有限元分析在钢筋混凝土结构中的应用

合集下载

有限元实验报告

有限元实验报告

有限元实验报告一、实验目的本实验旨在通过有限元方法对一个复杂的工程问题进行数值模拟和分析,从而验证理论模型的正确性,优化设计方案,提高设计效率。

二、实验原理有限元方法是一种广泛应用于工程领域中的数值分析方法。

它通过将连续的求解域离散化为由有限个单元组成的集合,从而将复杂的偏微分方程转化为一系列线性方程组进行求解。

本实验将采用有限元方法对一个具体的工程问题进行数值模拟和分析。

三、实验步骤1、问题建模:首先对实际问题进行抽象和简化,建立合适的数学模型。

本实验将以一个简化的桥梁结构为例,分析其在承受载荷下的应力分布和变形情况。

2、划分网格:将连续的求解域离散化为由有限个单元组成的集合。

本实验将采用三维四面体单元对桥梁结构进行划分,以获得更精确的数值解。

3、施加载荷:根据实际工况,对模型施加相应的载荷,包括重力、风载、地震等。

本实验将模拟桥梁在车辆载荷作用下的应力分布和变形情况。

4、求解方程:利用有限元方法,将偏微分方程转化为线性方程组进行求解。

本实验将采用商业软件ANSYS进行有限元分析。

5、结果后处理:对求解结果进行可视化处理和分析。

本实验将采用ANSYS的图形界面展示应力分布和变形情况,并进行相应的数据处理和分析。

四、实验结果及分析1、应力分布:通过有限元分析,我们得到了桥梁在不同工况下的应力分布情况。

如图1所示,桥梁的最大应力出现在支撑部位,这与理论模型预测的结果相符。

同时,通过对比不同工况下的应力分布情况,我们可以发现,随着载荷的增加,最大应力值逐渐增大。

2、变形情况:有限元分析还给出了桥梁在不同工况下的变形情况。

如图2所示,桥梁的最大变形发生在桥面中央部位。

与理论模型相比,有限元分析的结果更为精确,因为在实际工程中,结构的应力分布和变形情况往往受到多种因素的影响,如材料属性、边界条件等。

通过对比不同工况下的变形情况,我们可以发现,随着载荷的增加,最大变形量逐渐增大。

3、结果分析:通过有限元分析,我们验证了理论模型的正确性,得到了更精确的应力分布和变形情况。

基于ANSYS的钢筋混凝土结构试验有限元分析共3篇

基于ANSYS的钢筋混凝土结构试验有限元分析共3篇

基于ANSYS的钢筋混凝土结构试验有限元分析共3篇基于ANSYS的钢筋混凝土结构试验有限元分析1混凝土结构是我们生活和工作环境中不可或缺的部分。

为了保证结构的安全性和耐久性,需要进行大量的试验和分析。

钢筋混凝土结构试验有限元分析是其中一种方法,本文将介绍如何基于ANSYS进行试验有限元分析。

1、前期准备工作进行钢筋混凝土结构试验有限元分析前,需要进行一些前期准备工作。

首先要确定模型的尺寸和几何形状,包括梁的长度、宽度和高度,钢筋的数量和材料等信息。

其次是建立材料模型。

钢筋和混凝土的本构关系可以参考各种规范和文献,例如ACI318和EHE等。

最后是进行荷载和边界条件的设置。

这些参数可以根据试验的要求进行设定。

2、建立有限元模型通过ANSYS软件建立钢筋混凝土结构的有限元模型。

其中,混凝土部分采用可压缩性线性弹性模型;钢筋采用弹塑性模型,可以考虑材料的塑性性质。

首先,选择适当的元素类型,包括梁单元和实体单元。

对于梁单元,要选择适当的截面类型和断面参数。

对于实体单元,要确定网格的大小和形状。

然后,按照模型的几何形状和材料参数设置单元类型和属性。

最后,进行单元的划分和网格生成,调整边界条件,使其与试验条件保持一致。

3、分析和结果在模型准备就绪之后,进行分析和结果的处理。

首先,定义荷载和边界条件,可以模拟多种加载模式,例如单点荷载、均布荷载、自重等。

然后,进行静态分析或动态分析。

静态分析可以计算结构的变形、应力和应变等参数;动态分析可以模拟结构在地震、风等自然灾害下的响应。

最后,进行结果的处理和分析。

包括可视化、动画演示、应力云图、位移云图等,能够对计算结果进行全方位的检查和分析。

综上所述,基于ANSYS的钢筋混凝土结构试验有限元分析是一种非常有用的手段,可以帮助工程师更准确地评估结构的安全性和耐久性。

它具有良好的可靠性和可操作性,可在较短的时间内快速建立模型和分析结果。

基于ANSYS的钢筋混凝土结构试验有限元分析2钢筋混凝土结构是目前建筑工程最常用的一种结构形式,其优点在于承载能力强、耐久性好、施工方便等。

非线性有限元法在混凝土结构分析中的应用

非线性有限元法在混凝土结构分析中的应用

(hnqn o tr o p n t r f i Gop C og i 00 4 C ia C og i gtp Wa C m ayo e fWa A ar ru , h nqn 4 0 7, h ) e g n
Ab t a t h o g e c n rt tra c n t ui e r lt n mo e,t i p p r e p u d h nr d ci n o n t l me t sr c :T ru h t o ce e ma eil o si t eai d l h s a e x o n s t e i t u t ff i e e n h t v o o o i e mo e ig me h d Us gf i l me ts f r S S c p ct f e no c d c n r t e m l me ta ay i p o e ssmu ain t e d l t o . i n t e e n ot e AN Y a a i o if r e o c ee b a e e n n l ss rc s i l t , h n n i e wa y r o n n ie r s t ac l t n c n r t t c u e o l a t i c l u ai o c ee sr t r .An lss r s l h w ta h n t lme ta ay i a d e p r n e u t a c r n ac o u ay i e u t s o h t te f i ee n n l s n x e i s i e s me tr s l c o d s wi etr t e f i l me t n lsso e r l b e r s l b an d c n c re t . t b t , h nt ee n ay i f h ei l e u t o ti e a o r cl h e i e a t a s y

