六年级平面图形综合训练
六年级平面图形练习题
![六年级平面图形练习题](https://img.taocdn.com/s3/m/bd317d5d168884868762d648.png)
六年级平面图形练习题3.一个平行四边形的底是14厘米,高是9厘米,它的面积是;与它等底等高的三角形面积是.5.工地上有一堆钢管,横截面是一个梯形,已知最上面一层有2根,最下面一层有12根,共堆了11层,这堆钢管共有根。
6.一个三角形比与它等底等高的平行四边的面积少30平方厘米,则这个三角形的面积是。
7.一个三角形的面积是4.5平方分米,底是5分米,高是分米。
8.一个等边三角形的周长是18厘米,高是3.6厘米,它的面积是平方厘米。
二、判定题1.两个面积相等的三角形,一定能拼成一个平行四边形.2.平行四边形的面积等于一个三角形面积的2倍.3.两个完全一样的梯形,能拼成一个平行四边形.4.把一个长方形的框架挤压成一个平行四边形,面积减少了.5.两个三角形面积相等,底和高也一定相等。
三、选择题1.等边三角形一定是 _______ 三角形.[ ]A.锐角;B.直角;C.钝角2.两个完全一样的锐角三角形,可以拼成一个________[ ]A.长方形; B.正方形; C.平行四边形; D.梯形3.把一个平行四边形任意分割成两个梯形,这两个梯形中 ________总是相等的.[ ]A.高; B.面积; C.上下两底的和、填空。
1.在推导平行四边形面积计算公式时,可把平行四边形通过割补平移转化为形去推导,推导三角形面积计算公式时,可把两个完全一样的三角形拼成一个形去推导,推导梯形面积计算公式时,可把两个完全一样的梯形拼成一个形进行推导。
4.直角三角形的两条直角边长分别为3厘米和4厘米,这个直角三角形面积是平方厘米。
7.一个三角形的底边长扩大2倍,高不变,扩大后的三角形面积比原来三角形面积扩大倍。
三、判断题。
1.平行四边形面积等于长方形面积。
2.等底等高的三角形可拼成一个平行四边形。
4.只要知道梯形的两底之和的长度和它的高,就可以求出它的面积。
5.两个周长相等的等边三角形,面积必相等。
一、填空。
1.一个三角形的面积是25平方厘米,和它等底等高的平行四边形的面积是平方厘米。
2022年最新强化训练鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试卷(含答案详解)
![2022年最新强化训练鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试卷(含答案详解)](https://img.taocdn.com/s3/m/596c42e3988fcc22bcd126fff705cc1755275f06.png)
六年级数学下册第五章基本平面图形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、上午10:00,钟面上时针与分针所成角的度数是( )A .30°B .45°C .60°D .75°2、如图,某同学从A 处出发,去位于B 处的同学家交流学习,其最近的路线是( )A .A C DB →→→B .AC F B →→→ C .A C E F B →→→→D .A C M B →→→3、如图,∠BOC =90°,∠COD =45°,则图中互为补角的角共有( )A .一对B .二对C .三对D .四对4、平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( )A .点C 在线段AB 的延长线上B .点C 在线段AB 上 C .点C 在直线AB 外D .不能确定5、经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是( )A .两点确定一条直线B .两点之间直线最短C .两点之间线段最短D .直线有两个端点6、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )A .直线外一点与直线上点之间的连线段有无数条B .过一点有无数条直线C .两点确定一条直线D .两点之间线段最短7、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )A .两点确定一条直线B .两点之间,线段最短C .射线只有一个端点D .过一点有无数条直线8、如图,D 、E 顺次为线段AB 上的两点,20AB =,C 为AD 的中点,则下列选项正确的是( )A .若0BE DE -=,则7AE CD -=B .若2BE DE -=,则7AE CD -=C .若4BE DE -=,则7AE CD -= D .若6BE DE -=,则7AE CD -=9、如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是( )A .两点确定一条直线B .经过一点有无数条直线C .两点之间,线段最短D .一条线段等于已知线段10、下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A 地到B 地架设电线,总是尽可能沿着直线架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )A .①②B .①③C .②④D .③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点C 是线段AB 上任意一点(不与端点重合),点M 是AB 中点,点P 是AC 中点,点Q 是BC 中点,则下列说法:①PQ MB =;②1()2PM AM MC =-;③1()2PQ AQ AP =+;④1()2MQ MB MC =+.其中正确的是_______.2、一个角为2440︒',则它的余角度数为 _____.3、把一个直径是10厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成的图形的周长比原来圆的周长增加_______厘米.4、4236'︒=______°.5、如图,从O 点引出6条射线OA OB OC OD OE OF 、、、、、,且85AOB ∠=︒,155EOF ∠=︒,OE OF 、分别是AOD BOC ∠∠、的平分线.则COD ∠的度数为___________度.三、解答题(5小题,每小题10分,共计50分)1、按要求作答:如图,已知四点A 、B 、C 、D ,请仅用直尺和圆规作图,保留画图痕迹.(1)①画直线AB ;②画射线BC ;③连接AD 并延长到点E ,在射线AE 上截取AF ,使AF =AB +BC ;(2)在直线BD 上确定一点P ,使PA +PC 的值最小,并写出画图的依据 .2、如图,点C 为线段AD 上一点,点B 为CD 的中点,且8cm,3cm AC BD ==.求线段AD 的长.3、如图,线段AB =12,点C 是线段AB 的中点,点D 是线段BC 的中点.(1)求线段AD 的长;(2)若在线段AB 上有一点E ,13CE BC =,求AE 的长.4、如图,点O 为直线AB 上一点,过点O 作射线OC ,使110BOC ∠=°.将一直角三角板的直角顶点放在点O 处()30OMN ∠=︒,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠.求BON ∠的度数.(2)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,则t 的值为多少?(直接写结果,不写步骤)5、如图,已知平面上三点A ,B ,C ,请按要求完成下列问题:(1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD =BC ,连接CD (保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE;(4)通过测量猜测线段BE和AB之间的数量关系.-参考答案-一、单选题1、C【解析】【分析】钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,【详解】10时整,时针与分针组成的角的度数是30°×2=60°.故选:C.【点睛】本题要在了解钟面结构的基础上进行解答.2、B【解析】【分析】根据两点之间线段最短,对四个选项中的路线作比较即可.【详解】解:四个选项均为从A→C然后去B由两点之间线段最短可知,由C到B的连线是最短的由于F在CB线上,故可知A→C→F→B是最近的路线故选B.【点睛】本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.3、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC=90°,∠COD=45°,∴∠AOC=90°,∠BOD=45°,∠AOD=135°,∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,∴图中互为补角的角共有3对,故选:C.【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.4、B【解析】【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】解:如图:∵AB=8,AC=5,BC=3,从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:B.【点睛】本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.5、A【解析】【分析】根据直线公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.6、D【解析】【分析】根据题意可知,原因为两点之间线段最短,据此分析即可【详解】解:校园中常常看到“在草坪上斜踩出一条小路”,其原因为两点之间线段最短故选D【点睛】本题考查了线段的性质,掌握两点之间线段最短是解题的关键.7、A【解析】【分析】两个学生看成点,根据两点确定一条直线的知识解释即可.【详解】∵两点确定一条直线,∴选A.【点睛】本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.8、D【解析】【分析】AE CD CE再逐一分析即可得到答案. 先利用中点的含义及线段的和差关系证明,【详解】解:C为AD的中点,1,AC CD AD20BE DE -=,则1,2BE DE BD 110,2AE CD AC CD DE CDAC DE CD DE CE AB 故A 不符合题意;2BE DE -=,则2,BE DE2220,CD DE DE9,CD DE CE同理:9,AE CD CE 故B 不符合题意;4BE DE -=,则4,BE DE2420,CD DE DE8,CD DE CE同理:8,AE CD CE 故C 不符合题意;6BE DE -=,则6,BE DE2620,CD DE DE7,CD DE CE同理:7,AE CD CE 故D 符合题意;故选D【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明AE CD CE ”是解本题的关键9、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.10、D【解析】【分析】分别利用直线的性质以及线段的性质分析得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;故选:D.【点睛】此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.二、填空题1、①②④【解析】【分析】根据线段中点的定义得到12AM BM AB ==,12==AP CP AC ,12==CQ BQ BC ,然后根据线段之间的和差倍分关系逐个求解即可.【详解】解:∵M 是AB 中点, ∴12AM BM AB ==,∵P 是AC 中点, ∴12==AP CP AC , ∵点Q 是BC 中点, ∴12==CQ BQ BC ,对于①:11()=22=+=+=PQ PC CQ AC BC AB BM ,故①正确; 对于②:11()22=-=-=PM AM AP AB AC BC , 11()22=-=-=PM AM AP AB AC BC ,故②正确; 对于③:11+=(+)22==PQ PC CQ AC BC AB , 而[]111111()=()()()222222+++=+=+=+>AQ AP AP PQ AP AP PQ AC PQ AC BM AB , 故③错误; 对于④:111()()222+=+=MB MC MA MC AC , 11111()()22222=+=-+=--+=-=MQ MC CQ AC AM BC AB BC AB BC AB BC AC ,故④正确;故答案为:①②④.【点睛】此题考查线段之间的和差倍分问题,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2、6520︒'【解析】【分析】根据余角的定义计算即可.【详解】解:90°-2440︒',=6520︒',故答案为:6520︒'.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.3、10【解析】【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径, 所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米.故答案为:10.【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键. 4、42.6【解析】【分析】根据角度进制的转化求解即可,601'=︒.【详解】 解:36360.660'==︒ ∴4236'︒=42.6︒故答案为:42.6【点睛】本题考查了角度进制的转化,掌握角度进制是解题的关键.5、35【解析】【分析】根据OE OF 、分别是AOD BOC ∠∠、的平分线.得出∠AOE =∠DOE ,∠BOF =∠COF ,可得∠AOE +∠BOF =∠DOE +∠COF =∠EOF -∠COD =155°-∠COD ,根据周角∠AOB +∠AOE +∠BOF +∠EOF =360°,得出85°+155°-∠COD +155°=360°,解方程即可.【详解】解:∵OE OF 、分别是AOD BOC ∠∠、的平分线.∴∠AOE =∠DOE ,∠BOF =∠COF ,∴∠AOE +∠BOF =∠DOE +∠COF =∠EOF -∠COD =155°-∠COD ,∵∠AOB+∠AOE+∠BOF+∠EOF=360°,∴85°+155°-∠COD+155°=360°,解得∠COD=35°.故答案为35.