历年中考数学易错点汇总
中考数学易错题整理
易 错 题一、数与式1、已知a-b=1,b+c=2,则2a+2c+1= 。
2、当x 时,33-=-x x 。
3、若31=-xx ,则x x 1+= 。
4、9.30万精确到 位,有效数字有 个。
5、已知A 、B 、C 是数轴上的三点,点B 表示1,点C 表示-3,AB=2,则AC 的长度是 。
6、P 点表示2,那么在数轴上到P 点的距离等于3个单位长度的点所表示的数是 。
7、实数a,b 在数轴对应的点A 、B 表示如图,化简a a a b 244-++-||的结果为( ) A 、22a b --B 、22+-b aC 、2-bD 、2+b9. 已知函数式32+-=x y ,当自变量增加1时,函数值( )A 、增加1B 、减少1C 、增加2D 、减少210、某种商品的标价为120元,若以标价的90%出售,仍相对进价获利20%,则该商品的进价为_____元。
11.为使某项工程提前20天完成,需将原来的工作效率提高25%,则原计划完成的天数_____天12.若14+x 表示一个整数,则整数x 可取的值的个数是 。
13.如果一个三角形的三条边长分别为1,k ,3,化简3225102--+-k k k = 。
14.下列语句说法正确的是( )A .倒数等于本身的数有0B .算术平方根等于本身的数是±1和0C .立方根等于本身的数有±1和0D .相反数等于本身的数是±1 15.化简1b-可得( ) A .b B .b - C .b - D .b -- 二、方程16.022)34(22+-=--x x x x ,则x= 。
17.若关于x 的方程(m 2-1)x 2-2(m+2)x+1=0有实数根,则m 的取值范围是 。
18、若关于x 的分式方程131=---xx a x 无解,则a= 。
19、当x 时,分式1223+-x x 有意义;当x 时,分式x x --112的值等于零.20、已知31)3)(1(5-++=-++x Bx A x x x ,整式A 、B 的值分别为 .21.若关于x 的方程1151222--=+-+-x k x x k x x 有增根,求k 的值。
初中数学八大易错点
中考数学的八大易错点一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。
以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为 0,每个式子都为 0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0 指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
这个上海还没有考过,知道就好!易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为 0 的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带 X 公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为 0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
九年级数学易错题整理及解析
九年级数学易错题整理及解析九年级是中学阶段的关键时期,数学学科的学习尤为重要。
在这个阶段,同学们容易在一些特定题型上犯错。
本文将针对九年级数学中的易错题进行整理和解析,帮助同学们巩固知识点,提高解题能力。
一、易错题整理1.分式运算- 忽视分母为零的情况- 混淆乘除法则2.一元二次方程- 解题过程中符号错误- 忽视判别式的符号3.函数图像- 弄错函数图像的开口方向- 误判函数的增减性4.统计与概率- 概率计算不准确- 众数、平均数、中位数混淆5.解直角三角形- 错误使用三角函数- 忽视角度与边长的关系二、解析及注意事项1.分式运算- 解题前检查分母是否为零,避免无效计算。
- 掌握乘除法则,注意运算符号。
2.一元二次方程- 解题过程中注意符号的正确性,避免低级错误。
- 判别式大于零时,方程有两个实数根;等于零时,有一个实数根;小于零时,无实数根。
3.函数图像- 根据函数解析式,判断图像的开口方向和增减性。
- 注意掌握二次函数、一次函数、反比例函数的图像特点。
4.统计与概率- 概率问题要注意事件的总数和满足条件的事件数。
- 区分众数、平均数、中位数,注意定义和计算方法。
5.解直角三角形- 掌握正弦、余弦、正切函数的定义和性质。
- 注意直角三角形中角度与边长的关系,避免错误使用三角函数。
总结:九年级数学易错题主要集中在分式运算、一元二次方程、函数图像、统计与概率以及解直角三角形等方面。
同学们在解题过程中要细心、认真,注意检查,避免低级错误。
中考数学59个必考易错知识点
中考数学59个必考易错知识点中考数学中很多知识点容易犯错,中考网为大家提供中考数学59个必考易错知识点,更多中考数学复习资料请关注我们网站的更新!中考数学59个必考易错知识点一、数与式:易错点1有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。
