 在[]b a ,上连续,在()b a ,内可导,且()()1==b f a f 试证:存在ξ, ()b a ,∈η使得 ()()[]1='+-ηηξηf f e [1].例12 设函数()x f 在[]b a ,上连续,在()b a ,上二阶可微,并且()()b f a f =,证明:若存在点()b a c ,∈,使得()()a f c f >,则必存在点()b a ,,,∈ζηξ,使得()0>'ξf ,()0<'ηf ,()0<''ζf [6].例13设()x f 定义在[]1,0上,()x f '存在且()x f '单调递减,()00=f ,证明: 对于 10≤+≤≤≤b a b a ,恒有()()()b f a f b a f +≤+.例14 设()x f 在[]b a ,上连续,在()b a ,可导,b a <≤0,()()b f a f ≠.证明:存在η,()b a ,∈ξ,使得()()ηηξf b a f '+='2 [6]. 例15 设()x f 在[]b a ,上连续,在()b a ,可导,且()0≠'x f ,试证:存在η,()b a ,∈ξ,使得()()ηηξ---=''e ab e e f f ab [1]. 例16设函数()x f 在[]b a ,上连续,在()b a ,可导,证明:存在()b a ,∈ξ,使得()()()()ξξξf f ab a af b bf '+=--[1]. 例17设()[]b a x f ,在上连续()0>a ,在()b a ,可导,证明:在()b a ,内存在ξ,η,使()()ab f f ηηξ'='2[1].例18 设()[]b a x f ,在上连续,在()b a ,内可微,0>>a b ,证明:在()b a ,内存在321,,x x x ,使得()()()()33223222211ln42x f x a b a b x x f a b x x f '-='+='. (3) 例19设()x f 在()b a ,内二次可微,试用柯西中值定理证明:任意x ,()b a x ,0∈,存在ξ在x 与0x 之间,使()()()()()()2000021x x f x x x f x f x f -''+-'+=ξ成立[6]. (8)。

微分中值定理的证明题660

微分中值定理的证明题660

微分中值定理的证明题1.若在上连续,在上可导,,证明:,使得:。

证:构造函数,则在上连续,在内可导,且,由罗尔中值定理知:,使即:,而,故。

2.设,证明:,使得。

证:将上等式变形得:作辅助函数,则在上连续,在内可导,由拉格朗日定理得:,即,即:。

3.设在内有二阶导数,且,有证明:在内至少存在一点,使得:。

证:显然在上连续,在内可导,又,故由罗尔定理知:,使得又,故,于是在上满足罗尔定理条件,故存在,使得:,而,即证4.设函数在[0,1]上连续,在(0,1)上可导,,.证明:(1)在(0,1)内存在,使得.(2)在(0,1)内存在两个不同的点,【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】(I)令,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在使得,即.(II)在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,于是5.设在[0,2a]上连续,,证明在[0,a]上存在使得.【分析】在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。

辅助函数可如下得到【证明】令,.在[0,a]上连续,且当时,取,即有;当时,,由根的存在性定理知存在使得,,即.6.若在上可导,且当时有,且,证明:在内有且仅有一个点使得证明:存在性构造辅助函数则在上连续,且有,,由零点定理可知:在内至少存在一点,使得,即:唯一性:(反证法)假设有两个点,且,使得在上连续且可导,且在上满足Rolle定理条件必存在一点,使得:即:,这与已知中矛盾假设不成立,即:在内仅有一个根,综上所述:在内有且仅有一个点,使得7.设在[0,1]上连续,在(0,1)内可导,且==0,=1。

试证至少存在一个(0,1),使=1。

分析:=1=1=x=0令()=证明:令F()=()在[0,1]上连续,在(0,1)内可导,(1)=()=由介值定理可知,一个(,1),使()=0又(0)=0=0对()在[0,1]上用Rolle定理,一个(0,)(0,1)使=0即=18.设在上连续,在内可导,且试证存在和.满足,使。

