算法实验四_空间最近点对算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、算法分析
该算法的问题描述为:给定二维平面上的点集,求解距离最近的两个点,并计算出两点间的距离。
解决问题最初的思路为穷举法。对所有两点间的组合计算其距离。然后对其进行比较,找出最小值即可。不过这样做的缺点是时间复杂度和空间复杂度十分庞大,消耗巨量资源。如有n个点的平面上,计算的复杂度能达到n*n。因此设计出一个高效的算法来代替穷举法是有现实意义的。
在思考问题的过程中,可以考虑使用分治法的思想,以x,y中x坐标作为划分区间的标准。将平面点集一分为二。求解其中的最小点对。由此产生的问题为划分点附近两个区间中两点的距离可能小于各自区间中的最小值,产生了纰漏。因此在在分治的过程中,加入分界线附近的点对最小值求解函数。分界线区域内区间的选取标准为d。其中d为左半区间和右半区间的最小值中的较小值。在具体实现中,首先建立一个空数组存放按y坐标排序的点集,判断两个相邻点之间的y坐标差值,若大于d,则两点间距离一定大于d,可以直接跳过,继续判断下一个点对。若小于d,则继续计算两点间的实际距离,若大于d,则跳过,小于d,将最小值更新为该点对距离。
二、算法实现
该算法的具体实现使用了两种求解方法,穷举法和分治法。其中,穷举法用于判断最近点对算法实现结果的正确性。
算法使用的数据结构为数组,其中为了简单起见,将x轴坐标与y轴坐标分别存入两个数组,并新建一个数组record[],记录数组y的元素下标,用于绑定x坐标对应的y坐标。
在设计过程中使用到了比较排序算法,用于对x及y坐标排序,这并不增加其时间复杂度。因此是可行的。
在分治算法中,设置划分区间的下限为3,即当区间内元素个数小于等于3时,不再使用分治。在该设定下分为三种情况,元素数为1时,Min设为无穷。元素数为2时,计算两点间距离并返回。元素数为3时,一共计算三次距离,并取其最小值。
分治算法本身的思想为将分治与中线区间写在一个函数中,边界点的情况抛出,边界情况即元素数小于等于3时。确保程序执行起始和终止位置的正确性。
三、实验结果
在实现过程中,选取点对数为5,输入不同的三组元素,进行算法正确性的验证。
1.(9,3) (7,10) (0,6) (5,8) (10,11)
实验结果如下图所示:
2.(34,5) (13,1) (5,62) (18,4) (32,15)
实验结果如下图所示:
3.(23,7) (47,19) (50,16) (35,54) (14,29) 实验结果如下图所示: