大物仿真实验报告
大物仿真实验报告
大物仿真实验报告大学物理仿真实验报告实验名称:测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:M = Iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg –t=ma,在t时间内下落的高度为h=at2/2。
刚体受到张力的力矩为Tr和轴摩擦力力矩Mf。
由转动定律可得到刚体的转动运动方程:Tr - Mf = Iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:m(g - a)r - Mf = 2hI/rt2 (2)Mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:mgr = 2hI/ rt2 (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量I。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:M = K1/ t2 (4)式中K1 = 2hI/ gr2为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 = 2hI/ gr2求得刚体的I。
生物仿真分析实验报告(3篇)
第1篇一、实验名称生物仿真分析实验二、实验目的1. 了解生物仿真的基本概念和原理。
2. 掌握使用仿真软件进行生物系统建模和模拟的方法。
3. 分析仿真结果,验证生物系统的行为和机制。
三、实验原理生物仿真是指利用计算机技术对生物系统进行建模和模拟的过程。
通过构建数学模型,模拟生物体的生理、生化过程,分析其行为和机制。
本实验采用仿真软件对某一生物系统进行建模和模拟,通过调整模型参数,观察系统行为的变化。
四、实验设备1. 仿真软件:如MATLAB、Simulink等。
2. 生物数据:实验所需的相关生物数据。
3. 计算机:运行仿真软件的计算机。
五、实验步骤1. 数据准备:收集实验所需的生物数据,包括生理参数、生化参数等。
2. 模型构建:利用仿真软件,根据实验数据构建生物系统的数学模型。
3. 模型验证:通过调整模型参数,验证模型在特定条件下的准确性和可靠性。
4. 模拟实验:在验证模型的基础上,进行模拟实验,观察系统行为的变化。
5. 结果分析:分析仿真结果,验证生物系统的行为和机制。
六、实验结果1. 模型构建:根据实验数据,成功构建了某一生物系统的数学模型。
2. 模型验证:通过调整模型参数,验证了模型在特定条件下的准确性和可靠性。
3. 模拟实验:在模型验证的基础上,进行了模拟实验,观察到了系统行为的变化。
4. 结果分析:通过分析仿真结果,验证了生物系统的行为和机制。
七、讨论和分析1. 模型构建:在构建生物系统模型时,充分考虑了实验数据的准确性和可靠性。
通过调整模型参数,验证了模型的准确性和可靠性。
2. 模拟实验:通过模拟实验,观察到了系统行为的变化,进一步验证了生物系统的行为和机制。
3. 结果分析:仿真结果与实验数据基本一致,验证了生物系统的行为和机制。
八、注意事项1. 数据收集:在收集实验数据时,应注意数据的准确性和可靠性。
2. 模型构建:在构建生物系统模型时,应充分考虑生物系统的复杂性和动态性。
3. 模拟实验:在模拟实验过程中,应注意调整模型参数,以观察系统行为的变化。
仿真实验报告
仿真实验报告第一篇:仿真实验报告仿真软件实验实验名称:基于电渗流的微通道门进样的数值模拟实验日期:2013.9.4一、实验目的1、对建模及仿真技术初步了解2、学习并掌握Comsol Multiphysics的使用方法3、了解电渗进样原理并进行数值模拟4、运用Comsol Multiphysics建立多场耦合模型,加深对多耦合场的认识二、实验设备实验室计算机,Comsol Multiphysics 3.5a软件。
三、实验步骤1、建立多物理场操作平台打开软件,模型导航窗口,“新增”菜单栏,点击“多物理场”,依次新增:“微机电系统模块/微流/斯托克斯流(mmglf)”“ACDC模块/静态,电/传导介质DC(emdc)”“微机电系统模块/微流/电动流(chekf)”2、建立求解域工作界面绘制矩形,参数设置:宽度6e-5,高度3e-6,中心(0,0)。
