堆排序算法分析(C语言版)

堆排序算法分析(C语言版)
堆排序算法分析(C语言版)

堆排序

堆排序是利用堆的性质进行的一种选择排序,下面先讨论一下堆。

1.堆

堆实际上是一棵完全二叉树,其任何一非叶节点满足性质:

Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]或者Key[i]>=Key[2i+1]&&key>=key[2i+2]

即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字。

堆分为大顶堆和小顶堆,满足Key[i]>=Key[2i+1]&&key>=key[2i+2]称为大顶堆,满足Key[i]<= key[2i+1]&&Key[i]<=key[2i+2]称为小顶堆。由上述性质可知大顶堆的堆顶的关键字肯定是所有关键字中最大的,小顶堆的堆顶的关键字是所有关键字中最小的。

2.堆排序的思想

利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单。

其基本思想为(大顶堆):

1)将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区;

2)将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n];

3)由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

操作过程如下:

1)初始化堆:将R[1..n]构造为堆;

2)将当前无序区的堆顶元素R[1]同该区间的最后一个记录交换,然后将新的无序区调整为新的堆。

因此对于堆排序,最重要的两个操作就是构造初始堆和调整堆,其实构造初始堆事实上也是调整堆的过程,只不过构造初始堆是对所有的非叶节点都进行调整。

下面举例说明:

给定一个整形数组a[]={16,7,3,20,17,8},对其进行堆排序。

首先根据该数组元素构建一个完全二叉树,得到

然后需要构造初始堆,则从最后一个非叶节点开始调整,调整过程如下:

20和16交换后导致16不满足堆的性质,因此需重新调整,这样就得到了初始堆。

即每次调整都是从父节点、左孩子节点、右孩子节点三者中选择最大者跟父节点进行交换(交换之后可能造成被交换的孩子节点不满足堆的性质,因此每次交换之后要重新对被交换的孩子节点进行调整)。有了初始堆之后就可以进行排序了。

此时3位于堆顶不满堆的性质,则需调整继续调整

这样整个区间便已经有序了。

从上述过程可知,堆排序其实也是一种选择排序,是一种树形选择排序。只不过直接选择排序中,为了从R[1...n]中选择最大记录,需比较n-1次,然后从R[1...n-2]中选择最大记录需比较n-2次。事实上这n-2次比较中有很多已经在前面的n-1次比较中已经做过,而树形选择排序恰好利用树形的特点保存了部分前面的比较结果,因此可以减少比较次数。对于n个关键字序列,最坏情况下每个节点需比较log2(n)次,因此其最坏情况下时间复杂度为nlogn。堆排序为不稳定排序,不适合记录较少的排序。

/*堆排序(大顶堆) 测试程序*/

#include

#include

using namespace std;

void HeapAdjust(int *a,int i,int size) //调整堆

{

int lchild=2*i; //i的左孩子节点序号

int rchild=2*i+1; //i的右孩子节点序号

int max=i; //临时变量

if(i<=size/2) //如果i是叶节点就不用进行调整

{

if(lchild<=size&&a[lchild]>a[max])

{

max=lchild;

}

if(rchild<=size&&a[rchild]>a[max])

{

max=rchild;

}

if(max!=i)

{

swap(a[i],a[max]);

HeapAdjust(a,max,size); //避免调整之后以max为父节点的子树不是堆}

}

}

void BuildHeap(int *a,int size) //建立堆

{

int i;

for(i=size/2;i>=1;i--) //非叶节点最大序号值为size/2

{

HeapAdjust(a,i,size);

}

}

void HeapSort(int *a,int size) //堆排序

{

int i;

BuildHeap(a,size);

for(i=size;i>=1;i--)

{

//cout<

swap(a[1],a[i]);

//交换堆顶和最后一个元素,即每次将剩余元素中的最大者放到最后面

//BuildHeap(a,i-1); //将余下元素重新建立为大顶堆

HeapAdjust(a,1,i-1); //重新调整堆顶节点成为大顶堆

}

}

int main(int argc, char *argv[])

{

//int a[]={0,16,20,3,11,17,8};

int a[100];

int size;

while(scanf("%d",&size)==1&&size>0)

{

int i;

for(i=1;i<=size;i++)

cin>>a[i];

