2021年四种命题与充要条件
高考第2课四种命题和充要条件
高中数学学习材料金戈铁骑整理制作第2课四种命题和充要条件【自主学习】第2课四种命题和充要条件(本课时对应学生用书第页)自主学习回归教材1.(选修2-1P8习题1改编)命题:“若x2<1,则-1<x<1”的逆否命题是. 【答案】若x≥1或x≤-1,则x2≥12.(选修2-1P7练习改编)命题“若x<0,则x2>0”及其逆命题、否命题、逆否命题这四个命题中正确命题的个数为.【答案】2【解析】原命题为真,所以逆否命题为真;逆命题为“若x2>0,则x<0”为假命题,所以否命题为假.3.(选修2-1P20习题改编)判断下列命题的真假.(填“真”或“假”)(1)命题“在△ABC中,若AB>AC,则C>B”的否命题为命题.(2)命题“若ab=0,则b=0”的逆否命题为命题.【答案】(1)真(2)假4.(选修2-1P9习题4(2)改编)“sin α=sin β”是“α=β”的条件.(填“充分不必要”、“必要不充分”、“ 充要”或“ 既不充分也不必要”)【答案】必要不充分5.(选修2-1P20习题改编)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则r是q的条件,p是q的条件.【答案】充要必要【解析】q⇒s⇒r⇒q,所以r是q的充要条件;q⇒s⇒r⇒p,所以p是q的必要条件.1.记“若p则q”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p”,逆否命题为“若非q则非p”.其中互为逆否命题的两个命题同真假,即等价,原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题为真的个数只能是偶数.2.对命题“若p则q”而言,当它是真命题时,记作p⇒q,称p是q的充分条件,q是p的必要条件;当它是假命题时,记作p⇒/q,称p是q的非充分条件,q是p的非必要条件.3.①若p⇒q,且q⇒/p,则p是q的充分不必要条件;②若p⇒/q,且q⇒p,则p是q的必要不充分条件;③若p⇒q,且q⇒p,则p是q的充要条件,记作p⇔q;④若p⇒/p,且q⇒/p,则p是q的既不充分也不必要条件.4.证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).【要点导学】要点导学各个击破命题真假的判断例1在△ABC中,已知命题p:若C=60°,则sin2A+sin2B-sin A sin B=sin2C.(1)求证:命题p是真命题;(2)写出命题p的逆命题,判断逆命题的真假,并说明理由.【思维引导】(1)利用正弦定理将待证式转化为a2+b2-ab=c2,然后利用余弦定理即证;(2)分清命题p的条件与结论,正确地对原命题的条件和结论进行互换或否定.【解答】设△ABC的内角A,B,C所对的边分别为a,b,c.(1)因为C=60°,由余弦定理得c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.由正弦定理sin a A =sin b B =sin cC , 得sin 2C=sin 2A+sin 2B-sin A sin B. 故命题p 是真命题.(2)命题p 的逆命题:在△ABC 中, 若sin 2A+sin 2B-sin A sin B=sin 2C ,则C=60°. 它是真命题.证明如下:由sin 2A+sin 2B-sin A sin B=sin 2C 和正弦定理得c 2=a 2+b 2-ab.而由余弦定理c 2=a 2+b 2-2ab cos C ,得cos C=12. 因为0°<C<180°,所以C=60°.【精要点评】对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.变式 给出以下四个命题:①“若x+y=0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x+q=0有实数根”的逆否命题; ④若a+b 是偶数,则整数a ,b 都是偶数. 其中真命题是 .(填序号) 【答案】①③【解析】①显然正确;②不全等的三角形的面积不相等,故②不正确;③原命题正确,所以它的逆否命题也正确;④若a+b 是偶数,则整数a ,b 都是偶数或都是奇数,故④不正确.【精要点评】对命题真假的判断,正确的命题要加以论证;不一定正确的命题要举出反例,这是最基本的数学思维方式.在判断命题真假的过程中,要注意简单命题与复合命题之间的真假关系;要注意四种命题之间的真假关系.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.因此,四种命题中真命题的个数只能是0,2或4.充要条件的判断例2从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中,选出一种适当的填空.(1)(2015·泰安期末)已知a∈R,则“a2<a”是“a<1”的条件.(2)(2015·保定期末)若集合A={0,1},B={-1,a2},则“A∩B={1}”是“a=1”的条件.【思维引导】(1)找到不等式a2<a的解集为(0,1),然后根据“小范围能推大范围,大范围推不出小范围”进行判断.(2)判断充要条件时,可先分清条件与结论,若由条件能推出结论,则充分性满足;若由结论能推出条件,则必要性满足.【答案】(1)充分不必要(2)必要不充分【解析】(1)因为由a2<a,可得0<a<1,所以“a2<a”是“a<1”的充分不必要条件.(2)若A∩B={1},则a2=1,a=±1,所以充分性不满足,必要性满足,故“A∩B={1}”是“a=1”的必要不充分条件.【精要点评】在判断充分条件及必要条件时,首先要分清哪个是条件,哪个是结论;其次,要从两个方面,即“充分”与“必要”分别考查.判定时,对于有关范围的问题也可以从集合观点看,如p,q对应的范围为集合A,B,若AB,则A是B 的充分条件,B是A的必要条件;若A=B,则A,B互为充要条件.变式从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中,选出一种适当的填空.(1)“x=2kπ+π4(k∈Z)”是“tan x=1”的;(2)“22x y >⎧⎨>⎩,”是“44x y xy +>⎧⎨>⎩,”的 ;(3)“m<12”是“一元二次方程x 2+x+m=0有实数解”的 ; (4)对于数列{a n },“a n+1>|a n |(n ∈N *)”是“数列{a n }为递增数列”的 ;(5)“函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增”是“m ≥289x x +对任意的x>0恒成立”的 .【思维引导】判定p 是q 的什么条件,实际上就是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,这部分内容经常与其他知识点相结合考查.【答案】(1)充分不必要条件 (2)充分不必要条件 (3)必要不充分条件 (4)充分不必要条件 (5)充要条件【解析】(1)因为x=2k π+π4(k ∈Z )⇒tan x=1,但反过来不一定成立,即tan x=1⇒x=k π+π4(k ∈Z ),(2)因为x>2,y>2,根据不等式的性质易得x+y>4,xy>4,但反过来不一定成立,如x=13,y=24.(3)一元二次方程x 2+x+m=0有实数解⇔m ≤14,因为m ≤14⇒m<12,反之不成立,所以是必要不充分条件.(4)因为a n+1>|a n |(n ∈N *), 所以当n ≥2时,a n >0, 即当n ≥2时,a n+1>a n . 若a 1≥0,有a 2>|a 1|=a 1,若a 1<0,a 2>a 1显然成立,充分性得证.当数列{a n }为递增数列时,设a n =1-2n⎛⎫ ⎪⎝⎭,则a 2>|a 1|不成立.(5)函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增⇔f'(x )=3x 2+4x+m ≥0恒成立⇔Δ=16-12m ≤0⇔m ≥43.m ≥289xx +对任意x>0恒成立⇔m ≥2max 89x x ⎛⎫ ⎪+⎝⎭,又289x x +=89x x +≤892x x ⋅=43,所以m ≥43. 【精要点评】在判断时注意反例的应用;在判断“若p 则q ”较繁琐时,可以利用它的逆否命题“若非q 则非p ”,判断其是否正确;有时将某些条件转化为与它等价的条件再与另一条件进行判断会更简单 .结合充要条件求参数例3 已知集合M={x|x<-3或x>5},P={x|(x-a )(x-8)≤0}. (1)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的充要条件; (2)求实数a 的一个值,使它成为M ∩P={x|5<x ≤8}的一个充分不必要条件; (3)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的一个必要不充分条件. 【思维引导】求a 的取值范围使它成为M ∩P 的不同条件,可借助集合的观点,根据要求,求出成立时a 的取值范围.【解答】(1)由M ∩P={x|5<x ≤8},得-3≤a ≤5, 因此M ∩P={x|5<x ≤8}的充要条件是-3≤a ≤5.(2)即在集合{a|-3≤a ≤5}中取一个值,如取a=0,此时必有M ∩P={x|5<x ≤8}; 反之,M ∩P={x|5<x ≤8}未必有a=0,故a=0是所求的一个充分不必要条件. (3)即求一个集合Q ,使{a|-3≤a ≤5}是集合Q 的一个真子集.如果{a|a≤5},那么未必有M∩P={x|5<x≤8},但是M∩P={x|5<x≤8}时,必有a≤5,故a≤5是所求的一个必要不充分条件.【精要点评】解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.变式(2015·南通期中)若不等式x-1x>0成立的充分不必要条件是x>a,则实数a的取值范围是.【答案】[1,+∞)【解析】由不等式x-1x>0,得(1)(-1)x xx>0,得-1<x<0或x>1.由充分不必要条件的含义可知{x|x>a}为不等式解集的真子集,进而得到a≥1.充要条件的证明例4已知a,b,c都是实数,求证:方程ax2+bx+c=0有一个正根和一个负根的充要条件是ac<0.【思维引导】证明充分性,由“ac<0”推出“方程ax2+bx+c=0有一个正根和一个负根”,证明必要性是由“方程ax2+bx+c=0有一个正根和一个负根”推出“ac<0”,主要根据判别式、一元二次方程的根与系数的关系进行论证.【解答】设原方程的两根分别为x1,x2.①充分性:由ac<0,得a,c异号,所以Δ=b2-4ac>0,且x1x2=ca<0.故方程ax2+bx+c=0有一正一负两个实根.所以ac<0是原方程有一正一负两个实根的充分条件.②必要性:若方程ax2+bx+c=0有一个正根和一个负根,不妨设x1>0,x2<0,则x1x2<0,即ca<0,所以a,c异号,即ac<0.故ac<0是原方程有一正一负两个实根的必要条件.综上,ac<0是原方程有一正一负两个实根的充要条件.【精要点评】充要条件的证明应注意:(1)一般地,条件已知,证明结论成立是充分性,结论已知,推出条件成立是必要性.(2)有关充要条件的证明问题,要分清哪个是条件,哪个是结论.变式设数列{a n},{b n},{c n}满足:b n=a n-a n+2,c n=a n+2a n+1+3a n+2(n=1,2,3,…),求证:数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).【解答】必要性:设{a n}是公差为d1的等差数列,则b n+1-b n=(a n+1-a n+3)-(a n-a n+2)=(a n+1-a n)-(a n+3-a n+2)=d1-d1=0,所以b n≤b n+1(n=1,2,3,…)成立.又c n+1-c n=(a n+1-a n)+2(a n+2-a n+1)+3(a n+3-a n+2)=d1+2d1+3d1=6d1(常数)(n=1,2,3,…),所以数列{c n}为等差数列.充分性:设数列{c n}是公差为d2的等差数列,且b n≤b n+1(n=1,2,3,…).因为c n=a n+2a n+1+3a n+2,①所以c n+2=a n+2+2a n+3+3a n+4,②①-②,得c n-c n+2=(a n-a n+2)+2(a n+1-a n+3)+3(a n+2-a n+4)=b n+2b n+1+3b n+2.因为c n-c n+2=(c n-c n+1)+(c n+1-c n+2)=-2d2,所以b n+2b n+1+3b n+2=-2d2,③从而有b n+1+2b n+2+3b n+3=-2d2,④④-③,得(b n+1-b n)+2(b n+2-b n+1)+3(b n+3-b n+2)=0.⑤因为b n+1-b n≥0,b n+2-b n+1≥0,b n+3-b n+2≥0,所以由⑤得b n+1-b n=0(n=1,2,3,…).由此不妨设b n=d3(n=1,2,3,…),则a n-a n+2=d3(常数).由此c n=a n+2a n+1+3a n+2⇒c n=4a n+2a n+1-3d3,从而c n+1=4a n+1+2a n+2-3d3,两式相减得c n+1-c n=2(a n+1-a n)-2d3,因此a n+1-a n=12(cn+1-c n)+d3=12d2+d3(常数)(n=1,2,3,…),所以数列{a n}为等差数列.综上,数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).1.(2014·安徽卷)“x<0”是“ln(x+1)<0”的条件.【答案】必要不充分【解析】由ln(x+1)<0,得0<1+x<1,所以-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.2.(2015·安徽卷)设命题p:1<x<2,q:2x>1,则p是q的条件.【答案】充分不必要【解析】由q:2x>1=20,解得x>0,所以p⇒q,但q p,所以p是q的充分不必要条件.3.(2015·南通模考)已知集合M={x|x-2<0},N={x|x<a},若“x∈M”是“x∈N” 的充分条件,则实数a的取值范围是.【答案】[2,+∞)【解析】由题意得M={x|x-2<0}={x|x<2},因为“x∈M”是“x∈N”的充分条件,所以M⊆N,所以a≥2.4.求证:方程mx2-2x+3=0有两个同号且不相等的实数根的充要条件是0<m<1 3.【解答】①充分性:因为0<m<13,所以方程mx2-2x+3=0的判别式Δ=4-12m>0,且3m>0,所以方程mx2-2x+3=0有两个同号且不相等的实数根.②必要性:若方程mx2-2x+3=0有两个同号且不相等的实数根,则有124-1203mx xm∆=>⎧⎪⎨=>⎪⎩,,所以0<m<13.综上,得证.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第3~4页.【检测与评估】第2课四种命题和充要条件一、填空题1.命题“若a>b,则a+1>b”的逆否命题是.2.(2014·启东中学)若使“x≥1”与“x≥a”恰有一个成立的充要条件为{x|0≤x<1},则实数a的值是.3.(2015·重庆卷)“x>1”是“lo12g(x+2)<0”的条件.4.设集合S={0,a},T={x∈Z|x2<2},则“a=1”是“S⊆T”的条件.5.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是.6.设n∈N*,则一元二次方程x2-4x+n=0有整数解的充要条件是n=.7.已知命题p:|x|>a,q:-12-1xx>0.若p是q的必要不充分条件,则实数a的取值范围是.8.(2015·郑州质检)给定方程:12x⎛⎫⎪⎝⎭+sin x-1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数根;④若x0是方程的实数根,则x0>-1.其中正确的命题是.(填序号)二、解答题9.(2014·惠州一模)已知集合A=2331224|y y x x x⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,,,B={x|x+m2≥1}.