【点睛】本题考查角平分线有关的计算,角的和差,周角性质,一元一次方程,掌握角平分线有关的计算,角的和差,周角性质,一元一次方程是解题关键.三、解答题1、(1)①见解析,②见解析,③见解析(2)图见解析,两点之间,线段最短【解析】【分析】(1)①连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,即可得出依据.(1)①如图所示:连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;(2)画直线BD ,连接AC 交BD 于点P ,根据两点之间,线段最短,点P 即为所求,故答案为:两点之间,线段最短.【点睛】题目主要考查直线、射线、线段的作法,两点之间线段最短等,理解题意,结合图形熟练运用基础知识点是解题关键.2、14cm【解析】【分析】根据点B 为CD 的中点和3cm BD =可求得CD 的长,根据图中线段的关系即可求解.【详解】解:∵点B 是CD 的中点,3cm BD =,∴2236CD BD ==⨯=,又∵8cm AC ,∴8614cm AD AC CD =+=+=.【点睛】本题考查了线段的相关知识,解题的关键是根据线段中点的定义正确求解.3、 (1)9AD =;(2)AE的长为4或8【解析】【分析】(1)根据AD=AC+CD,只要求出AC、CD即可解决问题;(2)先求出CE,再根据点E的位置分两种情况讨论即可解决问题.(1)解:∵AB=12,C是AB的中点,∴AC=BC=6,∵D是BC的中点,∴CD=12BC=3,∴AD=AC+CD=9;(2)解:∵BC=6,CE=13 BC,∴CE=13×6=2,当E在C的左边时,AE=AC﹣CE=6﹣2=4;当E在C的右边时,AE=AC+CE=6+2=8.∴AE的长为4或8.【点睛】本题考查的是线段中点的含义,线段的和差运算,掌握“线段的中点与线段的和差关系”是解本题的关键.4、 (1)35︒(2)直线ON 恰好平分锐角AOC ∠,则t 的值为11s 或67s.【解析】【分析】(1)先利用角平分线的定义求解155,2BOM BOC 再利用90,MON ∠=︒ 从而可得答案; (2)分两种情况讨论:如图,当直线ON 恰好平分锐角AOC ∠,记P 为ON 上的点,求解线段ON 旋转的角度9055,N ON BON 如图,当ON 平分AOC ∠时,求解ON 旋转的角度为:90+9011035235,BOC CON 从而可得答案. (1)解:OM 平分,110,BOC BOC 155,2BOM BOC 90,MON 9035.BON BOM(2)解:如图,当直线ON 恰好平分锐角AOC ∠,记P 为ON 上的点, 111803522AOP COP AOC BOC35,BON AOP9055,N ON BON 55115t ,∠时,如图,当ON平分AOCAON CON35,BOC CON此时ON转的角度为:90+9011035235,235t67,5∠,则t的值为11s或67s.综上:直线ON恰好平分锐角AOC【点睛】本题考查的是角平分线的定义,角的和差运算,角的动态定义的理解,清晰的分类讨论是解本题的关键.5、 (1)见解析(2)见解析(3)见解析(4)3cm =1.5cm AB BE =,,猜测2AB BE =【解析】【分析】(1)根据题意画射线AC ,线段BC ;(2)根据题意,连接AB ,并用圆规在线段AB 的延长线上截取BD =BC ,连接CD ;(3)根据题意,利用刻度尺取线段CD 的中点E ,连接BE ;(4)测量线段BE 和AB 的长度,进而求得猜测BE 和AB 之间的数量关系.(1)如图所示,射线AC ,线段BC 即为所求;(2)如图所示,连接AB ,在线段AB 的延长线上截取BD =BC ,连接CD ;(3)如图所示,取线段CD 的中点E ,连接BE ;(4)通过测量3cm =1.5cm AB BE =,,猜测2AB BE =【点睛】本题考查了直线、射线、线段以及线段的中点,正确区分直线、线段、射线是解题关键.。
小升初专项复习:平面图形(试题)-六年级下册数学通用版
![小升初专项复习:平面图形(试题)-六年级下册数学通用版](https://img.taocdn.com/s3/m/785324aedb38376baf1ffc4ffe4733687e21fcc7.png)
通用版小升初专项复习:平面图形一、填空题1.已知一个等腰三角形的一边是3cm ,一边是7cm ,这个三角形的周长是 cm 。
2.若a 和b 都是非0自然数,并且满足 a 3+b 7=1621,那么以a+b= 。
3.下图是由5个完全相同小长方形合成的大长方形,大长方形的周长是44厘米,这个大长方形的面积是 平方厘米。
4.要画一个周长是18.84厘米的圆,圆规两脚间的距离应为 厘米,这个圆的面积是 平方厘米。
5.如图,把圆分成若干等份,剪拼成了一个近似的长方形,周长比原来增加了6厘米,这个圆的面积是 平方厘米。
6.圆的 除以 的商是一个固定的数,我们把它叫作 ,用字母 表示,它是一个 小数,通常取 进行计算。
7.井盖做成圆的主要是为了 。
8.45 吨的 12 是 吨,合 千克。
9.在一个长是8厘米,宽是6厘米的长方形里剪一个最大的圆,这个圆的半径是 厘米,周长是 厘米,面积是 平方厘米。
10.一个圆锥的底面周长是18.84cm ,高是5cm ,从顶点沿高把它切成相等的两半,这两半的表面积之和比原来圆锥的表面积增加了 cm 2。
11.已知∠1、∠2是直角三角形中的两个锐角.(1)∠1=38°∠2= °(2)∠2=46°∠1= °12.一块梯形广告牌的下底是8米,上底是5米,高是下底的一半,它的面积是 平方米。
13.一个长方形花坛的面积是56平方米,扩建时长不变,宽由7米增加到12米,扩建后花坛的面积是平方米。
14.如果把一个圆的半径扩大到原来的3倍,那么直径扩大到原来的倍,周长扩大到原来的倍,面积扩大到原来的倍。
15.一个棋盒里有黑子和白子若干枚,若取出一枚黑子,则余下的黑子数与白子数之比为9:7;若放回黑子,再取出一枚白子,则余下的黑子数与白子数之比为7:5。
那么棋盒里原有的黑子比白子多枚。
二、单选题16.周长是80米的正方形,面积是()。
A.20平方米B.80平方米C.400平方米D.6400平方米17.如图,大圆内有一个最大的正方形,正方形内有一个最大的圆,那么大圆面积和小圆面积的比是()。
人教版六年级数学下册期末专项《图形与几何》综合素质达标试卷 附答案
![人教版六年级数学下册期末专项《图形与几何》综合素质达标试卷 附答案](https://img.taocdn.com/s3/m/d9c58e49dcccda38376baf1ffc4ffe473268fd41.png)
人教版六年级数学下册图形与几何综合素质达标一、填空。
(每空1分,共17分)1.780 cm2=( ) dm20.8平方千米=( )公顷8 m360 dm3=( ) m3 7.5 L=( )cm32.在括号里填上适当的单位名称。
(1)长江是世界上第三大河,全长约6300( )。
(2)一瓶洗手液250( )。
(3)天安门广场上升起的国旗面积是16.5( )。
3.一个立体图形,从左面看到的形状是,从上面看到的形状是,搭这样的立体图形,至少需要( )个小正方体,最多需要( )个小正方体。
4.等腰三角形的两条边分别长5 cm和10 cm,那么这个等腰三角形的周长是( )cm。
5.如图,直角梯形的周长是40 cm,它的面积是( ) cm2。
6.用4个棱长为2 cm的小正方体摆出一个长方体,该长方体的表面积可能是( )cm2,也可能是( )cm2。
7.从一根高2 m的圆柱形木料上截下来一个高6 dm的小圆柱后,木料的表面积减少了75.36 dm2,原来这根木料的表面积是( )dm2。
8.六(2)班进行队列表演,每组人数相等,梦梦在最后一组的最后一个,用数对表示是(6,8),他们班共有( )名同学参加了队列表演。
9.右图是一个圆柱和一个圆锥,圆柱的底面直径是圆锥的2倍,它们的高度相等。
一个这样的圆柱可以熔铸成( )个这样的圆锥。
10.如右图,圆的面积与长方形的面积相等,如果圆的周长是6.28 cm,那么长方形的周长是( )cm。
二、选择。
(把正确答案的字母填在括号里,每题2分,共16分)1.下面的展开图中,( )是正方体的展开图。
2.毕达哥拉斯说过“一切平面图形中最美的是圆。
”为了研究圆,小雨将一张圆形纸片如图平均剪成若干份,拼成近似的长方形,且长方形的宽是3 cm,下面各说法正确的是( )。
A.圆的半径是3 cmB.圆的直径是3 cmC.圆的周长是9π cmD.圆的面积是6π cm23.如右图,D、E分别是BC、AD边上的中点,那么阴影部分面积是三角形面积的( )。
2020—2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)
![2020—2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)](https://img.taocdn.com/s3/m/0acf672b04a1b0717fd5ddfc.png)
鲁教版2021年度六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)1.如图,在直线l上有A、B、C三点,则图中线段共有()A.1条B.2条C.3条D.4条2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm4.如图(一),为一条拉直的细线,A、B两点在上,且:=1:3,:=3:5.若先固定B点,将折向,使得重叠在上,如图(二),再从图(二)的A 点及与A点重叠处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?()A.1:1:1B.1:1:2C.1:2:2D.1:2:55.如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处7.1°等于()A.10′B.12′C.60′D.100′8.如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAMC.∠BAM=2∠CAM D.2∠CAM=∠BAC9.直线上有2020个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.10.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.11.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O 的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n.(n≥3,n是整数)处,那么线段A n A的长度为(n≥3,n是整数).12.如图,线段的长度大约是厘米(精确到0.1厘米).13.在锐角∠AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得锐角个.14.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?15.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.16.先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.17.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B 位于O点南偏东60°,请在图中画出射线OA,OB,并计算∠AOB的度数.18.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.参考答案1.解:图中线段有AB、AC、BC这3条,故选:C.2.解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.3.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.4.解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选:B.5.解:∵钟面分成12个大格,每格的度数为30°,∴钟表上10点整时,时针与分针所成的角是60°.故选:B.6.解:由图可得,目标A在南偏东75°方向5km处,故选:D.7.解:1°等于60′.故选:C.8.解:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选:C.9.解:第一次:2020+(2020﹣1)=2×2020﹣1,第二次:2×2020﹣1+2×2020﹣1﹣1=4×2020﹣3,第三次:4×2020﹣3+4×2020﹣3﹣1=8×2020﹣7.∴经过3次这样的操作后,直线上共有8×2020﹣7=16153个点.故答案为:16153.10.解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.11.解:由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段A n A的长度为4﹣(n≥3,n是整数).故答案为:4﹣.12.解:线段的长度大约是2.3(或2.4)厘米,故答案为:2.3(或2.4).13.解:∵在锐角∠AOB内部,画1条射线,可得1+2=3个锐角;在锐角∠AOB内部,画2条射线,可得1+2+3=6个锐角;在锐角∠AOB内部,画3条射线,可得1+2+3+4=10个锐角;…∴从一个角的内部引出n条射线所得到的锐角的个数是1+2+3+…+(n+1)=×(n+1)×(n+2),∴画10条不同射线,可得锐角×(10+1)×(10+2)=66.故答案为:66.14.解:(1)18正好转3圈,3×6;17则3×6﹣1;“17”在射线OE上;(2)射线OA上数字的排列规律:6n﹣5射线OB上数字的排列规律:6n﹣4射线OC上数字的排列规律:6n﹣3射线OD上数字的排列规律:6n﹣2射线OE上数字的排列规律:6n﹣1射线OF上数字的排列规律:6n(3)2007÷6=334…3.故“2007”在射线OC上.15.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.16.解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.17.解:∵∠1=45°,∠2=60°,∴∠AOB=180°﹣(45°+60°)=75°.18.证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°。
六年级下册数学-小升初平面图形组合专项试题-s1-人教版
![六年级下册数学-小升初平面图形组合专项试题-s1-人教版](https://img.taocdn.com/s3/m/74b3958bcc7931b764ce1561.png)