HeapSort(a,size);

for(i=1;i<=size;i++)

cout<

cout<

}

return 0;

}

堆 排 序 算 法

堆排序——C#实现 一算法描述 堆排序(Heap Sort)是利用一种被称作二叉堆的数据结构进行排序的排序算法。 二叉堆在内部维护一个数组,可被看成一棵近似的完全二叉树,树上每个节点对应数组中的一个元素。除最底层外,该树是满的。 二叉堆中,有两个与所维护数组相关的属性。Length表示数组的元素个数,而HeapSize则表示二叉堆中所维护的数组中的元素的个数(并不是数组中的所有元素都一定是二叉堆的有效元素)。因此,根据上述定义有: 0 = HeapSize = Length。 二叉堆可分为最大堆和最小堆两种类型。在最大堆中,二叉树上所有的节点都不大于其父节点,即 A[Parent(i)] = A[i]。最小堆正好相反:A[Parent(i)] = A[i]。 为维护一个二叉堆是最大(小)堆,我们调用一个叫做MaxHeapify (MinHeapify)的过程。以MaxHeapify,在调用MaxHeapify时,先假定根节点为Left(i)和Right(i)的二叉树都是最大堆,如果A[i]小于其子节点中元素,则交换A[i]和其子节点中的较大的元素。但这样一来,以被交换的子节点为根元素的二叉堆有可能又不满足最大堆性质,此时则递归调用MaxHeapify方法,直到所有的子级二叉堆都满足最大堆性质。如下图所示: 因为在调用MaxHeapify(MinHeapify)方法使根节点为A[i]的

二叉堆满足最大(小)堆性质时我们有其左右子堆均已满足最大(小)堆性质这个假设,所以如果我们在将一个待排序的数组构造成最大(小)堆时,需要自底向上地调用 MaxHeapify(MinHeapify)方法。 在利用最大堆进行排序时,我们先将待排序数组构造成一个最大堆,此时A[0](根节点)则为数组中的最大元素,将A[0]与A[n - 1]交换,则把A[0]放到了最终正确的排序位置。然后通过将HeapSize 减去1,将(交换后的)最后一个元素从堆中去掉。然后通过MaxHeapify方法将余下的堆改造成最大堆,然后重复以上的交换。重复这一动作,直到堆中元素只有2个。则最终得到的数组为按照升序排列的数组。 二算法实现 1 注意到在C#中数组的起始下标为0,因此,计算一个给定下标的节点的父节点和左右子节点时应该特别小心。 private static int Parrent(int i) return (i - 1) - 2; private static int Left(int i) return 2 * i + 1; private static int Right(int i) return 2 * i + 2; 2 算法的核心部分是MaxHeapify(MinHeapify)方法,根据算法描述中的说明,一下代码分别实现了对整数数组的最大堆化和最小堆化方法,以及一个泛型版本。

排序算法时间复杂度比较

排序算法比较 主要容: 1)利用随机函数产生10000个随机整数,对这些数进行多种方法排序。 2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。 3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。 程序的主要功能: 1.随机数在排序函数作用下进行排序 2.程序给出随机数排序所用的时间。 算法及时间复杂度 (一)各个排序是算法思想: (1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。 (2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的

关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。 (3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。 (4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。 时间复杂度分析

10000个数据的时间比较: 程序源代码: /********************************************************************************************** package test; public class SortArray { private static final int Min = 1;//生成随机数最小值 private static final int Max = 10000;//生成随机数最大值 private static final int Length = 10000;//生成随机数组长度(测试的朋友建议不要超过40000,不然你要等很久,如果你电脑配置绝对高的情况下你可以再加个0试试) public static void main(String[] args) { System.out.println("数组长度:"+Length+", Min:"+Min+", Max:"+Max); long begin; long end; int arr[] = getArray(Length);

c语言程序代码

1.要求在屏幕上输出下一行信息。 This is a c program. 程序: #include int main() { printf(“this is a c program.\n”); return 0; } 2.求两个整数之和。 程序: #include int main() { int a,b,sum; a=122; b=234; sum=a+b; printf(“sum is %d\n”,sum); return 0; } 3.求两个整数之间的较大者。