复制该矩形,旋转90°。
两矩形取联集,消除内部边界。
5和9两端点取圆角,半径1e-6。
求解域建立完毕。
3、网格划分菜单栏,网格,自由网格参数,通常网格尺寸,最大单元尺寸:4e-7。
4、设置求解域参数求解域模式中,斯托克斯流和传导介质物理场下参数无需改动,电动流物理场下,D各向同性,扩散系数1e-8,迁移率2e-11,x速度u,y速度v,势能V。
5、设置边界条件mmglf—入口1和7边界“进口/层流流进/0.00005”出口5和12边界“出口/压力,粘滞应力/0”;emdc—入口1和7边界“电位能/10V”出口5和12边界“接地”其余边界“电绝缘”;chekf—入口1“浓度/1”,7“浓度/0”出口5和12“通量/向内通量-nmflux_c_chekf”其余边界“绝缘/对称”。
6、样品预置(1)求解器参数默认为稳态求解器,不用修改。
(2)求解器管理器设置求解模式:初始值/初始值表达式,点变量值不可解和线性化/从初始值使用设定。
(3)首先求解流体,对斯托克斯流求解,观察求解结果,用速度场表示。
仿真实验报告(推荐5篇)
仿真实验报告(推荐5篇)第一篇:仿真实验报告大学物理仿真实验报告——塞曼效应一、实验简介塞曼效应就是物理学史上一个著名得实验。
荷兰物理学家塞曼(Zeeman)在1896 年发现把产生光谱得光源置于足够强得磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化得谱线,这种现象称为塞曼效应。
塞曼效应就是法拉第磁致旋光效应之后发现得又一个磁光效应。
这个现象得发现就是对光得电磁理论得有力支持,证实了原子具有磁矩与空间取向量子化,使人们对物质光谱、原子、分子有更多了解.塞曼效应另一引人注目得发现就是由谱线得变化来确定离子得荷质比得大小、符号。
根据洛仑兹(H、A、Lorentz)得电子论,测得光谱得波长,谱线得增宽及外加磁场强度,即可称得离子得荷质比.由塞曼效应与洛仑兹得电子论计算得到得这个结果极为重要,因为它发表在J、J 汤姆逊(J、J Thomson)宣布电子发现之前几个月,J、J 汤姆逊正就是借助于塞曼效应由洛仑兹得理论算得得荷质比,与她自己所测得得阴极射线得荷质比进行比较具有相同得数量级,从而得到确实得证据,证明电子得存在。
塞曼效应被誉为继 X 射线之后物理学最重要得发现之一。
1902 年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰她们研究磁场对光得效应所作得特殊贡献).至今,塞曼效应依然就是研究原子内部能级结构得重要方法。
本实验通过观察并拍摄Hg(546、1nm)谱线在磁场中得分裂情况,研究塞曼分裂谱得特征,学习应用塞曼效应测量电子得荷质比与研究原子能级结构得方法。
二、实验目得1、学习观察塞曼效应得方法观察汞灯发出谱线得塞曼分裂; 2、观察分裂谱线得偏振情况以及裂距与磁场强度得关系;3、利用塞曼分裂得裂距,计算电子得荷质比数值。
三、实验原理1、谱线在磁场中得能级分裂设原子在无外磁场时得某个能级得能量为,相应得总角动量量子数、轨道量子数、自旋量子数分别为。
当原子处于磁感应强度为得外磁场中时,这一原子能级将分裂为层。
大学物理仿真实验报告
大学物理仿真实验报告目录1. 实验目的和意义1.1 实验目的1.2 实验意义2. 理论背景介绍2.1 牛顿力学2.2 动量守恒定律2.3 能量守恒定律3. 实验器材和原理3.1 实验器材3.2 实验原理4. 实验步骤4.1 实验准备4.2 实验具体步骤5. 实验数据记录及分析5.1 数据记录5.2 数据分析6. 实验结论与讨论6.1 实验结论6.2 结论讨论7. 实验中的问题及解决方法7.1 问题描述7.2 解决方法实验目的和意义实验目的本实验旨在通过物理仿真模拟,探究运动物体的力学规律,深入理解牛顿力学原理以及动量守恒和能量守恒定律。
实验意义通过本实验,可以加深对物理定律的理解,提高实验操作能力,培养科学思维和分析问题的能力。