弄不清绝对值与数的分类。
选择题考得比较多。
易错点2关于实数的运算,要掌握好与实数的有关概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3平方根、算术平方根、立方根的区别。
易错点4分式值为零时易忽略分母不能为零。
易错点5分式运算要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
填空题易考。
易错点6非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7计算第一题易考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8科学记数法,精确度。
这个知道就好!易错点9代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程/组与不等式/组:易错点1各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。
消元降次的主要陷阱在于消除了一个带X公因式时回头检验!易错点3运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4关于一元二次方程的取值范围的题目易忽视二次项系数不为0。
易错点5关于一元一次不等式组有解、无解的条件易忽视相等的情况。
易错点6解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
中考数学最易出错知识点
中考数学最易出错知识点数学是一门需要逻辑思维和计算能力的学科,很多同学在中考数学上容易出错,主要原因是对一些基础概念和方法理解不深或者没有掌握好。
下面是中考数学中易出错的一些知识点:1.分数与小数的转化:数学中经常要涉及到分数与小数之间的转化,很多同学容易混淆分数与小数的概念,导致计算错误。
因此在中考前应该掌握好这两种数的转化方法,并能够熟练地进行相互转化。
2.基本运算符的混淆:加减乘除是数学必不可少的基本运算符,但是有些同学容易混淆加法和减法的运算顺序,导致计算错误。
在计算过程中,应该先计算乘法和除法,再计算加法和减法,这样可以保证计算的正确性。
3.几何图形的认识:中考数学中几何图形的认识是重要的一部分,但是有些同学容易混淆各种几何图形的属性和特点。
例如,容易混淆平行四边形和矩形,导致在解题过程中错用了相关的性质,使得计算结果出错。
所以在中考前,应该将各种几何图形的性质和特点都整理清楚,并能够熟练地应用到解题中。
4.空间几何与平面几何的混淆:空间几何与平面几何是数学中两个不同的概念,但是有些同学容易混淆这两个概念,导致在解题过程中错误地应用了相关性质和定理。
在中考前,应该将空间几何和平面几何的性质和特点都整理清楚,并能够正确地应用到解题中。
5.分式方程的解法:分式方程是中考数学中常见的一类方程,但是有些同学在解这类方程时容易出错。
在解分式方程时,应该注意化简方程、排除分母为零的情况、将方程转化为整式方程等步骤,并进行验证。
在中考前,应该多做一些相关的练习题,加深对分式方程解法的理解和掌握。
6.平方根的运算:平方根是中考数学中常见的概念,但是有些同学容易在进行平方根运算时出错。
在进行平方根运算时,应该注意判断被开方数的正负和化简系数的性质,避免计算错误。
在中考前,应该掌握好平方根的运算方法,并能够灵活地应用到解题中。
7.概率与统计的应用:概率与统计是中考数学中的一部分内容,但是有些同学在应用这方面容易出错。
中考数学易错点总结
中考数学易错点总结
以下是中考数学易错点总结:
1. 题目未仔细审题:中考数学题有很多需要仔细审题的,如果没有认真阅读题目,容易做错。
2. 计算错误:计算错误是中考数学的一个大问题,因此在做数学题时,需要耐心地完整计算,避免粗心的笔误。
3. 公式记不清:中考数学中有很多公式,需要事先认真记忆和理解。
4. 几何题图形画错:中考数学有很多几何题,如果图形画错,答案就会错误。
5. 不理解概念:在做数学题时,难免会出现不理解概念的情况,因此需要认真的学习数学概念,理解其含义。
6. 不会分析问题:中考数学的问题有时需要进行分析,如果没有仔细分析问题,就很容易将坐错。
7. 概率题计算错误:计算概率题时,不能只考虑一个事件,还要考虑其他事件的因素。
8. 公式套用不当:中考数学中的公式不能随便套用,需要根据实际情况进行适当的调整。
9. 非标准答案:中考数学有时会出现非标准答案,需要认真理解题目,避免盲目使用。
10. 考试压力:中考数学是一场考试,可能会产生一定的压力,因此需要做好心理准备,保持冷静。
中考数学最易出错的61个知识点总结
中考数学最易出错的61个知识点总结
一、因式分解
1、出现理解困难的大型多项式;
2、完全平方公式理解不深;
3、不会正确判断可分解和不可分解;
4、识别因式分解是否正确;