#include int main() { int max(int x,int y); int a,b,c; scanf("%d,%d",&a,&b); c=max(a,b); printf("max=%d\n",c); return 0; } int max(int x,int y) { int z; if(x>y)z=x; else z=y; return(z); } 4.有人用温度计测量出华氏发表示的温度(如69°F),今要求把 她转换成以摄氏法表示的温度(如20℃)。 公式:c=5(f-32)/9. 其中f代表华氏温度,c代表摄氏温度。

#include int main() { float f,c; f=64.0; c=(5.0/9)*(f-32); printf("f=%f\nc=%f\n",f,c); return 0; } 5.计算存款利息。有1000元,想存一年。有一下三种方法可选: (1)活期:年利率为r1;(2)一年定期:年利率为r2;(3)存两次半年定期:年利率为r3。分别计算一年后按三种方法所得到的本息和。 程序: #include int main() { float p0=1000,r1=0.0036,r2=0.0225,r3=0.0198,p1,p2,p3; p1=p0*(1+r1); p2=p0*(1+r2);

内部堆排序算法的实现课程设计说明书

数据结构课程设计设计说明书 内部堆排序算法的实现 学生姓名金少伟 学号1121024029 班级信管1101 成绩 指导教师曹阳 数学与计算机科学学院 2013年3月15日

课程设计任务书 2012—2013学年第二学期 课程设计名称:数据结构课程设计 课程设计题目:内部堆排序算法的实现 完成期限:自2013年3 月4日至2013年3 月15 日共 2 周 设计内容: 堆排序(heap sort)是直接选择排序法的改进,排序时,需要一个记录大小的辅助空间。n个关键字序列K1,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ n) 若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。(即如果按照线性存储该树,可得到一个不下降序列或不上升序列)。 本课程设计中主要完成以下内容: 1.设计堆排序算法并实现该算法。 2.对堆排序的时间复杂度及空间复杂度进行计算与探讨。 3.寻找改进堆排序的方法。 基本要求如下: 1.程序设计界面友好; 2.设计思想阐述清晰; 3.算法流程图正确; 4.软件测试方案合理、有效。指导教师:曹阳教研室负责人:申静 课程设计评阅

摘要 堆排序是直接选择排序法的改进。本课设以VC++6.0作为开发环境,C语言作为编程语言,编程实现了堆排序算法。程序运行正确,操作简单,易于为用户接受。 关键词:堆排序;C语言;时间复杂度

堆排序算法的基本思想及算法实现示例

堆排序算法的基本思想及算法实现示例 堆排序 1、堆排序定义 n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质): (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ ) 若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。 【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。 2、大根堆和小根堆 根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。 根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。 注意: ①堆中任一子树亦是堆。 ②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。 3、堆排序特点 堆排序(HeapSort)是一树形选择排序。 堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。 4、堆排序与直接插入排序的区别 直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。 堆排序可通过树形结构保存部分比较结果,可减少比较次数。5、堆排序 堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。 (1)用大根堆排序的基本思想

排序算法时间复杂度比较

排序算法比较 主要内容: 1)利用随机函数产生10000个随机整数,对这些数进行多种方法排序。 2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。 3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。 程序的主要功能: 1.随机数在排序函数作用下进行排序 2.程序给出随机数排序所用的时间。 算法及时间复杂度 (一)各个排序是算法思想: (1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。 (2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的

关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。 (3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。 (4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。 时间复杂度分析 排序算法最差时间时间复杂度是否稳定? 插入排序O(n2) O(n2) 稳定冒泡排序O(n2) O(n2) 稳定快速排序O(n2) O(n*log n) 不稳定 2 选择排序O(n2) O(n2) 稳定

C语言程序设计 入门源代码代码集合

#include <> void print_star(void) { printf("*****************\n"); } void print_welcome(void) { printf("C language,welcome!\n"); } void main() { print_star(); print_welcome(); print_star(); getchar(); } 演示2 #include "" int sum(int i,int j) { return(i + j); } void main() { int n1,n2; printf("input 2 numbers:\n"); scanf("%d%d",&n1,&n2); printf("the sum = %d\n",sum(n1,n2)); getchar(); } 演示3 #include "" int maxnum(int,int,int); main() { int a,b,c; printf("Please enter 3 numbers:\n"); scanf("%d,%d,%d",&a,&b,&c); printf("Maxnum is %d\n",maxnum(a,b,c)); return 0;