-小升初平面图形组合专项试题-人教版一、解答题(题型注释)(1)(2)2.仔细数一数,填一填。
(1)右图是由个小三角形拼成的。
(2)右图有个三角形。
(3)右图共有个正方形。
3.根据游戏的需要,幼儿园阿姨用两个长8米、宽4米的长方形地垫先后拼成一个长方形游戏垫和一个正方形游戏垫(如图所示),拼成的长方形游戏垫和正方形游戏垫的周长分别是多少?4.如图,长方形中,,,三角形的面积为平方厘米,求长方形的面积.5.如图在中,,求的值.6.请你画出已学过的4种图形,使它们的面积相等,并计算出它们的面积.7.为了迎接“六•一”儿童节,学校做了一幅长方形的宣传画,长7米,宽50分米.这幅宣传画的周长和面积各是多少?8.如下图,在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
9.如下图,是一块长方形草地,长方形的长是14米,宽是12米。
中间有三条宽为2米的道路,两条是长方形,一条是平行四边形。
则草地的面积有多大?10.如图(1)(2)(3)(4)都是由9个边长为1厘米的正方形组成的3×3平方厘米的正方形,其中的阴影四边形的面积分别记为,,和,则,,ABCD:2:3BE EC=:1:2DF FC=DFG2ABCDAB CDEFGABC△12DC EA FBDB EC FA===GHIABC△的面积△的面积IHGFED CBA和中最小的与最大的和是多少平方厘米?参数答案1.(1)解:(2)解:【解析】1.根据题干的要求画图相应图形。
2.(1)4(2)3(3)5【解析】2.3.解:拼成长方形的周长是:(8+8+4)×2=20×2=40(米)答:拼成的长方形游戏垫的周长是40米.拼成后正方形的周长是:8×4=32(米)答:拼成的正方形游戏垫的周长是32米【解析】3.用两个长8米,宽4米的长方形,拼成一个大长方形,这个大长方形的长是(8+8)米,宽是4米;拼成正方形的边长是8米,然后根据长方形的周长公式:C=(a+b)×2,正方形的周长公式:C=4a,代入数据解答即可.4.72【解析】4.连接,.因为,,所以.因为,,所以平方厘米,所以平方厘米.因为,所以长方形的面积是平方厘米.5.17【解析】5.连接BG,设1份,根据燕尾定理,,得(份),(份),则(份),因此,同理连接AI、CH得,,所以如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.6.16平方厘米AE FEAB CDEFG:2:3BE EC=:1:2DF FC=3111()53210DEF ABCD ABCDS S S=⨯⨯=V长方形长方形12AED ABCDS S=V长方形11::5:1210AG GF==510AGD GDFS S==V V12AFDS=V16AFD ABCDS S=V长方形ABCD 72IHGFED CBABGCS△=::2:1AGC BGCS S AF FB==△△::2:1ABG AGCS S BD DC==△△2AGCS=△4ABGS=△7ABCS=△27AGCABCSS=△△27ABHABCSS=△△27BICABCSS=△△7222177GHIABCSS---==△△【解析】6.试题分析:此题没有具体数据,答案不唯一:把每个方格的长度看作1厘米,这里可以指定画面积为16平方厘米的正方形与长方形,则正方形的边长是4厘米,长方形的长可以是8厘米,则宽就是2厘米,梯形的上底是4厘米,下底是12厘米,高是2厘米,三角形的底是8厘米,高是4厘米,由此即可画图解:根据题干分析画图如下:答:它们的面积都是16平方厘米.7.24米,35平方米【解析】7.试题分析:根据长方形的周长=(长+宽)×2,长方形的面积=长×宽,代入数据即可解答.解:50分米=5米,(7+5)×2=24(米),7×5=35(平方米),答:这幅画的周长是24米,面积是35平方米.8.120平方厘米【解析】8.本题考查三角形面积和比的相关知识。
小升初(六年级)重点初中招生考试分类试题——平面图形综合
![小升初(六年级)重点初中招生考试分类试题——平面图形综合](https://img.taocdn.com/s3/m/f3f1aa95680203d8ce2f2437.png)
小升初(六年级)重点初中招生考试分类试题平面图形综合求角度1.如下图中,那么:∠1+∠2+∠3+∠4+∠5= 度。
2.下图中,小于180°的角有 个?如果∠2+∠3=∠1+∠4,那么当∠AOB 等于 度时,图中所有角的和等于360°。
3.在三角形ABC 中,D 、E 是BC 边上的点,BD=AB ,CE=AE ,又,31BAC DAE ∠=∠求BAC ∠的度数? 数图形4.如图所示是半个正方形,它被分成一个个小的等腰三角形,图中正方形有 个,三角形有 个。
5.数一数,图中包含☆的长方形有______个.1 2 345 A OB12 3 4 DEAC6.由三个边长为1的正方形拼成如图所示的左右对称的图形,以图中正方形的10个顶点为顶点可得到许多不同的三角形,那么,在这些三角形中,面积为1的三角形共有 个。
(面积为1的三角形的三条边中至少有一条边是水平或垂直的)综合能力提升7.两块直角边分别是6厘米和10厘米的等腰直角三角形板,如下图那样重合。
求重合部分(阴影所示)的面积是 平方厘米。
8.求下图中阴影部分的面积(单位:厘米)。
9.如图所示,长方形ABCD 中,AB=24厘米,BC=36厘米,E 是BC 的中点,F ,G 分别是AB ,CD 的4等分点,H 为AD 上任意一点,求阴影部分面积。
10.在图中,长方形长为12厘米,宽为6厘米,把长分成3等份,宽分为2等份,长方形内任一点与分点及顶点连接起来,求阴影部分的面积和是多少平方厘米?11.如图,正六边形ABCDEF 的面积是6平方厘米,M 是AB 中点,N 是CD 中点,P 是EF 中点。
△MNP 的面积是多少平方厘米?AH D12.如图中阴影部分的面积。
13.如图:△ABC 是等腰直角三角形,AB =BC =10CM ,AB 是半圆的直径,CB 是扇形BCD 的半径,求阴影部分的面积。
14.如图,以10×10的正方形的4条边为直径,在正方形的内部作4个半圆,求阴影部分的面积。
六年级奥数《平面图形》练习题
![六年级奥数《平面图形》练习题](https://img.taocdn.com/s3/m/1a4298abdc88d0d233d4b14e852458fb770b38b8.png)
第十一讲平面图形(必做与选做)1.在一张长12厘米、宽6厘米的长方形纸上剪下一个最大的半圆,这个半圆的周长是多少厘米?A. 24.84B. 30.84C. 43.68D. 49.68解析:最大的半圆以长方形长为直径,宽为半径。
这个半圆的周长C=3.14×6+12=30.84(厘米)。
所以选B。
2.在一张长12厘米、宽5厘米的长方形纸上剪下一个最大的半圆,这个半圆的周长是多少厘米?A. 20.7B. 25.7C. 27.5D. 41.4解析:最大的半圆以长方形的宽为半径,宽的两倍为直径。
这个半圆的周长C=3.14×5+5×2=25.7(厘米)。
所以选B。
3.在一张长12厘米、宽7厘米的长方形纸上剪下一个最大的半圆,剩下纸的周长是多少厘米?A. 32.84B. 30.84C. 44.84D. 63.68解析:最大的半圆是以长方形的长为直径,长的一半为半径。
剩下的纸的周长C=12+7×2+3.14×(12÷2)=44.84(厘米)。
所以选C。
4.有2根直径都是3分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,至少需要绳子多少分米?(接头处不计)A. 15.42B. 24.84C. 30.84D. 49.68解析:需计算两部分的长度,一部分是两条线段的长度,都是直径的长度;另一部分是两段圆弧的长度,一共是一个圆的周长。
因此一共需要绳子:(3.14×3+3×2)×2=30.84(分米)。
所以选C。
5.有3根直径都是5分米的圆柱体木头,现用绳子分别在三处把它们捆在一起,至少需要绳子多少分米?(接头处不计)A. 30.7B. 61.4C. 77.1D. 92.1解析:需计算两部分的长度,一部分是三条线段的长度,都是直径的长度;另一部分是三段圆弧的长度,一共是一个圆的周长。
因此一共需要绳子:(3.14×5+5×3)×3=92.1(分米)。
鲁教版五四制六年级下册数学 第五章 基本平面图形 综合复习题(含答案解析)
![鲁教版五四制六年级下册数学 第五章 基本平面图形 综合复习题(含答案解析)](https://img.taocdn.com/s3/m/5fc7a755c1c708a1294a4421.png)
参考答案与试题解析一.选择题1.下列说法正确的是()A.画一条长3cm的射线B.射线、线段、直线中直线最长C.射线是直线的一部分D.延长直线AB到C解:A.画一条长3cm的射线,说法错误,射线可以向一个方向无限延伸;B.射线、线段、直线中直线最长说法错误,射线可以向一个方向无限延伸,直线可以向两个方向无限延伸;C.射线是直线的一部分,正确;D.延长直线AB到C说法错误,直线可以向两个方向无限延伸.故选:C.2.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①③B.②④C.①④D.②③解:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释.故选:C.3.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A.B.C.D.解:A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.4.如图,下列说法中正确的是()A.直线AC在线段BC上B.射线DE与直线AC没有公共点C.直线AC与线段BD相交于点AD.点D在直线AC上解:A.直线AC上的点C在线段BC上,故本选项错误;B.射线DE与直线AC有公共点,故本选项错误;C.直线AC与线段BD相交于点A,故本选项正确;D.点D在直线AC外,故本选项错误;故选:C.5.下列叙述中正确的是()①线段AB可表示为线段BA②射线AB可表示为射线BA③直线AB可表示为直线BA④射线AB和射线BA是同一条射线A.①②③④B.②③C.①③D.①②③解:①线段AB可表示为线段BA,正确;②射线AB不可表示为射线BA,错误;③直线AB可表示为直线BA,正确;④射线AB和射线BA不是同一条射线,错误;故选:C.6.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.7.如图,延长线段AB到点C,使BC=2AB,D是AC的中点,若AB=5,则BD的长为()A.2B.2.5C.3D.3.5解:∵AB=5,BC=2AB,∴BC=10,∴AC=AB+BC=15,∵D为AC的中点,∴AD=AC=7.5,∴BD=AD﹣AB=7.5﹣5=2.5,故选:B.8.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB 解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.9.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定解:由图可知,A′B′<AB;故选:C.10.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.11.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.95°B.100°C.110°D.120°解:∵∠1=20°,∠AOC=90°,∴∠BOC=∠AOC﹣∠1=90°﹣20°=70°,∴∠2=180°﹣∠BOC=180°﹣70°=110°,故选:C.12.如图所示,OB是∠AOC平分线,∠COD=∠BOD,∠COD=17°,则∠AOD的度数是()A.70°B.83°C.68°D.85°解:∵∠COD=∠BOD,∠COD=17°,∴∠BOC=2∠COD=2×17°=34°,∵OB是∠AOC平分线,∴∠AOC=2∠BOC=2×34°=68°,∴∠AOD=∠AOC+∠COD=68°+17°=85°,故选:D.13.下列角度不能用一副三角板画出来的是()A.75°B.65°C.45°D.15°解:A、用45°+30°角画出,故能画出;B、没有两个角的和或差是65°,故不能画出;C、直接用三角板就可画出,故能画出;D、用60°﹣45°就可以画出,故能画出.故选:B.14.如图:如果∠1=∠3,那么()A.∠1=∠2B.∠2=∠3C.∠AOC=∠BOD D.∠1=∠BOD 解:根据题意,∠1=∠3,有∠1+∠2=∠3+∠2,即∠AOC=∠BOD;故选:C.15.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定解:设小明走的半圆的半径是R.则小明所走的路程是:πR.设小红所走的两个半圆的半径分别是:r1与r2,则r1+r2=R.小红所走的路程是:πr1+πr2=π(r1+r2)=πR.因而a=b.故选:A.二.填空题16.如图,OB平分∠AOC,∠AOD=78°,∠BOC=20°,则∠COD的度数为38°.解:∵OB平分∠AOC,∠BOC=20°,∴∠COD=40°,∵∠AOD=78°,∴∠COD=38°.故答案为38.三.解答题17.如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.解:(1)如图所示,直线AB,射线BD,线段BC即为所求;(2)连接AC,点E即为所求.18.如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,求∠EOF的度数.解:∵OF平分∠BOC,∠BOC=60°,∴∠COF=30°,∴∠EOF=∠COE﹣∠COF=∠COE﹣30°,∵OE平分∠AOC,∴∠AOC=2∠COE,又∵∠AOC+∠EOF=156°,∴2∠COE+∠COE﹣30°=156°,解得∠COE=62°,∴∠EOF=62°﹣30°=32°.。
最新人教版小学数学六年级《平面图形》基础训练题
![最新人教版小学数学六年级《平面图形》基础训练题](https://img.taocdn.com/s3/m/d90545f65ebfc77da26925c52cc58bd63086934c.png)