钢筋混凝土结构的本构关系及有限元模式共3篇

钢筋混凝土结构的本构关系及有限元模式共3篇

钢筋混凝土结构的本构关系及有限元模式共3篇钢筋混凝土结构的本构关系及有限元模式1钢筋混凝土结构的本构关系及有限元模式钢筋混凝土是建筑结构中广泛使用的材料之一。

在结构设计与分析过程中,了解钢筋混凝土的本构关系和有限元模式是十分重要的。

本文将从理论和实践两个层面介绍钢筋混凝土结构的本构关系及有限元模式。

一、理论基础1.1 本构关系本构关系是描述材料应力和应变之间关系的数学模型。

对于钢筋混凝土结构来说,其本构关系可以分为弹性和塑性两个阶段。

如图1所示,该曲线表现了材料的应变和应力之间的关系。

在开始阶段,钢筋混凝土材料表现出弹性行为,即在一定范围内,应变和应力呈线性关系,在这个范围内,应力的变化只取决于外力的变化。

当荷载增加时,材料进入塑性阶段,即出现残余变形,弹性不再适用。

此时,应变和应力的关系呈现非线性态势,应力会逐渐增大,直至材料失效。

图1 钢筋混凝土的本构关系曲线1.2 有限元分析有限元分析是一种近似解微分方程的数值分析方法。

该方法将问题分解成一个有限数量的小区域,在每个小区域内建立数学模型,通过连接小区域,组成总体的数学模型。

对于钢筋混凝土结构的有限元分析,可以采用三维有限元模型或二维\轴对称有限元模型等。

二、实践操作2.1 有限元模型的建立在进行有限元分析前,需要建立合适的有限元模型。

在钢筋混凝土结构的有限元分析中,通常采用ABAQUS、ANSYS软件进行模拟。

有限元模型的建立需要考虑结构的几何形状、材料特性、加载条件等,在模型建立的过程中需要进行模型分析和后处理,如应力监测、应变监测、变形量分析等。

2.2 本构关系的采用在建立有限元模型时需要设置材料弹性模量、泊松比、破坏应力等本构关系参数,这些参数可以通过试验数据和经验公式进行估算。

同时,基于实际结构的材料本身的特性和结构内力状态等影响因素,还需要考虑材料的非线性效应,包括弹塑性分析和的动力分析等。

三、应用现状在实际的建筑结构设计和分析中,钢筋混凝土结构的有限元分析被广泛采用,可以帮助工程师更加准确地预测材料的行为,并定位结构的破坏点及应急防御措施。

有限元计算在水工钢筋混凝土结构计算中的应用

有限元计算在水工钢筋混凝土结构计算中的应用
为 弹性 模 型考 虑 , 算 获 得 本 工 程 不 利 工 况 下 的位 计
2 2 计算模型的建立 . 岩 石基 础底 边约 束全 部位 移 , 岩石基 础上 下游边
约 束水 平顺 河 向位移 , 岩石 基础 两侧 边约 束水 平横河 向位 移 。进水 塔 岩石 基 础 、 凝 土 近 似 为各 向 同性 、 混
范 畴 , 法 进 行 结 构 的 配 筋 计 算 。基 于 以 上 问 题 , 无 本 文 以九 井 岗 水 电站 泄 洪 隧 洞 进 口进 水 塔 工 程 为
ห้องสมุดไป่ตู้
工 况二 : 库水 位 2 60 I闸 门瞬 时开 启 。计算 2.01, T 工 作 门支座 支撑 板配 筋 。
例 , 用 Any 有 限 元 分 析 软 件 , 混 凝 土 衬 砌 作 利 ss 将
移及 应 力 分布 特 征 , 而 确定 进 口段 衬 砌 结 构 各 断 从
面 的配 筋情 况 。
文 献 EJ 出 了按 照弹 性主 拉应力 图形 配筋 的 的 1给 计 算 公 式 , 限 元 软 件 Any 算 结 构 的配 筋 即是 有 ss计
利用本 软件计 算 出结构 各部 位 的主拉 应力 , 根据文 再 献[ , ] 出的公 式计算 钢筋 的截 面 面积 。 12 给
孔 宽 75m。进水塔 所 在部位 的地 层 岩性 , . 主要 为浅
粒岩, 围岩类 型为 Ⅲ类 。
2 计 算 工 况 及 建 立模 型
2 1 计 算工 况 . 根据实际工程情况 , 只需 考 虑 以 下 两 种 最 不 利
收 稿 日期 :0 00 一l 2 1—3l 作者简介 : 徐 金 (9 9 )男 , 徽 芜 湖 人 , 士 , 17 一 , 安 硕 安徽 省 水 利水 电勘 测 设 计 院 工 程 师

钢筋混凝土结构非线性有限元分析共3篇

钢筋混凝土结构非线性有限元分析共3篇

钢筋混凝土结构非线性有限元分析共3篇钢筋混凝土结构非线性有限元分析1钢筋混凝土结构是现代建筑结构中常用的一种结构形式。

由于钢筋混凝土结构自身的复杂性,非线性有限元分析在该结构的设计和施工过程中扮演着重要的角色。

非线性有限元分析是建立在解析的基础之上的,它可以更真实地模拟结构在实际载荷下的变形和破坏特性。

本文对钢筋混凝土结构的非线性有限元分析进行细致的介绍。

首先需要了解的是,钢筋混凝土结构存在多种非线性问题,如材料非线性、几何非线性和边界非线性等。

这些非线性问题极大地影响了结构的受力性能。

在结构的设计阶段,要对这些非线性因素进行充分分析。

钢筋混凝土结构在材料方面存在很多非线性问题,例如,混凝土的拉应力-应变曲线存在非线性变形,钢筋的本构关系存在弹塑性和损伤等等。

这些材料的非线性特性是钢筋混凝土结构变形和破坏的重要因素。

钢筋混凝土结构材料的非线性特性需要通过相关试验来获得,例如混凝土的轴向拉伸试验和抗压试验,钢筋的拉伸试验等,试验数据可以被用来建立预测结构非线性响应的有限元模型。

