光的干涉练习题及答案

合集下载

光的干涉试题及答案

光的干涉试题及答案

光的干涉试题及答案一、选择题1. 光的干涉现象是指:A. 光波的叠加B. 光波的衍射C. 光波的反射D. 光波的折射答案:A2. 以下哪个条件是产生光的干涉的必要条件?A. 光波的频率相同B. 光波的振幅相同C. 光波的传播方向相同D. 光波的相位差恒定答案:D3. 杨氏双缝干涉实验中,干涉条纹的间距与以下哪个因素无关?A. 双缝间的距离B. 光的波长C. 屏幕与双缝的距离D. 观察者与屏幕的距离答案:D二、填空题1. 在光的干涉中,当两列波的相位差为0时,光强增强,这种现象称为________。

答案:相长干涉2. 光的干涉条纹的间距可以通过公式________计算得出。

答案:Δx = (λL) / d三、简答题1. 请简述光的干涉现象是如何产生的?答案:光的干涉现象是由两列或多列光波在空间某点相遇时,由于光波的相位差,导致光强在某些区域增强,在另一些区域减弱,从而形成明暗相间的干涉条纹。

2. 光的干涉实验中,如何改变干涉条纹的间距?答案:可以通过改变光源的波长、改变双缝间的距离或者改变屏幕与双缝之间的距离来改变干涉条纹的间距。

四、计算题1. 已知杨氏双缝干涉实验中,双缝间的距离d=0.5mm,屏幕与双缝之间的距离L=1.5m,光的波长λ=600nm,求干涉条纹的间距。

答案:Δx = (λL) / d = (600×10^-9 m × 1.5m) / (0.5×10^-3 m) = 1.8×10^-4 m2. 如果在上述实验中,将双缝间的距离增加到1.0mm,求新的干涉条纹间距。

答案:Δx = (λL) / d = (600×10^-9 m × 1.5m) / (1.0×10^-3 m) = 9.0×10^-4 m。

光的干涉(答案)

光的干涉(答案)

光的干涉(参考答案)一、选择题1. 【答案】AB【解析】A .肥皂膜因为自重会上面薄而下面厚,因表面张力的原因其截面应是一个圆滑的曲面而不是梯形,A 正确;B .薄膜干涉是等厚干涉,其原因为肥皂膜上的条纹是前后表面反射光形成的干涉条纹,B 正确;C .形成条纹的原因是前后表面的反射光叠加出现了振动加强点和振动减弱点,形成到破裂的过程上面越来越薄,下面越来越厚,因此出现加强点和减弱点的位置发生了变化,条纹宽度和间距发生变化,C 错误;D .将肥皂膜外金属环左侧的把柄向上转动90︒,由于重力,表面张力和粘滞力等的作用,肥皂膜的形状和厚度会重新分布,因此并不会跟着旋转90°;D 错误。

2. 【答案】D【解析】从薄膜的上下表面分别反射的两列光是相干光,其光程差为△x =2d ,即光程差为薄膜厚度的2倍,当光程差△x =nλ时此处表现为亮条纹,故相邻亮条纹之间的薄膜的厚度差为12λ,在图中相邻亮条纹(或暗条纹)之间的距离变大,则薄膜层的厚度之间变小,因条纹宽度逐渐变宽,则厚度不是均匀变小。

选项D 正确。

3. 【答案】D【解析】【分析】本题考查折射定律以及双缝干涉实验。

【详解】由双缝干涉条纹间距的公式Lx d λ∆=可知,当两种色光通过同一双缝干涉装置时,波长越长条纹间距越宽,由屏上亮条纹的位置可知12λλ>反射光经过三棱镜后分成两束色光,由图可知M 光的折射角大,又由折射定律可知,入射角相同时,折射率越大的色光折射角越大,由于12λλ>则12n n <所以N 是波长为λ1的光出射位置,故D 正确,ABC 错误。

故选D 。

4. 【答案】C【解析】解:因为路程差即(膜的厚度的两倍)是半波长的偶数倍,振动加强,为亮条纹,路程差是半波长的奇数倍,振动减弱,为暗条纹。

所以人从同侧看,可看到亮条纹时,同一高度膜的厚度相同,则彩色条纹水平排列,因竖直放置的肥皂薄膜受到重力的作用,下面厚,上面簿,形状视如凹透镜,因此,在薄膜上不同的地方,来自前后两个面的反射光所走的路程差不同,导致上疏下密,故C 正确,ABD 错误。

17光的干涉习题解答

17光的干涉习题解答

第十七章 光的干涉一、 选择题1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D )A 、 1、5λB 、 1、5n λC 、 3λD 、 1、5λ/n解: πλπϕ32==∆nd 所以 n d /5.1λ= 本题答案为D 。

2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其她条件不变,则干涉条纹将 ( A )A 、 变密B 、 变稀C 、 不变D 、 消失解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。

干涉条纹将变密。

本题答案为A。

3.在空气中做双缝干涉实验,屏幕E上的P处就是明条纹。

若将缝S2盖住,并在S1、S2连线的垂直平分选择题3图面上放一平面反射镜M,其它条件不变(如图),则此时( B )A、 P处仍为明条纹B、 P处为暗条纹C、 P处位于明、暗条纹之间D、屏幕E上无干涉条纹解对于屏幕E上方的P点,从S1直接入射到屏幕E上与从出发S1经平面反射镜M反射后再入射到屏幕上的光相位差在均比原来增 ,因此原来就是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。

故本题答案为B。

4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心就是亮斑,则此时透射光的等倾干涉条纹中心就是( B )A、亮斑B、暗斑C、可能就是亮斑,也可能就是暗斑 D 、 无法确定解:反射光与透射光的等倾干涉条纹互补。

本题答案为B 。

5.一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A 、 λ/4B 、 λ/ (4n )C 、 λ/2D 、 λ/ (2n )6.在折射率为n '=1、60的玻璃表面上涂以折射率n =1、38的MgF 2透明薄膜,可以减少光的反射。

当波长为500、0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A 、 5、0nmB 、 30、0nmC 、 90、6nmD 、 250、0nm解:增透膜 6.904/min ==n e λnm本题答案为C 。

第12章(1) 光的干涉答案

第12章(1) 光的干涉答案

图中数字为各处的折射率图16-23一、选择题【C 】1.(基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π(C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:[C]根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程 差2/2λδ+=e n 2,相位差πλπδλπϕ∆+==en 422。

其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。

【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为(A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:[B]干涉加强对应于明纹,又因存在半波损失,所以光程差()()()2/221/4()/4nd k d k n Min d n λλλλ∆=+=⇒=-⇒=【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。

当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[B]中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。

【A 】4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。

若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()。

(A )间隔变小,并向棱边方向平移; (B )间隔变大,并向远离棱边方向平移; (C )间隔不变,向棱边方向平移; (D )间隔变小,并向远离棱边方向平移。

光的干涉习题(附答案)

光的干涉习题(附答案)