平面图形基础题一、选择题1.在一个长10厘米、宽5厘米的长方形中画一个最大的圆,它的半径是()A.10厘米 B.5厘米 C.2.5厘米 D.1.5厘米【答案】C【解析】试题分析:在长方形中最大的圆是以宽为直径的圆,由此即可解决问题.解:在一个长10厘米、宽5厘米的长方形中最大的圆是以宽为直径的圆,所以它的半径是:5÷2=2.5(厘米);故选:C.【点评】抓住长方形内最大圆的特点,即可解决此类问题.2.下列说法正确的是()A.1除以任何数所得的商就是这个数的倒数B.分母中只含有质因数2和5的分数才能化成有限小数C.π的大小与圆的大小无关D.扇形是圆的一部分,所以扇形的面积小于圆的面积【答案】C【解析】试题分析:分别根据倒数、能化成有限小数的分数的特征及圆的认识与圆周率对各选项进行逐一分析即可.解:A、1除以任何非0数所得的商就是这个数的倒数,故本选项错误;B、最简分数的分母中只含有质因数2和5的分数才能化成有限小数,故本选项错误;C、π是一个定值,它的大小与圆的大小无关,故本选项正确;D、由于扇形与圆的半径不确定,所以扇形的面积与圆的面积无法比较,故本选项错误.故选:C.3.()决定圆的大小,()决定圆的位置.A.直径B.圆心C.半径D.周长【答案】C,B【解析】试题分析:当一条线段绕着它的一个端点,它的另一个端点在平面内旋转一周所形成的图形叫做圆,这条线段即半径,围绕的端点即圆心,圆通常用圆规来画.所以圆的半径决点圆的大小,圆心决定圆的位置.解:根据圆的定义及作法可知,圆的半径决点圆的大小,圆心决定圆的位置.故选:C,B.4.下图中线段BC是()。
A.直径B.半径C.圆周率D.圆心【答案】A【解析】解:有圆的定义我们可以知道BC为圆的直径。
5.图中大圆的直径是()毫米.A.12B.10C.44D.22【答案】C【解析】试题分析:根据图和直径的意义得出大圆的半径,再乘2求出大圆的直径.解:(12+10)×2=44(毫米),所以图中大圆的直径是44毫米;故选:C.6.下列说法正确的是()A.1除以任何数所得的商就是这个数的倒数B.分母中只含有质因数2和5的分数才能化成有限小数C.π的大小与圆的大小无关D.扇形是圆的一部分,所以扇形的面积小于圆的面积【答案】C【解析】试题分析:分别根据倒数、能化成有限小数的分数的特征及圆的认识与圆周率对各选项进行逐一分析即可.解:A、1除以任何非0数所得的商就是这个数的倒数,故本选项错误;B、最简分数的分母中只含有质因数2和5的分数才能化成有限小数,故本选项错误;C、π是一个定值,它的大小与圆的大小无关,故本选项正确;D、由于扇形与圆的半径不确定,所以扇形的面积与圆的面积无法比较,故本选项错误.故选:C.7.贝贝家圆桌直径为1m,现在要给它铺上台布,尺寸为()的台布比较合适.A.100cm×80cm B.120cm×80cm C.80cm×80cm D.120cm×120cm【答案】D【解析】试题分析:求给圆桌铺上台布,尺寸为多少的台布比较合适,就是比较它的边长,只要桌布的两条边都比圆桌的直径大即可,圆桌直径1米,说明台布的边长至少要1米×1米,才能刚好遮住.解:贝贝家圆桌直径为1m,现在要给它铺上台布,尺寸为120cm×120cm的台布比较合;故选:D.8.钟面上,6点15分时分针和时针所夹的角是()A.直角B.锐角C.钝角D.平角【答案】C【解析】试题分析:当时针指到六点整的时候,时针和分针所夹的角是180°,当分针指到15分时,分针在3上,如时针在6上,则为直角,时针在6和7之间,夹角大于90°且小于180°,可知此角的类别.解:钟面上,6点15分时分针和时针所夹的角,大于90°且小于180°,则此夹角是钝角.故此题应选:C.9.把一个长方形框架拉成一个平行四边形,这个平行四边形的周长比原长方形的周长()。
六年级图形问题综合含答案解析
![六年级图形问题综合含答案解析](https://img.taocdn.com/s3/m/b0aba36aaf45b307e971970a.png)
平面图形计算(一)经典图形:1. 任意三角形ABC 中,CD=31AC ,EC=43BC ,则三角形CDE 的面积占总面积的31⨯43=41(为什么)2. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和等于左右两个三角形面积之和。
(为什么)3. 任意梯形,连接对角线,构成四个三角形。
(1)腰上的两个三角形面积相等;(2)上下两个三角形面积之积等于左右两个三角形面积之积。
(为什么)4. 正方形的面积等于边长的平方,或者等于对角线的平方÷2.等腰直角三角形面积等于直角边的平方÷2,或者等于斜边的平方÷4.(为什么)例题: 例1. 如右图,三角形ABC 的面积是10,BE=2AB ,CD=3BC ,求三角形BDE 的面积。
例2. 如图,已知三角形ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC ,求三角形DEF 的面积。
例3. 如图,三角形ABC 的面积是180平方厘米,D 是BC 的中点,AE=ED ,EF=2BF ,求AEF 的面积。
例4. 如图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在BC 边上,FG 过A 点,已知,三角形AKF与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。
求三角形BEK 的面积。
D例5. 如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。
三角形ABC 面积是500,求图中阴影部分的面积例6. 如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少ABC DFEG例7. 在如图所示的三角形AGH 中,三角形ABC ,BCD ,CDE ,DEF,EFG ,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米ABCD EFG H例8. 如图,在平行四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。
2022年鲁教版(五四制)六年级数学下册第五章基本平面图形综合测试试题(含解析)
![2022年鲁教版(五四制)六年级数学下册第五章基本平面图形综合测试试题(含解析)](https://img.taocdn.com/s3/m/8809736f49d7c1c708a1284ac850ad02de800726.png)
六年级数学下册第五章基本平面图形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠BOC =90°,∠COD =45°,则图中互为补角的角共有( )A .一对B .二对C .三对D .四对2、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A 表示养心殿所在位置,点O 表示太和殿所在位置,点B 表示文渊阁所在位置.已知养心殿位于太和殿北偏西2118'︒方向上,文渊阁位于太和殿南偏东5818︒'方向上,则∠AOB 的度数是( )︒'B.143︒C.140︒D.153︒A.79363、下列说法错误的是()A.两点之间,线段最短B.经过两点有一条直线,并且只有一条直线C.延长线段AB和延长线段BA的含义是相同的D.射线AB和射线BA不是同一条射线4、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为17.8km,而导航提供的三条可选路线的长度分别为37km、28km、34km(如图),这个现象说明()A.两点之间,线段最短B.垂线段最短C .经过一点有无数条直线D .两点确定一条直线5、上午8:30时,时针和分针所夹锐角的度数是( )A .75°B .80°C .70°D .67.5°6、已知α与β互为余角,若20α=︒,则β的补角的大小为( )A .70︒B .110︒C .140︒D .160︒7、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,12720'∠=︒,2∠的大小是( )A .2720'︒B .5720'︒C .5840'︒D .6240'︒8、在一幅七巧板中,有我们学过的( )A .8个锐角,6个直角,2个钝角B .12个锐角,9个直角,2个钝角C .8个锐角,10个直角,2个钝角D .6个锐角,8个直角,2个钝角9、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )A .105︒B .100︒C .90︒D .85︒10、已知50A ∠=,则∠A 的补角等于( )A .40B .50C .130D .140第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个角的补角是其余角的3倍,则这个角的度数为___.2、式子31257x x x x x ++++-+-+-的最小值是______.3、平面内不同的两点确定一条直线,不同的三点最多确定三条直线,则平面内不同的n 个点最多可确定_____条直线(用含有n 的代数式表示).4、同一直线上有两条线段,AB CD (A 在B 的左边,C 在D 的左边),M ,N 分别是,AB CD 的中点,若5cm MN =,7cm BC =,则AD =_________cm .5、4236'︒=______°.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 平分∠AOE .(1)若∠BOC =40°,求∠AOF 的大小.(2)若∠COF =x °,求∠BOC 的大小.2、解答下列各题:(1)化简并求值:(a ﹣ab )+(b +2ab )﹣(a +b ),其中a =7,b =﹣17.(2)如图,OD 为∠AOB 的平分线,∠AOC =2∠BOC ,AO ⊥CO ,求∠COD 的度数.3、已知P 为线段AB 上一点,AP 与PB 的长度之比为3∶2,若6AP =cm ,求PB ,AB 的长.4、如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画射线BA;(2)画直线AC;(3)在直线AC上找一点P,使得PB PD最小.5、点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:(1)当a=﹣1,b=5时,求线段AB的“和谐点”所表示的数;(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.-参考答案-一、单选题1、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC =90°,∠COD =45°,∴∠AOC =90°,∠BOD =45°,∠AOD =135°,∴∠AOC +∠BOC =180°,∠AOD +∠COD =180°,∠AOD +∠BOD =180°,∴图中互为补角的角共有3对,故选:C .【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.2、B【解析】【分析】由图知,∠AOB =180°−5818︒'+2118'︒,从而可求得结果.【详解】∠AOB =180°−5818︒'+2118'︒=180°-37°=143°故选:B【点睛】本题考查了方位角及角的和差运算,掌握角的和差运算是关键.3、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;D. 射线AB和射线BA不是同一条射线,故该项不符合题意;故选:C.【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.4、A【解析】【分析】根据两点之间线段最短,即可完成解答.【详解】由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.故选:A【点睛】本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.5、A【解析】【分析】根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.故选:A .【点睛】本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.6、B【解析】【分析】根据90βα=︒-求得β,根据180β︒-求得β的补角【详解】解:∵α与β互为余角,若20α=︒,∴9070βα=︒-=︒∴180β︒-110=︒故选B【点睛】本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为90︒,互为补角的两角之和为180︒.7、B【解析】【分析】根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.【详解】解:∵∠BAC=60°,∠1=27°20′,∴∠EAC=32°40′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°40′=57°20′;故选:B.【点睛】本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.8、B【解析】【分析】根据一副七巧板图形,查出锐角,直角和钝角的个数即可.【详解】5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,在一幅七巧板中根据12个锐角,9个直角,2个钝角.故选择B.【点睛】本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.9、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:A.【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.10、C【解析】【分析】若两个角的和为180,︒则这两个角互为补角,根据互补的含义直接计算即可.【详解】解:50∠=,A∴∠A的补角为:18050130,故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.二、填空题1、45°##45度【解析】【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.【详解】解:设这个角的度数是x,则180°-x=3(90°-x),解得x=45°.答:这个角的度数是45°.故答案为:45°.【点睛】本题考查了余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.2、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P 与点C 不重合时,点P 到A 、B 、C 、D 、E 各点的距离之和为:PA +PB +PC +PD +PE=(PA +PE )+(PB +PD )+PC=AE +BD +PC ;∵AE +BD +PC > AE +BD ,∴当点P 与点C 重合时,点P 到A 、B 、C 、D 、E 各点的距离之和最小,令数轴上数x 表示的为P ,则31257x x x x x ++++-+-+-表示点P 到A 、B 、C 、D 、E 各点的距离之和,∴当x =2时,31257x x x x x ++++-+-+-取得最小值, ∴31257x x x x x ++++-+-+-的最小值 =2321225227++++-+-+-=5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.3、(1)2n n - 【解析】【分析】平根据面内不同的两点确定一条直线,不同的三点最多确定三条直线…依此类推找出规律.