钢筋混凝土结构在几何方面存在很多非线性问题,例如,结构的非线性变形、结构的大变形效应、结构的初始应力状态等等。

钢筋混凝土结构几何的非线性效应可通过有限元分析明确地描述。

要对几何非线性进行分析,通常使用非线性有限元分析程序,其中包括基于条件梯度最优化技术的材料和几何非线性分析以及有限元法分析中使用的高级非线性模拟技术。

钢筋混凝土结构的边界条件也可能导致结构的非线性响应,例如基础的扰动、结构的支承和约束条件等。

所有这些条件都会导致模型在分析中出现非线性行为。

最后,非线性有限元分析可以简化结构设计的过程,并且可以更准确地分析结构的性能。

另外,分析过程中还可以考虑更多因素,例如局部的材料变形、应力浓度等等,让设计人员了解到结构的真实状态。

总之,钢筋混凝土结构非线性有限元分析是现代建筑结构中常用的一种结构分析方式,对于设计和施工都有着重要的意义。

钢筋混凝土梁非线性有限元分析在实际工程中的应用

钢筋混凝土梁非线性有限元分析在实际工程中的应用



} i

i ; ;

f O 0 n 0 S
4O∞
3 0 0 6
32【 l x 2800 24oo
图 2 混凝土的应力 一应变关系曲线
SG 2 0 I O 0
16oo l x 2【 】 800 4O O
科 学之 友
Fedfcne m t r rn ic a u i oS e A e s
21年1月 00 2
钢 筋 混凝 土梁 非线 性 有 限元分 析 在 实际工程 中的应 用
曹丽园 ,乔冠峰
(. 1 太原理工大学建筑与土木工程学院,山西 太原 0 0 2 ;2山西省建筑职业技术学院 ,山西 30 4 . 太原 000) 3 00
3 工程 实例
以下为笔者所做实际工程 的部分平面图( 由于该 工程为地下
I 6
0 8 24

32
4 EPS
48
56
64 72
Байду номын сангаас

人防工程 , 配筋量 较大 , 根据需要梁 中纵向受力 钢筋均采用三级 钢 )L 见图 3 将其 简化为 简支梁进行分析 。 ,】 , 梁长度为 3m, 截面
建议 的公式 , 上升段为二次抛物线 , 之后为一水平 的直线段即 :
当 ≤ 时, : [- 18/o ; C 1 ( - c )] s
当 B ≤s ≤ 时 , Co o o= r
其 中 : 为 混 凝 土 的峰 值 压 力 ,取 《 凝 土 设 计 规 范 》 f 混 ( B 0 12 0 ) G 5 0 — 0 2 规定 的轴心抗压强度设计值 ; s 和 分别为混凝

ansys 钢筋混凝土建模

ansys 钢筋混凝土建模

ansys 钢筋混凝土建模Ansys 钢筋混凝土建模在现代工程领域中,钢筋混凝土结构的应用极为广泛,从高楼大厦到桥梁隧道,从水利设施到工业厂房,无一不见其身影。

为了确保这些结构的安全性、可靠性和经济性,对其进行准确的力学分析至关重要。

Ansys 作为一款功能强大的有限元分析软件,为钢筋混凝土建模提供了高效且精确的解决方案。

钢筋混凝土是一种由钢筋和混凝土两种材料共同作用的复合材料。

混凝土具有较高的抗压强度,但抗拉强度较低;而钢筋则具有良好的抗拉性能。

在实际结构中,两者协同工作,共同承受外力。

因此,在Ansys 中进行钢筋混凝土建模时,需要准确地模拟这两种材料的特性以及它们之间的相互作用。

首先,我们来谈谈混凝土的建模。

在 Ansys 中,混凝土通常可以采用实体单元进行模拟。

对于混凝土的本构关系,我们可以选择合适的模型,如经典的混凝土损伤塑性模型(Concrete Damaged Plasticity Model)。

这个模型能够较好地考虑混凝土在受压和受拉时的非线性行为,包括混凝土的开裂、压碎等现象。

在定义混凝土的材料参数时,需要输入诸如弹性模量、泊松比、抗压强度、抗拉强度等参数。

这些参数的准确取值对于模型的准确性至关重要。

一般来说,可以通过实验测试或者参考相关的规范和标准来获取这些参数。

接下来是钢筋的建模。

钢筋在 Ansys 中有多种建模方法,常见的有两种:一种是使用杆单元(Link Element)来模拟钢筋,另一种是将钢筋嵌入到混凝土实体单元中(Embedded Element)。

使用杆单元模拟钢筋时,需要定义钢筋的截面积、弹性模量、屈服强度等参数。

这种方法计算效率较高,但对于钢筋与混凝土之间的粘结滑移行为模拟不够精确。

将钢筋嵌入到混凝土实体单元中的方法能够更准确地考虑钢筋与混凝土之间的相互作用,但计算量相对较大。

在这种方法中,需要确保钢筋单元与混凝土单元之间的节点协调。

在钢筋混凝土建模中,还需要考虑钢筋与混凝土之间的粘结滑移。

ANSYS在钢筋混凝土梁热分析中的应用

ANSYS在钢筋混凝土梁热分析中的应用

ANSYS在钢筋混凝土梁热分析中的应用【摘要】在火灾荷载的条件下,钢筋混凝土构件内部的温度场分布,对火灾后的构件能否继续使用,具有重要的作用。

ANSYS作为大型有限元软件,在有限元分析中得到了普遍的应用.本文首先从混凝土梁截面热分析入手,然后进行混凝土构件梁整体热分析,从而比较两者在热分析中的误差,从而得出ANSYS 在热分析中方法及思路。

【关键词】ANSYS;热分析;钢筋混凝土梁Reinforced concreted beam in the application of thermal analysis with ANSYS【Abstract】With the fire load conditions, the inside temperature field distribution of concrete beam has an important role on the components. As large-scale finite element software, the finite element analysis has gained widespread application. Comparing the thermal analysis of concrete beam section with the overall thermal analysis of concrete beams, and then draw the differences and similarities, which take thermal analysis in ANSYS in the methods and ideas.【Key words】ANSYS;Thermal analysis;Reinforced concrete beam1. 前言组成钢筋混凝土梁构件的材料,在火灾荷载作用下,其热工性能和力学性能会产生明显的变化,变形也会明显增大,由于构件在受火时,体积膨胀、截面温度不均匀分布,都会使截面产生自平衡的温度应力和构件弯曲变形[1]。