π
S1
S2
3λ 4
4. 用波长为 λ 的单色光垂直照射牛顿环装置,观察牛顿环,如图所示。若使凸 透镜慢慢向上垂直移动距离 d, 移过视场中某固定观察点的条纹数等于 2d/λ 。
5. 空气中两块玻璃形成的空气劈形膜, 一端厚度为零, 另一端厚度为 0.005 cm, 玻璃折射率为 1.5,空气折射率近似为 1。如图所示,现用波长为 600 nm 的 单色平行光, 沿入射角为 30°角的方向射到玻璃板的上表面, 则在劈形膜上形 成的干涉条纹数目为 144 。
6. 维纳光驻波实验装置示意如图。MM 为金属反射镜,NN 为涂有极薄感光层 的玻璃板。MM 与 NN 之间夹角 φ=3.0×10-4 rad,波长为 λ 的平面单色光通过 NN 板垂直入射到 MM 金属反射镜上,则反射光与入射光在相遇区域形成光 驻波, NN 板的感光层上形成对应于波腹波节的条纹。 实验测得两个相邻的驻 波波腹感光垫 A、B 的间距 1.0 mm,则入射光的波长为 6.0×10-4 mm 。
8. 如图所示,折射率为 n2,厚度为 e 的透明介质薄膜的上、下方透明介质的折 射率分别为 n1 和 n3,且 n1<n2<n3,若用波长为 λ 的单色平行光垂直入射到该 薄膜上,则从薄膜上下两表面反射的光束之间的光程差为 2长为 λ 的单色平行光垂直照射两个劈尖上,两劈尖角分别为 θ1 和 θ2,折射 率分别为 n1 和 n2, 若两者分别形成的干涉条纹的明条纹间距相等, 则 θ1, θ2, n1,n2 之间的关系为 n1θ1= n2θ2 。

2h c arcsin 0.1 5.7 o arcsin 2hf
11. 油船失事,把大量石油(n=1.2)泄漏在海面上,形成一个很大的油膜。试求: (1)如果你从飞机上竖直地向下看油膜厚度为 460nm 的区域,哪些波长的 可见光反射最强? (2 ) 如果你戴了水下呼吸器从水下竖直的向上看这油膜同 一区域,哪些波长的可见光透射最强?(水的折射率为 1.33) 答:因为在油膜上下表面反射光都有半波损失, (1)反射光干涉加强:2nd=k

NO3 光的干涉练习 -含答案

NO3 光的干涉练习 -含答案

NO.3 光的干涉一.选择题1. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则(A) 干涉条纹的间距变宽. (B) 干涉条纹的间距变窄.(C) 干涉条纹的间距不变,但原极小处的强度不再为零. (D) 不再发生干涉现象.【 C 】2.有下列说法,其中正确的是(A)从一个单色光源所发射的同一波面上任意选取的两点光源均为相干光源; (B)从同一单色光源所发射的任意两束光,可视为两相干光束; (C)只要是频率相同的两独立光源都可视为相干光源;(D)两相干光源发出的光波在空间任意位置相遇都会产生干涉现象。

【 A 】3.在双缝干涉实验中,屏幕E 上的P 点是明条纹。

若将2S 缝盖住,并在21S S 连线的垂直平分面处放一反射镜M(A) P 点处仍为明条纹; (B) P 点处为暗条纹;(C) 不能确定P 点处是明条纹还是暗条纹; (D) 无干涉条纹。

【 B 】二.填空题1. 如图所示,在双缝干涉实验中SS 1=SS 2,用波长为 的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为_____3λ_____.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n =___4/3___ __.2. A 、B 为两相干光源,距水面的垂直距离相等。

两光源发出的相干光水面P 处的PE位相差Δφ=(1)2n r πλ-, 光程差Δ= (n-1)r (已知AP=BP= r , 光的真空波长为λ,水的折射率为n)。

3. 波长为λ的平行单色光垂直照射到劈尖薄膜上,劈尖角为θ,劈尖薄膜的折射率为n ,第K 级明纹与第K+3级明纹的间距为3/2n λθ。

三.计算题1. 在杨氏双缝干涉实验中,用波长为500nm 的单色光垂直入射到间距为d=0.5mm的双缝上,屏到双缝中心的距离D=1.0m 。

求:(1)屏上第5级明纹中心的位置; (2)条纹宽度;(3)用一云母片(n=1.58)遮盖其中一缝,中央明纹移到原来第8级明纹中心处,云母片的厚度是多少?解:(1) 由明纹条件 (0,1,2)x dk k D λ=±=可得,明纹位置:()0,1,2,D λx kkd =±=()73551510/0.5105D λx km md--==⨯⨯⨯⨯=(2) 相邻两暗纹之间的距离定义为明纹宽度,则由暗纹条件 (21)(1,2,3)2x dk k Dλ''=±-=得条纹宽度11k k D λx x x m md''+∆=-==(3) 设未加云母片时,第8级明纹处对应的两光程为1r 和2r ,则()812=±=-=k k λr r δ加云母片后,原第8级明纹处为中央明纹,则()()()011212'=±=---=+--=kk λL n r r nL L r r δ所以,()λL n 81=-,mn λL61090.618-⨯≈-=2.在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,且l 1-l 2=3λ,λ为入射光的波长,双缝间距为d ,双缝到屏的距离为D ,如图,求: (1)零级明纹到屏幕中央O 点的距离;(2)相邻两条明纹的间距。

(完整版)光的干涉练习题及答案

(完整版)光的干涉练习题及答案

一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。

【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。

【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。

图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。

由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。

【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )A.C 是明的,圆环是等距离的;B.C 是明的,圆环是不等距离的;C.C 是暗的,圆环是等距离的;D.C 是暗的,圆环是不等距离的。

【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。

【答案】:B6、若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。

【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。

【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O 处。

光的干涉习题答案

光的干涉习题答案

学号 班级 姓名 成绩第十六章 光的干涉(一)一、选择题1、波长mm 4108.4-⨯=λ的单色平行光垂直照射在相距mm a 4.02=的双缝上,缝后m D 1=的幕上出现干涉条纹。