【详解】解:平面内不同的2个点确定1条直线,3个点最多确定3条,即3=1+2;4个点确定最多1+2+3=6条直线;则n 个点最多确定1+2+3+……(n -1)=(1)2n n -条直线, 故答案为(1)2n n -. 【点睛】此题主要考查了两点确定一条直线,解决问题的关键是通过观察、分析、归纳、验证,然后得出一般性的结论,再代入求值.4、17【解析】【分析】根据A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,得出AM =BM ,CN =DN ,当点B 在点C 的右边时满足条件,分三种情况,当点B 在NM 上,设AM =BM =x ,得出BN =MN -BM =5-x ,ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当MN 在BC 上,设AM =BM =x ,CM =7-x , 得出ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当点C 在MN 上,设AM =BM =x ,MC =BM -BC =x -7,得出CN =DN =MN -MC =5-(x -7)=12-x ,可求AD =AM +MN +ND =x +5+12-x =17即可.【详解】解:∵A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,∴AM=BM,CN=DN,当点B在点C的右边时满足条件,分三种情况:当点B在NM上,设AM=BM=x,∴BN=MN-BM=5-x,∴CN=BC+BN=7+5-x=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,∴BN=x-5,CM=7-x,∴CN=CM+MN=7-x+5=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,∴MC=BM-BC=x-7,∴CN=DN=MN-MC=5-(x-7)=12-x,∴AD=AM+MN+ND=x+5+12-x=17;综合得AD=17.故答案为17.【点睛】本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.5、42.6【解析】【分析】根据角度进制的转化求解即可,601'=︒.【详解】解:36 360.660'==︒∴4236'︒=42.6︒故答案为:42.6【点睛】本题考查了角度进制的转化,掌握角度进制是解题的关键.三、解答题1、(1)25︒;(2)2702x︒-︒【解析】【分析】(1)结合题意,根据平角和角度和差的性质计算得AOE∠,再根据角平分线的性质计算,即可得到答案;(2)根据角度和差性质,计算得EOF∠;根据角平分线的性质计算,即可得到答案.【详解】(1)∵∠EOC=90°,∠BOC=40°∴18050AOE BOC EOC∠=︒-∠-∠=︒∵OF 平分∠AOE ∴252AOE AOF ∠∠==︒ ; (2)∵∠COF =x °,∠EOC =90°∴90EOF COF EOF x ∠=∠-∠=︒-︒∵OF 平分∠AOE∴22180AOE EOF x ∠=∠=︒-︒∴()1801802180902702BOC AOE EOC x x ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒.【点睛】本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.2、 (1)ab ,-1(2)22.5°【解析】【分析】(1)首先化简(a -ab )+(b +2ab )-(a +b ),然后把a =7,b =17-代入化简后的算式即可.(2)根据垂直的定义得到∠AOC =90°,求得∠AOB =∠AOC +∠BOC =135°,根据角平分线的定义求出∠BOD ,再减去∠BOC 可得结果.【小题1】解:(a -ab )+(b +2ab )-(a +b )=a -ab +b +2ab -a -b=ab当a =7,b =17-时,原式=7×(17)=-1.【小题2】∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=12∠AOB=67.5°,∴∠COD=∠BOD-∠BOC=22.5°.【点睛】此题主要考查了整式的加减-化简求值问题,角度的计算,角平分线的定义,要熟练掌握,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.3、BP=4cm,AB=10cm【解析】【分析】设AP=3x cm,BP=2x cm,由AP=6cm,求出x=2,即可得到答案.【详解】解:∵AP与PB的长度之比为3∶2,∴设AP=3x cm,BP=2x cm,又∵AP=6cm,∴3x=6,x=2,∴BP=4cm,AB=10cm.【点睛】此题考查了线段的和差计算,根据AP与PB的长度之比为3∶2设未知数是解题的固定思路,注意此方法的积累,在角度计算,应用题中同样可以应用.4、 (1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】【分析】(1)根据射线的定义连接BA并延长即可求解;(2)根据直线的定义连接AC并向两端延长即可求解;(3)连接AC和BD,根据两点之间线段最短可得AC与BD的交点即为点P.(1)解:如图所示,连接BA并延长即为要求作的射线BA,(2)解:连接AC并向两端延长即为要求作的直线AC,(3)解:如图所示,连接AC和BD,∵两点之间线段最短,∴当点P,B,D在一条直线上时,PB PD最小,∴线段AC 与BD 的交点即为要求作的点P .【点睛】本题主要是考查了几何作图能力以及两点之间线段最短和直线的概念,熟练掌握画图技巧,是解决作图题的关键.5、 (1)3或11;(2)a 的值为-12,-9,-4,-3.【解析】【分析】(1):设线段AB 的“和谐点”表示的数为x ,根据a =﹣1,b =5,分三种情况,①当1x <-时, 列出方程12(5)x x --=-.②当15x -≤<时,列出方程12(5)x x +=-.③当5x ≥时,列出方程12(5)x x +=-解方程即可.(2):点O 为AB 的“和谐点”OA =2OB ,列方程()020a b -=-或()020a b -=-,根据b =a +6且a <0,可得()0206a a -=--或()0260a a -=+-解方程,当A 为OB 的“和谐点”当b <0时,AB =2AO ,即6=-a ,不合题意,当b >0时,AO =2AB ,a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),点B 在点O 的右边,6=2(a +6),解方程即可.(1)解:设线段AB 的“和谐点”表示的数为x ,①当1x <-时,列出方程12(5)x x --=-.解得11x =.(舍去)②当15x -≤<时,列出方程12(5)x x +=-.解得3x =.③当5x ≥时,列出方程12(5)x x +=-解得11x =.综上所述,线段AB 的“和谐点”表示的数为3或11.(2)解:点O 为AB 的“和谐点”OA =2OB ,()020a b -=-或()020a b -=-,∵b =a +6且a <0,()0206a a -=--,解得12a =-,()0260a a -=+-,解得4a =-,当A 为OB 的“和谐点”,当b <0时,a <-6,AB =2AO ,即6=-a ,解得a =-6,不合题意,当b >0时,AO =2AB ,即a =2×(b -a ),∵b =a +6,解得a=12>0,不合题意,当点B为AO的“和谐点”BA=2BO,点B在点O的左边,6=2(-a-6),解得:a=-9,点B在点O的右边,6=2(a+6),解得:a=-3,综合a的值为-12,-9,-4,-3.【点睛】本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.。
小学六年级数学总复习平面图形的周长和面积练习题
![小学六年级数学总复习平面图形的周长和面积练习题](https://img.taocdn.com/s3/m/d881be6aec3a87c24128c479.png)
小学六年级数学总复习平面图形的周长和面积练习题平面图形的周长和面积练习题 2. 等边三角形又是( )三角形。
一、填表 A、直角 B、钝角 C、锐角 D、等腰直角2图形已知条件(米) 周长(米) 面积cm 3. 钟面上9点半时,时针和分针组成的角是( )。
A、锐角B、直角C、钝角D、平角长方形 a=6,b=44. 用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是正方形 a=5( )。
平行四边形 a=10,h=6 /A、长方形B、正方形C、正三角形D、圆三角形 a=20,h=8 /5. 把一个平形四边形任意分割成两个梯形,这两个梯形中( )总是梯形a=12,b=18,h=8 /相等的。
圆 r=3 A、面积 B、周长 C、高 D、上、下两底的和二、填空 6、从下图的大正方形中去掉一个小正方形后,面积( ),周长( ) ,(将一个圆平均分成若干份,拼成一近似长方形,长方形的面积与圆A、增加 B、减少 C、不变的面积( ),长方形的宽是圆的( ),长方形的长是圆的7、一个平行四边形和一个三角形等底等高,已知平行四边形的面积是30( )。
平方厘米,那么三角形面积是( )平方厘米。
2(圆心决定圆的( ),半径决定圆的( )。
A 15 B 30 C 60 3(一个时钟的时针长10厘米,一昼夜这时针走了( )厘米。
四、应用题 4(一圆形水池,直径为30米,沿着池边每隔5米栽一棵树,最多能栽1、李大伯家用55米长的竹篱笆在一块靠墙的空地上围了一个花圃(如( )棵。
图),这个花圃的面积是多少平方米? 5(把一平行四边形的框架拉成一长方形,面积( ),周长( ) 。
把一平行四边形通过剪、移、拼的方法拼成一长方形,面积( ),周长( )。
6(一个圆的半径扩大3倍,周长扩大( ),面积扩大( )。
20米 7、用一根长2米的绳子将一只羊栓在一根木桩上,这只羊最多能吃到 ( )平方米的草。
8、一个平行四边形和一个三角形等底等高,已知平行四边形比三角形的2、一块三角形菜地的面积是0.25公顷,菜地的底为125米,高是多少米? 面积大7平方厘米,三角形的面积是( )平方厘米,平行四边形的面积是( )平方分米。
【小升初培优专题】六年级下册数学-平面几何综合训练—曲线型(解析版)
![【小升初培优专题】六年级下册数学-平面几何综合训练—曲线型(解析版)](https://img.taocdn.com/s3/m/aed30c046d175f0e7cd184254b35eefdc8d31522.png)
【小升初培优专题】六年级下册数学-平面几何综合训练—曲线型(解析版)一、知识点1、圆周长:C=πd=2πr扩倍问题(1):若圆的半径扩大到n倍,则直径扩大到n倍,周长扩大到n倍,面积扩大到n²倍扩倍问题(2):若两个圆的半径比为n:m,则它们的直径比为n:m,周长比为n:m,面积比则为n²:m²构造圆在长方形中画一个最大的圆在长方形中画最大的半圆技巧:长的一半与宽比较,谁小谁是半径。
2、半圆周长:C=πr+d面积:πr²÷23、圆环=大圆面积-小圆面积=πR²-πr²圆环面积:S环4、扇形弧长:r nl π2360⨯=面积:2360r nS π=5、组合图形方中圆:正方形与圆面积之比为4:π圆中方:圆与正方形面积之比为π:2方中圆中方:大正方形面积是小正方形面积的2倍圆中方中圆:大圆面积是小圆面积的2倍割补法:重叠问题:整体减空白一、填空题。
(每道小题5分,共 40分)1. (1)一个圆的半经扩大到3倍,直径扩大到 倍;周长扩大到 倍;面积扩大到 倍。
【解答】3,3,9。
(2)大圆和小圆的半径比是3:2,它们的直径比是 ,他们的周长比是 ,它们的面积比是 。
【解答】3:2,3:2,9:4。
2. 在一个长10厘米、宽4厘米的长方形内画圆,圆的直径最大是 厘米,能画 个这样的圆且互不重叠。
【解答】如下图,4:2。
3. 如图,以B 、C 为圆心的两个半圆的直径都是3厘米,图中阴影部分的周长是 厘米。
【解答】如下图,半径为3÷2=1.5(厘米),连接BP 与CP ,因为BC 、CP 、PB 均为半径,所以△BCP 是等边三角形,那么∠PBC =∠PCB =60(度),弧长PB =60=弧长PC =36060×3.14×3=1.57(厘米),阴影部分的周长为1.57+1.57+1.5=4.64(厘米)。
六年级图形问题综合(奥数)含答案解析-精选.pdf
![六年级图形问题综合(奥数)含答案解析-精选.pdf](https://img.taocdn.com/s3/m/8dd6073e0b4e767f5acfcec6.png)
3. 任意梯形,连接对角线,构成四个三角形。 (1)腰上的两个三角形面积相等; ( 2)上下两个三角形 面积之积等于左右两个三角形面积之积。 (为什么?)
4. 正方形的面积等于边长的平方,或者等于对角线的平方 2,或者等于斜边的平方 4.(为什么?)
2.等腰直角三角形面积等于直角边的平方
例题: 例 1. 如 右图,三角形 ABC 的面积是 10,BE=2AB , CD=3BC ,求三角形 BDE 的面积。
6. 下图正方形 ABCD 边长是 10 厘米 , 长方形 EFGH 的长为 8 厘米 , 宽为 5 厘米 . 阴影部分甲与阴影部分乙
的面积差是 ______平方厘米 .
7. 如图所示 , 一个矩形被分成 A 、 B 、C 、 D 四个矩形 . 现知 A 的面积是 2cm2, B 的面积是 4cm2, C 的面积
H
F
D
B
ACE
G
例 8. 如 图,在平行四边形 ABCD中,AC为对角线, EF平行于 AC,如果三角形 AED的面积为 12 平方厘米,,
求三角形 DCF的面积。
专业 知识分享
D
C
完美 WORD 格式
F
A
E
B
练习:
1. 已知正方形 ABCD 的边长是 5cm,又 EF=FG , FD=DG ,求三角形 ECG 的面积。
B
A
8 平方厘米,三角形 COD
O
C
D
专业 知识分享
完美 WORD 格式
图形与面积 ( 一 ) 一、填空题
1. 如下图 , 把三角形 ABC 的一条边 AB 延长 1 倍到 D , 把它的另一边 AC 延长 2 倍到 E , 得到一个较大 的三角形 ADE , 三角形 ADE 的面积是三角形 ABC 面积的 ______倍 .