数学分析6微分中值定理及其应用总练习题详解

数学分析6微分中值定理及其应用总练习题详解

第六章 微分中值定理及其应用总练习题1、证明:若f(x)在(a,b)内可导,且+→a x lim f(x)=-→b x lim f(x),则至少存在一点ξ∈(a,b),使f ’(ξ)=0.证:定义f(a)=+→a x lim f(x),f(b)=-→b x lim f(x),则f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),由罗尔中值定理知 至少存在一点ξ∈(a,b),使f ’(ξ)=0.2、证明:若x>0,则 (1)1x +-x =θ(x)x 21+,其中41<θ(x)<21;(2)0x lim →θ(x)=41,+∞→x lim θ(x)=21. 证:(1)由拉格朗日中值定理得:1x +-x =θ(x)x 21+, (0<θ(x)<1),∴θ(x)x 2+=x1x 1-+=1x ++x ,∴θ(x)=41+21[1)x(x +-x].∵1)x(x +-x>2x -x=0,∴41+21[1)x(x +-x]>41; 又1)x(x +-x=x1)x(x x ++<xx x 2+=21,∴41+21[1)x(x +-x] <21.∴41<θ(x)<21.(2)(1)中已证θ(x)=41+21[1)x(x +-x],∴0x lim →θ(x)=0x lim →{41+21[1)x(x +-x]}=41; +∞→x lim θ(x)=+∞→x lim {41+21[1)x(x +-x]}=41+21+∞→x lim 1x111++=21.3、设函数f 在[a,b]上连续,在(a,b)内可导,且ab>0. 证明: 存在ξ∈(a,b),使得f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).证:记F(x)=xf (x),G(x)=x 1,根据柯西中值定理,存在ξ∈(a,b),使得)(G )(F ξξ''=G(a)-G(b)F(a)-F(b),又)(G )(F ξξ''=f(ξ)- ξf ’(ξ),∴f(ξ)- ξf ’(ξ)=G(a)-G(b)F(a)-F(b).又f(b)f(a)b a b -a 1=b -a bf (a)-af (b)=a1-b 1a f(a)-bf(b)=G(a)-G(b)F(a)-F(b), ∴f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).4、设函数f 在[a,b]上三阶可导,证明: 存在ξ∈(a,b),使得f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ). 证:记F(x)=f(x)-f(a)-21(x-a)[f ’(x)+f ’(a)],G(x)=(x-a)3,则 F,G 在[a,b]上二阶可导,F ’(x)=f ’(x)-21[f ’(x)+f ’(a)]-21(x-a)f ”(x),G ’(x)=3(x-a)2,F ”(x)=f ”(x)-21f ”(x)-21f ”(x)-21(x-a)f ’”(x)=-21(x-a)f ’”(x);G ”(x)=6(x-a).且F(a)=F ’(a)=0,G(a)=G ’(a)=0.根据柯西中值定理,存在η∈(a,b),使得)(G )(F ηη''=G(a)-G(b)F(a)-F(b)=G(b)F(b)=3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+', 又根据柯西中值定理,存在ξ∈(a, η),使得)(G )(F ξξ''''=(a)G -)(G (a)F -)(F ''''ηη=)(G )(F ηη'',又)(G )(F ξξ''''=a)-6()(f )a (21-ξξξ'''-=-121f ”’(ξ).∴3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+'=-121f ”’(ξ). ∴f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ).5、对f(x)=ln(1+x)应用拉格朗日中值定理,证明: 对x>0,有0<x)ln(11+-x1<1.证:f ’(x)=x11+. 对f 在区间[0,x]应用拉格朗日中值定理得: f ’(ξ)=0-x f (0)-f (x)=x ln1-x)ln(1+= x x)ln(1+,∴ln(1+x)=xf ’(ξ)=ξ1x+. ∴x)ln(11+=x ξ1+=x 1+x ξ;即x)ln(11+-x 1=xξ.又0<xξ<1,∴0<x)ln(11+-x1<1.6、设a 1,a 2,…,a n 为n 个正实数,且f(x)=(na a a x n x 2x 1+⋯++)x1. 证明:(1)0x lim →f(x)=nx n x 2x 1a ··a ·a ⋯;(2)∞→x lim f(x)=max{a 1,a 2,…,a n }. 