则幕上相邻明纹间距离是[ B ]。

A .0.6mm ;B .1.2 mm ;C .1.8 mm ;D . 2.4 mm 。

2、在杨氏双缝实验中,若用一片透明云母片将双缝装置中上面一条缝挡住,干涉条纹发生的变化是[ C ]。

A .条纹的间距变大;B .明纹宽度减小;C .整个条纹向上移动;D .整个条纹向下移动。

3、双缝干涉实验中,入射光波长为λ,用玻璃薄片遮住其中一条缝,已知薄片中光程比相同厚度的空气大2.5λ,则屏上原0级明纹处[ B ]。

A .仍为明条纹;B .变为暗条纹;C .形成彩色条纹;D .无法确定。

4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ B ]。

A .使屏靠近双缝; B .使两缝的间距变小; C .把两个缝的宽度稍微调窄; D .改用波长较小的单色光源。

5、在双缝干涉实验中,单色光源S 到两缝S 1、S 2距离相等,则中央明纹位于图中O 处,现将光源S 向下移动到S ’的位置,则[ B ]。

A .中央明纹向下移动,条纹间距不变;B .中央明纹向上移动,条纹间距不变;C .中央明纹向下移动,条纹间距增大;D .中央明纹向上移动,条纹间距增大。

二、填空题1、某种波长为λ的单色光在折射率为n 的媒质中由A 点传到B 点,相位改变为π,问光程改变了2λ , 光从A 点到B 点的几何路程是 2nλ 。

2、从两相干光源s 1和s 2发出的相干光,在与s 1和s 2等距离d 的P 点相遇。

若s 2位于真空中,s 1位于折射率为n 的介质中,P 点位于界面上,计算s 1和s 2到P 点的光程差 d-nd 。

3、光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是04I ;最小光强是 0 。

高三物理光的干涉试题答案及解析

高三物理光的干涉试题答案及解析

高三物理光的干涉试题答案及解析1.氢原子从n=3的能级跃迁到n=2的能级辐射出a光,从n=4的能级跃迁到n=2的能级辐射出b光。

关于这两种光的下列说法正确的是A.a光的光子能量比b光的光子的能量大B.在同种介质中a光的传播速度比b光的传播速度小C.若a光不能使某金属发生光电效应,则b光一定不能使该金属发生光电效应D.在同一双缝干涉装置进行实验,所得到的相邻干涉条纹的间距,a光的比b的大一些【答案】D【解析】氢原子在不同能级之间发生跃迁,那么从高能级到低能级释放的光子能量等于能级差,因此有,,因此有a光的光子能量比b光的光子的能量小,选项A错。

同样可知,即a光的频率比b光的频率低,折射率,根据可知同种介质中a 光的传播速度比b光的传播速度大选项B错。

波长关系,那么双缝干涉条纹间距,波长越长则间距大即a光的间距大,选项D对。

若a光不能使某金属发生光电效应,但b光的能量比a光大,有可能大于金属逸出功而发生光电效应,选项C错。

【考点】氢原子能级结构光电效应双缝干涉2.如图所示,a和b都是厚度均匀的平玻璃板,它们之间的夹角为r,一细光束由红光和蓝光组成,以入射角从O点射入板,且射出b板后的两束单色光通过空气射在地面上M.N两点,由此可知( )A.若射到M.N,两点的光分别通过同一双缝发生干涉现象,则射到M点的光形成干涉条纹的间距小,这束光为蓝光,光子的能量大B.若射到M.N两点的光分别通过同一双缝发生干涉现象,则射到M点的光形成干涉条纹的间距大,这束光为红光,光子的能量小C.射到N点的光为蓝光,光子的能量小,较容易发生衍射现象D.射到N点的光为红光,光子的能量大,较难发生衍射现象【答案】A【解析】蓝光的频率大,相对玻璃的折射率大,故从b板射出后偏移程度大,结合题意,能判断射到M点的为蓝光,射到N点的为红光,发生双缝干涉,条纹间距与波长成正比,蓝光的波长小,频率大,故形成的干涉条纹间距小,光子的能量大,选项A项正确,B项错误.波长越长,越容易发生衍射,选项C.D两项错误.3.在《用双缝干涉测光的波长》实验中,将双缝干涉实验仪按要求安装在光具座上(如图所示),并选用缝间距d=0.20mm的双缝屏,从仪器注明的规格可知,像屏与双缝屏间的距离L=700mm,然后,接通电源使光源正常工作。

光的干涉与衍射应用练习题及

光的干涉与衍射应用练习题及

光的干涉与衍射应用练习题及解答光的干涉与衍射应用练习题及解答练习题一:1. 孔径为1 mm的单缝衍射实验中,光的波长为600 nm,距离中央亮条纹的位置为2.5 cm,请问中央到第一次暗条纹的距离是多少?解答:根据单缝衍射的暗条纹位置公式d sinθ = mλ,其中d为衍射方向孔径,θ为观察角度,m为暗条纹级次,λ为光的波长。

我们可以将式子转换为θ = mλsinθ/d。

对于中央到第一次暗条纹的距离,即m=1,代入计算得到θ=λ/d=600 nm/1 mm=0.6 rad。

由于角度较小,可以近似取tanθ=θ,所以距离为tan(0.6 rad) * 2.5 cm = 0.010 cm。

2. 一束波长为500 nm的光通过一个缝宽为0.1 mm的单缝,屏幕离缝的距离为2 m。

观察到屏幕上出现了一系列的亮纹,相邻亮纹之间的距离是多少?解答:对于单缝衍射实验,两个连续亮纹间的距离d可以通过公式dλ = mL计算,其中d为亮纹间距,λ为光的波长,m为亮纹级次,L为屏幕离缝的距离。

代入数据可得,d= Lλ/m=2 m* 500 nm / 0.1 mm =10 m。

练习题二:1. 一束波长为600 nm的光通过一块厚度为1 mm的玻璃板,折射系数为1.5,求玻璃板中心位置发生的相位差。

解答:根据折射的相位差公式Δ = 2πnt/λ,其中Δ为相位差,n为折射系数,t为厚度,λ为光的波长。

代入数据可得,Δ = 2π*1.5*1 mm / 600 nm = 15π。

2. 一束波长为400 nm的光通过一块薄膜,膜厚为100 nm,折射系数为1.4,求反射光与透射光的相位差。

解答:对于薄膜的反射与透射,相位差可以通过公式Δ = 2πnt/λ计算,其中Δ为相位差,n为折射系数,t为膜厚,λ为光的波长。

代入数据可得,Δ = 2π*1.4*100 nm / 400 nm = 0.88π。

练习题三:1. 一束波长为600 nm的光衍射通过一块缝宽为0.2 mm的双缝,两缝间距为0.5 mm,观察到屏幕上出现了一系列的亮纹,相邻亮纹之间的距离是多少?解答:双缝衍射实验中,两个连续亮纹间的距离d可以通过公式dλ = mL / D 计算,其中d为亮纹间距,λ为光的波长,m为亮纹级次,L 为屏幕到缝的距离,D为两缝间距。

《大学物理学》光的干涉练习题(马解答)

《大学物理学》光的干涉练习题(马解答)

《大学物理学》光的干涉学习材料(解答)一、选择题:11-1.在双缝干涉实验中,若单色光源S 到两缝1S 、2S 距离相等,则观察屏上中央明纹中心位于图中O 处,现将光源S 向下移动到示意图中的S '位置,则( D )(A )中央明条纹向下移动,且条纹间距不变; (B )中央明条纹向上移动,且条纹间距增大; (C )中央明条纹向下移动,且条纹间距增大; (D )中央明条纹向上移动,且条纹间距不变。

【提示:画出光路,找出'S 到光屏的光路相等位置】11-2.如图所示,折射率为2n ,厚度为e 的透明介质薄膜的上方和下方的透明介质折射率分别为1n 和3n ,且12n n <,23n n >,若波长为λ的平行单色光垂直入射在薄膜上,则上下两个表面反射的两束光的光程差为( B )(A )22n e ; (B )22/2n e λ-; (C )22n e λ-; (D )222/2n e λn -。