2020-2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合达标测评
![2020-2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合达标测评](https://img.taocdn.com/s3/m/773bdd3c856a561252d36ff4.png)
鲁教版2021年度六年级数学下册《第五章基本平面图形》单元综合达标测评(附答案)1.过平面内已知点A作直线,可作直线的条数为()A.0条B.1条C.2条D.无数条2.若线段AB=12cm,点C是线段AB的中点,点D是线段AC的三等分点,则线段BD的长为()A.2cm或4cm B.8cm C.10cm D.8cm或10cm 3.用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°4.如图,点A,B是直线上的两点,则图中分别以A,B为端点的射线的条数为()A.1B.2C.3D.45.下列说法正确的有()个.①把一个角分成两个角的射线叫做这个角的角平分线;②连接C、D两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n边形从其中一个顶点出发连接其余各顶点,可以画出(n﹣3)条对角线,这些对角线把这个n边形分成了(n﹣2)个三角形.A.3B.2C.1D.06.点E在线段CD上,下面的等式:①CE=DE;②DE=CD;③CD=2CE;④CD=DE.其中能表示E是CD中点的有()A.1个B.2个C.3个D.4个7.如图所示,∠AOB是平角,OC是射线,OD、OE分别是∠AOC、∠BOC的角平分线,若∠COE=28°,则∠AOD的度数为()A.56°B.62°C.72°D.124°8.兴泉铁路是江西省兴国县至福建省泉州市正在建设中的国家一级铁路,途中经过三明地界停靠的车站依次是:宁化﹣清流﹣明溪﹣三元区﹣永安﹣大田,那么要为三明境内站点拟制作的火车票有()A.15种B.18种C.30种D.36种9.上午10:00时,钟表的时针与分针的夹角为()A.60°B.90°C.120°D.30°10.在同一平面上,若∠BOA=60°,∠BOC=20°,则∠AOC的度数是()A.80°B.40°C.20°或40°D.80°或40°11.如图,在直角∠AOB的内部作射线OC,若∠AOC=33°24′17″,则∠BOC=.12.如图,从O点引出6条射线OA、OB、OC、OD、OE、OF,且∠AOB=80°,∠EOF =160°,OE、OF分别是∠AOD、∠BOC的平分线.则∠COD的度数为度.13.要把一根细木条固定在墙上,至少需要钉两个钉子,其中蕴含的数学道理是.14.已知点A,B,C在同一条直线上,AB=4cm,BC=5cm,则AC=.15.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,这时有∠BOC=2∠BOE=2,∠COD=∠AOD=,∠DOE=°.16.一个n边形从一个顶点出发引出的对角线可将其分割成5个三角形,则n的值为.17.如图,点B、D在线段AC上,且BD=AB=CD,E、F分别是AB、CD的中点,EF=10cm,则CD=cm.18.如图,将一个圆形的蛋糕等分成六份,则每一份中的角的度数为.19.已知A,B,C三点,过其中每两个点画直线,一共可以画条直线.20.已知∠A=41°18′36″,∠B=36°17′42″;则∠A+∠B=.21.已知:OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠COD=40°.分别求∠AOD和∠BOC的度数.22.如图,已知线段AF长13cm,点B、C、D、E顺次在AF上,且AB=BC=CD,E是DF的中点,CE=5cm,求BE的长.23.已知O为直线AB上一点,过点O向直线AB上方引两条射线OC,OD,且OC平分∠AOD.(Ⅰ)请在图①中∠BOD的内部画一条射线OE,使得OE平分∠BOD,并求此时∠COE 的度数;(Ⅱ)如图②,若在∠BOD内部画的射线OE,恰好使得∠BOE=3∠DOE,且∠COE =70°,求此时∠BOE的度数.24.如图,点O为直线AB上一点,∠BOC=40°,OD平分∠AOC.(1)求∠AOD的度数;(2)作射线OE,使∠BOE=∠COE,求∠COE的度数;(3)在(2)的条件下,作∠FOH=90°,使射线OH在∠BOE的内部,若∠DOF=3∠BOH,求∠AOH的度数.25.如图,点C是线段AB上的一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=12cm,AM=5cm,求BC的长;(2)如果MN=8cm,求AB的长.26.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.27.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜想出MN 的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案1.解:过平面内已知点A作直线,可作直线的条数为无数条,故选:D.2.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.3.解:75°可以用三角板的30°和45°画出,105°可以用三角板的45°和60°画出,110°用一副三角板不能画出,135°可以用三角板的45°和90°画出.故选:C.4.解:以A为端点的射线有2条,以B为端点的射线有2条,共4条,故选:D.5.解:从角的顶点出发,把一个角分成两相等的角的射线叫角的平分线,故①说法错误;连接C、D两点的线段的长度叫两点之间的距离,故②说法错误;两点之间,线段最短,故③说法错误;射线上点的个数和直线上点的个数都是无数个,故④说法错误;n边形从其中一个顶点出发连接其余各顶点,可以画出(n﹣3)条对角线,这些对角线把这个n边形分成了(n﹣2)个三角形,故⑤说法正确.所以法正确的有1个.故选:C.6.解:假设点E是线段CD的中点,则CE=DE,故①正确;当DE=CD时,则CE=CD,点E是线段CD的中点,故②正确;当CD=2CE,则DE=2CE﹣CE=CE,点E是线段CD的中点,故③正确;④CD=DE,点E不是线段CD的中点,故④不正确;综上所述:①、②、③正确,只有④是错误的.故选:C.7.解:∵OE平分∠BOC,∴∠BOC=2∠COE=56°.∴∠AOC=180°﹣∠BOC=124°.∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC=62°.故选:B.8.解:设宁化﹣清流﹣明溪﹣三元区﹣永安﹣大田六站分别用A、B、C、D、E、F表示,则共有线段:AB、AC、AD、AE、AF、BC、BD、BE、BF、CD、CE、CF、DE、DF、EF共15条,所以共需要15种车票.故选:A.9.解:∵10点整,时针指向10,分针指向12,中间相差两大格,钟表12个数字,每相邻两个数字之间的夹角为30°,∴10点整分针与时针的夹角是2×30°=60°.故选:A.10.解:(1)如图所示:当OC边在∠BOA的外部时,∠AOC=∠BOA+∠BOC=60°+20°=80°;(2)如图所示:当OC边在∠BOA的内部时,∠AOC=∠BOA﹣∠BOC=60°﹣20°=40°.故选:D.11.解:∵∠AOB=90°,∠AOC=33°24′17″,∴∠BOC=∠AOB﹣∠AOC=90°﹣33°24′17″=56°35′43″,故答案为:56°35′43″.12.解:设∠AOE=α,∠BOF=β,∵∠AOB=80°,∠EOF=160°,∴∠AOE+∠BOF=360°﹣∠AOE﹣∠BOF=360°﹣80°﹣160°=120°.∵OE、OF分别是∠AOD、∠BOC的平分线.∴∠AOD=2α,∠BOC=2β.∴∠COD=360°﹣∠AOB﹣∠AOD﹣∠BOC=360°﹣80°﹣120°×2=40°.故答案为40.13.解:要把一根细木条固定在墙上,至少需要钉两个钉子,其中蕴含的数学道理是两点确定一条直线,故答案为:两点确定一条直线.14.解:当点C在线段AB的延长线上时,AC=BC+AB=5cm+4cm=9cm;当点C在线段BA的延长线上时,AC=BC﹣AB=5cm﹣4cm=1cm;故则AC=1cm或9cm.故答案为:1cm或9cm.15.解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠BOC=2∠BOE=2∠COE,∠COD=∠AOD=∠AOC,∴∠DOE=∠COE+∠COD=(∠BOC+∠COA)=180°=90°.故答案为:∠COE,∠AOC,90°.16.解:依题意有n﹣2=5,解得n=7.故答案为:7.17.解:由BD=AB=CD,得AB=3BD,CD=4BD.由线段的和差,得AD=AB﹣BD=2BD,AC=AD+CD=2BD+4BD=6BD.由线段AB、CD的中点E、F,得AE=AB=BD,FC=CD=BD=2BD.由线段的和差,得EF=AC﹣AE﹣FC=6BD﹣BD﹣2BD=10,解得:BD=4cm,CD=×4==16cm,故答案为:16.18.解:因为周角的度数是360°,所以每一份中的角的度数为=60°.故答案为:60°.19.解:如图,最多可以画3条直线,最少可以画1条直线,.故答案为:1或3.20.解:∵∠A=41°18′36″,∠B=36°17′42″,∴∠A+∠B=41°18′36″+36°17′42″=77°35′78″=77°36′18″,故答案为:77°36′18″.21.解:∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD,又∵∠COD=40°,∴∠AOD=80°,∠AOC=40°,∵OB平分∠AOC,∴∠BOC=∠AOC=20°.22.解:设AB=BC=CD=x,则BD=2x,∴DF=13﹣3x,∵E是DF的中点,∴DE=(13﹣3x),∵CE=5,∴x+(13﹣3x)=5,∴x=3,∴BC=3,∴BE=BC+CE=8.23.解:(1)∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD,∵OE平分∠BOD,∴∠BOE=∠DOE=∠BOD,又∵∠AOD+∠BOD=180°,∴2∠COD+2∠DOE)=180°,∴∠COD+∠DOE)=90°,即∠DOE=90°,答:此时∠COE的度数为90°;(2)设∠DOE=x,则∠BOE=3x,∵∠AOD+∠BOD=180°,∴∠AOD=180°﹣4x,∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD=90°﹣2x,∵∠COE=70°,∴∠COD+∠DOE=70°,即:90°﹣2x+x=70°,解得,x=20°,∴∠BOE=3x=60°.24.解:(1)∵∠BOC=40°,∴∠AOC=180°﹣∠BOC=140°,∵OD平分∠AOC,∴∠AOD=AOC=70°;(2)①如图1,当射线OE在AB上方时,∠BOE=∠COE,∵∠BOE+∠COE=∠BOC,∴∠COE+∠COE=40°,∴∠COE=24°;②如图2,当射线OE在AB下方时,∠BOE=∠COE,∵∠COE﹣∠BOE=∠BOC,∴∠COE﹣∠COE=40°,∴∠COE=120°;综上所述:∠COE的度数为24°或120°;(3)①如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,设∠BOH=x°,则∠DOF=3x°,∠FOC=∠COD﹣∠DOF=70°﹣3x°,∵∠AOH=∠AOD+∠DOF+∠FOH=70°+3x°+90°=160°+3x°,∠EOH=∠BOC﹣∠COE﹣∠BOH=40°﹣24°﹣x°=16°﹣x°,∴∠FOH=∠FOC+∠COE+∠EOH=70°﹣3x°+24°+16°﹣x°=90°,∴x°=5°,∴∠AOH=160°+3x°=175°;②如图4,当射线OE在AB上方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°﹣x°=180°,解得x°=80°,∵∠COB=40°,∵80°>40°,∴x°=80°不符合题意舍去;③如图5,当射线OE在AB下方,OF在AB上方时,∵∠AOF=∠DOF+∠AOD=3x°+70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°+70°+90°﹣x°=180°,解得x°=10°,∴∠AOH=180°﹣∠BOH=180°﹣x°=170°;④如图6,当射线OE在AB下方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH+∠BOH=90°+x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°+x°=180°,解得x°=40°,∴∠AOH=∠AOF+∠FOH=50°+90°=140°.综上所述:∠AOH的度数为175°或170°或140°.25.解:(1)∵点M是线段AC的中点,∴AC=2AM,∵AM=5cm,∴AC=10cm,∵AB=12cm,∴BC=AB﹣AC=2cm;(2)∵点M是线段AC的中点,点N是线段BC的中点,∴BC=2NC,AC=2MC,∵MN=NC+MC=8cm,∴AB=BC+AC=2MN=2×8=16cm.26.解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.27.解:(1)∵点M、N分别是AC、BC的中点,∴MC=AC=×8cm=4cm,NC=BC=×6cm=3cm,∴MN=MC+NC=4cm+3cm=7cm;(2)MN=acm.理由如下:∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC+NC=AC+BC=AB=acm;(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=bcm.。
2024年人教版六年级下册数学小升初专题训练:平面图形(含答案)
![2024年人教版六年级下册数学小升初专题训练:平面图形(含答案)](https://img.taocdn.com/s3/m/07cea548c381e53a580216fc700abb68a982ada4.png)