证:(1)0x lim →f(x)=e na a a ln x 1lim x n x 2x 10+⋯++→x = exn x 2x 1nx n 2x 21x 10a a a a ln a a ln a a ln a lim+⋯+++⋯++→x= ena ln a ln a ln n21+⋯++=n xn x 2x 1a ··a ·a ⋯. (2)记A=max{a 1,a 2,…,a n },则0<Aa k≤1, (k=1,2,…,n)∵f(x)=A[n)A a()A a ()Aa (x n x 2x 1+⋯++]x 1,∴A(n 1)x 1<f(x)≤A , 又∞→x lim A(n1)x1=A ,∴∞→x lim f(x)=A=max{a 1,a 2,…,a n }.7、求下列极根: (1)=→1x lim (1-x 2)x)-ln(11;(2)2xx x x)ln(1-xe lim+→;(3)sinxx 1sinx lim20x →.解:(1)=→1x lim (1-x 2)x)-ln(11=e)x 1ln()x 1ln(lim21x --=→= e21x x1)x 1(x 2lim--=→=ex 1x 2lim1x +=→=e.(2)2x 0x x x)ln(1-xe lim +→=2xx 11-xe e lim xx0x ++→=2x)(11xe 2e lim 2x x 0x +++→=23. (3)sinxx 1sinx lim20x →=)sinx x ·x 1sin x (lim 0x →=)x 1sin x (lim 0x →·sinx x lim 0x →=0·1=0.8、设h>0,函数f 在U(a,h)内具有n+2阶连续导数,且f (n+2)(a)≠0, f 在U(a,h)内的泰勒公式为:f(a+h)=f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )θh a (f 1)(n +++h n+1, 0<θ<1.证明:θlimh →=2n 1+. 证:f 在U(a,h)内带皮亚诺型余项的n+2阶泰勒公式为:f(a+h)= f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )a (f 1)(n ++h n+1+2)!(n )a (f 2)(n ++h n+2+o(h n+2),与题中所给泰勒公式相减得:1)!(n )a (f )θh a (f 1)(n 1)(n +-+++h n+1=2)!(n )a (f 2)(n ++h n+2+o (h n+2).∴1)!(n θ+·θh )a (f )θh a (f 1)(n 1)(n ++-+=2)!(n )a (f 2)(n +++2n 2n h )h (++o .令h →0两端取极限得:1)!(n )a (f 2)(n ++θlim 0h →=2)!(n )a (f 2)(n ++,∴θlim 0h →=2n 1+.9、设k>0,试问k 为何值时,方程arctanx-kx=0存在正根.解:若方程arctanx-kx=0有正根x 0,∵f(x)=arctanx-kx 在[0,x 0]上可导, 且f(0)=f(x 0)=0,由罗尔中值定理知,存在ξ∈(0,x 0),使得 f ’(ξ)=2ξ11+-k=0. 可见0<k<1. 反之,当0<k<1时,由f ’(x)=2x11+-k 连续,f ’(0)=1-k>0, ∴存在某邻域U(0,δ),使得在U(0,δ)内,f ’(x)>0,f(x)严格递增, 从而存在a>0,使f(a)>f(0)=0. 又+∞→x lim f(x)=-∞,∴存在b>a ,使f(b)<0, 由根的存在定理知,arctanx-kx=0在(a,b)内有正根. ∴当且仅当0<k<1时,原方程存在正根.10、证明:对任一多项式p(x)来说,一定存在点x 1与x 2,使p(x)在(x 1,+∞)与(-∞,x 2)上分别严格单调.证:设p(x)=a 0x n +a 1x n-1+…+ a n-1x+a n ,其中a 0≠0,不妨设a 0>0. 当n=1时,p(x)=a 0x+a 1,p ’(x)=a 0>0,∴p(x)在R 上严格增,结论成立. 当n ≥2时,p ’(x)=na 0x n-1+(n-1)a 1x n-2+…+ a n-1,若n 为奇数,则∞→x lim p ’(x)=+∞,∴对任给的G>0,存在M>0,使 当|x|>M 时,有p ’(x)>G>0,取x 1=M ,x 2=-M ,则 p(x)在(x 1,+∞)与(-∞,x 2)上均严格增.若n 为偶数,则+∞→x lim p ’(x)=+∞,-∞→x lim p ’(x)=-∞, ∴对任给的G>0,存在M>0,使当x>M 时,有p ’(x)>G>0,当x<-M 时,p ’(x)<-G<0,取x 1=M ,x 2=-M , 则p(x)在(x 1,+∞)上严格增,在(-∞,x 2)上严格减. 综上原命题得证。