基于ANSYS的钢筋混凝土结构非线性有限元分析

基于ANSYS的钢筋混凝土结构非线性有限元分析

2、应力-应变曲线:描述了混凝土和钢筋的在往复荷载作用下的变形和能量吸收能力,显示 了结构的塑性变形和损伤演化过程。
参考内容
引言
钢筋混凝土结构在建筑工程中具有重要地位,其非线性行为对结构性能影响 显著。因此,进行钢筋混凝土结构的非线性有限元分析对于预测结构响应、优化 结构设计具有实际意义。本次演示将根据输入的关键词和内容,建立钢筋混凝土 结构非线性有限元分析模型,并详细描述分析过程、结果及结论。
基于ANSYS的钢筋混凝土结构 非线性有限元分析
基本内容
引言:
钢筋混凝土结构是一种广泛应用于建筑工程的重要材料,其非线性力学行为 对结构设计的安全性和稳定性具有重要影响。为了精确模拟钢筋混凝土结构的真 实行为,需要借助先进的数值计算方法,如非线性有限元分析。ANSYS作为一种 广泛使用的有限元分析软件,为钢筋混凝土结构的非线性分析提供了强大的支持。
对于钢筋混凝土,其非线性行为主要来自两个方面:混凝土的本构关系和钢 筋与混凝土之间的相互作用。在非线性有限元分析中,需要建立合适的模型来描 述这些行为。例如,可以采用各向异性本构模型来描述钢筋混凝土的力学行为, 该模型可以捕捉到材料在不同主应力方向上的不同响应。
二、ANSYS中混凝土本构关系研 究
在进行荷载试验时,通过施加不同大小和方向的荷载,检测结构的变形和破 坏过程。采用静力荷载试验和动力荷载试验两种方式,分别模拟实际结构在不同 荷载条件下的响应。在试验过程中,记录各阶段的位移、应变和荷载数据。
在进行有限元分析时,采用ANSYS软件对试验数据进行模拟分析。首先进行 模态分解,了解结构的基本振动特性。随后进行屈曲分析,预测结构的失稳趋势。 通过调整模型参数和网格划分,对比分析不同方案下的有限元计算结果,为结构 的优化设计提供依据。

非线性有限元在结构分析中的应用综述

非线性有限元在结构分析中的应用综述

非线性有限元在结构分析中的应用综述摘要:钢筋混凝土结构在土木工程中应用越来越广泛,随着理论研究的进一步深入和电子计算机的飞速发展,钢筋混凝土非线性有限元法得到了迅速的发展,尤其近几年来,在结构分析领域,钢筋混凝土非线性有限元法的应用日趋普遍。

因为非线性有限元法具有“全过程仿真”的特点,对于钢筋混凝土这种应用最为广泛而又复杂的结构更是有着其他方法无法比拟的优势。

从钢筋混凝土非线性有限元分析理论及其在结构工程中的应用说明了钢筋混凝土非线性有限元分析已成为结构分析中不可或缺的关键部分。

关键词:结构分析;非线性;仿真;有限元分析钢筋混凝土结构是土建工程中应用最为广泛的一种结构。

但是对钢筋混凝土的力学性能掌握的还不够全面,特别是混凝土。

因为混凝土成分复杂、性能多样。

长期以来,人们用线弹性理论来分析钢筋混凝土结构的应力或内力,以极限状态的设计方法确定构件的承载能力、刚度、和抗裂性,显然二者是互不协调的。

非线性有限元分析就是结合钢筋混凝土特点而新发展起来的一种弹塑性分析方法。

有限元分析方法能够给出结构内力和变形发展的全过程;能够描述裂缝的形成和扩展,以及结构的破坏过程及其形态;能够对结构的极限承载能力和可靠度作出评估;能够揭示出结构的薄弱部位和环节,以利于优化结构的设计。

同时,它能广泛地适应于各种结构类型和不同的受力条件和环境。

一、有限元方法发展概况最早把有限元分析方法用于钢筋混凝土结构的是美国学者D.Ngo和A.C.Scordelies,在他们的研究中,沿用已有的有限元方法,将钢筋和混凝土均划分为三角形单元,用线弹性理论分析钢筋和混凝土的应力;并针对钢筋混凝土结构的特点,在钢筋和混凝土之间附加了一种粘结弹簧,从而可以分析粘结应力的变化;对于裂缝,他们根据实验,预先设置了一条剪切斜裂缝,裂缝间也附加了特殊的连结弹簧,以模拟混凝土裂缝间的骨料咬合力和钢筋的销栓作用。

1968年,Nilsson等人发展了Ngo的工作,将钢筋与混凝土之间的非线性粘结关系及混凝土的非线性应力应变关系引入有限元分析。

钢筋混凝土有限元模型简化方法方面

钢筋混凝土有限元模型简化方法方面

钢筋混凝土有限元模型简化方法方面钢筋混凝土是一种常用的建筑材料,广泛应用于各种结构中。

在结构分析中,有限元方法是一种常用的分析方法,可以用于模拟和预测结构的力学行为。

然而,钢筋混凝土结构的有限元模型往往非常复杂,需要大量的计算和时间。

因此,简化有限元模型成为一个重要的研究方向。

钢筋混凝土结构的有限元模型可以通过多种方法进行简化。

首先,可以通过降低模型的维度来简化模型。

钢筋混凝土结构往往是三维的,但在某些情况下,可以将其简化为二维平面模型或轴对称模型。

这种简化方法可以大大减少计算量和模型复杂性,提高计算效率。

另一种简化有限元模型的方法是采用等效单元模型。

在钢筋混凝土结构中,钢筋和混凝土具有不同的材料性质和力学行为。

为了简化模型,可以将钢筋和混凝土等效为单一材料,使用单一材料的性质来代替钢筋和混凝土的复杂行为。

这种方法可以减少模型中的节点数和单元数,简化模型的计算和分析过程。

还可以通过简化结构的几何形状来简化有限元模型。

钢筋混凝土结构往往具有复杂的几何形状,例如梁、柱、板等。

在某些情况下,可以将复杂的结构形状简化为简单的几何形状,例如矩形、圆形等。

这种简化方法可以减少模型中的节点数和单元数,简化模型的计算和分析过程。

另一种常用的简化有限元模型方法是采用等效荷载模型。

在实际情况中,钢筋混凝土结构可能受到多种荷载的作用,例如静荷载、动荷载等。

为了简化模型,可以将不同荷载转化为等效荷载,使用等效荷载来代替实际荷载。

这种方法可以减少模型中的节点数和单元数,简化模型的计算和分析过程。

钢筋混凝土结构的有限元模型还可以通过简化材料性质来简化模型。

在实际情况中,钢筋混凝土的材料性质可能具有很大的变化范围。

为了简化模型,可以将材料性质统一为某个平均值或简化的数值。

这种方法可以减少模型中的节点数和单元数,简化模型的计算和分析过程。

钢筋混凝土结构的有限元模型可以通过降低维度、采用等效单元模型、简化结构几何形状、采用等效荷载模型以及简化材料性质等方法进行简化。

钢筋混凝土构件ABAQUS有限元模拟分析理论研究

钢筋混凝土构件ABAQUS有限元模拟分析理论研究

钢筋混凝土构件 ABAQUS有限元模拟分析理论研究摘要:ABAQUS是一套功能非常强大的基于有限元方法的工程模拟软件,它可以解决从相对简单的线性分析到极富挑战性的非线性模拟等各种问题。