理论背景介绍牛顿力学牛顿力学是经典物理力学的一个重要分支,主要描述了物体受力下的运动规律,包括牛顿三定律等内容。
动量守恒定律动量守恒定律表明,在一个封闭系统内,系统的总动量保持不变,即系统内所有物体的动量之和在任意时刻都是恒定的。
能量守恒定律能量守恒定律是物理学中的一个基本原理,即在一个封闭系统内,系统的总能量保持不变,能量可以转化形式但总量不变。
实验器材和原理实验器材本实验所需器材包括计算机、物理仿真软件等。
实验原理实验基于牛顿力学原理,通过模拟不同条件下物体的运动,验证动量守恒和能量守恒定律。
实验步骤实验准备1. 打开计算机,启动物理仿真软件。
2. 设置实验初始参数,包括物体质量、速度等。
实验具体步骤1. 进行单个物体的运动模拟,记录相关数据。
2. 进行碰撞实验,观察动量和能量的转移情况。
3. 分析实验结果,得出结论。
实验数据记录及分析数据记录在实验过程中记录了单个物体的运动轨迹、速度等数据,以及碰撞实验中的动量和能量转移情况。
数据分析通过对实验数据的分析,可以验证动量守恒和能量守恒定律是否得到满足,进一步探讨物体运动规律。
实验结论与讨论实验结论实验结果表明,在所设定条件下,动量守恒和能量守恒定律是成立的,验证了物理定律在模拟实验中的适用性。
大物仿真实验实验报告
物理仿真实验实验报告光电效应和普朗克常量的确定一、实验简介1905年,年仅26岁的爱因斯坦提出光量子假说,发表了在物理学发展史上具有里程碑意义的光电效应理论,10年后被具有非凡才能的物理学家密里根用光辉的实验证实了。
两位物理大师之间微妙的默契配合推动了物理学的发展,他们都因光电效应等方面的杰出贡献分别于1921年和1923年获得诺贝尔物理学奖。
光电效应实验及其光量子理论的解释在量子理论的确立与发展上,在揭示光的波粒二象性等方面都具有划时代的深远意义。
利用光电效应制成的光电器件在科学技术中得到广泛的应用,并且至今还在不断开辟新的应用领域,具有广阔的应用前景。
二、实验目的(1)了解光电效应基本规律,加深对光量子论的认识和理解;(2)了解光电管的结构和性能,并测定其基本特性曲线;(3)验证爱因斯坦光电效应方程,并测量普朗克常量。
三、实验原理当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。
在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。
光电效应实验原理如图1所示。
其中S为真空光电管,K为阴极,A为阳极。
当无光照射阴极时,由于阳极与阴极是断路,所以检流计G中无电流流过,当用一波长比较短的单色光照射到阴极K上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图2所示。
1.光电流与入射光强度的关系光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值H I ,饱和电流与光强成正比,而与入射光的频率无关。
当K A U U U -=变成负值时,光电流迅速减小。
实验指出,有一个遏止电位差a U 存在,当电位差达到这个值时,光电流为零。
2.光电子的初动能与入射光频率之间的关系光电子从阴极逸出时,具有初动能。
在减速电压下,光电子在逆着电场力方向由K 极向A 极运动。
大学物理仿真实验报告
大学物理仿真实验报告姓名:学号:班级:实验-----利用单摆测量重力加速度实验目的利用单摆来测量重力加速度实验原理单摆的结构参考图1单摆仪,一级近似的周期公式为由此通过测量周期摆长求重力加速度实验仪器单摆仪、摆幅测量标尺、钢球、游标卡尺实验内容一.用误差均分原理设计一单摆装置,测量重力加速度g.设计要求:(1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2)写出详细的推导过程,试验步骤.(3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%.可提供的器材及参数:游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s;米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.