微分中值定理有关证明

微分中值定理有关证明

☆例1 设)(x f 在[0,3]上连续,在(0,3)内可导,且3)2()1()0(=++f f f ,1)3(=f .试证:必存在)3,0(∈ξ,使()0f ξ'=证:∵ )(x f 在[0,3]上连续,∴ )(x f 在[0,2]上连续,且有最大值和最小值.于是M f m ≤≤)0(;M f m ≤≤)1(;M f m ≤≤)2(,故M f f f m ≤++≤)]2()1()0([31. 由连续函数介值定理可知,至少存在一点[0,2]c ∈使得1)]2()1()0([31)(=++=f f f c f ,因此)3()(f c f =,且)(x f 在[,3]上连续,(,3)内可导,由罗尔定理得出必存在)3,0()3,(⊂∈c ξ使得()0f ξ'=。

☆例2 设)(x f 在[0,1]上连续,(0,1)内可导,且⎰=132)0()(3f dx x f求证:存在)1,0(∈ξ使0)('=ξf证:由积分中值定理可知,存在2[,1]3c ∈,使得⎰-=132)321)(()(c f dx x f得到 ⎰==132)0()(3)(f dx x f c f对)(x f 在[0,c]上用罗尔定理,(三个条件都满足) 故存在)1,0(),0(⊂∈c ξ,使()0f ξ'=☆例3 设)(x f 在[0,1]上连续,(0,1)内可导,对任意1>k ,有⎰-=k x dx x f xe k f 11)()1(,求证存在)1,0(∈ξ使1()(1)()f f ξξξ-'=-证:由积分中值定理可知存在1[0,]c k∈使得)01)(()(1101-=--⎰k c f ce dx x f xe ck x令)()(1x f xex F x-=,可知)1()1(f F =这样1110(1)(1)()()()x c k F f kxe f x dx ce f c F c --====⎰,对)(x F 在]1,[c 上用罗尔定理(三个条件都满足)存在)1,0()1,(⊂∈c ξ,使()0F ξ'= 而111()()()()xx x F x ef x xe f x xe f x ---''=-+∴ 11()[()(1)()]0F ef f ξξξξξξ-''=--=又01≠-ξξe,则1()(1)()f f ξξξ'=-在例3的条件和结论中可以看出不可能对)(x f 用罗尔定理,否则结论只是()0f ξ'=,而且条件也不满足。

微分中值定理的证明题

微分中值定理的证明题

微分中值定理的证明题1. 若 f(x)在[a,b ]上连续,在(a,b)上可导,f(a)= f(b) = O ,证明:V/I G R,3^e(a,b)使得:f ,(^)+2f(<?) = 0o证:构造函数F(x)= f(x)e ax ,则F(x)在[a,b ]上连续,在(a,b)内可导,且F(a) = F(b) = 0 ,由罗尔中值定理知:3^e(a,b),使F® = 0即:[F©+;lf©]e"=O,而e“H0,故 f'GD+2f(® = 0。