【提示:上表面反射有半波损失,下表面反射没有半波损失】11-3.两个直径相差甚微的圆柱体夹在两块平板玻璃之间构成空气劈尖,如图所示,单色光垂直照射,可看到等厚干涉条纹,如果将两个圆柱之间的距离L 拉大,则L 范围内的干涉条纹( C )(A )数目增加,间距不变; (B )数目增加,间距变小; (C )数目不变,间距变大; (D )数目减小,间距变大。

【提示:两个圆柱之间的距离拉大,空气劈尖夹角减小,条纹变疏,但同时距离L 也变大,考虑到两圆柱的高度差不变,所以条纹数目不变】4.用白光光源进行双缝试验,如果用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则:( D )(A )干涉条纹的宽度将发生改变; (B )产生红光和蓝光两套彩色干涉条纹;(C )干涉条纹的亮度将发生改变; (D )不产生干涉条纹。

【提示:不满足干涉条件,红光和蓝光不相干】5.如图所示,用波长600λ=nm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央明纹极大的位置,则此玻璃片厚度为( B )(A )×10-4cm ; (B )×10-4cm ; (C )×10-4cm ; (D )×10-4cm 。

最新大学物理第12章光的干涉测试题(附答案及知识点总结)

最新大学物理第12章光的干涉测试题(附答案及知识点总结)

大学物理第12章光的干涉测试题(附答案及知识点总结)第12章 习题精选试题中相关常数:m 10μm 16-=,m 10nm 19-=,可见光范围(400nm~760nm ) 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π3,则此路径AB 的光程为:(A )λ5.1. (B )n /5.1λ. (C )λn 5.1. (D )λ3.[ ]2、在相同的时间内,一束波长为λ的单色光在空气中与在玻璃中: (A )传播路程相等,走过光程相等. (B )传播路程相等,走过光程不相等.(C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等.[ ]3、如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:(A )e n 22. (B )2/22λ+e n .(C )λ+e n 22. (D ))2/(222n e n λ-.[ ]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:(A )使屏靠近双缝. (B )使两缝的间距变小.(C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源.[ ]35、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大λ5.2,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹. (D )无法确定是明纹,还是暗纹.[ ]6、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:(A )向右平移. (B )向中心收缩. (C )向外扩张. (D )向左平移.[ ]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径k r 的表达式为:(A )R k r λ=k . (B )n R k r /k λ=. (C )R kn r λ=k . (D ))/(k nR k r λ=.[ ]8、用波长为λ的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差=δ_______________.9、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为1r 和2r .设双缝和屏之间充满折射率为n 的介质,则P 点处光线的光程差为___________.S S 110、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________. (2)________________________________________.11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距_________;若使单色光波长减小,则干涉条纹间距_____________.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________.13、用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d 的过程中,移过视场中某固定观察点的条纹数目等于_______________.14、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为=e _________________.15、用波长为λ的单色光垂直照射如图示的劈形膜(321n n n >>),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度=e _______________________.图b图an 1n 2 n 316、波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__________________.17、波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.18、在双缝干涉实验中,双缝与屏间的距离m 2.1=D ,双缝间距m m 45.0=d ,若测得屏上干涉条纹相邻明条纹间距为1.5mm ,求光源发出的单色光的波长λ.19、在杨氏双缝干涉实验中,用波长nm 1.546=λ的单色光照射,双缝与屏的距离m m 300=D .测得中央明条纹两侧的两个第5级明条纹的间距为12.2mm ,求双缝间的距离.20、在双缝干涉实验中,波长nm 550=λ的单色平行光垂直入射到缝间距m 1024-⨯=a 的双缝上,屏到双缝的距离m 2=D .求:(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为m 106.65-⨯=e 、折射率为58.1=n 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?21、用白光垂直照射置于空气中的厚度为μm 50.0的玻璃片.玻璃片的折射率为50.1=n .在可见光范围内哪些波长的反射光有最大限度的增强?22、波长nm 650=λ的红光垂直照射到劈形液膜上,膜的折射率33.1=n ,液面两侧是同一种介质.观察反射光的干涉条纹.(1)离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少? (2)若相邻的明条纹间距m m 6=l ,上述第1条明纹中心到劈形膜棱边距离x 是多少?23、用波长为nm 600=λ的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角rad 1024-⨯=θ.改变劈尖角,相邻两明条纹间距缩小了mm 0.1=∆l ,求劈尖角的改变量θ∆.24、曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求:(1)从中心向外数第k 个明环所对应的空气薄膜的厚度k e .(2)第k 个明环的半径用k r (用R 、波长λ和正整数k 表示,R 远大于上一问的k e .)25、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的R OλO 1曲率半径是cm 400=R .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1)求入射光的波长.(2)设图中cm 00.1=OA ,求半径为OA 范围内可观察到的明环数目.26、用波长nm 500=λ的单色光作牛顿环实验,测得第k 个暗环半径m m4k =r ,第10+k 个暗环半径m m 610k =+r ,求平凸透镜的凸面的曲率半径R .总体要求:理解产生相干光的三个条件和获得相干光的两种方法.了解分波阵面法和分振幅法干涉的典型实验;掌握光程的概念以及光程差和相位差的关系;掌握杨氏双缝干涉条纹及薄膜干涉条纹(尤其是劈尖和牛顿环)的分布规律,利用相关公式计算条纹分布.第12章 参考答案1、A2、C3、A4、B5、B6、B7、B8、23λ+e 或23λ-e 9、)(12r r n -10、(1)使两缝间距变小;(2)使屏与双缝之间的距离变大. 11、变小;变小 12、N D / 13、λ/2d 14、λ23 15、22n λ 16、θλn 2 17、n2λ18、解:nm 5.562/=∆=D x d λ. 19、解:m m 268.0/=∆==x D d λλ. 20、解:(1)m 11.0/20==∆a D x λ (2)零级明纹移到原第7级明纹处.21、解:nm 600=λ和nm 6.428=λ. 22、解:(1)λλk ne k =+2/2(明纹中心)现1=k ,1e e k=,则膜厚度m m1022.1)4/(41-⨯==n e λ.(2)m m 32/==l x23、解:rad 100.442-⨯=-=∆θθθ.24、解:(1)第k 个明环,λλk e k =+212 4/)12(λ-=k e k .(2)λλk R r k =+21)2/(22,2/)12(λR k r k -= ,...2,1=k .25、解:(1)()cm 10512252×Rk r -=-=λ (或500 nm ).(2)λR r k 2212=-,对于cm 00.1=r ,5.505.02=+=λR r k .故在OA 范围内可观察到的明环数目为50个.26、解:()()m 410/2210=-=+λk k r r R .第12章 光的干涉一、基本内容1.单色光单色光是指具有单一频率的光波,单色光不是单种颜色的光.可见光的波长是(380~760)nm .虽然绝对单一频率的单色光不易得到,但可以通过各种方法获取谱线宽度很小的单色光.例如激光就可看作谱线宽度很小的单色光.2.相干光只有两列光波的振动频率相同、振动相位差恒定、振动方向相同时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光,相应的光源称为相干光源.3.半波损失光由光疏介质(即折射率相对小的介质)射到光密介质发生反射时,反射光的相位较入射光的相位发生π的突变,这一变化导致了反射光的光程在反射过程中增加了半个波长,通常称为“半波损失”.4.光程和光程差 (1)光程光波的频率v 是单色光的本质属性,与在何种介质中传播没有关系,而传播速度则与介质有关.在折射率为n 的介质中光速是真空中光速的n /1,由光速v u n n λ=可知,在折射率为n 的介质中,光波的波长n λ也是真空中波长的n /1.这样光在不同介质中经历同样的波数,但经历的几何路程却不同.所以有必要把光在折射率n 的介质中通过的几何路程折算到真空中所能传播的长度,只有这样才便于比较两束经过不同介质的光相位的变化.所以把光在折射率为n 的介质中通过的几何的路程r 乘以折射率n 折算成真空中所能传播的长度nr ,称nr 为光程.(2)光程差当采用了光程概念以后就可以把由相位差决定的干涉加强、减弱等情况用光程差来表示,为计算带来方便.即相位差π2λδϕ=∆(λ为真空中波长,δ为光程差),亦即λδϕπ2=∆.二、基本规律光程差(含半波损失)是半波长偶数倍时干涉加强,干涉相长,明条纹中心;是半波长奇数倍时,干涉相消,暗条纹中心.1.杨氏双缝干涉结果(分波阵面干涉),只讨论同一介质中传播:等间隔明暗相间条纹.光程差:Dx d=δ dD kx λ±=k ),2,1,0( =k 明条纹位置(k x —k 级干涉条纹位置,D —屏距,d —缝距)2)12(k λd D k x -±= ),2,1( =k 暗条纹位置 条纹中心间距:λdD x =∆ 2.薄膜干涉结果(分振幅干涉)薄膜干涉基础公式相同,考虑从1n 入射到2n (21n n <),i 为入射角,d —薄膜厚度,此时要考虑“半波损失”,故反射加强(上表面亮纹位置)为λλδk i n n d =+-=2sin 222122 ),2,1( =k反射减弱(上表面暗纹位置)为(注意此处k 可以取0,厚度为0处是暗纹)2)12(2sin 222122λλδ+=+-=k i n n d ),2,1,0( =k注意,一定要先分析反射光是否存在“半波损失”的情况,不能死搬硬套,一般介质折射率中间大两边小或中间小两边大都有半波损失,而三种介质折射率大小顺序排列无半波损失.薄膜干涉光程差是入射角和厚度的函数.等倾干涉:对于上两式,如果薄膜厚度不变,而光线倾角(入射角i )变化,入射角i 相同的位置光线光程差相同,条纹花样相同,叫做等倾干涉.如有侵权请联系网站删除,仅供学习交流仅供学习交流 等厚干涉:对于上两式,所有光线以同一入射角i 入射,而薄膜厚度变化,则厚度相同的位置光线光程差相同,条纹干涉花样相同,叫做等厚干涉.对空气劈尖(上玻璃板下表面和下玻璃板上表面两束光反射)两侧介质相同,由于存在“半波损失”,所以上两式适用于在空气劈尖的上表面干涉.一般取垂直入射,0=i ,则在劈尖上表面干涉,光程差满足λλδk nd =+=22 ),2,1( =k 明条纹2)12(22λλδ+=+=k nd ),2,1,0( =k 暗条纹n 代表劈尖内介质折射率.劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差n d 2λ=∆,条纹线间距:θλn l 2=∆. 如果两侧介质不同,且满足折射率递增或递减顺序,则无半波损失,光程差满足λδk nd ==2 ),2,1,0( =k 明条纹2)12(2λδ-==k nd ),2,1( =k 暗条纹劈尖劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差和条纹线间距与有半波损失时相同.利用劈尖原理检测零件平整度,上表面放标准板,顶角在左侧,下板凹陷条纹向左弯,凸起向右弯.牛顿环的上表面干涉也是空气劈尖干涉,两侧介质相同,有半波损失,只不过牛顿环的空气厚度测量常转换成距透镜中心距离r 与透镜的曲率半径R 来表示牛顿环的明暗纹.2)12(k λR k r -= ),2,1( =k (明环) λkR r =k ),2,1,0( =k (暗环)。