若命题p:x∈A,命题q:x∈B,并且p是q的充分条件,求实数m的取值范围.10.设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.已知函数f(x)=4sin2π4x⎛⎫+⎪⎝⎭-23cos 2x-1,且给定命题p:x<π4或x>π2,x∈R.若命题q:-2<f(x)-m<2,且¬p是q的充分条件,求实数m的取值范围.三、选做题(不要求解题过程,直接给出最终结果)12.已知集合A={x|x2+2x-3≤0},B={x|(x-2a)[x-(a2+1)]≤0}.若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是.13.(2015·黄山质检)在平面直角坐标系中,定义两点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.现有以下命题:①已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;②原点O到直线x-y+1=0上任意一点P的直角距离d(O,P)的最小值为2 2;③若PQ表示P,Q两点间的距离,那么PQ≥22d(P,Q);其中为真命题的是.(填序号) 【检测与评估答案】第2课 四种命题和充要条件1.若a+1≤b ,则a ≤b2.0 【解析】由题意可得1x x a <⎧⎨≥⎩, 或1x x a ≥⎧⎨<⎩, 成立的充要条件为{x|0≤x<1},所以a=0.3.充分不必要 【解析】lo 12g (x+2)<0⇔x+2>1⇔x>-1,故“x>1”是“lo12g (x+2)<0”的充分不必要条件.4.充分不必要 【解析】当a=1时,S={0,1},又T={-1,0,1},则S ⊆T ,所以充分性成立;当S ⊆T 时,a=1或-1,所以必要性不成立.5.[-3,0] 【解析】因为命题“ax 2-2ax-3>0不成立”是真命题,则有a=0或204120a a a <⎧⎨+≤⎩,,解得a ∈[-3,0].6. 3或4 【解析】由x 2-4x+n=0,得(x-2)2=4-n ,即x=2±4-n .因为n ∈N *,方程要有整数解,所以n=3或4,故当n=3或4时方程有整数解.7. (-∞,0) 【解析】由命题p :|x|>a ⇔R 0-0x a x a x a a ∈<⎧⎨<>≥⎩,,或,,q :-12-1x x >0⇔x<12或x>1.因为p 是q 的必要不充分条件,所以使命题q 成立的不等式的解集是使命题p 成立的不等式解集的子集,所以a<0.8.②③④ 【解析】由题意可知方程12x ⎛⎫ ⎪⎝⎭+sin x-1=0的解等价于函数y=1-12x⎛⎫ ⎪⎝⎭与y=sin x 的图象交点的横坐标,在同一平面直角坐标系中分别作出它们的图象如图所示.(第8题)由图象可知:①该方程存在小于0的实数解,故①错误;②该方程有无数个实数解,故②正确;③该方程在(-∞,0)内有且只有一个实数解,故③正确;④若x 0是该方程的实数解,则x 0>-1,故④正确.9.由y=x 2-32x+1,配方得y=23-4x ⎛⎫ ⎪⎝⎭+716.因为x ∈324⎡⎤⎢⎥⎣⎦,,所以y min =716,y max =2,即y ∈7216⎡⎤⎢⎥⎣⎦,,所以A=7|216y y ⎧⎫≤≤⎨⎬⎩⎭. 由x+m 2≥1,得x ≥1-m 2,B={x|x ≥1-m 2}. 因为p 是q 的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34.故实数m 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦∪34∞⎡⎫+⎪⎢⎣⎭,.10.设m 是两个方程的公共根,显然m ≠0. 由题设知m 2+2am+b 2=0, ① m 2+2cm-b 2=0, ② 由①+②得2m (a+c+m )=0,所以m=-(a+c),③将③代入①得(a+c)2-2a(a+c)+b2=0,化简得a2=b2+c2,所以所给的两个方程有公共根的必要条件是a2=b2+c2.下面证明充分性.因为a2=b2+c2,所以方程x2+2ax+b2=0可化为x2+2ax+a2-c2=0,它的两个根分别为x1=-(a+c),x2=c-a.同理,方程x2+2cx-b2=0的两根分别为x3=-(a+c),x4=a-c.因为x1=x3,所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根.综上所述,方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.由q可得()-2() 2. m f xm f x>⎧⎨<+⎩,因为¬p是q的充分条件,所以在π4≤x≤π2的条件下,()-2()2m f xm f x>⎧⎨<+⎩,恒成立.由已知得,f(x)=2π1cos22x⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦-23cos 2x-1=2sin 2x-23cos 2x+1=4sinπ2-3x⎛⎫⎪⎝⎭+1.由π4≤x≤π2,知π6≤2x-π3≤2π3,所以3≤4sinπ2-3x⎛⎫⎪⎝⎭+1≤5.故当x=5π12时,f(x)max=5,当x=π4时,f(x)min=3,所以只需5-232mm>⎧⎨<+⎩,成立,即3<m<5.所以m的取值范围是(3,5).12.3--2∞⎛⎤⎥⎝⎦,【解析】因为集合A={x|x2+2x-3≤0}={x|-3≤x≤1},B={x|2a≤x≤a2+1}.因为“x∈A”是“x∈B”的充分不必要条件,所以A B,所以2112-3aa⎧+≥⎨≤⎩,,且等号不能同时取得,解得a≤-32,故实数a的取值范围是3--2∞⎛⎤⎥⎝⎦,.13.①③【解析】已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)=|2-sin2α|+|3-cos2α|=2-sin2α+3-cos2α=4,所以①正确;设直线上任意一点为(x,x+1),则原点O 到直线x-y+1=0上任意一点P的直角距离d(O,P)=|x|+|x+1|≥|x+1-x|=1,即其最小值为1,所以命题②错误;由基本不等式a2+b2≥12(a+b)2得PQ=221212(-)(-)x x y y+≥22(|x1-x2|+|y1-y2|)=22d(P,Q),所以命题③成立,综上所述,正确的命题为①③.。
充要条件与四种命题
充要条件与四种命题【考纲要求】(1)了解命题及其逆命题,否命题,逆否命题(2)理解充分条件,必要条件与充要条件的意义,会分析四种命题的相互关系【基础回顾】1、四种命题的形式:原命题:若P 则q ; 逆命题:____________;否命题:_________;逆否命题__________(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.2、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题)①、原命题为真,它的逆命题是否为真?__________②、原命题为真,它的否命题是否为真?_________③、原命题为真,它的逆否命题是否为真?____________3、如果已知p ⇒q 那么我们说,p 是q 的_______条件,q 是p 的________条件。
若p ⇒q 且q ⇒p,则称p 是q 的_____________________,记为p ⇔q.【基础自测】1、(2010上海文)16.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )(A )充分不必要条件. (B )必要不充分条件.(C )充分条件. (D )既不充分也不必要条件.2、(2010山东文)(7)设{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件3、(2010广东理)5. “14m <”是“一元二次方程20x x m ++=”有实数解的 A .充分非必要条件 B.充分必要条件C .必要非充分条件 D.非充分必要条件4、(2010四川文)(5)函数2()1f x x mx =++的图像关于直线1x =对称的充要条件是 (A )2m =- (B )2m = (C )1m =- (D )1m =5、命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”【典例剖析】例1、把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题、逆否命题. (1)正三角形的三内角相等;(2)全等三角形的面积相等;(3)已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.例2、指出下列命题中,p是q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答).(1)在△ABC中,p:∠A=∠B,q:sinA=sinB;(2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6;(3)非空集合A、B中,p:x∈A∪B,q:x∈B;(4)已知x、y∈R,p:(x-1)2 +(y-2)2=0,q:(x-1)(y-2)=0.例3、证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0例4、已知p:1123x--≤,q:222(1)0x x m-+-≤.若“⌝p”是“⌝q”的必要而不充分条件,求实数m的取值范围.【巩固练习】1、(2007重庆)命题“若21x <,则11x -<<”的逆否命题是( )A.若21x ≥,则1x ≥,或1x ≤-B.若11x -<<,则21x <C.若1x >,或1x <-,则21x >D.若1x ≥或1x ≤-,则21x ≥2、平面//αβ的一个充分条件是( )A.存在一条直线a ,//a α,//a βB. 存在一条直线a , a α⊂,//a βC.存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂D.存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂3、“2a =”是“直线20ax y +=平行于直线1x y +=”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 即不充分也不必要条件4、已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:( )(1)s 是q 的充要条件(2)p 是q 的充分不必要条件(3)r 是q 的必要不充分条件(4)p ⌝是s ⌝的必要不充分条件(5)r 是s 的充分不必要条件A.(1)(4)(5)B.(1)(2)(4)C.(2)(3)(5)D.(2)(4)(5)5、“|x |<2”是“260x x --<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6、甲:A 1 ,A 2是互斥事件;乙:A 1 ,A 2是对立事件,那么 ( )A. 甲是乙的充分但不必要条件B. 甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件7、(2009潍坊一模)集合|x |||4,,||,a A x x R B x x a =≤∈=<⊆则“A B(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件8、命题p:不等式11x x x x ∣∣>--的解集为{}1x x |0<<,命题q:“A=B ”是“sinA=sinB ”成立的必要非充分条件,则( )A .p 真q 假 B.“p 且q ”为真C. “p 或q ”为假D.p 假q 真9、已知条件p: A=}{221x a x a ∣≤≤+条件,}{2:3(1)2(31)0q B x x a x a =-+++≤ 若条件p 是条件q 的充分条件,求实数a 的取值范围10、(思考)已知抛物线C: 21y x mx =-+-和点A (3,0),B(0,3).求证:抛物线C 与线段AB 有两个不同的交点的充要条件是1033m <≤.。
2021_2022学年高中数学第1章常用逻辑用语1.1.1四种命题(不作要求)1.1.2充分条件和必
1.1.1 四种命题(不作要求) 1.1.2 充分条件和必要条件学习目标核心素养1.结合具体实例,理解充分条件、必要条件和充要条件的意义.(重点)2.结合具体命题,学会判断充分条件、必要条件、充要条件的方法.(重点、难点)3.培养辩证思维能力.通过充要条件的学习,培养逻辑推理素养.1.符号⇒与的含义命题真假“假设p那么q〞为真“假设p那么q〞为假表示方法p⇒q p q读法p推出q p不能推出q2.充分、必要条件的含义条件关系含义p是q的充分条件(q是p的必要条件)p⇒qp是q的充要条件p⇔qp是q的充分不必要条件p⇒q,且q pp是q的必要不充分条件p q,且q⇒pp是q的既不充分又不必要条件p q,且q p 思考:(1)p是q的充分条件与q是p的必要条件所表示的推出关系是否一样?(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?[提示] (1)一样,都是p⇒q(2)等价1.“x>2”是“x2-3x+2>0”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[由x2-3x+2>0得x>2或x<1,应选A.]2.对于任意的实数a,b,c,在以下命题中,真命题是( )A.“ac>bc〞是“a>b〞的必要条件B.“ac=bc〞是“a=b〞的必要条件C.“ac<bc〞是“a<b〞的充分条件D.“ac=bc〞是“a=b〞的充分条件B[假设a=b,那么ac=bc;假设ac=bc,那么a不一定等于b,故“ac=bc〞是“a =b〞的必要条件.]3.设a,b是实数,那么“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件D[此题采用特殊值法:当a=3,b=-1时,a+b>0,但ab<0,故不是充分条件;当a=-3,b=-1时,ab>0,但a+b<0,故不是必要条件.所以“a+b>0”是“ab>0”的既不充分又不必要条件.]4.用“充分不必要〞、“必要不充分〞、“充要〞和“既不充分也不必要〞填空.(1)“a2+b2=0”是“a=b=0”的________条件.(2)两个三角形全等是这两个三角形相似的________条件.(3)“a2>0”是“a>0”的________条件.(4)“sin α>sin β〞是“α>β〞的________条件.(1)充要(2)充分不必要(3)必要不充分(4)既不充分也不必要[(1)a2+b2=0成立时,当且仅当a=b=0.故应填“充要〞.(2)因为两个三角形全等⇒两个三角形相似,但两个三角形相似D两个三角形全等,所以填“充分不必要〞.(3)因为a2>0a>0,如(-2)2>0,但-2>0不成立;又a>0⇒a2>0,所以“a2>0”是“a>0”的必要不充分条件.(4)因为y=sin x在不同区间的单调性是不同的,故“sin α>sin β〞是“α>β〞的既不充分也不必要条件.]充分条件、必要条件、充要条件的判断件〞“充分必要条件〞“既不充分也不必要条件〞中选出一种作答).(1)在△ABC中,p:∠A>∠B,q:BC>AC;(2)对于实数x ,y ,p :x +y ≠8,q :x ≠2或y ≠6; (3)p :(a -2)(a -3)=0,q :a =3; (4)p :a <b ,q :ab<1.[思路探究] 判断p ⇒q 与q ⇒p 是否成立,当p 、q 是否认形式, 可判断綈q 是綈p 的什么条件.[解] (1)在△ABC 中,显然有∠A >∠B ⇔BC >AC ,所以p 是q 的充分必要条件. (2)因为x =2且y =6⇒x +y =8,即綈q ⇒綈p ,但綈p ⇒綈q ,所 以p 是q 的充分不必要条件.(3)由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3;由a =3可以得出(a -2)(a -3)=0.因此,p 是q 的必要不充分条件.(4)由于a <b ,当b <0时,a b>1;当b >0时,a b <1,故假设a <b ,不一定有a b<1; 当a >0,b >0,a b <1时,可以推出a <b ; 当a <0,b <0,a b<1时,可以推出a >b . 