} int maxnum(int x,int y,int z) { int max=x; if(y>max) max = y; if(z>max) max = z; return max; } 演示4 #include <> int s1(int n) { int j,s; s=0; for(j=1;j<=n;j++) s=s+j; return s; } int sum(int n) { int i,s=0; for(i=1;i<=n;i++) s=s+s1(i); return s; } void main() { int n; printf("n:"); scanf("%d",&n); printf("s=%d\n",sum(n)); } 演示5 #include <>

堆排序算法分析(C语言版)

堆排序 堆排序是利用堆的性质进行的一种选择排序,下面先讨论一下堆。 1.堆 堆实际上是一棵完全二叉树,其任何一非叶节点满足性质: Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]或者Key[i]>=Key[2i+1]&&key>=key[2i+2] 即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字。 堆分为大顶堆和小顶堆,满足Key[i]>=Key[2i+1]&&key>=key[2i+2]称为大顶堆,满足Key[i]<= key[2i+1]&&Key[i]<=key[2i+2]称为小顶堆。由上述性质可知大顶堆的堆顶的关键字肯定是所有关键字中最大的,小顶堆的堆顶的关键字是所有关键字中最小的。 2.堆排序的思想 利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单。 其基本思想为(大顶堆): 1)将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区; 2)将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n]; 3)由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。 操作过程如下: 1)初始化堆:将R[1..n]构造为堆; 2)将当前无序区的堆顶元素R[1]同该区间的最后一个记录交换,然后将新的无序区调整为新的堆。 因此对于堆排序,最重要的两个操作就是构造初始堆和调整堆,其实构造初始堆事实上也是调整堆的过程,只不过构造初始堆是对所有的非叶节点都进行调整。 下面举例说明: 给定一个整形数组a[]={16,7,3,20,17,8},对其进行堆排序。 首先根据该数组元素构建一个完全二叉树,得到

C语言程序设计-入门源代码代码集合

演示1 #include void print_star(void) { printf("*****************\n"); } void print_welcome(void) { printf("C language,welcome!\n"); } void main() { print_star(); print_welcome(); print_star(); getchar(); } 演示2 #include "stdio.h" int sum(int i,int j) { return(i + j); } void main() { int n1,n2; printf("input 2 numbers:\n"); scanf("%d%d",&n1,&n2); printf("the sum = %d\n",sum(n1,n2)); getchar(); } 演示3 #include "stdio.h" int maxnum(int,int,int); main() { int a,b,c; printf("Please enter 3 numbers:\n"); scanf("%d,%d,%d",&a,&b,&c); printf("Maxnum is %d\n",maxnum(a,b,c));

return 0; } int maxnum(int x,int y,int z) { int max=x; if(y>max) max = y; if(z>max) max = z; return max; } 演示4 #include int s1(int n) { int j,s; s=0; for(j=1;j<=n;j++) s=s+j; return s; } int sum(int n) { int i,s=0; for(i=1;i<=n;i++) s=s+s1(i); return s; } void main() { int n; printf("n:"); scanf("%d",&n); printf("s=%d\n",sum(n)); } 演示5

堆排序

算法与数据结构程设计报告 一.设计题目: 堆排序的算法 二.运行环境: 1、硬件:计算机 2、软件:Microsoft Visual C++6.0 三.目的和意义: 目的:创建一个大堆,按从大到小顺序输出堆元素,实现堆排序。 意义:利用堆排序,即使在最坏情况下的时间复杂度也是O(nlog2n),相对于快速排序来说,时间复杂度小,这是堆排序的最大优点,可用于对若干元素进行排序,加快排序速度。 四.算法设计的基本思想: 堆排序算法设计基本思想: 堆排序利用了大根堆堆顶记录的关键字最大这一特征,使得在当前无序区中选取最大关键字的记录变得简单。先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区。再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录r[n]交换,由此得到新的无序区r[1..n-1]和有序区r[n],且满足r[1..n-1].keys≤r[n].key。由于交换后新的根R[1]可能违反堆性质,故应将当前无序区r[1..n-1]调整为堆。然后再次将r[1..n-1]中关键字最大的记录r[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区r[1..n-2]和有序区r[n-1..n],且仍满足关系r[1..n-2].keys≤r[n-1..n].keys,同样要将r[1..n-2]调整为堆。直到无序区只有一个元素为止.