光的干涉练习题及答案

光的干涉练习题及答案

光的干涉练习题及答案三、分析题1、在双缝干涉实验中,在下列情况下,干涉条纹将如何变化?试说明理由。

(1) 入射光由红光换为紫光;(2) 屏与双缝的间距D 不断增大;(3) 在下面一条缝后放一块云母片。

【答案】:双缝干涉条纹相邻明条纹(或暗条纹)的间距为 λdD x =∆ (2分) (1) 红光变紫光波长λ减小,其他条件不变时,条纹变窄(或密或向屏中央集中)(3分)(2) D 不断增大时,x ∆增大,条纹变稀(或变宽)(3分)(3) 在下面一条缝后放一块云母片,通过它的光线的光程增大(2分),干涉条纹向下平移(2分)。

2、杨氏双缝干涉实验条件作如下变化,干涉条纹将如何变化?试说明理由。

(1)加大双缝间距d ;(2)把整套装置浸入水中;(3)在两缝后分别放红色和绿色的滤光片。

【答案】:根据:条纹宽度λdD x =∆(2分) (1)d 变大,其他条件不变,则x ∆变小,所以条纹变窄(或密或向屏中央集中)(2分)。

d 增大到一定程度,条纹过于细密而无法分辨,拥挤在一起成为一条明亮带。

(2分)(2)装置没入水中后的条纹宽度为λdD n x 1=∆,因为1>n (2分) 所以x ∆变小,条纹变窄(或密或向屏中央集中)。

(2分)(3)使通过两缝的光频率不同,不满足相干条件(2分),干涉条纹消失(2分)。

3、如图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)];(2) A 绕棱边逆时针转动[见图(b)]。

【答案】:相邻明纹或暗纹介质膜厚度差n d 2λ=∆(2分),相邻明纹或暗纹间距θλn l 2=(2分)。

(1)上表面A 向上平移时,棱边明暗交替变化,相同厚度的空气薄模向棱边处移动,条纹间距不变。

(4分)(2) A 绕棱边逆时针转动时,棱边明暗不变,各级条纹向棱边方向移动,条纹变密。

(4分)4、在玻璃(5.1=n )上镀上25.1=n 的介质薄膜,波长 nm 500=λ的光从空气中垂直照射到此薄膜上,要使其为高反膜和增透膜求膜的厚度。

光的干涉 练习题有答案

光的干涉 练习题有答案

高二物理选修3-4 13.3光的干涉针对训练1.两盏普通白炽灯发出的光相遇时,我们观察不到干涉条纹,这是因为()A.两盏灯亮度不同B.灯光的波长太短C.两灯光的振动情况不同D.电灯发出的光不稳定2.2009年11月21日凌晨2时30分,黑龙江新兴煤矿发生瓦斯爆炸事故,造成10名矿工遇难。