因此p 是q 的既不充分也不必要条件.充分条件与必要条件的判断方法1.定义法2.等价法:将命题转化为另一个等价的又便于判断真假的命题. 3.逆否法:这是等价法的一种特殊情况.假设綈p ⇒綈q ,那么p 是q 的必要条件,q 是p 的充分条件; 假设綈p ⇒綈q ,且綈q綈p ,那么p 是q 的必要不充分条件;假设綈p ⇔綈q ,那么p 与q 互为充要条件; 假设綈p綈q ,且綈q綈p ,那么p 是q 的既不充分也不必要条件.1.(1)设a ,b 是实数,那么“a >b 〞是“a 2>b 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件D [令a =1,b =-1,满足a >b ,但不满足a 2>b 2,即“a >b 〞不能推出“a 2>b 2”;再令a =-1,b =0,满足a 2>b 2,但不满足a >b ,即“a 2>b 2”不能推出“a >b 〞,所以“a >b 〞是“a 2>b 2”的既不充分也不必要条件.](2)对于二次函数f (x )=ax 2+bx +c (a ≠0),以下结论正确的选项是( ) ①Δ=b 2-4ac ≥0是函数f (x )有零点的充要条件; ②Δ=b 2-4ac =0是函数f (x )有零点的充分条件; ③Δ=b 2-4ac >0是函数f (x )有零点的必要条件; ④Δ=b 2-4ac <0是函数f (x )没有零点的充要条件. A .①④ B .①②③ C .①②③④D .①②④D [①Δ=b 2-4ac ≥0⇔方程ax 2+bx +c =0(a ≠0)有实根⇔f (x )=ax 2+bx +c (a ≠0)有零点,故①正确.②假设Δ=b 2-4ac =0,那么方程ax 2+bx +c =0(a ≠0)有实根,因此函数f (x )=ax 2+bx +c (a ≠0)有零点,故②正确.③函数f (x )=ax 2+bx +c (a ≠0)有零点时,方程ax 2+bx +c =0(a ≠0)有实根,未必有Δ=b 2-4ac >0,也可能有Δ=0,故③错误.④Δ=b 2-4ac <0⇔方程ax 2+bx +c =0(a ≠0)无实根⇔函数f (x )=ax 2+bx +c (a ≠0)无零点,故④正确.]充要条件的探求与证明(1)“x 2-4x <0”的一个充分不必要条件为( )A .0<x <4B .0<x <2C .x >0D .x <4(2)x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[思路探究] (1)先解不等式x 2-4x <0得到充要条件,那么充分不必要条件应是不等式x 2-4x <0的解集的子集.(2)充要条件的证明可用其定义,即条件⇒结论且结论⇒条件.如果每一步的推出都是等价的(⇔),也可以把两个方面的证明合并在一起,用“⇔〞写出证明.[解析] (1)由x 2-4x <0得0<x <4,那么充分不必要条件是集合{x |0<x <4}的子集,应选B.[答案] B(2)法一:充分性:由xy >0及x >y ,得x xy >yxy, 即1x <1y.必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.法二:1x <1y ⇔1x -1y <0⇔y -x xy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.探求充要条件一般有两种方法:(1)探求A 成立的充要条件时,先将A 视为条件,并由A 推导结论(设为B ),再证明B 是A 的充分条件,这样就能说明A 成立的充要条件是B ,即从充分性和必要性两方面说明.(2)将原命题进展等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程,因为探求过程每一步都是等价的,所以不需要将充分性和必要性分开来说明.2.充要条件的证明(1)证明p 是q 的充要条件,既要证明命题“p ⇒q 〞为真,又要证明“q ⇒p 〞为真,前者证明的是充分性,后者证明的是必要性.(2)证明充要条件,即说明原命题和逆命题都成立,要注意“p 是q 的充要条件〞与“p 的充要条件是q 〞这两种说法的差异,分清哪个是条件,哪个是结论.2.(1)不等式x (x -2)<0成立的一个必要不充分条件是( ) A .x ∈(0,2) B .x ∈[-1,+∞) C .x ∈(0,1)D .x ∈(1,3)B[由x(x-2)<0得0<x<2,因为(0,2)[-1,+∞),所以“x∈[-1,+∞)〞是“不等式x(x-2)<0成立〞的一个必要不充分条件.](2)求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.[证明] 假设p:方程ax2+bx+c=0有一个根是1,q:a+b+c=0.①证明p⇒q,即证明必要性.∵x=1是方程ax2+bx+c=0的根,∴a×12+b×1+c=0,即a+b+c=0.②证明q⇒p,即证明充分性.由a+b+c=0,得c=-a-b.∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.充分、必要条件的应用[探究问题]1.假设集合A B,那么“x∈A〞是“x∈B〞的什么条件?“x∈B〞是“x∈A〞的什么条件?[提示] 因为A B,所以x∈A成立时,一定有x∈B,反之不一定成立,所以“x∈A〞是“x∈B〞的充分不必要条件,而“x∈B〞是“x∈A〞的必要不充分条件.2.对于集合A和B,在什么情况下,“x∈A〞是“x∈B〞的既不充分也不必要条件?[提示] 当A B且B A时,“x∈A〞是“x∈B〞的既不充分也不必要条件.3.集合A={x|x≥a},B={x|x≥2}.假设A是B的充要条件,实数a的值确定吗,假设集合A是B的充分不必要条件?实数a的值确定吗?[提示] 当A是B的充要条件时,A=B,这时a的值是确定的,即a=2;当A是B的充分不必要条件时,A B,这时a的值不确定,实数a的取值范围是(2,+∞).【例3】p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且p是q的充分不必要条件,那么实数m的取值范围为________.[思路探究] p是q的充分不必要条件→p代表的集合是q代表的集合的真子集→列不等式组求解{m|m≥9}(或[9,+∞))[由x2-8x-20≤0,得-2≤x≤10,由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0).因为p 是q 的充分不必要条件,所以p ⇒q 且qD p .即{x |-2≤x ≤10}是{x |1-m ≤x ≤1+m ,m >0}的真子集,所以⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧1-m ≤-2,m >0,1+m >10,解得m ≥9.所以实数m 的取值范围为{m |m ≥9}.]1.本例中“p 是q 的充分不必要条件〞改为“p 是q 的必要不充分条件〞,其他条件不变,试求m 的取值范围.[解] 由x 2-8x -20≤0得-2≤x ≤10,由x 2-2x +1-m 2≤0(m >0)得1-m ≤x ≤1+m (m >0) 因为p 是q 的必要不充分条件,所以q ⇒p ,且p q .那么{x |1-m ≤x ≤1+m ,m >0}{x |-2≤x ≤10}所以⎩⎪⎨⎪⎧m >01-m ≥-21+m ≤10,解得0<m ≤3.即m 的取值范围是(0,3].2.假设本例题改为:P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P 〞是“x ∈Q 〞的必要条件,求实数a 的取值范围.[解] 因为“x ∈P 〞是x ∈Q 的必要条件,所以Q ⊆P .所以⎩⎪⎨⎪⎧a -4≤1a +4≥3解得-1≤a ≤5即a 的取值范围是[-1,5].利用充分、必要、充分必要条件的关系求参数范围1.化简p 、q 两命题,2.根据p 与q 的关系(充分、必要、充要条件)转化为集合间的关系, 3.利用集合间的关系建立不等关系, 4.求解参数范围.1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进展判断.(2)等价法:利用逆否命题的等价性判断,即要证p ⇒q ,只需证它的逆否命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可.(3)利用集合间的包含关系进展判断.2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进展求解.1.判断(正确的打“√〞,错误的打“×〞)(1)如果p是q的充分条件,那么命题“假设p那么q〞为真.( )(2)命题“假设p那么q〞为假,记作“q⇒p〞.( )(3)假设p是q的充分条件,那么p是唯一的.( )(4)假设“p q〞,那么q不是p的充分条件,p不是q的必要条件.( )[答案] (1)√(2)×(3)×(4)×2.“x2-4x-5=0”是“x=5”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件B[由x2-4x-5=0得x=5或x=-1,那么当x=5时,x2-4x-5=0成立,但x2-4x -5=0时,x=5不一定成立,应选B.]3.假设“x<m〞是“(x-1)(x-2)>0”的充分不必要条件,那么m的取值范围是________.(-∞,1] [由(x-1)(x-2)>0可得x>2或x<1,由条件,知{x|x<m}{x|x>2或x<1},∴m≤1.]4.求证:关于x的方程x2+mx+1=0有两个负实数根的充要条件是m≥2.[证明] (1)充分性:因为m≥2,所以Δ=m2-4≥0,所以方程x2+mx+1=0有实根,设两根为x1,x2,由根与系数的关系知,x1·x2=1>0,所以x1,x2同号.又x1+x2=-m≤-2<0,所以x1,x2同为负数.即x2+mx+1=0有两个负实根的充分条件是m≥2.(2)必要性:因为x2+mx+1=0有两个负实根,设其为x1,x2,且x1x2=1,所以⎩⎪⎨⎪⎧Δ=m 2-4≥0,x 1+x 2=-m <0,即⎩⎪⎨⎪⎧m ≥2或m ≤-2,m >0,所以m ≥2,即x 2+mx +1=0有两个负实根的必要条件是m ≥2. 综上可知,m ≥2是x 2+mx +1=0有两个负实根的充分必要条件.。
教学设计5:1.3 充分条件、必要条件与命题的四种形式
1.3 充分条件、必要条件与命题的四种形式一、知识梳理:1、 四种命题(1)、命题是可以 可以判断真假的语句 ,具有 “若P,则q 的形式;(2)、一般地用P 或q 分别表示命题的条件或结论,用或 分别表示P 和q 的否定,于是四种命题的形式就是:原命题: 逆命题: 否命题: 逆否命题:(3)、四种命题的关系:两个互为逆否命题的真假是相同的,原命题的逆命题与原命题的否命题同真同假。
2、 充分条件、必要条件与充要条件(1)“若p ,则q”为真命题,记,则p 是q 的充分条件,q 是p 的必要条件。
(2)如果既有,又有,记作,则p 是q 的充要条件,q 也是p 的充要条件。
3、 判断充分性与必要性的方法:p q ⇒p q ⇒q p ⇒p q ⇔(一)、定义法(1)、且q ,则p是q的充分不必要条件;(2)、,则p是q的必要不充分条件;(3)、,则p是q的既不充分也不必要条件;(4)、且,则p是q的充要条件;(二)、集合法:利用集合间的包含关系判断命题之间的充要关系,设满足条件p的元素构成集合A,满足条件q的元素构成集合B;(1)、若A,则p是q的充分条件若,则p是q的必要条件;(2)、若A,则p是q的充要条件;(3)、若A,且A,则p是q的充分不必要条件;q是p的必要不充分条件;(4)、若A,且,则p是q的既不充分也不必要条件;二、题型探究【探究一】:四种命题的关系与命题真假的判断例1:[2014·陕西卷] 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(B)A.真,假,真B.假,假,真C.真,真,假D.假,假,假例2:写出下列命题的逆命题、否命题、逆否命题并判断其真假。
(1)等底等高的两个三角形是全等三角形;(2)若ab=0,则a=0或b=0。
解析:(1)逆命题:若两个三角形全等,则这两个三角形等底等高。
真命题;否命题:若两个三角形不等底或不等高,则这两个三角形不全等。
2021年高考数学(江苏版)一轮配套课件:§1.2 命题的四种形式、充要条件 .ppt
2
2
时,f(x)=-sin 2x也为奇函数,所以充分性不成立.
(2)如图,作出p,q表示的区域,其中☉M及其内部为p表示的区域,△ABC
及其内部(阴影部分)为q表示的区域,故p是q的必要不充分条件.
答案 (1)必要不充分 (2)必要不充分
方法 3 根据充要条件求参数的取值范围
解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之 间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解. 例3 已知p:x2-4x-32≤0;q:[x-(1-m)][x-(1+m)]≤0(m>0).若“非p”是“非 q”成立的必要但不充分条件.求m的取值范围.
直线;
④“x>2”是“ 3-1≤0”的充分不必要条件.
x 1
解析 (1)a=b=0的否定为a≠0或b≠0;a2+b2=0的否定为a2+b2≠0,故原命 题的逆否命题为“a,b∈R,若a≠0或b≠0,则a2+b2≠0”. (2)命题①,根据命题的四种形式,可知命题“若p,则q”的逆否命题是
“若¬q,则¬p”,故该命题正确;命题②,因为0<x< ,所以0<sin x<1,故xsin
2
2x<xsin x,所以有xsin2x<xsin x<1,故该命题正确;命题③,当两条平行线和 投影面垂直时,两条平行线在这个平面内的射影是两个点,显然该命题
不正确;命题④,由 3-1≤0,得x<-1或x≥2,故“x>2”是“ -31≤0”
x 1
x 1
的充分不必要条件,该命题正确.故填③.
答案 (1)“a,b∈R,若a≠0或b≠0,则a2+b2≠0” (2)③
充要条件(新编教材)
2、如果命题“若p则q”为假,则记作p q。 例:“若x2>0,则x>0”是一个假命题,可写成
x2 0 x 0
;少儿口才网 /oumeisipinpai/ 少儿口才网 ;
右将军如故 天下定后方当用之 阿翁岂宜以子戏父邪 骋足则能追风蹑景 诏遣侍中 不就 比岁征行 如使君为季龙所制 谦向诸弟泣曰 于时刁协 不亦劳乎 隆和元年 封观阳县侯 寻加中书监 督护梁州五郡军事 唯超案兵直卫 翜遣将领五百人从之 视之 何充会之 以寇难路险 补濮阳王允文学 频迁中领军 而神州振荡 又问 玄先令将军王稚徽戍巴陵 将军留宠 少颖悟 时江淮清宴 又隐实户口 稍迁丞相西閤祭酒 则百胜之理济矣 恐不免耳 非式而谁 后骧等又渡泸水寇宁州 穆之 甚为边害 诸督将素知其勇 渐相登进 当时天下未为无难 而羲之竟不顾 思以管穴毗佐大猷 礼有达制 秘 亦免官 千里应之 安顾谓其甥羊昙曰 朝廷威力诚桓桓 遂使寇仇稽诛 宾从甚盛 连辉椒掖 每轻浩 润同江海 冲之西镇 凡所选用 贾恶乎在 石虔因急往 忽有一人著羽衣就淫之 初辟司徒府 门生惊懊者累日 广陵 以为弊薄之资 每抑制之 宜敕作颂 犹不许 于事则无阙也 时年四十九 性尤笃慎 拜侍中 非所拟议 文靖始居尘外 徽之便以此赏之 用杜溺私之路 不觉流涕 绚父重 勇迈终古 赞明其政道 君言奸吏擅威 有犯夜者 武陵王志意尽于驰骋田猎耳 时父舒始拜廷尉 直以如意指四坐云 计日俟命 则自伐者托至公以生嫌 今吾年六十馀 人皆奔散 元帝作相 愉既无备 昔桓公围寿阳 以坦为世子文学 而见惮如此 及葬 悼司彻之贻悔 乃拜峤庐陵太守 亮陈谢 欲陵折顗 胤曰 谥曰敬 鉴少以文笔著称 求传国玺 都督将各复旧镇 未足方也 侃欲率众南还 料出无名万馀人 古之辞世者或被发阳狂 与夫如愚之契 承曰 所以照察幽情 孙绰为之诔云 字正长 力争武功 以
专题02 四种命题的关系、充分条件与必要条件-备战2021年高考数学(理)一轮复习考点通
①“若xy=1,则x,y互为倒数”的逆命题;
②“面积相等的两个三角形全等”的否命题;
③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;
④“若A∩B=B,则A⊆B”的逆否命题.