. .

流程图3:打印数组函数print()

六.算法设计分析: 性能分析:堆排序的时间主要由建立初始堆和不断重复建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。其中:建立初始堆时,总共需进行的关键字比较次数≤ 4n =O(n) ;排序过程中进行n-1次重建堆所进行的总比较次数不超过下式:2*(└ log2(n-1) ┘+└ log2(n-2) ┘+…+ └ log22 ┘) < 2n └ log2n ┘=O(n log2n)因此堆排序总的时间复杂度是 O(n+ n log2n)= O(n log2n)。堆排序在最坏情况下的时间复杂度也是O(nlog2n),相对于快速排序来说,这是堆排序的最大优点。另外,堆排序仅需一个记录大小供交换用的辅助空间。由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录较少的文件,但对n较大的文件还是很有效的。堆排序是就地排序,辅助空间为O(1),它是不稳定的排序方法。 堆的描述:堆排序(HeapSort)是一树形选择排序。堆是对基于数组的树的重要应用场合之一。它是节点间具有层次次序关系的完全二叉树。其中,父节点值大于或等于其孩子节点值的,叫“最大堆(maximum heap)”;父节点值小于或等于孩子节点值的,叫“最小堆(minimum heap)”.在最大堆中,根中的元素值最大;在最小堆中,根中的元素值最小。堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系,在当前无序区中选择关键字最大(或最小)的记录。 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。 堆的存储特点:在这里,讨论作为顺序表存储的堆。它是按某种次序将一系列数据以完全二叉树形式存放的一种表。它要求堆中的节点的值都大于或等于其孩子节点的值。 按照这种存储方式,可知第i个元素的左右儿子分别是第2i和第2i+1个元素,而它的父亲节点是第i/2个元素。由于父亲节点和儿子节点具有这样的顺序关系,所以可以方便地由父亲节点找到儿子节点,反之亦然。 可见,这种存储方式大大节省了存储空间,高效快速。 堆的相关操作:作为抽象表结构,堆允许增加和删除表项。插入过程不用假定新表项占有一个特定的位置而只需维持堆顺序。但是删除操作总是删去表中的最大项(根)。堆可以用于那些客户程序想直接访问最大(小)元素的场合。作为表,堆并不提供Find操作,而对表的直接访问是只读的。所有的堆处理算法都有责任更新树和维持堆顺序。 1.建堆:数组具有对应的树表示形式。一般情况下,树并不满足堆的条件。通过重新排列元素,可以建立一棵“堆化”的树。 2.插入一个元素:新元素被加入到表中,随后树被更新以恢复堆次序。例如,下面的步骤将15加入到表中。 3.删除一个元素:删除总是发生在根节点处。用表中的最后一个元素来填补空缺位置,结果树被更新以恢复堆条件。 在堆实现时我们是采用数组来存储堆的完全二叉树表示,并且用一种有效的算法来保证对堆的所有操作不破坏堆的性质。这种表示的主要问题在于数组的大小需要事先确定,这使得对堆的大小有了一个初始的限定。在堆中数据增长到