2024年人教版六年级下册数学小升初专题训练:平面图形一、单选题1.一个圆形草坪,按1:100缩小后画在图纸上,周长是18cm。
花坛实际占地面积是( )m2。
(π取近似值3)A.3B.6C.9D.272.已知一个三角形两边的长度分别是9厘米、12厘米,那么,这个三角形的周长可能是( )厘米。
A.24B.30C.42D.453.用三根同样长的铁丝分别围成平行四边形、正方形、长方形三个不同的图形,三个图形的面积相比,( )A.平行四边形面积最大B.正方形面积最大C.长方形面积最大D.三个图形的面积相等4.时针围绕钟面中心顺时针方向旋转()才能从1:00走到4:00。
A.30°B.60°C.90°D.120°5.用三根小棒围成三角形(小棒长度取整厘米数),其中两根小棒分别长5cm和7cm。
要使围成的三角形周长最长,第三根小棒应该为( )cm。
A.10B.11C.12D.13二、填空题6.已知等腰三角形的一个内角是95°,它的另外两个内角分别是 度。
7.一个直角三角形,三条边分别为3cm、4cm、5cm,这个三角形的面积为 cm2。
8.从9:00到9:15,分针旋转了 度,若分针长6厘米,这根分针针尖走过的长度是 厘米,扫过的面积是 平方厘米。
9.一个三角形内角度数的比是2:3:5,其中最大的内角是 度,这是个 角三角形。
10.如图中正方形的面积是40cm2,那么涂色部分的面积是 cm2。
11.一辆自行车车轮直径是0.5米,脚踏板齿轮有48个齿,后齿轮有16个齿,脚踏一圈,自行车前进 米.12.一个等腰三角形的顶角是60度,它的一个底角是 度,这样的三角形有 条对称轴。
13.如图,直角三角形的面积是4平方厘米,圆的面积是 平方厘米。
14.找规律,如图(单位:cm),30个等腰梯形拼出的图形是 ,周长是 厘米。
15.小明用圆规在纸上画一个周长是12.56厘米的圆。
强化训练鲁教版(五四)六年级数学下册第五章基本平面图形综合练习试题(无超纲)
![强化训练鲁教版(五四)六年级数学下册第五章基本平面图形综合练习试题(无超纲)](https://img.taocdn.com/s3/m/91b7ec1b773231126edb6f1aff00bed5b9f373dc.png)
六年级数学下册第五章基本平面图形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,线段8AB =,延长AB 到点C ,使2BC AB =,若点M 是线段AC 的中点,则线段BM 的长为( )A .3B .4C .5D .122、下列说法中正确的是( )A .两点之间直线最短B .单项式32πx 2y 的系数是32C .倒数等于本身的数为±1D .射线是直线的一半3、延长线段AB 至点C ,分别取AC 、BC 的中点D 、E .若8cm AB =,则DE 的长度( )A .等于2cmB .等于4cmC .等于8cmD .无法确定4、下列说法:(1)在所有连结两点的线中,线段最短;(2)连接两点的线段叫做这两点的距离;(3)若线段AC BC = ,则点C 是线段AB 的中点;(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,其中说法正确的是 ( )A .(1)(2)(3)B .(1)(4)C .(2)(3)D .(1)(2)(4)5、如图,B 岛在A 岛南偏西55°方向,B 岛在C 岛北偏西60°方向, C 岛在A 岛南偏东30°方向.从B 岛看A ,C 两岛的视角∠ABC 度数为( )A .50°B .55°C .60°D .65°6、体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是( )A .两点确定一条直线B .两点之间线段最短C .线段有两个端点D .射线只有一个端点7、已知α∠与β∠满足23180βα∠∠+=︒,下列式子表示的角:①90β︒-∠;②3302α︒+∠;③12αβ∠+∠;④2αβ∠+∠中,其中是β∠的余角的是( ) A .①② B .①③ C .②④ D .③④8、已知α与β互为余角,若20α=︒,则β的补角的大小为( )A .70︒B .110︒C .140︒D .160︒9、如图,OM 平分AOB ∠,2MON BON ∠=∠,72AON BON ∠-∠=︒,则AOB ∠=( )A .96°B .108°C .120°D .144°10、如图,在方格纸中,点A ,B ,C ,D ,E ,F ,H ,K 中,在同一直线上的三个点有( ).A .3组B .4组C .5组D .6组第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点A ,B 是直线l 上的两点,点C ,D 在直线l 上且点C 在点D 的左侧,点D 在点B 的右侧,:2:1AC CB =,:3:2BD AB =.若11CD =,则AB =____.2、已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,则∠α=_____,∠β=_____.3、如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,C 为线段AB 的中点,且4AB =,如果原点在线段AC 上,那么22b c -+-=______.4、钟表4点36分时,时针与分针所成的角为______度.5、如图,130∠=︒,则射线OA 表示是南偏东__________︒的方向.三、解答题(5小题,每小题10分,共计50分)1、课上,老师提出问题:如图,点O是线段上一点,C,D分别是线段AO,BO的中点,当AB=10时,求线段CD的长度.(1)下面是小明根据老师的要求进行的分析及解答过程,请你补全解答过程;未知线段已知线段……因为C,D分别是线段AO,BO的中点,所以CO=12AO,DO=12.因为AB=10,所以CD=CO+DO=12AO+12=12=.(2)小明进行题后反思,提出新的问题:如果点O运动到线段AB的延长线上,CD的长度是否会发生变化?请你帮助小明作出判断并说明理由.2、如图,C 为线段AD 上一点,B 为CD 的中点,12cm AD =,2cm BD =.(1)图中共有______条线段;(2)求AC 的长;(3)若点E 是线段AC 中点,求BE 的长.(4)若点F 在线段AD 上,且3CF =cm ,求BF 的长.3、如图,P 是线段AB 上不同于点A ,B 的一点,AB =18cm ,C ,D 两动点分别从点P ,B 同时出发,在线段AB 上向左运动(无论谁先到达A 点,均停止运动),点C 的运动速度为1cm/s ,点D 的运动速度为2cm/s .(1)若AP =PB ,①当动点C ,D 运动了2s 时,AC +PD = cm ;②当C ,D 两点间的距离为5cm 时,则运动的时间为 s ;(2)当点C ,D 在运动时,总有PD =2AC ,①求AP 的长度;②若在直线AB 上存在一点Q ,使AQ ﹣BQ =PQ ,求PQ 的长度.4、解答下列各题:(1)化简并求值:(a ﹣ab )+(b +2ab )﹣(a +b ),其中a =7,b =﹣17.(2)如图,OD 为∠AOB 的平分线,∠AOC =2∠BOC ,AO ⊥CO ,求∠COD 的度数.5、如图,点C 为线段AB 的中点,点E 为线段AB 上的点,D 为AE 的中点,若AB =15,CE =4.5,求线段DE .-参考答案-一、单选题1、B【解析】【分析】先求出24AC =,再根据中点求出12AM =,即可求出BM 的长.【详解】解:∵8AB =,∴216BC AB ==,16824AC BC AB =+=+=,∵点M 是线段AC 的中点, ∴1122AM AC ==,4BM AM AB =-=, 故选:B .【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.2、C【解析】【分析】分别对每个选项进行判断:两点之间线段最短;单项式单项式32πx2y的系数是32π;倒数等于本身的数为±1;射线是是直线的一部分.【详解】解:A.两点之间线段最短,故不符合题意;B.单项式32πx2y的系数是32π,不符合题意;C.倒数等于本身的数为±1,故符合题意;D.射线是是直线的一部分,故不符合题意;故选:C.【点睛】本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.3、B【解析】【分析】由题意知111=()222AD AC BE BC AC AB==⨯-,,如图分两种情况讨论①DE DB BE=+②DE BE BD=-;用已知线段表示求解即可.【详解】解:由题意知111=() 222AD AC BE BC AC AB ==⨯-,①如图1∵DE DB BE =+,12DB AB AC =- ∴18==42222AC AB AB DE AB AC cm -=-+=; ②如图2∵DE BE BD =-,12BD AC AB =- ∴18()42222AC AB AB DE AC AB cm -=--===; 综上所述,4DE cm =故选B .【点睛】本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.4、B【解析】【分析】根据两点之间线段最短,数轴上两点间的距离的定义求解,线段的中点的定义,直线的性质对各小题分析判断即可得解.【详解】解:(1)在所有连结两点的线中,线段最短,故此说法正确;(2)连接两点的线段的长度叫做这两点的距离,故此说法错误;(3)若线段AC=BC,则点C不一定是线段AB的中点,故此说法错误;(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,故此说法正确;综上所述,说法正确有(1)(4).故选:B.【点睛】本题考查了线段的性质、两点间的距离的定义,线段的中点的定义,直线的性质等,是基础题,熟记各性质与概念是解题的关键.5、D【解析】【分析】根据B岛在A与C的方位角得出∠ABD=55°,∠CBE=60°,再根据平角性质求出∠ABC即可.【详解】解:过点B作南北方向线DE,∵B岛在A岛南偏西55°方向,∴∠ABD=55°,∵B岛在C岛北偏西60°方向,∴∠CBE=60°,∴∠ABC=180°-∠ABD-∠CBE=180°-55°-60°=65°.故选D.【点睛】本题考查方位角,平角,角的和差,掌握方位角,平角,角的和差是解题关键.6、A【解析】【分析】根据经过两点有一条直线,并且只有一条直线即可得出结论.【详解】解:∵让男生站成一条直线,他先让前两个男生站好不动,∴经过两点有一条直线,并且只有一条直线,∴这种做法的数学依据是两点确定一条直线.故选A.【点睛】本题考查直线公理,掌握直线公理是解题关键,同时也掌握线段公理,线段的特征,射线特征.7、B【解析】【分析】∠判断结果是否等于90°即可.将每项加上β【详解】解:①∵90β︒-∠+β∠=90°,故该项是β∠的余角;②∵23180βα∠∠+=︒, ∴2036βα∠︒-=∠, ∴3302α︒+∠+β∠=90°+56α∠,故该项不是β∠的余角; ③∵2036βα∠︒-=∠, ∴12αβ∠+∠+β∠=90°,故该项是β∠的余角; ④∵2036βα∠︒-=∠,∴2αβ∠+∠+β∠=120°+23∠α,故该项不是β∠的余角;故选:B .【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.8、B【解析】【分析】根据90βα=︒-求得β,根据180β︒-求得β的补角【详解】解:∵α与β互为余角,若20α=︒,∴9070βα=︒-=︒∴180β︒-110=︒故选B【点睛】本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为90︒,互为补角的两角之和为180︒.9、B【解析】【分析】设BON x ∠=,利用关系式2MON BON ∠=∠,72AON BON ∠-∠=︒,以及图中角的和差关系,得到3MOB x ∠=、722AOB x ∠=︒+,再利用OM 平分AOB ∠,列方程得到18x =︒,即可求出AOB ∠的值.【详解】解:设BON x ∠=,∵2MON BON ∠=∠,∴2MON x ∠=,∴23MOB MON BON x x x ∠=∠+∠=+=.∵72AON BON ∠-∠=︒,∴72AON x ∠=︒+,∴72722AOB AON BON x x x ∠=∠+∠=︒++=︒+.∵OM 平分AOB ∠, ∴12MOB AOB ∠=∠, ∴()137222x x =︒+,解得18x =︒. 72272218108AOB x ∠=︒+=︒+⨯︒=︒.故选:B .【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.10、C【解析】【分析】利用网格作图即可.【详解】如图:在同一直线上的三个点有A、B、C;B、E、K;C、H、E;D、E、F;D、H、K,共5组,故选:C【点睛】此题考查了直线的有关概念,在网格中找到相应的直线是解答此题的关键.二、填空题1、6或22##22或6【解析】【分析】根据两点间的距离,分情况讨论C点的位置即可求解.【详解】解:∵:2:1AC CB ,∴点C不可能在A的左侧,如图1,当C点在A、B之间时,设BC=k,∵AC:CB=2:1,BD:AB=3:2,则AC=2k,AB=3k,BD=92k,∴CD=k+92k=112k,∵CD=11,∴112k=11,∴k=2,∴AB=6;如图2,当C点在点B的右侧时,设BC=k,∵AC:CB=2:1,BD:AB=3:2,则AC=2k,AB=k,BD=32k,∴CD=32k-k=12k,∵CD=11,∴12k=11,∴k=22,∴AB=22;∴综上所述,AB=6或22.【点睛】本题考查了两点间的距离,线段的数量关系,以及一元一次方程的应用,分类讨论是解答本题的关键.2、80°##80度100°##100度【解析】【分析】根据互为补角的和等于180°,得到α=180°-β,然后根据题意列出关于β的一元一次方程,求解即可.【详解】解:∵∠α和∠β互为补角,∴α=180°-β,根据题意得,180°-β-12β=30°,解得β=100°,α=180°-β=80°,故答案为:80°,100°.