5、不明白如何将表达式转化为可分解的形式;
6、因数求不全,易漏掉因式;
7、费尽心力才能识别出需要分解的式子;
二、解方程
1、对特殊方程无法识辨;
2、不完全了解各类方程的解法范式;
3、不会按照技巧转换方程,或计算时错误,出现错误解;
4、把二次方程式误认为一次方程;
5、犯简单的错误,比如弄混正负号,或是把公因数带下去;
6、列举出的解不完整;
7、不能完全理解一元二次方程的根的判别式;
三、代数式
1、对于几何意义不明确的代数式理解困难;
2、熟练操作求数据值,但不能理性分析;
3、一元二次代数式系数浮动,常难理解;
4、已知中间值不能写出一元二次代数式;
5、不能正确按照公式求解;
6、指数代数式的理解能力不够;
7、错误认为除法和开方运算法则相同;
四、直线方程
1、对斜截式判定其斜率与截距的表达式能力不足;
2、作分数时除以0,出现斜率无穷大的情况;
3、不能正确识别相关的点和直线;
4、不能正确判断两条直线是否平行或垂直;。
中考数学59个必考易错知识点
中考数学59个必考易错知识点1500字中考数学59个必考易错知识点:1. 分数的相加与相减:要注意分子相加或相减,分母保持不变。
2. 分数的乘法与除法:要注意分子与分母分别相乘或相除。
3. 带分数的四则运算:要注意整数与分数的运算规则。
4. 整数的相加与相减:要注意正整数与负整数相加或相减的结果。
5. 数轴的运用:要注意将题目中的数值表示在数轴上,便于比较和计算。
6. 比较大小:要注意利用分数与小数的大小关系进行比较。
7. 利率问题:要注意利用利率公式计算利息和本利和。
8. 面积计算:要注意利用相应的公式计算不规则图形的面积。
9. 体积计算:要注意利用相应的公式计算物体的体积。
10. 平均值的计算:要注意将一组数据的和除以个数得到平均值。
11. 百分数的计算:要注意利用百分数与小数之间的转换关系进行计算。
12. 因式分解:要注意利用公因数将一个多项式拆分为两个或多个因式。
13. 分解质因数:要注意将一个整数拆分成素数的乘积。
14. 分数化简:要注意将一个分数化简为最简形式。
15. 分数的约分与通分:要注意将分数约分或通分为同分母的分数。
16. 数列的概念:要注意找出数列的规律,从而确定数列的通项公式。
17. 等差数列的性质:要注意利用等差数列的性质进行计算或推理。
18. 等比数列的性质:要注意利用等比数列的性质进行计算或推理。
19. 圆的面积计算:要注意利用半径或直径计算圆的面积。
20. 直角三角形的性质:要注意利用勾股定理计算直角三角形的边长。
21. 平行线与平行四边形的性质:要注意利用平行线与平行四边形的性质进行计算或推理。
22. 相似三角形的性质:要注意利用相似三角形的性质进行计算或推理。
23. 三角形的内角和定理:要注意利用三角形的内角和定理进行计算或推理。
24. 立体图形的表面积:要注意利用相应的公式计算立体图形的表面积。
25. 三视图的绘制:要注意将一个立体图形绘制成三视图。
26. 有理数的概念:要注意区分有理数与无理数的性质。
初中数学易错题集
初中数学易错题集1. 分母为0的数学计算错误- 示例题目:计算 3 ÷ 0 的值。
解析:分母为0的情况下,计算是没有意义的,因为任何数除以0都没有定义。
因此,这道题是没有解的,答案是无解。
2. 乘除法运算次序错误- 示例题目:计算 2 + 3 × 4 的值。
解析:根据数学运算法则,乘法和除法的优先级高于加法和减法。
所以,首先计算3 × 4,得到12,再加上2,最后的答案是14。
3. 幂运算有括号错误- 示例题目:计算 2^3 × 4 的值。
解析:幂运算的优先级高于乘法和除法,但低于括号。
根据数学运算法则,先计算幂运算,再进行乘法运算。
所以,首先计算2的3次方,得到8,再乘以4,最后的答案是32。
4. 直角三角形定理应用错误- 示例题目:已知直角三角形的一条直角边长为3cm,斜边长为5cm,求另一条直角边的长度。
解析:根据直角三角形的定理(勾股定理),直角边的平方加上直角边的平方等于斜边的平方。
所以,设另一条直角边的长度为x,则有x^2 + 3^2 = 5^2。
解这个方程可以得到 x = 4。
5. 百分数转换错误- 示例题目:将0.6转化为百分数。
解析:百分数是以百分号(%)表示的,表示数值的百分之几。
将小数转化为百分数时,将小数乘以100,并在后面加上百分号。
所以,0.6转化为百分数是60%。
6. 未转化单位导致计算错误- 示例题目:汽车以60千米/小时的速度行驶了2小时,求汽车行驶的总距离。
解析:速度乘以时间等于距离。
但是在计算之前,要将速度和时间转化为相同的单位。
由于速度单位是千米/小时,时间单位是小时,所以无需转化单位,直接乘起来就可以,答案为 60 × 2 = 120 千米。
7. 数字精度错误- 示例题目:计算 0.2 × 0.3 的值。
解析:在计算浮点数(小数)时,由于计算机的二进制表示有限,不是所有的小数都能精确表示。
所以,计算结果可能有一定的误差。
中考数学易考易错点总结
中考数学易考易错点总结在中考数学中,有一些易考易错点经常出现在题目中,对于考生来说,熟悉这些易错点是非常重要的。