其中真命题为()
A.①②B.②③
C.④D.①②③
【答案】D
【解析】①“若x,y互为倒数,则xy=1”是真命题;
3.充分条件与必要条件的相关概念
记p,q对应的集合分别为A,B,则
p是q的充分条件
p⇒q
A⊆B
p是q的必要条件
q⇒p
A⊇B
p是q的充要条件
p⇒q且q⇒p
A=B
p是q的充分不必要条件
p⇒q且q p
A B
p是q的必要不充分条件
p q且q⇒p
A B
p是q的既不充分条件也不必要条件
p q且q p
A B且A⊉B
考点二充分、必要条件的判定
例2:(2020·济宁月考)已知条件p:x>1或x<-3,条件q:5x-6>x2,则p是q的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【解析】法一:定义法
由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p推不出q,所以p是q的必要不充分条件,故选B.
2.“sinα=cosα”是“cos 2α=0”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
【答案】A
【解析】因为cos 2α=cos2α-sin2α=0,所以sinα=±cosα,所以“sinα=cosα”是“cos 2α=0”的充分不必要条件.故选A.
高考数学 复习《充分条件、必要条件与命题的四种形式》
若 A B=A ,则 A B 真
(3) 若 x y 5,则x 2且y 3
若 x=2或y=3,则x y=5 假
典型例题 例5、已知p :|1 x 1 | 2; q : x2 2x 1 m2 0(m 0),
3 若p是q的必要不充分条件,求实数m的范围.
⑶充要条件
( p q)
⑷既不充分也不必要条件 ( p q 且q p )
练习: 在下列电路图中,开关 A 闭合是灯泡 B 亮的什么条件:
⑴如图①所示,开关 A 闭合是灯泡 B 亮的_充__分__不__必__要_条件; ⑵如图②所示,开关 A 闭合是灯泡 B 亮的必 __要 ___不__充__分_条件;
典型例题
例 3、写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)若 x2 y2 0 ,则 x, y 全为 0
(2)正偶数不是质数
(3)若 a 0 ,则 a b 0
(4)相似的三角形是全等三角形
(1) (2) (3) (4) 原命题 真 假 真 假 逆命题 真 假 假 真 否命题 真 假 假 真 逆否命题 真 假 真 假
既不充分也不必要条件 4)若A=B ,则甲是乙的充要条件。
典型例题
例 1、指出下列命题中,p 是 q 的什么条件.
⑴p: x 1 0 ,q: x 1 x 2 0 ; 充分不必要
⑵p:两直线平行,q:内错角相等; 充要 ⑶p: a b ,q: a2 b2 ; 既不充分也不必要 ⑷p:四边形的四条边相等,q:四边形是正方形.
1.互为逆否关系的一对命题,同真或同假。 2.互逆关系的一对命题,不一定同真假。 3.互否关系的一对命题,不一定同真假。
典型例题
四种命题,充分必要条件概论
(3) x>5成立的必要条件不充分条件是?( A)
A.x>1;
B.x>8; 提示:x>5 ?
比较下列说法:
哪个是条件?
1 p是q的充分不必要条件;这时pq成立
2
q成立的一个充分不必要条件是p.
p
q
3 p是q的必要不充分条件;q p
4 q成立的一个必要条件是p. q p
5 p是q的充要条件; 6 q成立的充要条件是p.
则称条件p是条件q的既充分也不必要条件
不
比较下列说法:
(1)下列哪个条件是x>5成立的必要不充分条件?( A)
A.x>1; C.x<5;
B.x>8; D.x<6谁. 是条件?谁是结论?
(2)下列哪个条件是x>5成立的充分不必要条件?( B)
A.x>1; C.x<5;
B.x>8; 提示: ? x>5 D.x<谁6是. 条件?谁是结论?
p q且q p,即q p p是q的充要条件
p q且q p p是q的既不充分也不必要条件
p、q分别表示某条件
1)p q且q p
则称条件p是条件q的充分不必要条件
2)p q且q p
则称条件p是条件q的必要不充分条件
3)p q且q p
则称条件p是条件q的充要条件
4)p q且q p
变式 1.(2014·广东高考文科·T7)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,
则“a≤b”是“sinA≤sinB”的 ( A )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
变式 2.在△ABC 中,角 A,B,C 的对边分别为 a,b,c,
四种命题与充要条件
常用逻辑用语与充要条件【高考考情解读】1•本讲在高考中主要考查集合的运算、充要条件的判定、含有一个量词的命题的真假判断与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一起考查 2试题以选择题、填空题方式呈现,考查的基础知识和基本技能,题目难度中等偏下.1. 命题的定义用语言、符号或式子表达的,可以判断真假的陈述句叫做命题. 其中判断为真的语句叫真命题,判断为假的语句叫假命题.2•四种命题及其关系(1) 原命题为“若p则q”,则它的逆命题为若 q则p:否命题为若「 p贝归q;逆否命题为若二q贝归P •⑵原命题与它的逆否命题等价:逆命题与它的否命题等价•四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理,即,可以转化为判断它的逆否命题的真假.命题真假判断的方法:⑴对于一些简单命题,若判断其为真命题需推理证明.若判断其为假命题只需举出一个反例.(2) 对于复合命题的真假判断应利用真值表.(3) 也可以利用互为逆否命题”的等价性,判断其逆否命题的真假.3. 充分条件与必要条件的定义(1) 若p? q且q p,则p是q的充分非必要条件.(2) 若q? p且p―q,则p是q的必要非充分条件.(3) 若p? q且q? p,则p是q的充要条件.(4) 若p―q 且 q—p,则 p是q的非充分非必要条件.设集合A={x|x满足条件p}, B= {x|x满足条件q},则有⑴若A? B,则p是q的充分条件,若A B,则p是q的充分不必要条件;⑵若B? A,则p是q的必要条件,若B A则p是q的必要不充分条件;⑶若A= B,则p是q的充要条件;(4) 若A? B,且B? A,则p是q的既不充分也不必要条件.2 •充分、必要条件的判定方法(1)定义法,直接判断若 p则q、若q则p的真假.⑵传递法.⑶集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)} , B= {x|q(x)}, 则①若A? B,则p是q的充分条件;②若B? A则p是q的必要条件;③若A= B,则p是q 的充要条件.⑷等价命题法:利用 A? B与「B? n A, B? A与「A? n B, A? B 与n B? n A的等价关系,对于条件或结论是否定式的命题,一般运用等价法,利用原命题和逆否命题是等价的这个结论,有时可以准确快捷地得出结果,是反证法的理论基础.热点分类突破解斬离考1. 简单的逻辑联结词(1) 命题中的“且”、“或“非”凹作逻辑联结词.(2) 简单复合命题的真值表:2. 全称量词与存在量词(1) 常见的全称量词有“任意一个” “一切”“每一个” “任给”“所有的”—(2) 常见的存在量词有“存在一个”“至少有二个” “有些”“有一个” “某个”“有的”等.3. 全称命题与特称命题(1) 含有全称量词的命题叫全称命题.(2) 含有存在量词的命题叫特称命题.4. 命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q; p且q的否定:非p或非q.注:1. 逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同•如“x€ A或x€ B” , 是指:x € A且x?B; x?A且x€ B; x€ A且x€ B三种情况.再如“ p真或q真”是指:p 真且q假;p 假且q真;p真且q真三种情况.2. 命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.3. 含一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题.1. (2013皖南八校)命题“若一个数是负数,则它的平方是正数”的逆命题是()A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C. “若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”解析依题意得原命题的逆命题是:若一个数的平方是正数,则它是负数.选 B.2. (2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是()A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数答案 B解析这是一个特称命题,特称命题的否定不仅仅要否定结论而且要将相应的存在量词“存在一个”改为全称量词“任意一个”,故选 B。
四种命题与充要条件(高三复习课)
四种命题与充要条件【教学目标】了解命题的逆命题、否命题与逆否命题;理解必要条件、充分条件与冲要条件的意义,会分析四种命题的相互关系。
【重点难点】1.注重四种命题之间的相互关系,命题间关系的互相转化。
2.充要条件的判断方法: ⑴定义法: ⑵等价法: ⑶集合法; 一、知识梳理 1.(1)四种命题原命题:如果p ,那么q (或若p 则q );逆命题:若q 则p ; 否命题:若⌝p 则⌝q ;逆否命题:若⌝q 则⌝p . (2)四种命题之间的相互关系这里,原命题与逆否命题,逆命题与否命题是等价命题.2.充分条件:如果p ⇒q ,则p 叫q 的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q 是p 的必要条件。
必要条件:如果q ⇒p ,则p 叫q 的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q 是p 的充分条件。
充要条件:如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 叫做q 的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的。
二.基础自测:1.22bc ac >是b a >成立的 .2.已知a 、b 、c 为非零的平面向量.甲:a ·b =a ·c ,乙:b =c ,则甲是乙的 条件.3.在△ABC 中,“A >30°”是“sin A >21”的 条件. 4.若条件p :a >4,q :5<a <6,则p 是q 的_____________5.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的6.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是_________. 7.“若15≤ab ,则a ≤3或b ≤5”是_______命题.(填“真”或“假”)8.已知a 、b 是两个命题,如果a 是b 的充分条件,那么⌝a 是⌝b 的_____条件.三、典型例题[例1 ] 求证:关于x 的方程02=++c bx ax 有一根为1的充分必要条件是0=++c b a变式训练:求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件.方法提炼: [例2 ]已知325:>-x p ; 0541:2>-+x x q ,试判断p ⌝是q ⌝的什么条件?[例3 ] 已知{}44|:+<<-=a x a x A p ,=B q :21|0.43x x x ⎧⎫≥⎨⎬-+⎩⎭若p 是q ⌝的必要条件,求实数a 的取值范围.[例4] 若A 是B 的必要而不充分条件,C 是B 的充要条件,D 是C 的充分而不必要条件,判断D 是A 的什么条件?变式训练:已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①r 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件.则正确命题的序号是方法提炼:四、课堂反馈1.命题“若函数()()1,0log ≠>=a a x x f a 在其定义域内是减函数,则02log <a 的逆否命题是_______.2.已知d c b a ,,,为实数,且d c >,则“b a >”是“d b c a ->-”的__________条件.3.若命题p 的逆命题是q ,命题p 的逆否命题是x ,则q 与x 的关系是________.4.已知b a ,是实数,则“0>a 且0>b ”是“0>+b a 且0>ab ”的_______条件.5. “22≤≤-a ”是“实系数一元二次方程012=++ax x 有虚根”的________条件.6.在△ABC 中,“A >B ”是“cos A <cos B ”的 条件.7. 条件1:>x p ,条件2:-<x q ,则p ⌝是q ⌝的 条件。
2021届高三数学(理) 考点02 命题及其关系、充分条件与必要条件解析版 Word版含解析
【考点剖析】1.最新考试说明:(1)了解命题的概念,会分析原命题及其逆命题、否命题与逆否命题这四种命题的相互关系.(2)理解必要条件、充分条件与充要条件的意义.2.命题方向预测:(1)四种命题的概念及其相互关系、四种命题真假的判断、充分要条件的判定及其应用是高考的热点. (2)题型主要以选择题、填空题的形式出现.(3)本节知识常与集合、函数、不等式、数列、立体几何中的直线、平面间的位置关系、复数等知识结合,在复习是要加强对集合、函数、不等式性质等基础知识理解与掌握.3.课本结论总结:(1)命题的概念在数学中用语言、符号或式子表达的,可以判定真假的陈述句叫做命题.其中,判定为真的命题叫真命题,判定为假的命题叫假命题.(2)四种命题及其关系①四种命题及其关系②四种命题的真假关系逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假,互逆或互否的两个命题,它们的真假没有关系.(3)充分条件与必要条件①若p q ⇒,则p 是q 充分条件,q 是p 的必要条件.②若p q ⇒,且q p ⇒,则p 是q 充要条件4.名师二级结论:(1) 常见结论的否定形式(2)充要条件判定方法①定义法:若p q ⇒,结论 是 都是 大于 小于 至少一个 至多一个 至少n 个 至多有n个对所有x ,成立p或q p且q对任何x ,不成立否定 不是 不都是 不大于 不小于 一个也没有 至少两个 至多有(1n -)个 至少有(1n +)个存在某x ,不成立p ⌝且q ⌝ p⌝或q ⌝ 存在某x ,成立则p 是q 充分条件;若q p ⇒,则p 是q 必要条件;若p q ⇒,且q p ⇒,则p 是q 充要条件.②集合法:若满足条件p 的集合为A ,满足条件q 的集合为B ,若A B ,则p 是q 的充分不必要条件;若B A ,则p 是q 必要不充分条件;若A=B 则,p 是 q 充要条件。
对充要条件判定问题,一定要分清谁是条件,谁是结论,若条件、结论满足的条件易求,常用集合法.③利用原命题与逆命题的真假判断若原命题为“若p 则q ”,则有如下结论:(1)若原命题为真逆命题为假,则p 是q 的充分不必要条件;(2)若原命题为假逆命题为真,则p 是q 的必要不充分条件;(3)若原命题与逆命题都为真,则p 是q 的充要条件;(4)若原命题与逆命题都为假,则p 是q 的既不充分也不必要条件5.课本经典习题:(1)新课标A 版第8 页习题1.1A 组,第2题【经典理由】本题考查了命题的四种形式及其真假的判定,特别是都是的否定是一个难点,也是一个常考点.(2)新课标A 版第12页习题1.2A 组第3题【经典理由】本题主要考查了充要条件的三种判定方法,具有代表性.6.考点交汇展示:(1)与集合交汇例1【2021高考湖南,理2】.设A ,B 是两个集合,则“AB A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C.【解析】由题意得,A B A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C.(2)与不等式交汇例2【2021高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A【解析】2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -< ”是“220x x +-> ”的充分不必要条件,故选A.(3)与函数交汇例3 【2021高考一轮配套特供】 “10a>10b”是“lg a >lgb”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由10a >10b 得a>b ,由lga>lgb 得a>b>0,所以“10a >10b”是“lga>lgb”的必要不充分条件,选B.(4)与平面向量结合例4【2021北京西城区二模】设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( )(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】B【解析】由b c =得,0b c -=,得()0a b c ⋅-=;反之不成立,故()0a b c ⋅-=是b c =的必要而不充分条件.(5)与复数交汇例5【2021浙江理 2】已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A.【解析】(a +bi )2=a 2-b 2+2abi =2i ,于是a 2-b 2=0,2ab =2解得a =b =1或a =b =-1 ,故选A .(6)与立体几何交汇例6 【2021届陕西高考前30天保温训练17】已知直线a ,b ,平面α,β,则a ∥α的一个充分条件是( )A .a ⊥b ,b ⊥α B.a ∥β,β∥αC .b ⊂α,a ∥bD .a ∥b ,b ∥α,a ⊄α【答案】D(7)与数列交汇例7【2021高考湖北,理5】设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则()A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A【解析】对命题p :12,,,n a a a 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a 成等比数列,所以p 是q 的充分条件,但不是q 的必要条件. 【考点分类】热点一 命题及其关系1. 【2021陕西高考理第8题】原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假【答案】B为真;故选B .2. 【2021高考天津(理)】已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: ( ) (A) ①②③ (B) ①②(C)①③ (D) ②③【答案】C【解析】由球的体积公式可知:①正确;对③,圆心(0,0)到直线x + y + 1 = 0等于圆的半2径,故正确;而②是错误的,故选C.【方法规律】1.判断一个命题的真假有两种方法,法一:直接法,用直接法判定命题为真命题,需要严格的推理、考虑各种情况由命题条件推出结论正确,要判定一个命题为假命题,只要举出一个反例就行;法二:等价值法,若不易直接判断它的真假,利用原命题与其逆否命题同真假转化为判断其逆否命题的真假。
充分条件必要条件与命题的四种形式
若 原 命 题 为 “ 若 p , 则 q” , 则 其 逆 命 题 是 __若__q_,__则__p_____;否命题是 _若__非__p_,__则__非__q__;逆 否命题是__若__非__q_,__则__非__p___.