煤矿中的瓦斯危害极大,某同学查资料得知含有瓦斯的气体的折射率大于干净空气的折射率,于是他根据双缝干涉现象设计了一个监测仪,其原理如图所示:在双缝前面放置两个完全相同的透明容器A、B,容器A与干净的空气相通,在容器B中通入矿井中的气体,观察屏上的干涉条纹,就能够监测瓦斯浓度。

如果屏的正中央O点变为暗纹,说明B中气体()A.一定含瓦斯B.一定不含瓦斯C.不一定含瓦斯 D.无法判断3.一束白光通过双缝后在屏上观察到干涉条纹,除中央白色条纹外,两侧还有彩色条纹,其原因是()A.各色光的波长不同,因而各色光分别产生的干涉条纹间距不同B.各色光的速度不同,造成条纹的间距不同C.各色光的强度不同,造成条纹的间距不同D.各色光通过双缝到达一确定点的距离不同4.在双缝干涉实验中,双缝到光屏上P点的距离之差为0.6 μm,若分别用频率为f1=5.0×1014 Hz和f2=7.5×1014 Hz的单色光垂直照射双缝,则P点出现明、暗条纹的情况是( ) A.单色光f1和f2分别照射时,均出现明条纹B.单色光f1和f2分别照射时,均出现暗条纹C.单色光f1照射时出现明条纹,单色光f2照射时出现暗条纹D.单色光f1照射时出现暗条纹,单色光f2照射时出现明条纹5.如图(甲)所示为双缝干涉实验的装置示意图,(乙)图为用绿光进行实验时,在屏上观察到的条纹情况,a为中央条纹,(丙)图为换用另一颜色的单色光做实验时观察到的条纹情况,a′为中央亮条纹,则以下说法正确的是()A .(丙)图可能为用红光实验产生的条纹,表明红光波长较长B .(丙)图可能为用紫光实验产生的条纹,表明紫光波长较长C .(丙)图可能为用紫光实验产生的条纹,表明紫光波长较短D .(丙)图可能为用红光实验产生的条纹,表明红光波长较短6.如图3所示,在双缝干涉实验中,若单缝S 从双缝S 1、S 2的中央对称轴位置处稍微向上移动,则( )A .不再产生干涉条纹B .仍可产生干涉条纹,其中央亮条纹P 的位置不变C .仍可产生干涉条纹,其中央亮条纹P 的位置略向上移D .仍可产生干涉条纹,其中央亮条纹P 的位置略向下移图37.双逢干涉实验装置如图4所示,双缝间的距离为d ,双缝到像屏的距离为L ,调整实验装置使得像屏上可以见到清晰的干涉条纹,关于干涉条纹的情况,下列叙述正确的是( )A .若将像屏向左平移一小段距离,屏上的干涉条纹将变得不清晰B .若将像屏向右平移一小段距离,屏上仍有清晰的干涉条纹C .若将双逢间距离d 减小,像屏上的两个相邻明条纹间的距离变小D .若将双缝间距离d 减小,像屏上的两个相邻暗条纹间的距离增大8.某同学自己动手利用如图所示器材,观察光的干涉现象.其中,A 为单缝屏,B 为双缝屏,C 为像屏.当他用一束阳光照射到A 上时,屏C 上并没有出现干涉条纹.他移走B 后,C 上出现一窄亮斑.分析实验失败的原因,最大的可能是( )A .单缝S 太窄B .单缝S 太宽C .S 到S 1和S 2距离不等D .太阳光不能做光源9.激光散斑测速是一种崭新的测速技术,它应用了光的干涉原理。

关于光的干涉的习题与答案

关于光的干涉的习题与答案

关于光的干涉的习题与答案
光的干涉习题与答案
光的干涉是光学中非常重要的一个现象,它揭示了光波的波动性质。

在干涉现象中,光波会相互叠加,形成明暗条纹,从而产生干涉图样。

下面我们来看一些关于光的干涉的习题与答案。

习题一:两束相干光波在空气中相遇,它们的波长分别为600nm和450nm,求它们的相位差。

解答:相位差可以用公式Δφ=2πΔx/λ来计算,其中Δx为两束光波的光程差,λ为光波的波长。

由于光程差Δx=0,所以相位差Δφ=0。

习题二:在双缝干涉实验中,两个狭缝间距为0.2mm,波长为500nm的光波垂直入射到狭缝上,求干涉条纹的间距。

解答:干涉条纹的间距可以用公式dλ/D来计算,其中d为狭缝间距,λ为光波的波长,D为观察屏到狭缝的距离。

代入数据可得,间距为0.1mm。

习题三:在双缝干涉实验中,两个狭缝间距为0.1mm,波长为600nm的光波垂直入射到狭缝上,观察屏到狭缝的距离为2m,求干涉条纹的间距。

解答:代入数据可得,间距为0.3mm。

通过以上习题与答案,我们可以看到光的干涉现象在实际问题中的应用。

对于学习光学的同学来说,掌握光的干涉原理和计算方法是非常重要的。

希望大家能够通过练习,加深对光的干涉现象的理解,提高解决实际问题的能力。

4.3光的干涉(解析版)

4.3光的干涉(解析版)

4.3光的干涉同步练习一、单选题1.(2021·全国·高三课时练习)如图所示,a、b为两束不同频率的单色光,以o45的入射角射到上下表面平行的玻璃砖的上表面,直线OO'与玻璃砖上下表面垂直且与其上表面交于N点,入射点A、B到N点的距离相等,经玻璃砖上表面折射后两束光相交于图中的P点,则下列说法正确的是()A.在真空中,a光的传播速度大于b光的传播速度B.在玻璃中,a光的传播速度小于b光的传播速度C.同时增大入射角(入射角始终小于o90),则a光在下表面先发生全反射D.对同一双缝干涉装置,a光的干涉条纹间距比b光的干涉条纹间距宽【答案】D【详解】A.各种光在真空中的速度相同,故A错误;B.根据题图,入射角相同,a光的折射角较大,所以玻璃砖对a光的折射率较小,由光在介质中的光速c vn =得,a光在介质中的传播速度较大,故B错误;C.玻璃砖上下表面平行,a、b光在玻璃砖下表面均不会发生全反射现象,故C错误;D.根据公式Δlxd λ=可知,由于a光的波长大于b光波长,对同一双缝干涉装置,a光的干涉条纹间距比b光的干涉条纹间距宽,故D正确。

故选D。

2.(2021·全国·高三课时练习)如图所示,a、b两种单色光沿不同方向射向玻璃三棱镜,经三棱镜折射后沿同一方向射出,下列关于a光和b光的说法正确的是()A.在真空中,a光传播速度较大B.玻璃对a光的折射率大于对b光的折射率。