下面我将总结一些中考数学易考易错的点,供考生参考。
1.平方与平方根:经常出现的问题是求解平方根的情况。
很多考生容易混淆平方和平方根的概念,导致答案错误。
在解题时,要注意区分平方和平方根的关系,避免混淆。
2.百分数与分数的转化:在百分数和分数的转化中,容易出现小数点位置错误的问题。
考生在计算过程中,要注意小数点的位置,避免转化时出现错误。
3.相似与全等:在几何题中,容易出现相似和全等的概念不清晰,导致解法错误。
要理解相似和全等的定义,并能够正确应用到具体题目中。
4.图形的性质:在图形题中,容易出现对图形性质的理解错误。
比如,对于平行四边形的性质、圆的性质等,考生容易混淆或记错,从而导致答案错误。
5.勾股定理:勾股定理是数学中一个重要的定理,但是在应用时经常出现错误。
考生在应用勾股定理时,要注意判断是否为直角三角形,是否符合勾股定理的条件。
6.平行线与角:在平行线与角的关系中,常常会出现角的概念理解错误。
考生要理解对应角、同位角、内错角等概念,能够正确应用到具体题目中。
7.比例与相似:在比例与相似的题目中,经常会出现比例计算错误的问题。
考生在进行比例计算时,要注意比例的次序和对应关系,避免出现计算错误。
8.平均数与中位数:在统计题中,常常会涉及平均数与中位数的计算。
考生容易混淆平均数和中位数的概念,从而导致错误的计算结果。
9.代数式的展开与因式分解:在代数式的展开和因式分解中,常常会出现计算错误的情况。
考生要注意符号的运算法则和因式分解的方法,避免出现错误。
10.排列与组合:在排列与组合的题目中,经常会出现计算错误的问题。
考生在进行排列与组合的计算时,要注意分类计数和互补计数的方法,避免计算错误。
总之,中考数学易考易错点主要集中在基本概念的理解和运算的准确性上。
考生在备考时,要加强对基本概念的掌握和理解,注重计算的准确性,避免因为概念理解错误或运算错误而导致答案错误。
中考数学易错题专题复习 数与式
数与式易错点1:有理数、无理数与实数的有关概念理解错误;对于相反数、倒数、绝对值的意义分不清.例:在实数2π,0.3&,,0,tan 60︒,227,,0.01001001……,0.010010001……(相邻两个1之间依次多一个0)中,无理数有……( )A.2个B. 3个C. 4个D.5个 错解:D 正解:B赏析:错误的主要原因是没有真正理解无理数的概念,只看形式,而没有化简后再判断,无理数的常见类型有:①根号型(开方开不尽),如,等;②定义型,如1.010010001……(相邻两个1之间依次多一个0)等;“π”型,如﹣π等;③三角函数型,如tan 60︒,sin45°等.易错点2:在实数的有关运算中,由于对运算顺序理解不清,不正确使用运算律或没有把握好符号的处理从而出现计算错误.例:计算:2tan 60︒221()2-.错解:原式=22+4=6-正解:原式=22+4=2.赏析:错误的主要原因是把绝对值化简后没有处理好前面的负号.正确的解法应是先化简:tan 60︒2=2,21()2-=211()2=4,再算乘法:2tan 60︒=,然后进行加减混合运算.其中关于负整数指数幂的计算也易出错,其计算公式是1p p a a -=(a ≠0,p 为正整数),如21()2-=211()2=4,易错误地计算为21()2-=14.易错点3:平方根、算术平方根、立方根的意义与区别.例:将7的平方根和立方根按从小到大的顺序排列为_____________________. 错解正解赏析:本题主要从“同一个正数(除1外)的平方比立方要小”而得出 “同一个正数的平方根也比立方根要小”的错误结论,应是“同一个正数(除1外)的平方根比立方根要大”.其方法是:2,2,又∵2,,易错点4:求分式的值时易忽略分母不为零的条件.例:分式22x x -+的值为零,则x 的值为………………………………………………( )A.2B.﹣2C.±2D.任意实数 错解:C 正解:A赏析:本题错解考虑到了分子x -2为零,而忽视了分式有意义的条件——分母x +2不为零.分式的值为零的条件应是分子为零且分母不为零,∴由x -2=0,解得x =±2,又由x +2≠0,得x ≠﹣2,∴x =2.还有分式无意义的条件是分母为零.易错点5:分式的运算:①运算法则和符号的变化;②分子或分母是多项式时要分解因式且要分解到不能分解为止;③结果应化为最简分式.例:先化简,再求值:(2241x x x -+-+2-x )÷2441x x x++-,其中x 满足x 2-4x +3=0.错解:原式=[2241x x x -+--(2)(1)1x x x ---]·21(2)xx -+=2224321x x x x x -+--+-·21(2)x x -+ =(56)1x x ---·2(1)(2)x x --+ =256(2)x x -+.∵x 2-4x +3=0,∴(x -1)(x -3)=0, ∴x 1=1,x 2=3.又∵x -1≠0, ∴x ≠1.∴当x =3时,原式=2536(32)⨯-+=925. 