常用的排序算法的时间复杂度和空间复杂度

排序法最差时间分析平均时间复杂度稳定度空间复杂度 冒泡排序()() 稳定() 快速排序()(*) 不稳定()() 选择排序()() 稳定() 二叉树排序()(*) 不一顶() 插入排序()() 稳定() 堆排序(*) (*) 不稳定() 希尔排序不稳定() 、时间复杂度 ()时间频度一个算法执行所耗费地时间,从理论上是不能算出来地,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费地时间多,哪个算法花费地时间少就可以了.并且一个算法花费地时间与算法中语句地执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中地语句执行次数称为语句频度或时间频度.记为(). ()时间复杂度在刚才提到地时间频度中,称为问题地规模,当不断变化时,时间频度()也会不断变化.但有时我们想知道它变化时呈现什么规律.为此,我们引入时间复杂度概念. 一般情况下,算法中基本操作重复执行地次数是问题规模地某个函数,用()表示,若有某个辅助函数(),使得当趋近于无穷大时,()()地极限值为不等于零地常数,则称()是()地同数量级函数.记作()O(()),称O(()) 为算法地渐进时间复杂度,简称时间复杂度. 在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为(),另外,在时间频度不相同时,时间复杂度有可能相同,如()与()它们地频度不同,但时间复杂度相同,都为(). 按数量级递增排列,常见地时间复杂度有:常数阶(),对数阶(),线性阶(), 线性对数阶(),平方阶(),立方阶(),...,次方阶(),指数阶().随着问题规模地不断增大,上述时间复杂度不断增大,算法地执行效率越低. 、空间复杂度与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间地度量.记作: ()(()) 我们一般所讨论地是除正常占用内存开销外地辅助存储单元规模.讨论方法与时间复杂度类似,不再赘述. ()渐进时间复杂度评价算法时间性能主要用算法时间复杂度地数量级(即算法地渐近时间复杂度)评价一个算法地时间性能. 、类似于时间复杂度地讨论,一个算法地空间复杂度( )()定义为该算法所耗费地存储空间,它也是问题规模地函数.渐近空间复杂度也常常简称为空间复杂度. 空间复杂度( )是对一个算法在运行过程中临时占用存储空间大小地量度.一个算法在计算机存储器上所占用地存储空间,包括存储算法本身所占用地存储空间,算法地输入输出数据所占用地存储空间和算法在运行过程中临时占用地存储空间这三个方面.算法地输入输出数据所占用地存储空间是由要解决地问题决定地,是通过参数表由调用函数传递而来地,它不随本算法地不同而改变.存储算法本身所占用地存储空间与算法书写地长短成正比,要压缩这方面地存储空间,就必须编写出较短地算法.算法在运行过程中临时占用地存储空间随算法地不同而异,有地算法只需要占用少量地临时工作单元,而且不随问题规模地大小而改变,我们称这种算法是“就地"进行地,是节省存储地算法,如这一节介绍过地几个算法都是如此;有地算法需要占用地临时工作单元数与解决问题地规模有关,它随着地增大而增大,当较大时,将占用较多地存储单元,例如将在第九章介绍地快速排序和归并排序算法就属于这种情况.文档收集自网络,仅用于个人学习 如当一个算法地空间复杂度为一个常量,即不随被处理数据量地大小而改变时,可表示为();当一个算法地空间复杂度与以为底地地对数成正比时,可表示为();当一个算法地空司复杂度与成线性比例关系时,可表示为().若形参为数组,则只需要为它分配一个存储由实参传送

一些比较简c语言程序源代码

/**返回的long型的最大值是startLongValue+count-1(产生一个随机数) * param needCount * param count * param startLongValue * return */ public static List randomNoRepeatLongArray(int needCount,int count,long startLongValue){ //这种情况会出现无限循环的 if(needCount>count) return null; Random random = new Random(); int[] ints = new int[count]; for(int i=0;i list = new ArrayList(); while(list.size() #include #include

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较 1.选择排序:不稳定,时间复杂度 O(n^2) 选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。这样,经过i遍处理之后,前i个记录的位置已经是正确的了。 2.插入排序:稳定,时间复杂度 O(n^2) 插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。 3.冒泡排序:稳定,时间复杂度 O(n^2) 冒泡排序方法是最简单的排序方法。这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。 4.堆排序:不稳定,时间复杂度 O(nlog n) 堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。 5.归并排序:稳定,时间复杂度 O(nlog n)

C语言程序设计(医院信息管理系统)附源代码

专业设计报告 课程名称: C 语言程序设计 课题名称:医院信息管理系统 专业班别: 12本计算机科学与技术二班 姓名: 学号: 指导教师: 设计日期: 2012-5-25

教师评语:

成绩评定: 指导教师签名: 日期: 2012 年月日 课程设计题目医院信息管理程序 作者姓名: 同组成员: 摘要利用结构体存储每个病人的信息和每种药品的信息,并使用链表存储全部病人的信息;能完成对医院内所有病人信息的注册、查询、删除和修改等操作,同时又能对药房内库存的药品进行查询;可以将链表中的病人信息保存在文件中,并且可以对文件中的病人信息进行读取与显示 1.专业设计目的