2. 设 a,b >0 ,证明:3^G (a,b),使得 ae b - be* = (1 - (a - b) <»1 1 £ i T , T1 1 1证:将上等式变形得:±e^--e* =(1-^(---) b ab aLi 1 i 1作辅助函数f(x) = xes 则f(x)在[「—]上连续,在(门―)内可导,b a b a由拉格朗H 定理得:即:a 』一be'= (1 — 4)e'(a 、b)^e(a b 严3. 设 f(x)在(0,1)内有二阶导数,且 f(l) = 0,有 F(x) = x 2f(x)证明:在(0,1) 内至少存在一点?,使得:F M(^) = 0« 证:显然F(x)在[0,1]上连续,在(0,1)内可导,乂 F(0) = F(l) = 0,故由罗尔 定理知:Bxo e(0,1),使得F ,(x o ) = O又F ,(x) = 2xf(x) + x 2f ,(x),故F'(0) = 0,于是F'(x)在[0, xj 上满足罗尔 定理条件,故存在矗(0,况),使得:F”GD=O,而兵(0,观)U (0,1),即证4. 设函数f(x)在[0,1]上连续,在(0,1)上可导,f(0) = 0 , f(l) = l.证明:1. _ £ b a b a1 -bG 1 - rs(1)在(0,1)内存在?,使得询=1-歹.(2)在(0, 1)内存在两个不同的点J , H吏得玖6玖〃)=1【分析】第一部分显然用闭区间上连续函数的介值定理:第二部分为双介值问题,可考虑用拉格朗II中值定理,但应注意利用第一部分已得结论.【证明】(I)令F(x)= f(x)-l+x,则F(x)在[0,1]上连续,且F(0)=-l<0, F ⑴=1X),于是由介值定理知,存在存在e (0J),使得F(^) = 0,即f(^) = l-^.(D)在[0,幻和[笄]上对f(x)分别应用拉格朗FI中值定理,知存在两个不同的点血(0,幻,和(舁),使得f'(〃)= 缪,f©=号一¥ 歹一。

微分中值定理与导数的应用练习题

微分中值定理与导数的应用练习题

题型1.利用极限、函数、导数、积分综合性的使用微分中值定理写出证明题2.根据极限,利用洛比达法则,进行计算3.根据函数,计算导数,求函数的单调性以及极值、最值4.根据函数,进行二阶求导,求函数的凹凸区间以及拐点5.根据函数,利用极限的性质,求渐近线的方程内容一.中值定理 1.罗尔定理 2.拉格朗日中值定理 二.洛比达法则一些类型(00、∞∞、∞•0、∞-∞、0∞、00、∞1等) 三.函数的单调性及极值 1.单调性 2.极值四.函数的凹凸性及拐点 1.凹凸性 2.拐点五.函数的渐近线 水平渐近线、垂直渐近线典型例题题型I 方程根的证明题型II 不等式(或等式)的证明题型III 利用导数确定函数的单调区间及极值 题型IV 求函数的凹凸区间及拐点自测题三一.填空题 二.选择题 三.解答题4月13日微分中值定理及导数应用练习题基础题: 一.填空题1.函数12-=x y 在[]1,1-上满足罗尔定理条件的=ξ 。

3.1)(2-+=x x x f 在区间[]1,1-上满足拉格朗日中值定理的中值ξ= 。

4.函数()1ln +=x y 在区间[]1,0上满足拉格朗日中值定理的=ξ 。

5.函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 .6.设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于区间 中.7. =→x x x 3cos 5cos lim 2π35-8.=++∞→xx x arctan )11ln(lim0 9.)tan 11(lim 2x x xx -→=3110.0lim(sin )x x x +→=1二. 选择题1.罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( ).A . 必要条件B .充分条件C . 充要条件D . 既非充分也非必要条件2.下列函数在]1 ,1[-上满足罗尔定理条件的是( ).A. x e x f =)(B. ||)(x x f =C. 21)(x x f -=D.⎪⎩⎪⎨⎧=≠=0,00 ,1sin )(x x xx x f 3.若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( ).A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξB . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C . 211221)()()()(x x f x x x f x f <<'-=-ξξD . 211212)()()()(x x f x x x f x f <<'-=-ξξ4.下列各式运用洛必达法则正确的是( B )A . ==∞→∞→n n n n n en ln limlim11lim=∞→n n eB . =-+→x x x x x sin sin lim∞=-+→xxx cos 1cos 1lim 0C . x x x x x x x x x cos 1cos1sin 2lim sin 1sinlim020-=→→不存在D . x x e x 0lim →=11lim 0=→xx e5. 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A .xx x sin lim20→ B .x x xtan 0)1(lim +→ C .x xx x sin lim+∞→ D . xnx e x +∞→lim综合题: 三.证明题1.验证罗尔定理对函数x y sin ln =在区间⎥⎦⎤⎢⎣⎡65,6ππ上的正确性。

微分证明题(附极限题)

微分证明题(附极限题)