正解:原式=[2241x x x -+--(2)(1)1x x x ---]·21(2)xx -+ =2224321x x x x x -+-+--·21(2)x x -+=21x x +-·2(1)(2)x x --+ =12x -+. ∵x 2-4x +3=0,∴(x -1)(x -3)=0, ∴x 1=1,x 2=3.又∵x -1≠0,x 2+4x +4≠0, ∴x ≠1,x ≠﹣2. ∴当x =3时,原式=12x -+=﹣132+=15-. 赏析:本题一处错误是在去括号时,符号出现了错误,括号前面是“﹣”,去掉括号和它前面的“﹣”号,括号里面的每一项都要改变符号,二处错误是原式有意义的条件只考虑了分母不为零,即x -1≠0,而忽视了除数不能为零的条件,即x 2+4x +4≠0.易错点6:非负数的性质:几个非负数的和为零,则每个非负数都为零;整体代入;完全平方式.例:若(x 2+y 2)2+2(x 2+y 2)-8=0,则x 2+y 2=__________. 错解:2或﹣4 正解:2赏析:本题错误的主要原因是没有注意到题中隐含的条件x 2+y 2≥0,同时把x 2+y 2整体运用也很重要.本题可以用因式分解法来解:(x 2+y 2)2+2(x 2+y 2)-8=0,(x 2+y 2+4)( x 2+y 2-2)=0,∴x 2+y 2+4=0或x 2+y 2-2=0,∴x 2+y 2=﹣4或x 2+y 2=2,∵x 2+y 2≥0,∴x 2+y 2=2.或者用换元法来解:设x 2+y 2=a ,则原方程化为a 2+2a -8=0,∴(a +4)(a -2)=0,∴(a +4)=0或(a -2)=0,∴a =﹣4,a =2,即x 2+y 2=﹣4或x 2+y 2=2,∵x 2+y 2≥0,∴x 2+y 2=2.易错点7:五类计算:绝对值;零指数幂;负整数指数幂;二次根式的化简计算;锐角三角函数.sin 60︒错解1-2+4=2-1+2=1+2.正解22=12+2=2-12=32.赏析:分母有理化时,分母是+-1)=2-1=2,而不是1,错误地理解为分母有理化时分母就是1.同时,逆用二次根式性质3计算=2更简便.二次根式的计算通常先化简,不是最简二次根式化成最简二次根式,分母中有根号时要分母有理化,这一步中熟练掌握二次根式的四条性质和分母有理化的方法很重要,同时还要理解最简二次根式的概念,然后按运算顺序计算,遇有除法时通常先化为乘法再计算,能约分的尽量先约分,在加减计算中要掌握同类二次根式的概念,其合并方法与合并同类项的方法相似.还有,特殊角的三角函数值也易弄错,如sin30°与sin60°,应牢记30°,45°,60°角的三角函数值.特殊角的三角函数值如下表:易错练1.有意义,则x 的取值范围是………………………………………………( ) A.x ≥-1且x ≠2 B.x ≠2 C.x ≥2且x ≠-2 D.x ≥22.下列四个多项式中,能因式分解的是…………………………………………………( )A.a 2+b 2B.a 2-a +0.25C.x 2+4yD.x 2-4y3.已知点A 、B 、C 在同一条数轴上,点A 表示的数是﹣2,点B 表示的数是1,若AC =1,则BC =……………………………………………………………………………………( ) A .3或4 B.1或4 C.2或3 D.2或44.已知(a +b)2=1,(a -b)2=5,则ab 的值为…………………………………………( ) A.﹣4 B.4 C.﹣1 D.15.化简22ab ba a b--的结果为…………………………………………………………………( )A. a 2-b 2B.b 2-a 2C.abD.﹣ab6.据报载,2014年我国发展固定宽带接入新用户250000000户,其中250000000用科学记数法表示为______________________.7.若112x y-=,则分式2272x xy y y xy x --+-=____________.8.n 的最小值为_____________.9.-3--0()π-+2014.10.化简求值:(x +1)2+(x +1)(x -1)-3x (x -1),其中x 1.11.先化简,再求值:221()111a a a a a -÷+--,其中a -1.12.参考答案易错练1.A 解析:由题意,得x +1≥0且x -2≠0,解得x ≥-1且x ≠22.B 解析:a 2-a +0.25=a 2-2×a ×12+(12)2 =(a -12)23.D 解析:∵点A 表示的数是﹣2,AC =1,∴C 点表示的数是﹣1或﹣3,又∵点B 表示的数是1,∴BC =2或4.7. ﹣411解析:由112x y-=,得x-y=﹣2xy,∴原式=()2442()71111x y xy xyx y xy xy---==---+.8.6 解析:∵24n=46n⨯⨯且位整数,∴最小正整数n=6.9. 解:原式=5-3-1+2014=201510.解:原式=x2+2x+1+x2-1-3x2+3x=﹣x2+5x,当x=3-1时,原式=﹣(3-1)2+5(3-1)=23-4+53-5=73-9.11. 解:原式=﹣223(1)(1)3(1)(1)a aa a a aa a-•+-=-+-.当a=2-1时,原式=3(2-1)-(2-1)2=32-3-3+22=52-6.。