1、掌握链表的操作,包括链表节点的创建、释放还有链表的遍历 2、掌握对二进制文件的创建、增添等基本操作。 3、熟悉C语言函数的使用方法,学会模块化处理问题以及多个源文件的处理方式 2.设计基本要求( 1、使用结构体来存储病人的信息,结构体中包括病的id号码、姓名、病历以及消费信息,并用链表将所有病人信息整合。 2、用文件来存储链表的信息以便下次再使用该程序时载入病人信息 3、能够实现病人信息的注册、病人信息的查询、病人消费统计、保存链表信息、载入链表信息、查询库存等几项功能。 4、要求用四个源文件、、、 5、系统完成后应实现类似下面所示界面

3、算法分析 1、数据结构 设计链表中的一个节点存储一个病人的信息,使用下面的结构体类型定义:struct patient{ char id[10]; char name[10]; char casehist[200]; int cost[3]; int transfusion;

算法时间复杂度

算法时间复杂度 The final edition was revised on December 14th, 2020.

实验一算法的时间复杂度 一、实验目的与要求 熟悉C/C++语言的集成开发环境; 通过本实验加深对算法分析基础知识的理解。 二、实验内容: 掌握算法分析的基本方法,并结合具体的问题深入认识算法的时间复杂度分析。三、实验题 定义一个足够大的整型数组,并分别用起泡排序、简单选择排序、快速排序和归并排序对数组中的数据进行排序(按从小到大的顺序排序),记录每种算法的实际耗时,并结合数据结构中的知识对算法的时间复杂度分析进行说明。实验数据分两种情况: 1、数组中的数据随机生成; 2、数组中的数据已经是非递减有序。 四、实验步骤 理解算法思想和问题要求; 编程实现题目要求; 上机输入和调试自己所编的程序; 验证分析实验结果; 整理出实验报告。 五、实验程序 #include #include<> #include<> using namespace std; void SelectSort(int r[ ], int n) { int i; int j; int index; int temp; for (i=0; i

C语言程序设计医院信息管理系统附源代码样本

专业设计报告 课程名称: C 语言程序设计 课题名称: 医院信息管理系统 专业班别: 12本计算机科学与技术二班姓名: 学号: 指导教师: 设计日期: -5-25

教师评语: 成绩评定: 指导教师签名: 日期: 年月日 课程设计题目医院信息管理程序

作者姓名: 同组成员: 摘要利用结构体存储每个病人的信息和每种药品的信息, 并使用链表存储全部病人的信息; 能完成对医院内所有病人信息的注册、查询、删除和修改等操作, 同时又能对药房内库存的药品进行查询; 能够将链表中的病人信息保存在文件中, 而且能够对文件中的病人信息进行读取与显示1.专业设计目的 1、掌握链表的操作, 包括链表节点的创立、释放还有链表的遍历 2、掌握对二进制文件的创立、增添等基本操作。 3、熟悉C语言函数的使用方法, 学会模块化处理问题以及多个源文件的处理方式 2.设计基本要求( 1、使用结构体来存储病人的信息, 结构体中包括病的id号码、姓名、病历以及消费信息, 并用链表将所有病人信息整合。 2、用文件来存储链表的信息以便下次再使用该程序时载入病人信息 3、能够实现病人信息的注册、病人信息的查询、病人消费统计、保存链表信息、载入链表信息、查询库存等几项功能。 4、要求用四个源文件main.c、link.c、find.c、save_load.c 5、系统完成后应实现类似下面所示界面

3、算法分析 1、数据结构 设计链表中的一个节点存储一个病人的信息, 使用下面的结构体类型定义: struct patient{ char id[10]; char name[10]; char casehist[200]; int cost[3]; int transfusion; int surgery; struct patient *next; };