ABAQUS 有限元分析混凝土损伤塑性模型理论主要有弹性理论、非线性弹性理论、弹塑性理论、粘弹性理论、断裂力学理论、损伤力学理论和内时理论等。

关键词:ABAQUS;有限元分析1 ABAQUS有限元软件介绍ABAQUS是一套功能非常强大的基于有限元方法的工程模拟软件,它可以解决从相对简单的线性分析到极富挑战性的非线性模拟等各种问题。

ABAQUS具备十分丰富的单元库,可以模拟任意实际形状。

ABAQUS也具有相当丰富的材料模型库,可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混凝土、可压缩的弹性泡沫以及地质材料(例如土壤和岩石)等。

作为一种通用的模拟工具,应用ABAQUS不仅能够解决结构分析(应力/位移)问题,而且能够模拟和研究热传导、质量扩散、电子元器件的热控制(热-电耦合分析)、声学、土壤力学(渗流-应力耦合分析)和压电分析等广阔领域中的问题。

ABAQUS为用户提供了广泛的功能,使用起来十分简便,即便是最复杂的问题也可以很容易的建立模型。

例如,对于多部件问题,可以通过对每个部件定义合适的材料模型,然后将他们组装成几何构形。

对于大多数模拟,包括高度非线性的问题,用户仅需要提供结构的几何形状、材料性能、边界条件和载荷工况等工程数据。

在非线性分析中,ABAQUS能自动选择合适的载荷增量和收敛准则。

ABAQUS不仅能够自动选择这些参数的值,而且在分析过程中也能不断地调整这些参数值,以确保获得精确的解答。

用户几乎不必去定义任何参数就能控制问题的数值求解过程。

ABAQUS由两个主要的分析模块组成:ABAQUS/Standard和ABAQUS/Explicit。

其中在ABAQUS/Standard中还附加了三个特殊用途的分析模块:ABAQUS/Aqua、ABAQUS/Design和ABAQUS/Foundation。

ABAQUS钢筋混凝土有限元分析

ABAQUS钢筋混凝土有限元分析

ABAQUS钢筋混凝土有限元分析钢筋混凝土是工程结构中常用的材料之一,它由水泥、砂、骨料和钢筋等材料组成。

ABAQUS是一种常用的有限元分析软件,可以实现对钢筋混凝土结构的静力和动力分析。

钢筋混凝土有限元分析通常包括以下几个步骤:建模、网格划分、施加载荷、求解、分析结果和后处理。

在建模过程中,首先需要确定模型的几何形状和边界条件,如结构的尺寸、截面形状和荷载情况。

然后,使用ABAQUS中的三维实体或平面模型来创建结构模型。

接下来,进行网格划分,将模型分割成小的有限元单元,以便于后续的分析计算。

在施加载荷过程中,需要根据具体的分析目的和加载方式给定荷载条件,如静力荷载或动力荷载。

可以给定荷载的大小、方向和作用位置。

在求解过程中,使用ABAQUS的求解器对结构模型进行计算,得到结构的受力状况。

分析结果包括了应力、应变、位移和反应力等参数。

可以使用ABAQUS中的后处理工具来查看和分析这些结果。

可以绘制应力云图、位移云图、剪力和弯矩图等,以提供直观的分析结果。

钢筋混凝土有限元分析在工程实践中有多个应用领域。

例如,在建筑结构设计中,可以分析钢筋混凝土柱、梁、板和墙等元件的受力性能,以评估结构的稳定性和安全性。

在桥梁工程中,可以分析钢筋混凝土桥墩和桥面板的受力性能,以确定其荷载承载能力。

在地基工程中,可以分析钢筋混凝土基础的受力状况,以评估地基的稳定性和变形性能。

总体而言,钢筋混凝土有限元分析可以帮助工程师更好地理解和评估钢筋混凝土结构的受力性能,以指导结构设计和施工过程。

同时,利用ABAQUS这类有限元分析软件,可以提高分析效率和计算精度,为工程实践提供有力的技术支持。

ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素

ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素

ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素随着工程建设和技术水平的不断提升,ABAQUS有限元分析技术被广泛应用于工程力学领域,特别是结构力学方面的研究中。

钢筋混凝土连续梁是一种常见的工程结构,在受力过程中会出现内力分布的变化。

本文将以ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素为主题,对此进行探讨。

1. 梁的几何形状和区间长度钢筋混凝土连续梁的几何形状和区间长度是影响内力分布的主要因素之一。

随着几何形状的变化,梁的受力情况也会发生变化,因此影响内力分布的因素包括梁的截面形状、宽度、高度等方面,以及不同区间长度的差异等。

2. 材料性质材料性质是影响钢筋混凝土梁内力分布的另一个关键因素。

钢筋混凝土的强度、韧性等基本性质都会对内力分布产生重要的影响。

在ABAQUS有限元分析中,材料性质的设定是十分重要的,包括混凝土、钢筋的材料性质等方面。

3. 荷载类型和荷载大小荷载类型和荷载大小都对内力分布产生重要的影响。

不同类型的荷载会产生不同的力学响应,从而影响内力的分布情况。

同时,荷载大小的不同也会影响内力分布的程度和形态。

4. 支座形式支座形式是钢筋混凝土连续梁内力分布的另一个重要因素。

不同的支座形式会对梁的刚度产生不同的影响,从而对内力分布产生不同的影响。

在ABAQUS有限元分析中,支座形式的设定需要考虑支座的类型、位置、刚度等因素。

综上所述,钢筋混凝土连续梁内力重分布的影响因素包括梁的几何形状和区间长度、材料性质、荷载类型和荷载大小、支座形式等方面。

针对这些因素,我们可以通过ABAQUS有限元分析工具,对钢筋混凝土连续梁内力分布情况进行模拟和计算,并针对不同的影响因素进行分析和改进,进一步提高工程建设的质量和性能。