中考数学最易出错61个知识点
中考数学最易出错61个知识点中考数学是中学学生所要参加的一项重要考试,其中涉及的知识点众多,且易出错。
在这里,我将为你详细介绍中考数学中最常见的61个易出错知识点。
1.四则运算:在进行加减乘除的运算时,容易出错的地方主要有横式运算错误、进位或借位错误、计算优先级错误等。
2.小数和分数:容易忽略小数点位置,小数转化成百分数或分数时易出错。
3.百分数:容易忘记将百分数转换成小数或分数,计算百分数的加减乘除时易出错。
4.平方和立方:容易将平方和立方的运算法则记错,例如平方数的开平方计算等。
5.代数式的计算:在多项式的加减乘除时容易忽略项,忘记合并同类项等。
6.等式和方程:在等式的加减乘除时易出错,方程的解错等。
7.几何图形的计算:容易计算图形的周长、面积和体积时忽略单位,记错公式等。
8.几何相似:容易混淆正相似和全等,计算相似比时出错。
9.圆与圆相关的知识点:包括弦长、弧长、扇形面积等计算容易出错。
10.直角三角形:容易记错勾股定理和三角函数的计算。
11.等腰三角形和等边三角形:容易忘记等腰三角形的性质和计算等边三角形的周长和面积。
12.梯形和平行四边形:容易计算梯形和平行四边形的面积时忽略高,记错公式。
13.计算用纸:容易使用错单位,计算时纸上的步骤和结果容易出错。
14.逻辑推理和证明:在逻辑推理和证明问题时容易漏项,记错条件或结论。
15.统计与概率:在统计数据的收集和处理时易出错,概率计算容易忽略条件。
以上是中考数学中最常见的61个易出错知识点的简要介绍。
为了避免这些易出错的情况,建议同学们在备考过程中多做相关的练习题,掌握基本技巧和方法,加强解题能力。
此外,同学们还可以多与同学、老师交流,共同探讨和解决问题,提升自己的数学水平。
中考数学常见易错知识点汇总(对称图形)
中考数学常见易错知识点汇总(对称图形)
中考数学常见易错知识点汇总(对称图形)
对称图形
易错点1:轴对称、轴对称图形,及中心对称、中心对称图形概念和性质把握不准。
易错点2:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变。
易错点3:将轴对称与全等混淆,关于直线对称与关于轴对称混淆。
统计与概率
易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。
易错点2:在从统计图获取信息时,一定要先判断统计图的准确性。
不规则的统计图往往使人产生错觉,得到不准确的信息。
易错点3:对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。
易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。
易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率。
易错点6:平均数、加权平均数、方差公式,扇形统计图的圆心角与频率之间的关系,频数、频率、总数之间的关系。
加权平均数的权可以是数据、比分、百分数还可以是概率(或频率)。
中考数学高频错题集锦
点与系数 a,b,c 的关系
例题:已知二次函数 y=ax2+bx+c 的图象如图 G-3,对称
轴是直线 x=1.下列结论:①abc>0;②2a+b=0;③b2-4ac
<0;④4a+2b+c>0.其中正确的是( A.①③ B.只有② C.②④ D.③④ 图 G-3 )
b 分析:∵抛物线的开口向上,∴a>0.∵-2a>0,∴b<0. ∵抛物线与 y 轴交于正半轴,∴c>0.∴abc<0.①错误; b ∵对称轴为 x=1,∴-2a=1,即 2a+b=0.②正确; ∵抛物线与 x 轴有 2 个交点,∴b2-4ac>0.③错误; ∵对称轴为直线 x=1, ∴当 x=2 与 x=0 时的函数值相等, 而当 x=0 时对应的函数值为正数,∴4a+2b+c>0.④正确.
)
分析:当x=0 时,方程两边相等,即x=0 是方程的一个 根;当 x≠0 时,原方程同时除以 x,得x-1=1,即x=2. 正解:C
失误与防范:错误的原因是方程两边同时除以 x,忽略 x
可能为 0,这时就造成了失根.防范这种错误的方法是解方程 时,如果方程的两边同时除以一个代数式,一定要注意它是否 会等于 0.
于a4;D 中 a2a3 是同底数幂相乘指数相加等于a5.
正解:D
失误与防范:易混淆幂的运算法则,幂的运算法则较多,
一定要分清楚记牢.
易错点3:完全平方公式中的交叉项可正可负
例题:如果 a2-ka+1 是一个完全平方式,那么 k 的值是 ________. 分析:当k=2 时,a2-ka+1=a2-2a+1 是一个完全平方 式;当k=-2 时,a2-ka+1=a2+2a+1 也是一个完全平方式. 正解:k=2 或-2 失误与防范:错误的原因是没有注意到完全平方公式中的 交叉项可正可负,防范这种错误的方法是牢记公式.