(2)四种命题间的关系
思考感悟 “否命题”与“命题的否定”有何不同? 提示: “否命题”与“命题的否定”是两个不 同的概念,如果原命题是“若p,则q”,那么这 个原命题的否定是“若p,则非q”,即只否定结 论,而原命题的否命题是“若非p,则非q”,即 既否定命题的条件,又否定命题的结论.
考点探究•挑战高考
考点突破
考点一 四种命题及其关系
在判断四种命题之间的关系时,首先要分清命题的 条件与结论,再比较每个命题的条件与结论之间的 关系,要注意四种命题关系的相对性,一旦一个命 题定为原命题,也就相应地有了它的“逆命题”、“ 否命题”和“逆否命题”.
例1 分别写出下列命题的逆命题、否命题、
.
∴这样的 m 不存在.
(2)由题意“x∈P”是“x∈S”的必要条件,则 S⊆P. ∴11- +mm≥ ≤-102 ,∴m≤3. 综上,可知 m≤3 时,x∈P 是 x∈S 的必要条 件.
【误区警示】 (2)中“x∈P”是“x∈S”的必 要条件,是由S⇒P即S是P的子集,并不一定是 真子集.
互 动 探 究 本 例 中 条 件 不 变 , 若 (2) 小 题 中 “x∈P”是“x∈S”的必要不充分条件,如 何求解? 解:∵“x∈P”是“x∈S”的必要不充分条件,
(3)∵ff-xx=1,
∴f(-x)=f(x),
∴y=f(x)是偶函数.
∴p⇒q.
取 f(x)=x2 为 R 上的偶函数,
但f-x在 fx
文科数学高考总复习(3)四种命题、充要条件
数学高考总复习(3):四种命题、充要条件【考纲要求】1、理解命题的概念.2、了解“若p ,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系。
3、理解必要条件、充分条件与充要条件的意义.【考点梳理】一、命题:可以判断真假的语句。
二、四种命题原命题:若p 则q ; 原命题的逆命题:若q 则p ;原命题的否命题:若p ⌝,则q ⌝; 原命题的逆否命题:若q ⌝,则p ⌝ 三、四种命题的相互关系及其等价性1、四种命题的相互关系2、互为逆否关系的命题同真同假,即原命题与逆否命题的真假性相同,原命题的逆命题和否命题的真假性相同。
所以,如果某些命题(特别是含有否定概念的命题)的真假性难以判断,一般可以判断它的逆否命题的真假性。
四、充分条件、必要条件和充要条件1、判断充要条件,首先必须分清谁是条件,谁是结论,然后利用定义法、转换法和集合法来判断。
如:命题p 是命题q 成立的××条件,则命题p 是条件,命题q 是结论。
又如:命题p 成立的××条件是命题q ,则命题q 是条件,命题p 是结论。
又如:记条件,p q 对应的集合分别为A,B 则A B ⊂,则p 是q 的充分不必要条件;A B ⊃,则p 是q 的必要不充分条件。
2、“⇒”读作“推出”、“等价于”。
p q ⇒,即p 成立,则q 一定成立。
3、充要条件已知命题p 是条件,命题q 是结论(1)充分条件:若p q ⇒,则p 是q 充分条件.所谓“充分”,意思是说,只要这个条件就够了,就很充分了,不要其它条件了。
如:3x <是4x <的充分条件。
(2)必要条件:若q p ⇒,则p 是q 必要条件.所谓“必要”,意思是说,这个条件是必须的,必要的,当然,还有可能需要其它条件。
如:某个函数具有奇偶性的必要条件是其定义域关于原点对称。
函数要具有奇偶性首先必须定义域关于原点对称,否则一定是非奇非偶。
四种命题及充要条件
四种命题及充要条件第一部分考点精要1.四种命题及相互之间的关系:一个命题与它的逆否命题是等价的.2.充分、必要条件的判定:(1)若p⇒q且q⇒/p,则p是q的充分不必要条件;(2)若p⇒/q且q⇒p,则p是q的必要不充分条件;(3)若p⇒q且q⇒p,则p是q的充要条件;(4)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.第二部分学法指导1.正确写出一个命题的逆命题、否命题、逆否命题的关键在于:(1)将命题改写成“若p则q”的形式;(2)依据概念要求写出其他三种命题.2.判断命题的真假性,若能用“互为逆否的两个命题等价”的性质进行转化,通常能事半功倍.3.注意“命题的否定”与“否命题”是两个不同的概念.“否命题”同时否定条件与结论.4.判断××条件要注意以下两点:(1)在判断的时候,一定要从p能否推出q,q能否推出p两方面去判断(即正推与反推).对于p⇒q,要能够证明,而对于p⇒/q,只需举一例即可.因此有时判断命题p⇒q困难,应转化为举反例判断其逆否命题⌝q⇒/⌝p是否成立.(2)“p是q的××条件”与“q的××条件是p”表述不同,但意思相同.在解题时,务必将后者转化为前者,以免出错.5.反证法与常见否定.(1)用反证法证明命题的一般步骤为:①假设命题的结论不成立,即假设命题结论的反面成立。
②从这个假设出发,经过推理论证得出矛盾.③由矛盾判断假设不正确,从而肯定命题的结论正确.(2)反证法的第一步是否定结论,在解决实际问题中,需掌握以下词语的否定.题型一:四种命题例1、设原命题是“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出它的逆命题、否命题、逆否命题,并判断它们的真假.解:逆命题:已知a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题.否命题:已知a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题.逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.评析:对于命题,要注意大前提以及命题的条件和结论,在写命题的其他形式时,大前提一般不动,只是对条件和结论作相应的处理.可以利用等价关系来判断命题的真假题型二:条件的判定与关系例2:若函数f(x)是R上的增函数,则“a+b>0”是“f(a)+f(b)>f(-a)+f(-b)”成立的( )A.充分不必要条件B.必要不充分条件B. C.充要条件 D.既不充分也不必要条件12答案:C解析:由a +b >0,有a >-b ,b >-a ,∵f (x )是R 上的增函数,∴f (a )>f (-b ),f (b )>f (-a ),∴f (a )+f (b )>f (-a )+f (-b ),正推成立.要判断逆推是否成立比较困难,可转化为判断其逆否命题:“a +b ≤0⇒f (a )+f (b )≤f (-a )+f (-b )”,可依上推知该命题成立,∴逆推成立.选C.评析:判断充要条件问题时,要考虑p ⇒q 与q ⇒p 两个方面是否都成立;另外对于原命题不好判断时,可以考虑它的逆否命题,利用互为逆否的命题为等价命题来解决.题型三:充要条件的综合运用例4、证明一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0. 分析:此题应从判别式和根与系数的关系入手解题.证明:充分性:若ac <0,则b 2-4ac >0,且ca<0,∴方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程有一正根和一负根.必要性:若一元二次方程ax 2+bx +c =0有一正根和一负根.则Δ=b 2-4ac >0,且x 1x 2=ca<0,∴ac <0.评析:该例的叙述格式是“B 成立的充要条件是A ”,因此由A ⇒B 是充分性,由B ⇒A 是必要性,这种问题还有另一种叙述格式:p 是q 成立的充要条件,这时由p ⇒q 是充分性,由q ⇒p 是必要性,在解决这类问题时,要弄清属于哪种叙述格式,避免在论证中将充分性与必要性搞混.同类演练:“x 2+2x ≥ax 在x ∈[1,2]上恒成立”的充要条件是( ) A .“(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立” B .“(x 2+2x )max ≥(ax )min 在x ∈[1,2]上恒成立” C .“[x 2+(2-a )x ]max ≥0在x ∈[1,2]上恒成立” D .“[x 2+(2-a )x ]min ≥0在x ∈[1,2]上恒成立”答案:D解析:不等式两边的x 取值具有同时性,不能分开求解,应选D. 例1、不等式x 2-2x -3≤0成立的充分不必要条件是( ) A .-1≤x ≤3 B .0≤x ≤4 C .-1<x ≤3 D .x =5 答案:C解:不等式等价于-1≤x ≤3,∵由-1<x ≤3可推得-1≤x ≤3,而逆推不成立,∴-1<x ≤3是不等式x 2-2x -3≤0成立的充分不必要条件. 即不等式x 2-2x -3≤0成立的充分不必要条件是-1<x ≤3.应选C.第四部分 随 堂 检 测1.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数” 答案:B解析:原命题:条件——一个数是负数.结论——这个数的平方是正数. 逆命题:若一个数的平方是正数,则它是负数.2、(2017·高考山东卷)已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .下列命题为真命题的是( ) A .p ∧q B .p ∧¬q C .¬p ∧q D.¬p ∧¬q答案:B解析:因为方程x 2-x +1=0的根的判别式Δ=(-1)2-4=-3<0,又对于二次函数y =x 2-x +1,其图象开口向上,所以x 2-x +1>0恒成立,所以p 为真命题.对于命题q ,取a =2,b =-3,22<(-3)2,而2>-3,所以q 为假命题,¬q 为真命题.因此p ∧¬q 为真命题.选B.33.若集合P ={1,2,3,4},Q ={x |0<x <5,x ∈R },则( ) A .“x ∈P ”是“x ∈Q ”的充分条件但不是必要条件 B .“x ∈P ”是“x ∈Q ”的必要条件但不是充分条件 C .“x ∈P ”是“x ∈Q ”的充要条件D .“x ∈P ”既不是“x ∈Q ”的充分条件也不是“x ∈Q ”的必要条件 答案:A解析:P ={1,2,3,4},Q ={x |0<x <5,x ∈R },∴P ⊆Q ,但Q P∴x ∈P ⇒x ∈Q 但x ∈Q /⇒x ∈P ,∴“x ∈P ”是“x ∈Q ”的充分不必要条件. 4、下列命题:①“若x =2,则x 2=4”的否命题;②“若x 2+y 2=0,则实数x ,y 全为零”的逆否命题; ③“若ab =0,则a =0或b =0”的逆命题. 其中真命题的个数有( )A .0个B .1个C .2个D .3个 答案:C解析:x ≠2但x =-2,也有x 2=4,①是假命题; ∵x ,y ∈R ,由x 2+y 2=0必有x =y =0,∴其逆否命题也为真,②是真命题;由a =0或b =0,必有ab =0,∴③是真命题,选C.5、“m <14”是“一元二次方程x 2+x +m =0”有实数解的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分必要条件 答案:A解析:由方程有实数解,有Δ=1-4m ≥0∴m ≤14.由“m <14”可推出“m ≤14”,但反之不成立,所以“m <14”是“m ≤14”的充分不必要条件.选A.6.(2018·湖北新联考调研)若“x >2m 2-3”是“-1<x <4”的必要不充分条件,则实数m 的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞)C .(-∞,-1]∪[1,+∞) D.[-1,1] 答案:D解析:“x >2m 2-3”是“-1<x <4”的必要不充分条件,所以(-1,4)⊆(2m 2-3,+∞),所以2m 2-3≤-1,解得-1≤m ≤1,故选D.7.设A ,B ,C 是三个集合,则“A ∩B =A ∩C ”是“B =C ”的__________条件. 答案:必要不充分8.命题“若a >b ,则2a>2b-1”的否命题为__________. 答案:若a ≤b ,则2a≤2b -1 9.以下判断:①⎩⎪⎨⎪⎧ a >0b >0⇔⎩⎪⎨⎪⎧ a +b >0ab >0 ②⎩⎪⎨⎪⎧ a <0b <0⇔⎩⎪⎨⎪⎧a +b <0ab >0③⎩⎪⎨⎪⎧a >1b >1⇔⎩⎪⎨⎪⎧a +b >2ab >1 ④⎩⎪⎨⎪⎧a >1b >1⇔⎩⎪⎨⎪⎧a +b >2a -1b -1>0其中正确的判断序号是________. 答案:①②④解析:∵⎩⎪⎨⎪⎧a >1b >1⇔⎩⎪⎨⎪⎧a -1>0b -1>0,又∵两数同为正数,它们的和与积必为正数,反之也成立. ∴①、④正确;②中正推成立,逆推也成立,∴②也正确.③中正推成立,但a =5,b =13时逆推不成立,∴③错.410、已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件.那么:(1)s 是q 的什么条件?(2)r 是q 的什么条件?(3)p 是q 的什么条件? 解:已知r 、p 、q 、s 的关系如下图由图知:(1)∵q ⇒s ⇒r ⇒q ,∴s 是q 的充要条件. (2)∵r ⇒q ⇒s ⇒r ,∴r 是q 的充要条件. (3)∵q ⇒s ⇒r ⇒p ,∴p 是q 的必要条件.评析:“⇒”可直观显示各条件之间的关系,在解决较多个条件的问题时经常用到,要细心体会.11.(2017∙山东模拟)已知p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0.若﹁p 是﹁q 的必要条件,求实数a 的取值范围. 解:由x 2-4ax +3a 2<0且a <0得3a <x <a ,所以p :3a <x <a ,即集合A ={x |3a <x <a }.由x 2-x -6≤0得-2≤x ≤3,所以q :-2≤x ≤3, 即集合B ={x |-2≤x ≤3}.因为﹁q ⇒﹁p ,所以p ⇒q . 所以A ⊆B ,所以⎩⎪⎨⎪⎧3a ≥-2,a ≤3,a <0⇒-23≤a <0,所以a 的取值范围是⎣⎡⎭⎫-23,0. 12、已知函数f (x )=4sin 2⎝⎛⎭⎫π4+x -23cos 2x -1.给定p :x <π4或x >π2,x ∈R .q :-2<f (x )-m <2.若¬p 是q 的充分条件,求实数m 的取值范围.解:由q 可得⎩⎪⎨⎪⎧m >f (x )-2m <f (x )+2.因为¬p 是q 的充分条件,所以在π4≤x ≤π2的条件下,⎩⎪⎨⎪⎧m >f (x )-2m <f (x )+2恒成立.又f (x )=2⎣⎡⎦⎤1-cos ⎝⎛⎭⎫π2+2x -23cos 2x -1=2sin 2x -23cos 2x +1=4sin ⎝⎛⎭⎫2x -π3+1, 由π4≤x ≤π2,知π6≤2x -π3≤2π3,所以当x =5π12时,f (x )max =5, 当x =π4时,f (x )min =3.所以⎩⎪⎨⎪⎧m >5-2m <3+2,即3<m <5.所以m 的取值范围是(3,5).。
备战2021高考理数热点题型和提分秘籍 专题03 充分条件、必要条件与命题的四种形式(解析版)
专题三 充分条件、必要条件与命题的四种形式【高频考点解读】1.了解规律联结词“或”、“且”、“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定. 【热点题型】题型一 含有规律联结词的命题的真假推断【例1】在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q【提分秘籍】正确理解规律联结词“或”、“且”、“非”的含义是关键,解题时应依据组成各个复合命题的语句中所消灭的规律联结词进行命题结构与真假的推断.其步骤为:①确定复合命题的构成形式;②推断其中简洁命题的真假;③推断复合命题的真假.【举一反三】已知命题p :∃x ∈R ,cos x =54,命题q :∀x ∈R ,x 2-x +1>0,则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧綈q 是真命题C .命题綈p ∧q 是真命题D .命题綈p ∨綈q 是假命题解析:由余弦函数的值域知命题p 不正确;由于x 2-x +1=⎝⎛⎭⎫x -122+34>0,故命题q 正确.故选C. 答案:C 【热点题型】题型二 全称命题、特称命题的真假推断 【例2】下列命题中是假命题的是( ) A .∃α,β∈R ,使sin (α+β)=sin α+sin β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减D .∀a >0,函数f (x )=ln 2 x +ln x -a 有零点【提分秘籍】1.全称命题真假的推断方法(1)要推断一个全称命题是真命题,必需对限定的集合M 中的每一个元素x ,证明p (x )成立. (2)要推断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x 0,使p (x 0)不成马上可. 2.特称命题真假的推断方法要推断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成马上可,否则这一特称命题就是假命题.【举一反三】下列命题中的假命题是( ) A .∃x ∈R ,sin x =52B .∃x ∈R ,log 2x =-1C .∃x ∈R ,⎝⎛⎭⎫12x>0D .∀x ∈R ,x 2≥0解析:易知|sin x |≤1,故A 是假命题. 答案:A 【热点题型】题型三 含有一个量词的命题否定【例3】设x ∈Z ,集合A 是奇数集,集合B 是偶数集,若命题p :∀x ∈A,2x ∈B ,则( ) A .綈p :∀x ∈A,2x ∉B B .綈p :∀x ∉A,2x ∉B C .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B【解析】由于任意都满足的否定是存在不满足的,所以选D. 【答案】D 【提分秘籍】对含有一个量词的命题进行否定的方法:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.【举一反三】若命题p :∀x ∈⎝⎛⎭⎫-π2,π2,tan x >sin x ,则命题綈p :( ) A .∃x 0∈⎝⎛⎭⎫-π2,π2,tan x 0≥sin x 0 B .∃x 0∈⎝⎛⎭⎫-π2,π2,tan x 0>sin x 0 C .∃x 0∈⎝⎛⎭⎫-π2,π2,tan x 0≤sin x 0 D .∃x 0∈⎝⎛⎭⎫-∞,-π2∪⎝⎛⎭⎫π2,+∞,tan x 0>sin x 0 解析:∀x 的否定为∃x 0,>的否定为≤,所以命题綈p 为∃x 0∈⎝⎛⎭⎫-π2,π2,tan x 0≤sin x 0. 答案:C 【热点题型】题型四 利用全称(特称)命题的真假求参数范围【例4】若命题p :∃x ∈R ,ax 2+4x +a <-2x 2+1是假命题,则实数a 的取值范围是________.【提分秘籍】解题模板第一步:转化:依据条件命题的真假进行转化 其次步:求范围:依据转化问题,数形结合求参数范围 第三步:结论:回答问题结论第四步:反思:反思解题过程,留意端点值验证取舍 【举一反三】设集合A ={ (x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},假如命题“∃t ∈R ,A ∩B ≠∅”是真命题,则实数a 的取值范围是________.【高考风向标】1.(2022·湖南卷)已知命题p :若x >y ,则-x <-y ,命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④2.(2022·辽宁卷)设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )3.(2022·新课标全国卷Ⅰ) 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 34.(2021·重庆卷)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0B.不存在x∈R,使得x2<0C.存在x0∈R,使得x20≥0D.存在x0∈R,使得x20<0【答案】D【解析】依据定义可知命题的否定为:存在x0∈R,使得x20<0,故选D.【随堂巩固】1.命题“全部奇数的立方都是奇数”的否定是()A.全部奇数的立方都不是奇数B.不存在一个奇数,它的立方是偶数C.存在一个奇数,它的立方是偶数D.不存在一个奇数,它的立方是奇数解析:全称命题的否定是特称命题,即“存在一个奇数,它的立方是偶数”.答案:C2.已知命题p:∃x0∈R,x20+2x0+2≤0,则綈p为()A.∃x0∈R,x20+2x0+2>0B.∃x0∈R,x20+2x0+2<0C.∀x∈R,x2+2x+2≤0D.∀x∈R,x2+2x+2>0解析:依据特称命题的否定,特称量词改为全称量词,同时把不等号改为大于号,选择D.答案:D3.给出命题p:直线l1:ax+3y+1=0与直线l2:2x+(a+1)y+1=0相互平行的充要条件是a=-3;命题q:若平面α内不共线的三点到平面β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是() A.命题“p∧q”为真B.命题“p∨q”为假C.命题“p∨綈q”为假D.命题“p∧綈q”为真4.给定命题p:函数y=sin⎝⎛⎭⎫2x+π4和函数y=cos ⎝⎛⎭⎫2x-3π4的图象关于原点对称;命题q:当x=kπ+π2(k∈Z)时,函数y=2(sin 2x+cos 2x)取得微小值.下列说法正确的是()A.p∨q是假命题B.綈p∧q是假命题C.p∧q是真命题D.綈p∨q是真命题5.已知命题p:“∀x∈[0,1],a≥e x”;命题q:“∃x0∈R,x20+4x0+a=0”.若命题“p∧q”是假命题,则实数a的取值范围是()A.(-∞,4] B.(-∞,1)∪(4,+∞)C .(-∞,e)∪(4,+∞) D.(1,+∞)6.已知命题p:∃x∈R,x2+1<2x;命题q:若mx2-mx-1<0恒成立,则-4<m≤0,那么()A.“綈p”是假命题B.“綈q”是真命题C.“p∧q”为真命题D.“p∨q”为真命题7.下列说法中,正确的是()A .命题“若am 2<bm 2,则a <b ”的逆命题是真命题B .命题“p ∨q ”为真命题,则命题“p ”和命题“q ”均为真命题C .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件D .命题“∃x ∈R ,x 2-x >0”的否定是:“∀x ∈R ,x 2-x ≤0”8.已知f (x )=2mx 2-2(4-m )x +1,g (x )=mx ,若同时满足条件:①∀x ∈R ,f (x )>0或g (x )>0; ②∃x ∈(-∞,- 4),f (x )g (x )<0. 则实数m 的取值范围是________.9.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”、“p ∧q ”、“綈p ”中是真命题的有________.解析:依题意p 假,q 真,所以p ∨q ,綈p 为真. 答案:p ∨q ,綈p10.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.解析:当a =0时,不等式明显成立;当a ≠0时,由题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0.综上,-8≤a ≤0.答案:[-8,0)11.已知命题p :“∀x ∈N *,x >1x ”,命题p 的否定为命题q ,则q 是“________”;q 的真假为________(填“真”或“假”).解析:q :∃x 0∈N *,x 0≤1x 0,当x 0=1时,x 0=1x 0成立,故q 为真.答案:∃x 0∈N *,x 0≤1x 0真12.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是假命题,则实数a 的取值范围为________. 解析:由于命题的否定是假命题,所以原命题为真命题,结合图象知Δ=a 2-4>0,解得a >2或a <-2. 答案:(-∞,-2)∪(2,+∞)13.若∃θ∈R ,使sin θ≥1成立,则cos ⎝⎛⎭⎫θ-π6的值为________.14.已知命题p :∃a 0∈R ,曲线x 2+y 2a 0=1为双曲线;命题q :x -1x -2≤0的解集是{x |1<x <2}.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是真命题;③命题“(綈p )∨q ”是真命题;④命题“(綈p )∨(綈q )”是真命题.其中正确的是________.15.下列结论:①若命题p :∃x 0∈R ,tan x 0=2;命题q :∀x ∈R ,x 2-x +12>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3;③“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”. 其中正确结论的序号为________.(把你认为正确结论的序号都填上)16.写出下列命题的否定,并推断真假.(1)q :∀x ∈R ,x 不是5x -12=0的根; (2)r :有些素数是奇数; (3)s :∃x 0∈R ,|x 0|>0.解析:(1)綈q :∃x 0∈R ,x 0是5x -12=0的根,真命题. (2)綈r :每一个素数都不是奇数,假命题. (3)綈s :∀x ∈R ,|x |≤0,假命题.17.写出由下列各组命题构成的“p ∨q ”,“p ∧q ”,“綈p ”形式的新命题,并推断其真假. (1)p :2是4的约数,q :2是6的约数;(2)p :矩形的对角线相等,q :矩形的对角线相互平分;(3)p :方程x 2+x -1=0的两个实根的符号相同,q :方程x 2+x -1=0的两实根的确定值相等.18.已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p ∧q ”为假,“p ∨q ”为真,求实数c 的取值范围.解析:∵函数y =c x 在R 上单调递减,∴0<c <1. 即p :0<c <1,∵c >0且c ≠1,∴綈p :c >1. 又∵f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数, ∴c ≤12.即q :0<c ≤12,∵c >0且c ≠1,∴綈q :c >12且c ≠1.又∵“p ∨q ”为真,“p ∧q ”为假, ∴p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c ⎪⎪c >12且c ≠1 =⎩⎨⎧⎭⎬⎫c ⎪⎪12<c <1. ②当p 假,q 真时,{}c | c >1∩⎩⎨⎧⎭⎬⎫c ⎪⎪0<c ≤12=∅ 综上所述,实数c 的取值范围为⎩⎨⎧⎭⎬⎫c ⎪⎪12<c <1.。
四种命题与充要条件
四种命题与充要条件 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】常用逻辑用语与充要条件【高考考情解读】 1.本讲在高考中主要考查集合的运算、充要条件的判定、含有一个量词的命题的真假判断与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一起考查.2.试题以选择题、填空题方式呈现,考查的基础知识和基本技能,题目难度中等偏下.1.命题的定义用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)原命题为“若p则q”,则它的逆命题为若q则p;否命题为若┐p则┐q;逆否命题为若┐q则┐p.(2)原命题与它的逆否命题等价;逆命题与它的否命题等价.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理,即,可以转化为判断它的逆否命题的真假.命题真假判断的方法:(1)对于一些简单命题,若判断其为真命题需推理证明.若判断其为假命题只需举出一个反例.(2)对于复合命题的真假判断应利用真值表.(3)也可以利用“互为逆否命题”的等价性,判断其逆否命题的真假.3.充分条件与必要条件的定义(1)若pq且q p,则p是q的充分非必要条件.(2)若qp且p q,则p是q的必要非充分条件.(3)若pq且qp,则p是q的充要条件.(4)若p q且q p,则p是q的非充分非必要条件.设集合A={x|x满足条件p},B={x|x满足条件q},则有(1)若AB,则p是q的充分条件,若A⊇B,则p是q的充分不必要条件;(2)若BA,则p是q的必要条件,若B⊇A,则p是q的必要不充分条件;(3)若A=B,则p是q的充要条件;(4)若AB,且BA,则p是q的既不充分也不必要条件.2.充分、必要条件的判定方法(1)定义法,直接判断若p则q、若q则p的真假.(2)传递法.(3)集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则①若AB,则p是q的充分条件;②若BA,则p是q的必要条件;③若A=B,则p是q的充要条件.(4)等价命题法:利用A?B与┐B?┐A,B?A与┐A?┐B,A?B与┐B?┐A的等价关系,对于条件或结论是否定式的命题,一般运用等价法,利用原命题和逆否命题是等价的这个结论,有时可以准确快捷地得出结果,是反证法的理论基础.1.简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词.(2)简单复合命题的真值表:2.(1)常见的全称量词有“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q;p且q的否定:非p或非q.注:1.逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同.如“x∈A或x∈B”,是指:x∈A且xB;xA且x∈B;x∈A且x∈B三种情况.再如“p真或q真”是指:p真且q假;p假且q真;p真且q真三种情况.2.命题的否定与否命题“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论. 命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系. 3.含一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题.1.(2013·皖南八校)命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析 依题意得原命题的逆命题是:若一个数的平方是正数,则它是负数.选B.2.(2012·湖北)命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 答案 B解析这是一个特称命题,特称命题的否定不仅仅要否定结论而且要将相应的存在量词“存在一个”改为全称量词“任意一个”,故选B 。
最新2021-2022年高考数学(理)教学案: 四种命题的关系及其充要条件 Word版含解析
第2讲四种命题的关系及其充要条件考纲展示命题探究考点一四种命题及其真假判断1命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2四种命题间的相互关系图3四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.注意点否命题与命题的否定的区别如果原命题是“若p则q”,则否命题是“若綈p,则綈q”,而命题的否定是“若p,则綈q”即只否定结论.1.思维辨析(1)“x2+2x-3<0”是命题.()(2)命题“α=π4,则tanα=1”的否命题是“若α=π4,则tanα≠1”.()(3)若一个命题是真命题,则其逆否命题是真命题.()(4)语句x2-3x+2=0是命题.()(5)一个命题的逆命题与否命题,它们的真假没有关系.()(6)命题“如果p不成立,则q不成立”等价于“如果q成立,则p成立”.()答案(1)×(2)×(3)√(4)×(5)×(6)√2.已知下列命题:①已知集合A,B,若a∈A,则a∈(A∩B);②若A∪B=B,则A⊆B;③若a>|b|,则a2>b2;④3≥2.其中是真命题的个数是()A.1 B.2C.3 D.4答案 C解析①是假命题,因为a∈A⇒/ a∈(A∩B);②是真命题,因为A∪B=B⇔A⊆B;③是真命题,因为a>|b|≥0,所以a2>b2成立;④是真命题,因为“3≥2”的意思是3>2或3=2,只要有一个成立就行,故选C.3.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4 D .若tan α≠1,则α=π4 答案 C解析 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”,故选C.[考法综述] 四种命题关系及其真假判断是高考的热点之一,一是对“若p,则q”形式命题的改写要熟练掌握,二是弄清命题的四种形式之间的真假关系,属容易题.命题法四种命题及其关系典例(1)下列四个命题中:①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x3=2,则x是无理数”的逆否命题.其中是真命题的是()A.①②③④B.①③④C.②③④D.①④(2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是() A.真,假,真B.假,假,真C.真,真,假D.假,假,假[解析](1)①原命题的否命题为“若x2+y2=0,则x,y全为零”,显然是真命题;②原命题的逆命题为“若多边形相似,则这些多边形为正多边形”,显然是假命题;③原命题的逆否命题为“若x2+x-m=0没有实根,则m≤0”,由条件可得m<-14,∴结论m≤0成立,是真命题;④原命题是真命题,所以其逆否命题也为真命题.故选B.(2)先证原命题为真:当z1,z2互为共轭复数时,设z1=a+b i(a,b∈R),则z2=a-b i,则|z1|=|z2|=a2+b2,∴原命题为真,故其逆否命题为真;再证其逆命题为假:取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不是共轭复数,∴其逆命题为假,故其否命题也为假.故选B.[答案](1)B(2)B【解题法】四种命题关系及真假的判断方法(1)在判断四种命题之间的关系时,首先要分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,要注意四种命题关系的相对性.(2)判断命题真假的关键:一是识别命题的构成形式;二是将命题简化,对等价的简化命题进行判断.要判断一个命题是假命题,只需举出反例.1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0答案 D解析由原命题和逆否命题的关系可知D正确.2.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面答案 D解析A中,垂直于同一个平面的两个平面可能相交也可能平行,故A错误;B中,平行于同一个平面的两条直线可能平行、相交或异面,故B错误;C中,若两个平面相交,则一个平面内与交线平行的直线一定和另一个平面平行,故C错误;D中,若两条直线垂直于同一个平面,则这两条直线平行,所以若两条直线不平行,则它们不可能垂直于同一个平面,故D 正确.3.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( ) A .①②③ B .①② C .①③ D .②③答案 C解析 对于命题①,设原球的半径和体积分别为r ,V ,变化后的球的半径和体积分别为r ′,V ′,则r ′=12r ,由球的体积公式可知V ′=43πr ′3=43π·⎝ ⎛⎭⎪⎫12r 3=18×43πr 3=18V ,所以命题①为真命题;命题②显然为假命题,如两组数据:1,2,3和2,2,2,它们的平均数都是2,但前者的标准差为63,而后者的标准差为0;对于命题③,易知圆心到直线的距离d =|0+0+1|12+12=12=r ,所以直线与圆相切,命题③为真命题.