为了更好地分析钢筋混凝土连续梁内力重分布的影响因素,我们需要收集和整理相关的数据,进行量化和分析。

以下是一些可能的数据类型和分析方法。

1. 梁的截面面积和惯性矩梁的截面面积和惯性矩是直接影响内力分布的因素之一。

粘钢加固钢筋混凝土梁抗弯性能有限元分析

粘钢加固钢筋混凝土梁抗弯性能有限元分析

粘钢加固钢筋混凝土梁抗弯性能有限元分析在建筑结构领域,钢筋混凝土梁作为常见的承重构件,其性能的优劣直接关系到整个结构的安全性和稳定性。

随着时间的推移和使用条件的变化,一些钢筋混凝土梁可能会出现承载力不足、裂缝过大等问题,影响其正常使用。

粘钢加固作为一种有效的加固方法,能够显著提高钢筋混凝土梁的抗弯性能。

为了深入了解粘钢加固钢筋混凝土梁的工作机理和性能特点,有限元分析成为了一种重要的研究手段。

有限元分析是一种基于数学和力学原理的数值计算方法,它可以将复杂的结构离散为有限个单元,并通过求解方程组来模拟结构的受力和变形情况。

在粘钢加固钢筋混凝土梁的有限元分析中,需要建立合理的模型,包括混凝土、钢筋和钢板等部件,并定义它们之间的相互作用关系。

首先,混凝土材料的模拟是一个关键问题。

混凝土是一种非均质、非线性的材料,其力学性能受到多种因素的影响,如强度等级、骨料类型、加载方式等。

在有限元分析中,通常采用混凝土损伤塑性模型来描述混凝土的受力行为。

该模型考虑了混凝土在拉压作用下的损伤演化和塑性变形,可以较好地模拟混凝土的开裂和破坏过程。

钢筋作为混凝土梁中的主要受力部件,其模拟也需要准确可靠。

一般采用桁架单元来模拟钢筋,并通过定义钢筋的本构关系来反映其力学性能。

常用的钢筋本构关系有理想弹塑性模型和双折线模型等。

钢板在粘钢加固中起到增强梁的抗弯能力的作用。

钢板通常采用壳单元进行模拟,并定义其材料属性和厚度。

在模拟钢板与混凝土之间的粘结作用时,可以采用粘结单元或者设置接触关系来实现。

在建立有限元模型时,还需要考虑边界条件和加载方式。

边界条件应根据实际情况进行设置,例如简支梁的两端可以设置为铰支约束。

加载方式可以采用集中力加载或者均布荷载加载,以模拟梁在实际使用中的受力情况。

通过有限元分析,可以得到粘钢加固钢筋混凝土梁在不同荷载作用下的应力分布、变形情况和破坏模式等重要信息。

例如,在加载初期,梁的跨中挠度较小,混凝土和钢筋的应力也处于较低水平。

钢筋混凝土结构有限元分析的建模

钢筋混凝土结构有限元分析的建模

钢 筋 混 凝 土 结 构 有 限 元 分 析 的 建 模
封 南
摘 要: 结合有 限元分 析 时对计算模 型 的基本 要求, 绍 了钢筋 混凝 土结构 的三种 有限元分析模 型, 介 分析 了各 种模型在 钢筋混凝土结构 中的应 用, 总结 了各 自的特点并进行 了具体 阐述 , 以期指导钢筋 混凝土 结构设 计。 关键词 : 钢筋混凝 土结构 , 限元模 型 , 合式, 离式, 有 组 分 整体式
性质不 同 的材料 — — 混 凝 土 和 钢筋 组 合 而成 的 , 因此 其 材 料 性 能非 情况 , 为结 构设计 提供理 论依据。
常复杂。有限元分析方法作为研究混凝土结榭 陛能的有力工具应用 1 有 限元模 型 的建立 于钢筋混凝土分析始于 16 97年美 国学者 D. g A. S d i 他 N o和 C.mrds , 有 限元 分 析 的 最 终 目 的 是 要 还 原 一 个 实 际 工 程 系 统 的 数 学 们把有限元分析方法应 用于钢筋混凝土 简支梁 的抗剪分 析 , 理 行 为特 征 , 其 建立准确 而可靠 的结构有限元计算 模型直接 关系到计 论基础就是通过对 实体结构 进行简化 , 以求解 有限个数 值来模 拟 算结 果的正确 与否 , 实际工程问题 中往 往非常复杂 , 构形状 、 在 结 真实环境 的无 限个 未知 量 的近似 计算 方法 。在 钢筋 混凝 土结 构 支 承边 界 、 载荷等存 在各 种可能 , 因此 , 在对具体问题进行有限元 产生 的侧向压应 力作用下 的三 向应力状 态 , 提高 了砖柱 的抗压强 度 。同时在砖柱 上粘贴 C R F P可以使得结 构的延性 大幅提 高 , 提 在校 舍 内部 的部 分 承重 墙 由 于 和梁 的接 触 面 积 很 小 , 成 局 部 造 高抗震 耗能能力 。 压力过大 , 产生如 图 5 所示的裂缝形态( 裂缝上下较细 、 中间较宽) 。