C.a光和b光从玻璃射向空气时,a光发生全反射的临界角较小D.在同样的双缝干涉条件下,用a光得到的干涉条纹的相邻条纹间距较大【答案】D【详解】A.在真空中,各种光的传播速度均相同(光速c),A错误;B.由题图可以看出b光偏折程度较大,则b光的折射率较大,B错误;C.光从玻璃射向空气时,由临界角公式1 sin Cn=可知,b光的临界角较小,C错误;D.因a光折射率较小,频率较低,由cf λ=可知波长较长,根据Δlxd λ=可知,在同样的双缝干涉条件下,用a光得到的干涉条纹的相邻条纹间距较大,D正确。

光的干涉习题与答案解析

光的干涉习题与答案解析

组合产生的第 10 个暗环半径分别为 rBC 4.5mm 和 rAC 5mm ,试计算 RA 、 RB 和 RC 。
h r2
解:
2R
OA
hAB
hA
hB
rAB 2 2RA
rAB 2 2RB
rAB 2 2
1 ( RA
1 )
RB
同理, hBC
rBC 2
1 ( RB
1 RC
)
RA
hAC
rAC 2
P2
2mm
P1
P0
0.4m
1.5m
题图
y r0 1500 500106 0.1875mm
解:(1)干涉条纹间距
d
4
(2)产生干涉区域 P1P2 由图中几何关系得:设 p2 点为 y2 位置、 P1 点位置为 y1
则干涉区域
y y2 y1
y2
1 2
r0
r tan2
1 2
r0
r
1 2
1 2
r0
y r0 500 500106 1.25
解: d 0.2
mm
I1 2I2
A12 2 A22
A1 2 A2
V
1
2
A1 A1
/ /
A2 A2
2
22 1 2
0.9427
0.94
5. 波长为 700nm 的光源与菲涅耳双镜的相交棱之间距离为 20cm,棱到光屏间的距离 L 为 180cm,若所得干涉条纹中相邻亮条纹的间隔为 1mm,求双镜平面之间的夹角θ。
1 ( RA
1 RC
解:对于亮环,有
rj
(2 j 1) R 2
( j 0,1,2,3,)

第 9 章 光的干涉.习题答案

第 9 章 光的干涉.习题答案

第9章 光的干涉 习题9.1 在杨氏实验中,若对实验装置做如下调节,干涉条纹将如何变化?(1)入射光的波长变大;(2)用一折射率为n 、厚度为t 的透明介质片覆盖其中一条狭缝(n >1);(3)双缝之间的距离逐渐变大;(4)将整个装置置于折射率为n >1的透明介质中。

解 杨氏实验的干涉条纹有如下特点:对一定波长的单色光来说,相邻明条纹(或暗条纹)的间距相等,均为/y l d λΔ=,式中l 为双缝到屏幕的距离,d 为双缝的间距,因此有(1)入射光的波长变大,相邻条纹间距变大。

(2)用一个折射率为n 、厚度为t 的透明介质片覆盖其中一条狭缝(n >1),由该狭缝发出的光的光程将增加(-1)n t ,中央明纹中心的位置将向覆盖介质片的方向移动,移动条数为(-1)/n t λ,因为相邻条纹明对应的光程差之差为λ。

原来中央明纹中心的位置将变成(-1)/n t λ级明纹的中心。

(3)双缝之间的距离逐渐变大,相邻条纹间距变小。

(4)将整个装置置于折射率为n >1的透明介质中,因由双缝S 1、S 2发出的光到达任意点P 处的光程差为 21()n r r δ=−=lyd n =λk ± (1) 式(1)中y 为点P 相对点O 的坐标,k 级明条纹中心的位置是,0,1,2,l y k k ndλ=±=" (2) 因而相邻明条纹(或暗条纹)的间距相等,所以均为 nd l y λ=Δ 可以看出,将整个装置置于折射率为n >1的透明介质中,条纹间距会变小。

9.2 由汞弧灯发出的光,通过一个绿色滤光片后,照射到相距为0.50mm 的双缝上,在距双缝 2.5m 的屏幕上观测其干涉条纹。

若测得相邻两明条纹中心的距离为 2.72mm ,求入射光的波长。

解 因对一定波长的单色光来说,相邻明条纹(或暗条纹)的间距相等为2.72mm y Δ=。

已知双缝到屏幕的距离l=2.5m ,双缝d=0.50mm ,根据双缝干涉条纹间距公式可得入射光的波长为42.720.5 5.4410(mm)544nm 2500y d l λ−Δ⋅×===×=9.3 两列相干光束的振幅比分别为E 01/E 02=1,1/3,3,6,1/6。

(完整版)光的干涉练习题及答案

(完整版)光的干涉练习题及答案

(完整版)光的干涉练习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。

【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。

【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。

图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。

由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。

【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )是明的,圆环是等距离的; 是明的,圆环是不等距离的;是暗的,圆环是等距离的; 是暗的,圆环是不等距离的。

【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。

【答案】:B6、若把牛顿环装置(都是用折射率为的玻璃制成的)由空气搬入折射率为的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。

【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。

【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。

【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。

【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。

图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。

由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。

【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )A.C 是明的,圆环是等距离的;B.C 是明的,圆环是不等距离的;C.C 是暗的,圆环是等距离的;D.C 是暗的,圆环是不等距离的。

【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。

【答案】:B6、若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。

【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。

【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O 处。

现将光源S 向下移动到S '位置,则( )A .中央明条纹也向下移动,且条纹间距不变;B .中央明条纹向上移动,且条纹间距不变;C .中央明条纹向下移动,且条纹间距增大;D .中央明条纹向上移动,且条纹间距增大。

【答案】:B 9、如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入n =1.60的液体中,凸透镜可沿O O '移动,用波长λ=500 nm (1nm=10-9m) 的单色光垂直入射.从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是( )A .156.3 nm ;B .148.8 nm ;C .78.1 nm ;D .74.4 nm 。

【答案】:C10、两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 ( )A .间隔变小,并向棱边方向平移;B .间隔变大,并向远离棱边方向平移;C .间隔不变,向棱边方向平移。

【答案】:A二、简答题1、漂浮在水上的油膜在阳光下的为什么呈现色彩?改变角度颜色会发生变化吗?为什么?【答案】:答:漂浮在水上的油膜在阳光照射下形成薄膜干涉,光程差)2(0sin 222122λδ或--=i n n d (1分),不同方向入射的光线,入射角不同,光程差不同(1分);不同波长的光各自形成一套干涉条纹,彼此错开,形成薄层色,因此在阳光下呈现彩色。

(2分)3、简述扩展光源照到平行薄膜上形成干涉花样的特点和随薄膜厚度变化的规律。

【答案】:答:扩展光源照到平行薄膜上形成干涉花样属于等倾干涉,(1分)其形状为:一系列明暗相间的同心圆环,(1分)内疏外密中央阶次最高;(1分)当平行膜的厚度增加时中央不断涌出条纹,当平行膜的厚度减小时,中央条纹不断淹没。

(1分)4、:简述牛顿环形成的干涉花样,反射光和透射光的干涉花样有何区别?【答案】:答:干涉花样的特点:牛顿环是由于光的等厚干涉形成的,形状为一系列明暗相间的同心圆环,内疏外密中央阶次最低。