【点睛】本题考查了互为补角的和等于180°的性质,根据题意列出一元一次方程是解题的关键.3、2【解析】【分析】根据中点的定义可知2AC BC ==,再由原点在线段AC 上,可判断22b c ≥≤,,再化简绝对值即可.【详解】解:∵C 为线段AB 的中点,且4AB =,∴2AC BC ==,即2b c -=,∵原点在线段AC 上,∴22b c ≥≤,,22222b c b c b c -+-=-+-=-=;故答案为:2.【点睛】本题考查了线段的中点和化简绝对值,解题关键是根据中点的定义和数轴确定22b c ≥≤,. 4、78【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助钟表,找出10时20分时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:因为时针在钟面上每分钟转360÷12÷60=0.5(度),分针每分钟转360÷60=6(度),所以钟表上4时36分时,时针与分针的夹角可以看成:时针转过4时0.5°×36=18°,分针转过7时6°×1=6°.因为钟表12个数字,每相邻两个数字之间的夹角为30°,所以4时36分时,分针与时针的小的夹角3×30°-18°+6°=78°.故在14时36分,时针和分针的夹角为78°.故答案为:78.【点睛】本题考查钟面角的相关计算;用到的知识点为:时针每分钟走0.5度;钟面上两个相邻数字之间相隔30°.5、60【解析】【分析】如图,利用互余的含义,先求解2∠的大小,再根据方向角的含义可得答案.【详解】∠=︒解:如图,130,2=90160,∴射线OA表示是南偏东60︒的方向.故答案为:60【点睛】本题考查的是互余的含义,方向角的含义,掌握“方向角的含义”是解本题的关键.三、解答题1、 (1)BO,BO,AB,5(2)不变,见解析【解析】【分析】(1)根据已知条件及解答过程中的每步推理即可完成;(2)由线段中点的定义及线段的差即可完成.(1)因为C,D分别是线段AO,BO的中点,所以CO=12AO,DO=12BO.因为AB=10,所以CD=CO+DO=12AO+12BO=12AB=5.故答案为:BO,BO,AB,5 (2)不会发生变化:理由如下:如图因为C ,D 分别是线段AO ,BO 的中点, 所以12CO AO =,12DO BO =. 因为10AB =, 所以1115222CD CO DO AO BO AB =-=-==. 【点睛】本题考查了线段中点的定义,线段的和、差等知识,掌握这些知识是关键.2、 (1)6(2)8 cm(3)6 cm(4)5 cm 或1 cm【解析】【分析】(1)根据线段的定义,写出所有线段即可;(2)根据B 为CD 的中点可得2CB BD ==,进而根据AC AD CB BD =--即可求解;(3)点E 是线段AC 中点,则12EC AC =,根据BC CE +即可求解; (4)根据题意,根据点F 在C 点的左侧和右侧两种情形分类讨论,进而根据线段的和差关系求解即可. (1)解:图中的线段有,,,,,AC AB AD BC BD CD 共6条 故答案为:6 (2)B 为CD 的中点,2BD =∴2CB BD ==12AD =∵∴AC AD CB BD =--12228=--=8AC ∴= cm (3)点E 是线段AC 中点,则12EC AC =, 8AC =4EC ∴= 246BE BC CE ∴=+=+=6BE ∴= cm(4)若点F 在线段AD 上,4CD =,8AC = 则分两种情况讨论①当F 在C 点的左侧时,3CF =cm ,∴BF 235BC CF =+=+= cm ,②当F 在C 点的右侧时,3CF =cm ,∴BF 321cm CF BC =-=-=【点睛】本题考查了线段的数量问题,线段的和差计算,线段中点的性质,数形结合是解题的关键.3、 (1)①12;②4(2)①6cm ;②6cm 或18cm【解析】【分析】(1)①先根据线段和差求出9cm AP PB ==,再根据运动速度和时间求出,PC BD 的长,从而可得,AC PD 的长,由此即可得;②设运动时间为s x ,先求出x 的取值范围,再求出当点,C D 重合时,9x =,从而可得当09x <<时,点D 一定在点C 的右侧,然后根据CD AB AC BD =--建立方程,解方程即可得;(2)①设运动时间为s t ,则cm,2cm PC t BD t ==,从而可得22AC AP BD =-,再根据当,C D 在运动时,总有22PD AC AP BD ==-可得在点D 的运动过程中,点D 始终在线段PB 上,此时满足PD BD PB +=,然后根据18PB AP AB +==即可得出答案;②分点Q 在线段AB 上和点Q 在AB 的延长线上两种情况,分别根据线段和差即可得.(1)解:①,18cm AP PB AP PB AB =+==,9cm AP PB =∴=,当动点,C D 运动了2s 时,122(cm),224(cm)PC BD =⨯==⨯=,7cm,5cm AC AP PC PD PB BD =-∴=-==,12cm AC PD ∴+=,故答案为:12;②设运动时间为s x ,点C 运动到点A 所需时间为9s 1AP =,点B 运动到点A 所需时间为9s 2AB =, 则09x <≤,由题意得:cm,2cm PC x BD x ==,则(9)cm AC AP PC x =-=-,当点,C D 重合时,AC BD AB +=,即9218x x -+=,解得9x =,所以当09x <<时,点D 一定在点C 的右侧,则CD AB AC BD =--,即518(9)2x x =---,解得4x =,即当,C D 两点间的距离为5cm 时,运动的时间为4s ,故答案为:4.(2)解:①设运动时间为s t ,则cm,2cm PC t BD t ==,2BD PC ∴=,2222AC AP PC AP BD ∴=-=-,当,C D 在运动时,总有22PD AC AP BD ==-,即总有2PD BD AP +=,PD BD ∴+的值与点D 的位置无关,∴在点D 的运动过程中,点D 始终在线段PB 上,此时满足PD BD PB +=,2PB AP ∴=,又18PB AP AB +==,218AP AP ∴+=,解得6(cm)AP =,答:AP 的长度为6cm ;②由题意,分两种情况:(Ⅰ)当点Q 在线段AB 上时,0,6cm,18cm AQ BQ PQ AP AB -=>==,∴点Q 在点P 的右侧,6AQ AP PQ PQ ∴=+=+,12BQ AB AQ PQ =-=-,代入AQ BQ PQ -=得:6(12)PQ PQ PQ +--=,解得6(cm)PQ =;(Ⅱ)当点Q 在AB 的延长线上时,则18cm AQ BQ AB -==,代入AQ BQ PQ -=得:18cm PQ =;综上,PQ 的长度为6cm 或18cm .【点睛】本题考查了线段的和差、一元一次方程的几何应用等知识,较难的是题(2)②,正确分两种情况讨论是解题关键.4、 (1)ab ,-1(2)22.5°【解析】【分析】(1)首先化简(a-ab)+(b+2ab)-(a+b),然后把a=7,b=17-代入化简后的算式即可.(2)根据垂直的定义得到∠AOC=90°,求得∠AOB=∠AOC+∠BOC=135°,根据角平分线的定义求出∠BOD,再减去∠BOC可得结果.【小题1】解:(a-ab)+(b+2ab)-(a+b)=a-ab+b+2ab-a-b=ab当a=7,b=17-时,原式=7×(17-)=-1.【小题2】∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=12∠AOB=67.5°,∴∠COD=∠BOD-∠BOC=22.5°.【点睛】此题主要考查了整式的加减-化简求值问题,角度的计算,角平分线的定义,要熟练掌握,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.5、6【解析】【分析】利用线段中点的含义先求解,,AC BC 再利用线段的和差关系求解,AE 结合D 为AE 的中点,从而可得答案.【详解】 解: AB =15,点C 为线段AB 的中点, 17.5,2BC AC AB 4.5,CE 7.5 4.512,AE AC CED 为AE 的中点, 1 6.2DE AE 【点睛】本题考查的是线段的和差关系,线段的中点的含义,理解线段的和差关系逐步求解需要的线段的长度是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10、一个长方形,如果长不变宽增加 3 厘米,面积就增加 18 平方厘米; 如果宽不变, 长增加 3 厘米,面积就增加 15 平方厘米, 这个长方形的周长是
(
),面积是(
)。
度数可能是(
)或(
)。
17、右图中有(
)条对称轴。
18、一个三角形和一个平行四边形的底相等, 面积也相等, 三角形的高是 2 分米,
7、一块梯形的水稻田,上底是 48 米,下底是 52 米,高是 30 米,这块地共收稻谷 1350 千克,平均每公顷产稻谷多少千克?
8、一个运动场(如图) ,两头是半圆形,中间是长方形。 (1)这个环形跑道的总长是多少米? (2)这个运动场占地面积是多少平方米?
3、用一副三角尺不能拼成(
)的角。【A、105o B、180 o C、85 o】
4、如果一个三角形中最小的一个角大于 45 o,这个三角形(
)。
【A、有一个直角 B、有一个钝角 C、另外两个角是锐角】
5、生活中,利用三角形的( )性生产自行车大梁,运用平行四边形的(
)
性应用电动大门。【A、稳定性 B、易变形 C、平衡形】
6、将边长 1 分米的正方形的四个角各剪去一个边长 1 厘米的正方形,所得图形 的周长( )。【A、增加 4 厘米 B、减少 4 厘米 C、不变】
7、用 5 个面积是 1 平方厘米的正方形拼成长方形, 这个长方形的周长是 ( )。 【A、12 厘米 B、10 厘米 C、20 厘米】
校 学
--------------------------------------------装
() ()
8、一个长方形的长和宽各增加 20%,这个长方形的面积比原来增加 40%。( )
9、至少用 4 个完全一样的小正方体就能拼成一个大正方体。
()
10、射线比直线短,比线段长。 三、选择。
()
1、直径决定圆的(
)。【A、形状 B、位置 C、大小】
2、右图的周长是(
)米。【A、25.7 B、31.4 C、15.7】
5、如右图,梯形 ABCD的面积等于 144 平方厘米, AB=8厘 米, DC=16 厘米,三角形 ABD的面积是多少平方厘米?
2、用篱笆围成一个半圆养鸡场, 一边利用房屋墙壁 (如图),篱笆长 157 米,这个养鸡场的占地面积是多少平方米?
3、一种压路机的前轮滚筒长 1.5 米,底面半径 0.6 米,压路机每分钟滚 动 20 周,那么前轮半小时压过的路面面积是多少平方米?
平行四边形的高是(
)分米。
二、判断。
1、一个三角形至少有 2 个锐角。
()
2、有一组对边平行的四边形是梯形。
()
3、同一个平行四边形所有高的长度都相等。
()
4、一条射线长 0.8 米。 5、在 10 倍的放大镜下看一个 10o的角,这个角就变成 100o了。
() ()
6、周长相等的长方形、正方形和圆,圆的面积最大。 7、我国最长的河流长江全长约 6300 米。
六年级平面图形综合训练
雷官中心校:戚红军
得分
一、填空。
1、钟面上 3 时整,时针和分针成( )角,6 时整,时针和分针成( ) 角。
2、一根铁丝长 48 厘米,把它围成一个正方形,这个正方形的面积是
(
),如果把它围成一个长 15 厘米的长方形,这个正方形的面积
是(
),如果把它围成一个长 15 厘米的长方形, 面积是(
号 学
级 班
名 姓
-----------------------------------------------------------------------------------------线 -------------------------------------------------订
11、在一个直角三角形中, 其中一个锐角比另一个锐角小 18 度,这两个
锐角分别是(
)o和( )o。
12、右图中阴影部分面积占整个图形面积的(
) %。
13、小圆直径 4 厘米,大圆半径 3 厘米,小圆和大圆周长的比是 (
)。
14 、 用 圆 规 画 一 个 周 长 为 9.42 厘米 的 圆 , 圆 规 两 脚 间 的 距 离 是
( 3)计算这块地的绿化覆盖率。
五、解决实际问题。 1、一座体育馆的围墙是圆形的,淘气沿着围墙走了一圈,一共 628 步, 淘气每步的长度是 0.6 米,这座体育馆的占地面积大约是多少平方米?
4、把一个四条边都是 6 厘米的平行四边形拉拉一个正方形 后,面积增加了 4.8 平方厘米,原来平行四边形的高是多少?
是(
)平方米。
6、过一点可以画( 7、右图中共有(
)条射线,过两点可以画( )个角。
)条线段。
8、在一张长 4 厘米,宽 3 厘米的长方形纸上剪下一个最大的圆, 这个圆
的面积是( )平方厘米,这张纸的利用率约是(
)%。
9、画一条线段,把一个平行四边形分成两个形状大小完全相同的梯形, 有( )种画法。
【A、2 个 B、3 个 C、4 个】
10、圆周率 π 的值( 四、动手操作。
)3.14 。【A、大于 B、等于 C、小于】
1、把下面的三角形平均分成三个面积相等的三角形。
16、等腰三角形的一个角是另一个角的 2 倍,那么这个三角形的顶角的
2、下面是一块长方形地的平面图。
( 1)在长方形中画一个最大的半圆。 ( 2)将这块半圆形全部种植草皮,其余的铺上彩砖,草皮的实际面积是多少?
(
)厘米。
15、把一个圆沿着半径平均分成若干等份,剪拼成一个近似的长方形,
已知这长方形的宽是 6 厘米,长是(
)厘米。
8、一个三角形的三个内角度数的比是 1:2:3,这个三角形是(
)。
【A、锐角三角形 B、直角三角形 C、钝角三角形】
9、下面是轴对称图形的有(
),直角梯形、半圆、等腰三角形、正方形。
),
如果围成半径是 2 厘米的圆,还剩下(
)厘米铁丝。
3、一个直角三角形,三条边的长度分别是 6 厘米、 8 厘米、10 厘米,这
个直角三角形的面积是(
)平方厘米。
4、一个环形,内圆半径是 4 厘米,外圆半径是 5 厘米,环形的面积是( ) 平方厘米。
5、一个平行四边形的面积是 6.8 平方米,和它等底等高的三角形的面积