钢-混凝土组合梁结构试验研究与有限元分析

钢-混凝土组合梁结构试验研究与有限元分析

钢-混凝土组合梁结构试验研究与有限元分析胡少伟;喻江【摘要】双箱钢-混凝土组合梁结构是一种新型钢-混凝土组合结构,具有较好的应用前景。

为研究该种组合梁的结构性能,并分析其强度和刚度的主要影响因素,设计了两根组合梁模型进行试验研究。

通过测试其跨中截面应变、纵向挠度、承载能力等参量来分析该组合梁的荷载应变曲线、荷载挠度曲线等。

借助有限元软件ANSYS 建立了组合梁的三维空间有限元模型,考虑材料非线性,对该组合梁模型进行了有限元分析。

分析结果与试验结果的比较分析表明,两者吻合良好,表明该研究对工程应用具有一定的指导作用和参考价值。

%The double - box steel - concrete composite beam structure is a new type of steel - concrete composite structure that has wide application prospect. In order to further investigate the mechanical performance of the composite structure and analyze the influential factors of strength and stiffness,two specimens model beam were designed and studied. Through the measuring pa-rameters such as the strain of mid - span cross - section,longitudinal deflection and bearing capacity,the loading - strain curve and loading - deflection curve were analyzed. By consideration of the material nonlinearity,a 3D model for the composite beam is established and analyzed by ANSYS. Finally,the comparative analysis between experimental test and finite element simulation is conducted,which shows a high correlative agreement with each other. This research has a certain guidance and reference value for engineering application.【期刊名称】《人民长江》【年(卷),期】2015(000)008【总页数】6页(P50-55)【关键词】双箱组合梁;试验研究;有限元模拟;对比分析【作者】胡少伟;喻江【作者单位】南京水利科学研究院材料结构研究所,江苏南京 210024;南京水利科学研究院材料结构研究所,江苏南京 210024; 河海大学土木与交通学院,江苏南京 210098【正文语种】中文【中图分类】TV335钢-混凝土组合结构经过近100 a的研究和发展,因其具有良好的受力性能已广泛应用于交通工程、桥梁工程、高层建筑工程等领域。

有限元法在钢混结点刚度分析中的应用

有限元法在钢混结点刚度分析中的应用

其 中 ,D ] [ 为混凝土材料的弹性矩阵 ;D ] [ 为钢筋的弹性矩阵。
当分析 区域较 大 , 计算 机软 件和硬 件 的限制 , 法 将钢 筋 受 无
弹性力 学平面问题 扩展到 空 间问题 、 板壳 问题 , 由静 力平衡 问 题 和混凝土分别划分单元 , 同时关心 的是结构物在 外荷 载作用下 的 扩 展到稳定问题 、 动力 问题 和波 动问题 。分析 的对象从 弹性材 料 宏观反应 , 这种情况下采用整体式模型 比较合适 。 扩展到塑性 、 弹性 、 粘 粘塑性和复合材料 等 , 固体力 学扩展 到流 从
. 1 ~。因此 , 混凝 土收缩 当量温差为 : 筑 , 施工到投入使 用 , 从 结构 所 承受 的温度 作用 在各 阶段 是不 同 仅 为 5 0× 0
的, 相应的温度作用 效应 也会 随 之发 生改变 , 只有充 分分 析建 筑
物在各个 阶段 所承受 的温度荷载类 型 , 采用合适 的温度 荷载 计算 2 2 季 节温 差 .
AT=T 一 。
1 温度 参数 的确 定
厦 门地区温度 计 算基 本 参数 取 值 : 季 室外 E平 均气 温 为 夏 t 3 . 冬 季室外 E平均气 温为 4 。室 内温度 计算取 值 : 5 6o C; t 正常
考虑施工过程 中的结构混凝 土 自身收缩作 用 , 只需将 混凝 土
析软件 很 多 , 主要 有德 国的 A K 英 国 的 P F C 法 国的 S S 种 。位移协调式是钢筋单元 和混凝 土单元共 用节 点 , 优点是 建 S A, AE , Y- 其 T S 美 国 的 A A U , D N A S S B R A E, O O C S 模 比较方便 , 以任意布置钢筋并 可直观获 得钢筋 内力 。缺点是 U, B Q S A IA, N Y , E S F B S R, O — 可
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论文题目:钢筋混凝土有限元分析技术在结构工程中的应用
学生姓名:***
学号:**********
学院:建筑与工程学院
2015年06月30日
有限元分析在钢筋混凝土结构中的应用【摘要】在国内外的土木工程中,钢筋混凝土结构因具有普遍性、可靠性良好、操作简单等优点,而得到了广泛的应用。

钢筋混凝土结构是钢筋与混凝土两种性质截然不同的材料组合而成,由于其组合材料的性质较为复杂,同时存在非线性与几何线形的特征,应用传统的解析方法进行材料的分析与描述在受力复杂、外形复杂等情况下较为困难,往往不能得到准确的数据,给工程安全带来隐患。

而有限元分析方法则充分利用现代电子计算机技术,借助有限元模型有效解决了各种实际问题。

【关键词】有限元分析;钢筋混凝土结构;应用
随着计算机在工程设计领域中的广泛应用,以及非线性有限元理论研究的不断深入,有限元作为一个具有较强能力的专业数据分析工具,在钢筋混凝土结构中得到了广泛的应用。

在现代建筑钢筋混凝土结构的分析中,有限元分析方法展现了较强的可行性、实用性与精确性。

例如:在计算机上应用有限元分析法,对形状复杂、柱网复杂的基础筏板,转换厚板,体型复杂高层建筑侧向构件、楼盖,钢-混凝土组合构件等进行应力,应变分析,使设计人员更准确的掌握构件各部分内力与变形,进而进行设计,有效解决传统分析方法的不足,满足当前建筑体型日益复杂,工程材料多样化的实际情况。

但是在有限元分析方法的应用中,必须结合钢筋混凝土结构工程的实际情况,选取作为合理的有限元模型,才能保证模拟与分析结果的真实性、精确性与可靠性。

在钢筋混凝土结构工程中,非线性有限元分析的基本理论可以概括为:1)通过分离钢筋混凝土结构中的钢筋、混凝土,使其成为有限单位、二维三角形单元,钢箍离散为一维杆单元,以利于分析模型的构建;2)为了合理模拟钢筋、混凝土之间的粘结滑移关系,以及
裂缝两侧混凝土的骨料咬合作用,可以根据实际需要在钢筋、混凝土之间,以及裂缝两侧的混凝土之间设置相应的连结单元;3)结合钢筋混凝土结构的材料性质,选用与各类单元相适应的本构关系,即应力应变关系,此类关系为线性或非线性均可;4)与一般的有限元分析方法相同,非线性有限元分析也需要确定各单元的刚度矩阵,并且将其组合为钢筋混凝土结构的整体刚度矩阵,根据结构所受到的各种荷载作用与约束,计算出有限元结点的位移情况、单元应变与单元应力等。

随着荷载作用的不断加强,可以得到钢筋混凝土结构开始受荷直至完全破坏过程位移、应力、应变、裂缝的实际形成与发展情况,以及钢筋、混凝土结合面的粘结滑移,钢筋的强化与屈服,混凝土压碎破坏等数据与信息。