微分证明题(附极限题)微分的证明题(附极限题)1.设f (x ) 在[0, 1]上游二阶导数f (x ) ≤a ,f ''(x ) ≤b ,其中a , b 是非负数,c ∈(0, 1) ,求证:f '(c ) ≤2a +b . 2证明:函数f (x ) 在x =c 点的二阶Taylor 展开为:f ''(ξ)(x -c ) 2 2! f ''(ξ1)(0-c ) 2 f (0) =f (c ) +f '(c )(0-c ) +2! f ''(ξ2)(1-c ) 2 f (1) =f (c ) +f '(c )(1-c ) +2!1f ''(ξ2)(1-c ) 2-f ''(ξ1) c 2 故 f (1) -f (0) =f '(c ) +2f (x ) =f (c ) +f '(c )(x -c ) +[]f '(c ) =f (1) -f (0) -1f ''(ξ2)(1-c ) 2-f ''(ξ1) c 22b b ≤2a +(1-c ) 2+c 2≤2a +22[[]2.设函数f (x ) 在(0, 1) 内具有连续的三阶导数,且f (0) =1, f (1) =2, f ' ⎪=0,证明在⎛1⎫⎝2⎭(0, 1) 内至少存在一点ξ,使f '''(ξ) ≥241⎫1⎛1⎫⎛1⎫11⎫⎛1⎫⎛1⎫⎛⎛证明:f (0) =f ⎪+f ' ⎪ 0-⎪+f '' ⎪ 0-⎪+f '''(ξ1) 0-⎪2⎭2! ⎝2⎭⎝2⎭3! 2⎭⎝2⎭⎝2⎭⎝⎝⎛1⎫⎛1⎫⎛1⎫1⎛1⎫⎛1⎫1⎛1⎫f (1) =f ⎪+f ' ⎪ 1-⎪+f '' ⎪ 1-⎪+f '''(ξ2) 1-⎪⎝2⎭⎝2⎭⎝2⎭2! ⎝2⎭⎝2⎭3! ⎝2⎭两式相减,得f (1) -f (0) =1=23231[f '''(ξ1) +f '''(ξ2) ] 48所以在(0, 1) 内至少存在一点ξ,使f '''(ξ) ≥24.3.设函数f (x ) 在闭区间[-1, 1]上具有三阶连续导数,且f (-1) =0, f (1) =1, f '(0) =0,证明:在开区间(-1, 1) 内存在一点ξ,使f '''(ξ) =3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分中值定理的证明题
1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ∀∈,
(,)a b ξ∃∈使得:()()0f f ξλξ'+=。

2. 设,0a b >,证明:(,)a b ξ∃∈,使得(1)()b a ae be e a b ξξ-=--。

3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)
内至少存在一点ξ,使得:()0F ξ''=。


4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明:
(1)在(0,1)内存在ξ,使得ξξ-=1)(f .
(2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得
5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.
6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<<x f ,且1)(≠'x f ,证明:
在)1,0( 内有且仅有一个点ξ使得ξξ=)(f
7. 设)(x f 在[0,1]上连续,在(0,1)内可导,且)0(f =)1(f =0,)2
1(f =1。

试证至少存在一个∈ξ(0,1),使()f x ¢
=1。

8. 设)(x f 在]1,0[上连续,在)1,0(内可导,且)1()0(f f =试证存在ξ和η.满足
10<<<ηξ,使0)()(='+'ηξf f 。

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠
证明: ,(,)a b ξη∃∈使得 ()().2a b f f ξηη
+''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ,
使)()()(3/22/2ηξηf b ab a f ++=
略)
11. 设)(x f 在a x ≥时连续,0)(<a f ,当a x >时,0)(/>>k x f ,则在))(,(k
a f a a -内0)(=x f 有唯一的实根

12. 试问如下推论过程是否正确。

对函数21sin 0()0
0t t f t t t ⎧≠⎪=⎨⎪=⎩在[0,]x 上应用拉格朗日中值定理得:
21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ
--'====--- (0)x ξ<< 即:1
1
1cos 2sin sin x x
ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x
+→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→=

13. 证明:02x π∀<<成立2cos x x tgx x
<<。

14. 证明:当02x π<<
时,sin 2x tgx x +>。

15. 证明:若()f x 二阶可导,且()0f x ''>,(0)0f =,则()()f x F x x =
在 (0,)+∞内单调递增。

相关文档
最新文档