初中数学最易出错的61个知识点
初中数学最易出错的61个知识点在初中数学学习中,有一些知识点容易使学生犯错。
以下是初中数学最易出错的61个知识点:1.小数的运算规则2.含有绝对值的运算3.含有根式的运算4.有理数的比较5.正负数的四则运算6.解一元一次方程7.解一元一次不等式8.平方根的性质和计算9.立方根的性质和计算10.分数的加减乘除运算11.分数的比较大小12.分数的化简和约分13.相似三角形的性质14.平行四边形的性质15.三角形内角和的性质16.直角三角形的性质17.平行线的性质和判定18.垂直线的性质和判定19.点、线、面的位置关系20.函数图象的性质和绘制21.图形的放大和缩小22.图形的旋转和平移23.图形的对称性24.等腰三角形的性质和判定25.等边三角形的性质和判定26.二次函数的图象和性质27.一元二次方程的解法和判别式28.计算二次根式29.二次根式的化简30.集合的运算和表示31.方程与函数的关系32.因式分解与配方法33.判断一个数的因数34.等式的性质和运算35.余弦定理和正弦定理的应用36.二次根式的大小比较37.二次函数的最值问题38.分数方程的解法39.方程组的解法40.数列的通项公式41.等差数列的性质42.等比数列的性质43.最大公约数和最小公倍数44.矩形的性质和计算45.面积的计算和性质46.体积的计算和性质47.三角函数的计算和性质48.三角函数的图象和性质49.圆的性质和计算50.圆的面积和周长51.球的性质和计算52.梯形和菱形的性质和计算53.错题总结与错误分析54.去掉画蛇添足的步骤55.计算步骤的合理性和正确性56.数学语言的理解和运用57.分解和组合的运算技巧58.图形的结构和形状分析59.策略的选择和运用60.推理和证明的思路和方法61.解决实际问题的数学思维和能力这些知识点需要学生特别注意,并反复进行练习和巩固。
通过不断的练习和理解,学生可以避免在这些知识点上犯错误,并提高数学学习的效果。
初中数学易错知识点最全
初中数学易错知识点最全初中数学中易错的知识点较多,下面列举几个常见的易错知识点进行讲解,供参考。
1.分数的加减乘除:初中生容易在分数的计算中出错。
例如,计算分数的加法时,容易对分子和分母进行了错误的运算。
解决这个问题的方法是,先求出两个分数的公共分母,然后将分子相加,最后将结果化简。
2.乘法和除法的优先级:初中生有时会忽略乘法和除法的优先级,导致计算结果错误。
在进行多个运算符混合的式子时,需要遵循优先级从左到右的原则,先进行乘法和除法运算,再进行加法和减法运算。
3.整数运算的正负号:初中生会忽略整数运算中的正负号,导致结果错误。
在计算整数运算时,需要注意正负号的运用。
正数与正数相乘、相除得正数;正数与负数相乘、相除得负数;负数与负数相乘、相除得正数。
4.等式方程的解法:初中生在解等式方程时,容易将变量和常数搞混,导致计算结果出错。
解决这个问题的方法是,将未知数表示为一个字母,如x,将已知数表示为常数,如3,然后根据题目中给出的条件,列出等式方程,再解方程,求得未知数的值。
5.单位换算:初中生在单位换算中容易出错。
例如,容易将毫米与米、升与毫升之间的换算关系搞混。
解决这个问题的方法是,记住各个单位之间的换算关系,并将其应用到具体的题目中。
6.几何图形的计算:初中生在计算几何图形的面积、体积等问题时容易出错。
例如,容易将长方形的周长与面积混淆。
解决这个问题的方法是,先理清思路,确定需要计算的是面积还是周长,然后利用相应的公式进行计算。
7.平方根和立方根:初中生在计算平方根和立方根时容易出错。
例如,容易将开方运算符和指数运算符搞混。
解决这个问题的方法是,将开方和指数运算符正确应用于运算数,并进行计算。
总之,初中数学中易错的知识点较多,需要加强练习和理解,及时纠正错误,提高计算准确性和解题能力。
中考数学易错知识点最全汇总
中考数学易错知识点最全汇总中考数学的易错知识点主要包括以下几个方面:1.四则运算易错点:-式子中存在括号时,容易在计算过程中忽略括号;-在进行分数的四则运算时,忽略约分;-在计算过程中漏写或错写运算符号。
2.百分数易错点:-在计算过程中忽略百分号;-百分数之间的比较大小,容易忘记转化为相同的百分数形式比较。
3.比例与比例运算易错点:-在比例计算中,忘记将比例化简为最简形式;-在比例运算中,容易混淆相乘和相除的关系。
4.平均数易错点:-不仅要会求平均数,还要注意理解平均数的概念;-在计算过程中,容易将中位数或众数误认为平均数。
5.面积与体积易错点:-混淆面积和周长的概念;-在计算体积时,漏乘或漏除底面积。
6.圆相关易错点:-不熟悉圆的相关公式,如圆的面积和周长的计算公式;-在计算圆的周长时,容易忽略直径和半径的关系。
7.利率、利息及利率计算易错点:-不熟悉利率、利息的概念;-在利率计算中,容易忽略时间单位的转换。
8.正数、负数及相关计算易错点:-不理解正数、负数的概念及意义;-在正数、负数的计算中,容易出错或漏写符号。
9.图表与统计易错点:-不理解图表的含义,无法正确读取和分析图表信息;-在统计中,容易忽略或疏忽数据的计数。
10.方程与不等式易错点:-不熟悉方程与不等式的求解方法;-在解方程或不等式时,忽略了一些特殊情况。
以上是中考数学易错知识点的一个概括,但是具体的易错点还与每个学生的实际情况有关。
需要根据自己的实际情况,有针对性地进行学习和复习,加强易错点的掌握,提高数学水平。
历年中考数学易错题(含答案解析)
历年中考数学易错题(含答案解析)历年中考数学易错题汇编1、数轴上,若A、B为原点两旁的点,则它们表示的两个有理数是()。
A、互为相反数B、绝对值相等C、符号相同的数D、都是负数2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是()。
A、2aB、2bC、2a-2bD、2a+b3、轮船顺流航行时速度为m千米/小时,逆流航行时速度为(m-6)千米/小时,则水流速度为()。
A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有()。
A、1个B、3个C、4个D、无数个5、下列说法错误的是()。
A、两点确定一条直线B、线段是直线的一部分C、一条直线是一个平面D、把线段向两边延长即是直线6、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是()。
A、当m≠3时,有一个交点B、m1时,有两个交点C、当m1时,有一个交点D、不论m为何值,均无交点7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)2=R2,则两圆的位置关系是()。
A、内切B、外切C、内切或外切D、相交9、有理数中,绝对值最小的数是()。
A、-1B、1C、0D、无穷小10、1的倒数的相反数是()。
A、-1B、-2C、2D、1/211、若|x|=x,则-x一定是()。
A、正数B、非负数C、负数D、非正数12、两个有理数的和除以这两个有理数的积,其商为1,则这两个有理数为()。
A、互为相反数B、互为倒数C、互为相反数且不为0D、有一个为113、长方形的周长为x,宽为2,则这个长方形的面积为()。