在钢筋混凝土结构的有限元分析中,与一般材料、结构的分析原理、方法基本相同,但是在进行钢筋混凝土结构离散化时,又具有其特殊性,其主要原因为钢筋与混凝土两种材料在性质方面存在较大的差异,所以,必须通过钢筋混凝土结构有限元模型的创建,求得各种所需的数据与信息。

目前,在国内的钢筋混凝土结构分析中,应用的有限元模型主要有:整体式、分离式、组合式。

1.整体式有限元模型。

在钢筋混凝土结构整体式有限元模型的创建中,一般是将钢筋弥散于整体单元中,并且将单元作为连续、均匀的材料。

钢筋对于整体结构的贡献,通过调整单元中各种材料力学性能参数的方式体现出来,例如:在整体式有限元模型的求解过程中,通过提高材料屈服强度及弹性模量等方式,使得钢筋对于整体结构的
贡献与作用以另外一种形式展现出来,并且得出结构综合单元的刚度矩阵,将弹性矩阵科学划分为钢筋、混凝土两部分。

采用整体式有限元模型的优点主要表现为:建模方便,分析与计算效率较高,但是不适用于钢筋分布不均匀区域进行模型创建与求解,对于钢筋内力的分析也较为困难。

2.分离式有限元模型。

其主要是将混凝土、钢筋划分成足够小的独立单元,按照混凝土、钢筋的力学性能选择相应的单元形式。

分离式有限元模型一般分为:位移协调式、界面单元式等,其中位移协调式有限元模型是通过钢筋单元与混凝土单元共用节点,其优点为建模方便,可以任意进行钢筋的布置,并且准确计算出钢筋内力。

位移协调式有限元模型的缺点则表现为:与整体式模型的建模流程复杂,而且需要综合考虑共用节点的实际位置,容易出现应力集中而造成混凝土拉坏等问题。

界面单元式有限元模型在创建中,需要考虑钢筋混凝土之间的滑移问题,通过加入特定界面的方法进一步提高分析与计算的精度。

一般是在钢筋单元、混凝土单元之间利用弹簧模型进行连接,在现代钢筋混凝土结构中由于钢筋、混凝土之间普遍具有较为理想的锚固,钢筋、混凝土之间因滑移而出现的问题相对较少,所以,在有限元模型创建中一般不需要考虑。

3.组合式有限元模型。

作为一种介于整体式与分离式之间的有限元模型,在其创建过程中假定钢筋、混凝土之间的相互粘结较为理想,不会出现相对滑移的现象。

在进行单元分析时,分别求得混凝土、钢筋对于单元刚度矩阵的贡献,从而组成一个复合单元刚度矩阵。

组合
式模型分为两种:一种是分层组合式,在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变做出某些假设,这种组合方式在钢筋混凝土板、壳结构中应用较广;另一种组合方法是采用带钢筋膜的等参单元。

在混凝土的本构模型创建中,国内通常采用的混凝土本构模型有:线弹性类本构模型、非线弹性本构模型、弹塑性模型、流变学模型、内时理论、断裂力学理论、损伤力学。

在非线性有限元分析方法的应用中,必须保证混凝土本构模型创建的科学性、合理性与可行性,需要注意的问题主要表现为:1)线弹性类本构模型的创建中,作为一种最为简单、基本的混凝土材料本构模型,其变形在加载与卸载时会沿着同一直线变化,完全卸载后不会出现残余变形的现象,所以,应力与应变必须确定相应的关系,比值表示材料弹性常数,必须进行周密的分析与计算;2)非线弹性本构模型的创建中,应注意到随着应力的不断加大,变形将按照一定的规律非线性增长,刚度也会随之逐渐减小。

在卸载过程中,应变会沿着原曲线返回,不会出现残余应变的现象。

在非线弹性本构模型的应用中,应注意结合混凝土材料受力变形的特点,而各种计算公式与参数值则来自试验数据的回归分析,所以,在实际应用中必须注重试验数据的科学采集与周密计算,从而保证模型创建的效率与质量。

在钢筋、混凝土之间黏结单元的模拟中,国内工程技术人员提出了不同的黏结单元模型,例如:黏结斜杆单元、双弹簧黏结单元、斜弹簧单元、无厚度4节点(6节点)黏结单元等。

但是在黏结、滑移
关系的研究方面,分析初期仍然是采用线性关系,逐步发展为非线性关系,应结合有限元分析的特点与优势,逐步总结出一种具有代表性的应力应变曲线表达式,减少外界因素的影响和限制,进而开发出适合实际情况的计算机模式。

在钢筋混凝土结构的分析中,以往需要依靠大量的经验公式进行设计与计算,难以保证分析与计算结果的精确性,而且不能满足当前建筑体型布置的日益复杂、工程材料的多样化的实际情况。

在现代钢筋混凝土结构工程中,有限元分析方法得到了广泛的应用,特别是随着现代电子计算机技术的快速发展,使得有限元分析方法的适用范围与实际能力不断提高,在钢筋混凝土结构的设计、计算、分析与评价中发挥了重要的作用。

有限元在钢筋混凝土结构的非线性分析中的意义:1)可以在计算机模型中分别反映混凝土和钢筋材料的非线性。

2)可以考虑或模拟钢筋与混凝土之间的粘结。

3)可以在一定程度上模拟节点的构造和边界条件。

4)强大的后处理功能可以提供大量的结构反映信息,可直观的显示结构从受力到破坏的全过程。

5)可以部分代替试验,进行大量的参数分析,由于这些优点,有限元在钢筋混凝土结构的非线性分析中有着广泛的应用前景。

参考文献:
[1] 李丽文.非线性有限元在钢筋混凝土结构分析中的应用[J].中国科技信息,2006(9):10.
[2] 郑海深.有限元法在钢筋混凝土结构分析中的应用[J].山西建筑,2009,35(32),85-86.
[3] 曹丽园,乔冠峰.钢筋混凝土梁非线性有限元分析在实际工程中的应用.科学之友,2010(35).
[4] 刘小燕等.非线性有限元在钢筋混凝土结构分析中的应用于程序设计.长沙交通学院学报,2003,19(2),34-38.
[5] 尤小明.非线性有限元法在混凝土结构分析中的应用.工程质量,2010,28(6),72-74.。

相关文档
最新文档