典型比较排序法时间复杂度对比

典型比较排序法时间复杂度对比 2008-09-12 13:56 平均情况最好情况最坏情况 归并排序O(nlogn)O(nlogn)O(nlogn) 快速排序O(nlogn)O(nlogn)O(n2) 希尔排序O(n1.5)O(n)O(n1.5) 插入排序O(n2)O(n)O(n2) 选择排序O(n2)O(n2)O(n2) 堆排序:时间复杂度O(n log n) 选择排序:时间复杂度O(n2) 冒泡排序:时间复杂度O(n2) 归并排序占用附加存储较多,需要另外一个与原待排序对象数组同样大小的辅助数组。这是这个算法的缺点。 基数排序:时间复杂度是O ( d ( n+radix ) ),但d一般不能取常数,d=logn,所以时间复杂度为O(n log n),当k=n时,为O(n) 线性时间排序的有:计数、基数、桶排序。 在前面几节中讨论了内部排序和外部排序的方法。对于内部排序主要介绍了五大类排序方法:插入排序(直接插入排序、折半插入排序和希尔排序)、交换排序(冒泡排序和快速排序)、选择排序(简单选择排序和堆排序)、归并排序和基数排序。详细讨论了各种排序方法的基本原理,并从时间复杂性、空间复杂性以及排序的稳定性三方面

讨论了各种排序方法的时效性,介绍了各排序方法的实现算法及其存在的优缺点。如果待排序的数据量很小,最好选择编程简单的排序算法,因为在这种情况下采用编程复杂、效率较高的排序方法所能节约的计算机时间是很有限的。反之,如果待处理的数据量很大,特别是当排序过程作为应用程序的一部分需要经常执行时,就应该认真分析和比较各种排序方法,从中选出运行效率最高的方法。 下面具体比较一下各种排序方法,以便实现不同的排序处理。 (1) 插入排序的原理:向有序序列中依次插入无序序列中待排序的记录,直到无序序列为空,对应的有序序列即为排序的结果,其主旨 是“插入”。 (2) 交换排序的原理:先比较大小,如果逆序就进行交换,直到有序。其主旨是“若逆序就交换”。 (3) 选择排序的原理:先找关键字最小的记录,再放到已排好序的序列后面,依次选择,直到全部有序,其主旨是“选择”。 (4) 归并排序的原理:依次对两个有序子序列进行“合并”,直到合并为一个有序序列为止,其主旨是“合并”。 (5) 基数排序的原理:按待排序记录的关键字的组成成分进行排序的一种方法,即依次比较各个记录关键字相应“位”的值,进行排序,直到比较完所有的“位”,即得到一个有序的序列。 各种排序方法的工作原理不同,对应的性能也有很大的差别,下面通过一个表格可以看到各排序方法具体的时间性能、空间性能等方面的区别。 依据这些因素,可得出如下几点结论: (1) 若n较小(如n值小于50),对排序稳定性不作要求时,宜采用选择排序方法,若关键字的值不接近逆序,亦可采用直接插入排序法。但如果规模相同,且记录本身所包含的信息域比较多的情况下应首选简单选择排序方法。因为直接插入排序方法中记录位置的移动操作次数比直接选择排序多,所以选用直接选择排序为宜。 (2) 如果序列的初始状态已经是一个按关键字基本有序的序列,则选择直接插入排序方法和冒泡排序方法比较合适,因为“基本”有序的序列在排序时进行记录位置的移动次数比较少。 (3) 如果n较大,则应采用时间复杂度为O(nlog2n)的排序方法,即快速排序、堆排序或归并排序方法。快速排序是目前公认的内部排序的最好方法,当待排序的关键字是随机分布时,快速排序所需的平均时间最少;堆排序所需的时间与快速排序相同,但辅助空间少于快速排序,并且不会出现最坏情况下时间复杂性达到O(n2)的状况。这两种排

运动会c语言源程序代码

#include #include #include #include #define n 2 #define m 1 #define w 1 #define null 0 typedefstruct { intitemnum; int top; int range[5]; int mark[5]; }itemnode; typedefstruct { intschoolnum; int score; intmscore; intwscore; itemnode c[m+w]; }headnode; headnode h[n]; voidinputinformation() { inti,j,k,s; for(i=0;i

scanf("%d",&h[i].c[j].itemnum); printf("*****取前3名or前5名:"); scanf("%d",&h[i].c[j].top); printf("*****获得几个名次:"); scanf("%d",&k); for(s=0;s<5;s++) h[i].c[j].range[s]=0, h[i].c[j].mark[s]=0; for(s=0;s

相关文档
最新文档