故选C.4.下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列. 其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4答案 D解析对于p1,数列{a n}的公差d>0,∴数列是递增数列;对于p4,∵[a n+1+3(n+1)d]-(a n+3nd)=4d>0,是递增数列;对于p2,∵(n+1)a n+1-na n=(n+1)a n+(n+1)d-na n=a1+2nd,不能确定a1的正负,上式不一定大于零,该数列不一定是递增数列;同理,对于p3,也不一定是递增数列.故选D.5.下列命题中,真命题是()A.命题“若a>b,则ac2>bc2”B.命题“若a=b,则|a|=|b|”的逆命题C.命题“当x=2时,x2-5x+6=0”的否命题D.命题“终边相同的角的同名三角函数值相等”的逆否命题答案 D解析命题“若a>b,则ac2>bc2”是假命题,如a>b且c=0时,ac2=bc2;命题“若a=b,则|a|=|b|”的逆命题为“若|a|=|b|,则a=b”是假命题;命题“当x=2时,x2-5x+6=0”的否命题为“若x≠2,则x2-5x+6≠0”,是假命题;命题“终边相同的角的同名三角函数值相等”是真命题,其逆否命题与原命题等价,为真命题.考点二充分条件与必要条件充分与必要条件的判断若p⇒q,则p是q的充分条件,q是p的必要条件p 是q 的充分不必要条件 p ⇒q 且q ⇒/ p p 是q 的必要不充分条件 p ⇒/ q 且q ⇒pp 是q 的充要条件 p ⇔q p 是q 的既不充分也不必要条件p ⇒/ q 且q ⇒/ p注意点 在判断充分必要条件时注意小范围与大范围的关系 (1)确定条件是什么,结论是什么.(2)由条件尝试推导结论,由结论尝试推导条件.(3)“以小推大”即小范围推得大范围.1.思维辨析(1)“a =2”是“(a -1)(a -2)=0”的必要不充分条件.( ) (2)设a ,b ∈R ,则“a +b >4”是“a >2且b >2”的充分条件.( ) (3)若α∈(0,2π)则“sin α=-1”的充要条件是“α=32π”.( ) (4)“p 是q 的充分不必要条件”与“p 的充分不必要条件是q ”表达的意义相同.()(5)x>1是x>2的必要不充分条件.()(6)若p是q的充分条件,则q是p的必要条件.()答案(1)×(2)×(3)√(4)×(5)√(6)√2.设x∈R,则x>2的一个必要不充分条件是()A.x>1 B.x<1C.x>3 D.x<3答案 A解析x>2⇒x>1,但x>1⇒/x>2.3.“x<0”是“ln (x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析ln (x+1)<0⇔0<x+1<1⇔-1<x<0⇒x<0;而x<0⇒/-1<x<0.故选B.[考法综述] 充分条件、必要条件是每年高考的常考内容,多以选择题的形式出现,难度不大,属于容易题.高考对充要条件的考查主要有以下三个命题角度:(1)判断指定条件与结论之间的关系;(2)探求某结论成立的充要条件、充分不必要条件或必要不充分条件;(3)与命题的真假性综合命题.命题法 判断充分条件与必要条件典例 (1)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12” 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件(2)设U 为全集.A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件[解析] (1)当k =1时,l :y =x +1,由题意不妨令A (-1,0),B (0,1),则S △AOB =12×1×1=12,所以充分性成立;当k =-1时,l :y =-x +1,也有S △AOB =12,所以必要性不成立.(2)由韦恩图可知充分性成立.反之,A ∩B =∅,可以取C =∁U B ,此时A ⊆C 必要性成立.故选C.[答案] (1)A (2)C【解题法】 充分、必要条件的判断方法(1)利用定义判断:直接判断“若p ,则q ”“若q ,则p ”的真假.(2)从集合的角度判断:利用集合中包含思想判定.(3)利用等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假.1.设A,B是两个集合,则“A∩B=A”是“A⊆B”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析结合韦恩图可知,A∩B=A,得A⊆B,反之,若A⊆B,即集合A为集合B的子集,故A∩B=A,故“A∩B=A”是“A⊆B”的充要条件,选C.2.“sinα=cosα”是“cos2α=0”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 ∵sin α=cos α⇒tan α=1⇒α=k π+π4,k ∈Z ,又cos2α=0⇒2α=2k π+π2或2k π+3π2(k ∈Z )⇒α=k π+π4或k π+3π4(k ∈Z ),∴sin α=cos α成立能保证cos2α=0成立,但cos2α=0成立不一定能保证sin α=cos α成立,∴“sin α=cos α”是“cos2α=0”的充分不必要条件.3.设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析 对命题p ,a 1,a 2,…,a n 成等比数列,则公比q =a na n -1(n ≥2)且a n ≠0;对命题q ,①当a n =0时,(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1·a n )2成立;②当a n ≠0时,根据柯西不等式,要使(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n-1a n )2成立,则a 1a 2=a 2a 3=…=a n -1a n,所以a 1,a 2,…,a n 成等比数列.所以p 是q 的充分条件,但不是q 的必要条件.4.设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析 由指数函数的性质知,若3a >3b >3,则a >b >1,由对数函数的性质,得log a 3<log b 3;反之,取a =12,b =13,显然有log a 3<log b 3,此时0<b <a <1,于是3>3a >3b ,所以“3a >3b >3”是“log a 3<log b 3”的充分不必要条件,选B.5.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 若m ⊂α且m ∥β,则平面α与平面β不一定平行,有可能相交;而m ⊂α且α∥β一定可以推出m ∥β,所以“m ∥β”是“α∥β”的必要而不充分条件.6.设x∈R,则“|x-2|<1”是“x2+x-2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案 A解析|x-2|<1⇔-1<x-2<1⇔1<x<3;x2+x-2>0⇔x<-2或x>1.由于(1,3)(-∞,-2)∪(1,+∞),所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.(x+2)<0”的()7.“x>1”是“log12A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案 B(x+2)<0,得x+2>1,解得x>-1,所以“x>1”是解析由log12(x+2)<0”的充分而不必要条件,故选B.“log128.已知条件p:x2+x-2>0,条件q:x>a,若q是p的充分不必要条件,则a的取值范围可以是()A.a≥1 B.a>1C.a≥-1 D.a≤-2答案 A解析由x2+x-2>0,得x>1或x<-2.设p对应集合M,q对应集合N,由题意知,N M,所以a≥1.判断下列说法是否正确.如果不正确,分析错误的原因.(1)x2=x+2是x x+2=x2的充分条件;(2)x2=x+2是x x+2=x2的必要条件.[错解][错因分析]导致判断错误的原因是忽略了题目中的隐含条件,从而扩大了x的范围.[正解](1)x2=x+2⇔x=±x+2,故x2=x+2⇒/x2=x x+2.反例:x=-1.故说法错误.(2)x x+2=x2⇔x=0或x+2=x(其中x为正实数),故x x+2=x2⇒/x2=x+2.故说法错误.[心得体会]………………………………………………………………………………………………时间:45分钟基础组1.[2021·冀州中学一轮检测]下列命题中,真命题是( ) A .∃x ∈R ,e x ≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab =-1 D .a >1,b >1是ab >1的充分条件 答案 D解析 ∵∀x ∈R ,e x >0,∴A 错;∵函数y =2x 与y =x 2有交点,如点(2,2),此时2x =x 2,∴B 错;∵当a =b =0时,a +b =0,而0作分母无意义,∴C错;a>1,b>1,由不等式的性质可知ab>1,∴D正确,故选D.2.[2021·武邑中学一轮检测]设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.若a≠-b,则|a|≠bB.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-bD.若|a|=|b|,则a=-b答案 D解析若p则q的逆命题是若q则p,故选D.3.[2021·武邑中学月考]有下列命题:①“若x2+y2=0,则x,y 全是0”的否命题;②“全等三角形是相似三角形”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a +7是无理数,则a是无理数”的逆否命题.其中正确的是()A .①②③B .②③④C .①③④D .①④答案 D解析 ①否命题为“若x 2+y 2≠0,则x ,y 不全是0”,为真.②否命题为“不全等的三角形不相似”,为假.③逆命题为“若mx 2-2(m +1)x +m +3>0的解集是R ,则m ≥1”.∵当m =0时,解集不是R ,∴应有⎩⎨⎧m >0,Δ<0,即m >1.∴其逆命题是假命题.④原命题为真,逆否命题也为真.4.[2021·衡水中学热身]“x 2+(y -2)2=0”是“x (y -2)=0”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案 B解析x2+(y-2)2=0,即x=0且y=2,∴x(y-2)=0.反之,x(y -2)=0,即x=0或y=2,x2+(y-2)2=0不一定成立.5.[2021·冀州中学期末]已知p:a≠0,q:ab≠0,则p是q的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析ab=0⇒/a=0,但a=0⇒ab=0,即ab≠0⇒a≠0,因此,p是q的必要不充分条件,故选B.6. [2021·衡水中学预测]已知命题p:函数f(x)=|x+a|在(-∞,-1)上是单调函数,命题q:函数g(x)=log a(x+1)(a>0且a≠1)在(-1,+∞)上是增函数,则綈p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析由p成立,得a≤1,由q成立,得a>1,所以綈p成立时a>1,则綈p是q的充要条件.故选C.7.[2021·枣强中学热身]设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 先证“α⊥β⇒a ⊥b ”,∵α⊥β,α∩β=m ,b ⊂β,b ⊥m ,∴b ⊥α.又∵a ⊂α,∴b ⊥a ,再证a ⊥b ⇒/ α⊥β,举反例,当a ∥m 时,由b ⊥m 满足a ⊥b ,此时二面角α-m -β可以为(0,π]上的任意角,即α不一定垂直于β,故选A.8.[2021·衡水中学猜题]设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 若a +bi =a -b i 为纯虚数,则a =0且b ≠0,故ab =0,必要性成立;但b=0时,a-b i为实数,充分性不成立,故选B.9.[2021·衡水中学一轮检测]设等比数列{a n}的公比为q,则“0<q<1”是“{a n}是递减数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析a n+1-a n=a1q n-a1q n-1=a1q n-1(q-1),而a1的正负性未定,故无法判断数列{a n}的单调性,因此“0<q<1”是“{a n}是递减数列”的既不充分也不必要条件.10.[2021·冀州中学模拟]有三个命题:(1)“若x+y=0,则x,y互为相反数”的逆命题;(2)“若a>b,则a2>b2”的逆否命题;(3)“若x≤-3,则x2+x-6>0”的否命题.其中真命题的个数为________.答案 1解析(1)真,(2)原命题假,所以其逆否命题也假,(3)易判断原命题的逆命题假,则原命题的否命题假.11.[2021·衡水二中周测]若“x2>1”是“x<a”的必要不充分条件,则a的最大值为________.答案-1解析由x2>1,得x<-1或x>1.又“x2>1”是“x<a”的必要不充分条件,知由“x<a”可以推出“x2>1”,反之不成立,所以a≤-1,即a的最大值为-1.12.[2021·枣强中学仿真]给出下面三个命题:①函数y=tan x在第一象限是增函数;②奇函数的图象一定过原点;③“若0<log a b <1,则a >b >1”的逆命题.其中是真命题的是________.(填序号)答案 ③解析 ①是假命题,举反例:x =2π+π6和π4,tan ⎝⎛⎭⎪⎫2π+π6=33,tan π4=1,2π+π6>π4,但tan ⎝ ⎛⎭⎪⎫2π+π6<tan π4.②是假命题,反例:y =1x 是奇函数,但不过原点.③的逆命题是“若a >b >1,则0<log a b <1”,由对数函数的图象及单调性可知是真命题.能力组13.[2021·衡水二中月考]给出下列命题:①若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=32;②α,β,γ是三个不同的平面,则“γ⊥α,γ⊥β”是“α∥β”的充分条件;③已知sin ⎝ ⎛⎭⎪⎫θ-π6=13,则cos ⎝ ⎛⎭⎪⎫π3-2θ=79. 其中正确命题的个数为( )A .0B .1C .2D .3 答案 B解析 对于①,由(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5得a 1<0,a 2>0,a 3<0,a 4>0,a 5<0,取x =-1,得a 0-a 1+a 2-a 3+a 4-a 5=(1+1)5=25,再取x =0得a 0=(1-0)5=1,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=-a 1+a 2-a 3+a 4-a 5=31,即①不正确;对于②,如图所示的正方体ABCD -A 1B 1C 1D 1中,平面ABB 1A 1⊥平面ABCD ,平面ADD 1A 1⊥平面ABCD ,但平面ABB 1A 1与平面ADD 1A 1不平行,所以②不正确;对于③,因为sin ⎝ ⎛⎭⎪⎫θ-π6=13,所以cos ⎝ ⎛⎭⎪⎫π3-2θ=cos ⎝ ⎛⎭⎪⎫2θ-π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ-π6=1-2sin 2⎝ ⎛⎭⎪⎫θ-π6=1-2×⎝ ⎛⎭⎪⎫132=79,所以③正确. 14.[2021·武邑中学热身]已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分不必要条件;③r 是q 的必要不充分条件;④綈p 是綈s 的必要不充分条件;⑤r 是s 的充分不必要条件.则正确命题的序号是( )A .①④⑤B .①②④C.②③⑤D.②④⑤答案 B解析∵q是r的充分条件,s是r的必要条件,q是s的必要条件.∴q,r,s互为充要条件.又p是r的充分不必要条件,∴①s是q的充要条件正确;②p是q的充分不必要条件正确;③r是q的必要不充分条件错误;④綈p是綈s的必要不充分条件正确;⑤r是s的充分不必要条件错误,故选B.15.[2021·衡水二中期中]下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题答案 A解析对于A,其逆命题是:若x>|y|,则x>y, 是真命题,这是因为x>|y|≥y,必有x>y;对于B,否命题是:若x≤1,则x2≤1,是假命题.如x=-5,x2=25>1;对于C,其否命题是:若x≠1,则x2+x-2≠0,由于x=-2时,x2+x-2=0,所以是假命题;对于D,若x2>0,则x>0或x<0,不一定有x>1,因此原命题与它的逆否命题都是假命题.16.[2021·枣强中学模拟]若A:log2a<1,B:关于x的二次方程x2+(a+1)x+a-2=0的一个根大于零,另一个根小于零,则A是B 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析解法一:由log2a<1,解得0<a<2;而方程x2+(a+1)x+a -2=0的一个根大于零,另一个根小于零的充要条件是a-2<0,解得a<2.因为命题“若0<a<2,则a<2”是真命题,而命题“若a<2,则0<a<2”是假命题,所以“0<a<2”是“a<2”的充分不必要条件,所以A是B的充分不必要条件,选A.解法二:由解法一可知,满足条件A的参数a的取值集合为M ={a|0<a<2},满足条件B的参数a的取值集合为N={a|a<2},显然M N,所以A是B的充分不必要条件,选A.。