A、2xB、2(x-2)C、x-4D、x-214、“比x的相反数大3的数”可表示为()。
A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么下列说法正确的是()。
A、a2比a大B、a2比a小C、a2与a相等D、a2与a的大小不能确定16、数轴上,A点表示-1,现在A开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A点表示的数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年中考数学易错点汇总
给大家献上历年中考易错点汇总,希望大家可以在考前找到自己的薄弱点,有针对性地复习一遍,有把握地备考。
一、数与式
易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
计算第一题必考。
易错点8:科学记数法。
小数点位置。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数
易错点1:各个待定系数表示的意义。
易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值
易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
易错点5:利用函数图象进行分类(平行四边形、相似、直角、等腰三角形)以及分类的求解方法。
易错点6:与坐标轴交点坐标一定要会求。
面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点7:数形结合思想方法的运用,还应注意结合图象性质解题。
函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图象提供数据或者图象为图形提供数据。
易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
四、三角形
易错点1:三角形的概念以及三角形的角平分线、中线、高线的特征与区别。
易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。
求最短距离的方法。
易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。
易错点4:全等三角形及其性质,三角形全等判定。
着重学会论证三角形全等,三角形相似与全等的综合运用,以及线段相等是全等的特征。
线段的倍分是相似的特征,以及相似与三角函数的结合。
边边角两个三角形不一定全等。
易错点5:两个角相等和平行是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。
易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。
易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系。
解决与面积有关的问题,以及简单的实际问题。
易错点8:将直角三角形、平面直角坐标系、函数、开放性问题、探索性问题结合在一起综合运用,探究各种解题方法。
易错点9:中点、中线、中位线,一半定理的归纳以及各自的性质。
易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)
易错点11:三角函数的定义中对应线段的比经常出错,以及特殊角的三角函数值。
五、四边形
易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。
三角形的稳定性与四边形不稳定性。
易错点2:平行四边形注意与三角形面积求法的区分。
平行四边形与特殊平行四边形之间的转化关系。
易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。
对角线将四边形分成面积相等的四部分。
易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。
易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。
矩形与正方形的折叠。
易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。
易错点7:梯形问题中,主要做辅助线的方法。
六、圆
易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。
易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。
易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题,以及对切线的判定方法两种方法使用不熟练。
易错点4:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,很容易忽视其中的一种情况。
易错点5:与圆有关的位置关系把握好d与R、R+r和R-r之间的关系,以及应用上述的方法求解。
易错点6:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角。
直角的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
易错点7:一定要牢记的公式:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积和全面积,以及弧长与底面周长,母线长与扇形的半径之间的转化关系。
七、对称图形
易错点1:轴对称、轴对称图形,中心对称、中心对称图形概念和性质把握不准。
易错点2:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变。
易错点3:将轴对称与全等混淆,关于直线对称与关于轴对称混淆。
八、统计与概率
易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。
易错点2:在从统计图获取信息时,一定要先判断统计图的准确性。
不规则的统计图往往使人产生错觉,得到不准确的信息。
易错点3:对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。
易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。
易错点5:概率与频率的意义理解不清晰,不能正确求出事件的概率。
易错点6:平均数、加权平均数、方差公式,扇形统计图的圆心角与频率之间的关系,频数、频率、总数之间的关系。
加权平均数的权可以是数据、比分、百分数,还可以是概率(或频率)
易错点7:求概率的方法:
(1)简单事件运用概率概念。
(2)两步及以上的简单事件求概率的方法:利用树状或者列表表示各种可能的情况与事件的可能性的比值。
(3)复杂事件求概率的方法运用频率估算概率。
易错点8:判断是否公平的方法,运用概率是否相等,关注频率与概率的整合。