(2分)若在反射花样中由于附加光程差的存在中心为暗条纹,则在透射花样中由于不存在附加光程差中心为亮条纹,(1分)反射光与透射光的光强之和为入射光强,反射花样与透射花样互补。

(1分)n=1.68 n=1.60 n=1.58 O ' Oλ三、分析题1、在双缝干涉实验中,在下列情况下,干涉条纹将如何变化?试说明理由。

(1) 入射光由红光换为紫光;(2) 屏与双缝的间距D 不断增大;(3) 在下面一条缝后放一块云母片。

【答案】:双缝干涉条纹相邻明条纹(或暗条纹)的间距为 λdD x =∆ (2分) (1) 红光变紫光波长λ减小,其他条件不变时,条纹变窄(或密或向屏中央集中)(3分)(2) D 不断增大时,x ∆增大,条纹变稀(或变宽)(3分)(3) 在下面一条缝后放一块云母片,通过它的光线的光程增大(2分),干涉条纹向下平移(2分)。

2、杨氏双缝干涉实验条件作如下变化,干涉条纹将如何变化?试说明理由。

(1)加大双缝间距d ;(2)把整套装置浸入水中;(3)在两缝后分别放红色和绿色的滤光片。

【答案】:根据:条纹宽度λdD x =∆(2分) (1)d 变大,其他条件不变,则x ∆变小,所以条纹变窄(或密或向屏中央集中)(2分)。

d 增大到一定程度,条纹过于细密而无法分辨,拥挤在一起成为一条明亮带。

(2分)(2)装置没入水中后的条纹宽度为λdD n x 1=∆,因为1>n (2分) 所以x ∆变小,条纹变窄(或密或向屏中央集中)。

(2分)(3)使通过两缝的光频率不同,不满足相干条件(2分),干涉条纹消失(2分)。

3、如图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)];(2) A 绕棱边逆时针转动[见图(b)]。

【答案】:相邻明纹或暗纹介质膜厚度差n d 2λ=∆(2分),相邻明纹或暗纹间距θλn l 2=(2分)。

(1)上表面A 向上平移时,棱边明暗交替变化,相同厚度的空气薄模向棱边处移动,条纹间距不变。

(4分)(2) A 绕棱边逆时针转动时,棱边明暗不变,各级条纹向棱边方向移动,条纹变密。

(4分)4、在玻璃(5.1=n )上镀上25.1=n 的介质薄膜,波长 nm 500=λ的光从空气中垂直照射到此薄膜上,要使其为高反膜和增透膜求膜的厚度。

【答案】:解:设薄膜厚度为h ,则两束反射光的光程差为:2cos 2i nh =δ(2分) 当λδj i nh ==2cos 2时,反射光光强最大, 此时薄膜为高反膜:(3分)==2cos 2i n j h λ5.2105272m j n j -⨯=λ m j h 7102-⨯=(2分) 当λδ)21(cos 22+==j i nh 时,反射光光强最小,此时薄膜为增透膜(3分) =+=2cos 2)21(i n j h λ5105)12(2)21(72m j n j -⨯+=+λ m j h 710)12(-⨯+=(2分) 5、利用迈克尔逊干涉仪测量光波波长的实验中:(1)画出实验的光路图。

(2)试分析当两反射镜垂直和近似垂直时干涉花样的特点,以及当其中一个反射镜移动时花样的变化规律。

【答案】:解:(1)光路图(2分)(2)干涉花样的特点:两反射镜垂直时,相当于扩展光源照到平行薄膜上形成干涉花样属于等倾干涉。

(1分)其形状为:一系列明暗相间的同心圆环,内疏外密中央阶次最高。

(2分)若其中一个反射镜移动,当平行膜的厚度增加时中央不断涌出条纹,当平行膜的厚度减小时,中央条纹不断淹没。

(2分)两反射镜近似垂直时,相当于扩展光源照到劈尖薄膜上形成干涉花样属于等厚干涉。

(1分)光经过膜形成的干涉花样为:明暗相间的直条纹,条纹等间距,光强分布均匀。

(2分)若其中一个反射镜移动,棱边明暗交替变化,相同厚度的空气薄模向棱边处移动,条纹间距不变。

(2分)四、证明题1、如图为利用劈尖干涉检测微小变化示意图。

(1)工件表面纹路是凹的还是凸的?(2)证明凹纹深度2λ⋅=b a H 。

【答案】:(1)P 点Q 点在j 级条纹上,P 点对应空气膜厚度与Q 点对应厚度同,因此P 点对应的纹路是凹的。

(2分)(2)21λ=-+j j h h (2分)b b h 2sin λθ=∆= 又a H =θsin (2分) 2,2λλb a H a H b =∴=(2分) 五、计算题1、杨氏双缝实验中缝间距cm d 02.0=、距光屏m 2,当nm 500=λ的光入射到双缝上时,求二级亮条纹的宽度和位置。

【答案】:解:由亮条纹的位置公式: λdD j y = (2分) 可得 cm m m m m d D y 101.010*******742==⨯⨯⨯⨯==--λ(2分) 条纹宽度为 λd D y =∆cm m m mm 5.0005.010*******==⨯⨯⨯=--(3分) 2、杨氏双缝实验中以波长nm 600=λ的单色光入射到双缝上时,在距离双缝cm 50的光屏上 测得条纹宽度为mm 3.0求:双缝的间距。

【答案】:解:杨氏双缝实验条纹的宽度 λd D y =∆=mm 3.0(3分) mm m m mm y D d 1001.01061035.074==⨯⨯⨯=∆=--λ(4分) 3、在洛埃镜实验中,nm 500=λ的绿光源S 在反射镜左方40cm 处,与镜面垂直距离为1mm ,镜长40cm ,在镜右方40cm 处垂直放置观察屏。

求:(1)画光路图,求干涉条纹间隔;(2)一共最多能观察到多少条明纹。

【答案】:解:(1)mm r mm d 1200 ,20==(1分)mm d r y 3.01052120070=⨯⨯==∆-λ(2分) 804012=y ,mm y 22=;(1分) 408011=y , mm y 5.01= (1分) 明纹间隔数:53.05.0212=-=∆-y y y (1分) 最多明纹数:6条 (1分) 4、杨氏双缝实验中以波长nm 600=λ的单色光入射到双缝上时,在距离双缝cm 50的光屏上测得条纹宽度为mm 3.0求:1)双缝的宽度;2)若在一缝后放置厚度为mm 3108.4-⨯的平板式薄介质膜发现新的中央亮条纹恰好落到原来第4级亮条纹处,求介质的折射率。

【答案】:杨氏双缝实验条纹的间距λd D y =∆=mm 3.0 (1分) mm m m mm y D d 1001.01061035.074==⨯⨯⨯=∆=--λ(2分) 加入玻璃板后光程差变化了)1(-=∆n d δ 由题意可知=-=∆)1(n d δλ4 (2分)5.11108.410641467=+⨯⨯⨯=+=--mm d n λ (2分) 5、如图在双缝干涉实验中,mm d 5.0=,cm D 50=用波长nm 480=λ的光垂直照射。

相关文档
最新文档