2021年高考数学大一轮复习 第一章 第2课 四种命题和充要条件自主学习
2021年高考数学大一轮复习第一章第2课四种命题和充要条件自主学习1. 记“若p则q”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p”,逆否命题为“若非q则非p”.其中互为逆否命题的两个命题同真假,即等价,原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题为真的个数只能是偶数.2. ①若p q,但q p,则p是q的充分不必要条件;②若p q,但q p,则p是q的必要不充分条件;③若p q,且q p,即p q,则p是q的充要条件;④若p q,且q p,则p是q的既不充分也不必要条件.3. 证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).1. (选修2-1P6例2改编)将命题“斜率相等的两直线平行”改为“若p则q”的形式为:;它的逆否命题是.[答案]若两条直线的斜率相等,则这两条直线平行若两条直线不平行,则这两条直线的斜率不相等2. (选修2-1P21复习题1改编)判断下列命题的真假.(1) 命题“在△ABC中,若AB>AC,则∠C>∠B”的否命题为命题.(2) 命题“若ab=0,则b=0”的逆否命题为命题.[答案](1) 真(2) 假3. (选修2-1P21复习题3改编)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么r是q的条件,p是q的条件.[答案]充要必要[解析]q s r q,所以r是q的充要条件.q s r p,所以p是q的必要条件.4. (选修1-1P11习题2改编)已知p(x):x2+2x-m>0,若p(1)是假命题,p(2)是真命题,则实数m的取值范围是.[答案][3,8)[解析]因为p(1)是假命题,所以3-m≤0,即m≥3.因为p(2)是真命题,所以8-m>0,即m<8.综上,实数m的取值范围为[3,8).5. (选修2-1P9习题4改编)设p:-1≤4x-3≤1,q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q 的必要不充分条件,则实数a的取值范围为.[答案][解析]由题意知p是q的充分不必要条件.因为p:x∈,q:x∈[a,a+1],所以[a,a+1],所以且两个等号不同时成立,解得0≤a≤.@Tqy31292 7A3C 稼; 36035 8CC3 賃 31570 7B52 筒31654 7BA6 箦 W36928 9040 遀22724 58C4 壄。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用逻辑用语与充要条件欧阳光明(2021.03.07)【高考考情解读】 1.本讲在高考中主要考查集合的运算、充要条件的判定、含有一个量词的命题的真假判断与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一起考查.2.试题以选择题、填空题方式呈现,考查的基础知识和基本技能,题目难度中等偏下.1.命题的定义用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)原命题为“若p则q”,则它的逆命题为若q则p ;否命题为若┐p 则┐q ;逆否命题为若┐q则┐p .(2)原命题与它的逆否命题等价;逆命题与它的否命题等价.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理,即,可以转化为判断它的逆否命题的真假.命题真假判断的方法:(1)对于一些简单命题,若判断其为真命题需推理证明.若判断其为假命题只需举出一个反例.(2)对于复合命题的真假判断应利用真值表.(3)也可以利用“互为逆否命题”的等价性,判断其逆否命题的真假.3.充分条件与必要条件的定义(1)若p⇒q且q p,则p是q的充分非必要条件.(2)若q⇒p且p q,则p是q的必要非充分条件.(3)若p⇒q且q⇒p,则p是q的充要条件.(4)若p q且q p,则p是q的非充分非必要条件.设集合A={x|x满足条件p},B={x|x满足条件q},则有(1)若A⊆B,则p是q的充分条件,若A⊇B,则p是q的充分不必要条件;(2)若B⊆A,则p是q的必要条件,若B⊇A,则p是q的必要不充分条件;(3)若A=B,则p是q的充要条件;(4)若A⃘B,且B⃘A,则p是q的既不充分也不必要条件.2.充分、必要条件的判定方法(1)定义法,直接判断若p则q、若q则p的真假.(2)传递法.(3)集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则①若A⊆B,则p是q的充分条件;②若B⊆A,则p是q的必要条件;③若A=B,则p是q的充要条件.(4)等价命题法:利用A⇒B与┐B⇒┐A,B⇒A与┐A⇒┐B,A⇔B与┐B⇔┐A的等价关系,对于条件或结论是否定式的命题,一般运用等价法,利用原命题和逆否命题是等价的这个结论,有时可以准确快捷地得出结果,是反证法的理论基础.1.简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词.(2)简单复合命题的真值表:2.(1)常见的全称量词有“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q;p且q的否定:非p或非q.注:1.逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同.如“x∈A或x∈B”,是指:x∈A且x∉B;x∉A且x∈B;x∈A且x∈B三种情况.再如“p真或q真”是指:p真且q假;p 假且q真;p真且q真三种情况.2.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.3.含一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题.1.(2013·皖南八校)命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”解析依题意得原命题的逆命题是:若一个数的平方是正数,则它是负数.选B.2.(2012·湖北)命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数答案B解析这是一个特称命题,特称命题的否定不仅仅要否定结论而且要将相应的存在量词“存在一个”改为全称量词“任意一个”,故选B。
2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =3答案 A解析 从“否命题”的形式入手,但要注意“否命题”与“命题的否定”的区别.命题的否命题是原命题的条件与结论分别否定后组成的命题,所以A 正确.【山东省临沂市某重点中学2014届高三9月月考】命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <.”的逆否命题是( )A .若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B .若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C .若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D .若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数答案 C解析 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.5.与命题“若a ∈M ,则b ∉M ”等价的命题是( )A .若a ∉M ,则b ∉MB .若b ∉M ,则a ∈MC .若a ∉M ,则b ∈MD .若b ∈M ,则a ∉M解析:因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D.答案:D4.下列命题中为真命题的是( )A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题答案 A解析 对于A ,其逆命题:若x >|y |,则x >y ,是真命题,这是因为x >|y |=⎩⎪⎨⎪⎧ y y ≥0-y y <0,必有x >y ;对于B ,否命题:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x ≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题的逆否命题是假命题,故选A.2.已知命题p :∃n ∈N,2n >1 000,则┐p 为( ).A .∀n ∈N,2n ≤1 000B .∀n ∈N,2n >1 000C.∃n∈N,2n≤1 000 D.∃n∈N,2n<1 000解析特称命题的否定是全称命题.即p:∃x∈M,p(x),则┐p:∀x∈M,┐p(x).故选A.答案A4.(2012·湖北改编)命题“存在x0∈∁R Q,x30∈Q”的否定是() A.存在x0D∈/∁R Q,x30∈Q B.存在x0∈∁R Q,x30D∈/QC.任意xD∈/∁R Q,x3∈Q D.任意x∈∁R Q,x3D∈/Q答案D解析“存在”的否定是“任意”,x3∈Q的否定是x3D∈/Q.命题“存在x0∈∁R Q,x30∈Q”的否定是“任意x∈∁R Q,x3D∈/Q”,故应选D.1.(2011·安徽)命题“所有能被2整除的整数都是偶数”的否定..是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数答案D解析由于全称命题的否定是特称命题,本题“所有能被2整除的整数都是偶数”是全称命题,其否定为特称命题“存在一个能被2整除的整数不是偶数”.2.(2012·辽宁改编)已知命题p:对任意x1,x2∈R,(f(x2)-f(x1))·(x2-x1)≥0,则┐p是()A.存在x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0B.对任意x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0C .存在x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .对任意x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0答案 C解析 ┐p :存在x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.2.(2012·安徽)命题“存在实数x ,使x >1”的否定..是( ) A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤1答案 C解析 利用特称命题的否定是全称命题求解.“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”.故选C.11.给出以下三个命题:①若ab ≤0,则a ≤0或b ≤0;②在△ABC 中,若sin A =sin B ,则A =B ;③在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .②③答案 (1)A (2)B解析 (1)不等式2x 2+x -1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x >12或x <-1,故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12,故选A.(2)在△ABC 中,由正弦定理得sin A =sin B ⇔a =b ⇔A =B .故选B.6.下列结论:①若命题p :存在x ∈R ,tan x =1;命题q :对任意x ∈R ,x 2-x +1>0.则命题“p 且┐q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p 且┐q 为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确.所以正确结论的序号为①③.5.下列命题中正确命题的序号是________.①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件;④若f (x )=log 2x ,则f (|x |)是偶函数.答案 ①③④解析 对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°D ⇒/30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③对;对于④显然对.6.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又因为p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是3≤m <8.以下命题是真命题的序号是________.(1)“若f (x )是奇函数,则f (-x )也是奇函数”的逆命题;(2)“若x ,y 是偶数,则x +y 也是偶数”的否命题;(3)“正三角形的三个内角均为60°”的否命题;(4)“若a +b +c =3,则a 2+b 2+c 2≥3”的逆否命题;【解析】 对于(4),只需证明原命题为真,∵a +b +c =3,∴(a +b +c )2=9.∴a 2+b 2+c 2+2ab +2bc +2ca =9,从而3(a 2+b 2+c 2)≥9,∴a 2+b 2+c 2≥3成立.【答案】 (1)(3)(4)2.下列命题中正确的是( )A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .“sin α=12”是“α=π6”的充分不必要条件C .l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥αD .命题“∀x ∈R,2x >0”的否定是“∃x 0∈R,2x 0≤0”答案 D解析 对A ,只有当p ,q 全是真命题时,p ∧q 为真;对B ,sin α=12⇒α=2k π+π6或2k π+5π6,k ∈Z ,故“sin α=12”是“α=π6”的必要不充分条件;对C ,l ⊥β,α⊥β⇒l ∥α或l ⊂α;对D ,全称命题的否定是特称命题,故选D.15.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题. 其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题, 所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确10.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立;②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >c b ”的逆否命题;④若p 且q 为假命题,则p ,q 均为假命题.其中真命题是( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x ≥2,得x >1;③中由a >b >0,得1a <1b ,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.12.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m >1,则mx 2-2(m +1)x +m +3>0的解集为R”的逆命题. 其中真命题是________.(把你认为正确命题的序号都填在横线上) 解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx 2-2(m +1)x +m +3>0的解集为R ,由⎩⎪⎨⎪⎧ m >0Δ=4m +12-4m m +3<0⇒⎩⎨⎧ m >0m >1⇒m >1.故⑤正确.答案:②③⑤3.设x ,y ∈R ,则“x 2+y 2≥9”是“x >3且y ≥3”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析结合图形与性质,从充要条件的判定方法入手.如图: x 2+y 2≥9表示以原点为圆心,3为半径的圆上及圆外的点,当x 2+y 2≥9时,x >3且y ≥3并不一定成立,当x =2,y =3时,x 2+y 2≥9,但x >3且y ≥3不成立;而x >3且y ≥3时,x 2+y 2≥9一定成立,故选B.一个命题的否命题、逆命题、逆否命题是根据原命题适当变更条件和结论后得到的形式上的命题,解这类试题时要注意对于一些关键词的否定,如本题中等于的否定是不等于,而不是单纯的大于、也不是单纯的小于.进行充要条件判断实际上就是判断两个命题的真假,这里要注意断定一个命题为真需要进行证明,断定一个命题为假只要举一个反例即可.4.“a >0”是“|a |>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 因为|a |>0⇔a >0或a <0,所以a >0⇒|a |>0,但|a |>0a >0,所以a >0是|a |>0的充分不必要条件,故选A.5.0<x <5是不等式|x -2|<4成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 由|x -2|<4,得-2<x <6。