二.对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.三.自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小.四.自拟试验步骤用单摆实验验证机械能守恒定律.实验数据摆线长+小球直径L=91.50cmD(平均)=(1.750+1.752+1.744+1.740+1.749+1.748)÷6=1.7 47m R=D/2=0.850cm l=L-R=91.05cm t=95.91s,周期数n=50,周期T=1.92s所以g=9.751 2ΔT/t=0.0022,ΔL/l=0.0005,所以Δg/g=0.27%,Δg=0.026 所以:g=(9.751±0.026)实验结论与误差分析:结论:g=(9.751±0.026),Δg/g=0.27%<1%,所以达到设计要求。
大学物理仿真实验报告
落球法测定液体的粘度实验目的:1.落球法测定液体粘度原理2.PID条件控制实验原理:1.落球法测定液体粘度原理1个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示粘滞阻力的斯托克斯公式:(2.4.1)(2.4.1)式中为小球直径。
由于粘滞阻力与小球速度成正比,小球在下落很短一段距离后(参见附录的推导),所受3力达到平衡,小球将以匀速下落,此时有:(2.4.2)为液体密度。
由(2.4.2)式可解出粘度η的表达式:式中ρ为小球密度,ρ(2.4.3)本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时粘滞阻力的表达式可加修正系数(1+2.4d/D),而(2.4.3)式可修正为:(2.4.4)当小球的密度较大,直径不是太小,而液体的粘度值又较小时,小球在液体中的平会达到较大的值,奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式衡速度v的影响:(2.4.5)其中,Re称为雷诺数,是表征液体运动状态的无量纲参数。
(2.4.6)当Re小于0.1时,可认为(2.4.1)、(2.4.4)式成立。
当0.1<Re<1时,应考虑(2.4.5)式中1级修正项的影响,当Re大于1时,还须考虑高次修正项。
考虑(2.4.5)式中1级修正项的影响及玻璃管的影响后,粘度可表示为:(2.4.7)由于3Re/16是远小于1的数,将1/(1+3Re/16)按幂级数展开后近似为1-3Re/16,(2.4.7)式又可表示为:(2.4.8)已知或测量得到ρ、ρ、D、d、v等参数后,由(1.3.4)式计算粘度η,再由(2.4.6)。
式计算Re,若需计算Re的1级修正,则由(2.4.8)式计算经修正的粘度η1在国际单位制中,η的单位是Pa·s(帕斯卡·秒),在厘米,克,秒制中,η的单位是P(泊)或cP(厘泊),它们之间的换算关系是:(2.4.9)2.PID条件控制PID调节是自动控制系统中应用最为广泛的一种调节规律,自动控制系统的原理可用图2.4.1说明。
大学物理实验仿真实验实验报告
仿真实验(单摆测重力加速度和单透镜焦距的测定)引言随着计算机应用的普及,在各个应用领域都采用计算机设计和仿真,在大学物理实验课教学中,除了实际操作外还可以进行计算机仿真实验,对有些内容采用仿真实验也可以起到很好的效果。
一、实验目的:1、了解仿真实验特点2、学会用仿真实验完成单摆测重力加速度3、学会用仿真实验完成单透镜焦距的测定二、实验仪器:计算机、仿真软件三、实验原理1、单摆的工作原理单摆在摆动过程中,当摆角小于5度时,其运动为简谐运动,周期2224LT g Tπ=⇒=,通过测定摆长L 与T 可测定加速度g 。
详细请见:课本240-243页 2、单透镜焦距测定的原理凸透镜的成像规律为:像的大小和位置是依照物体离透镜的距离而决定的 当u f >>时,极远处的物体经过透镜在后焦点附近成缩小的倒立实像。
当u f >时,物体越靠近前焦点,像逐渐远离后焦点且逐渐变大。
当u f =时,物体位于前焦点,像存在于无穷远处。
当u f <时,物体位于前焦点以内,像为正立放大的虚像,与物体位于同侧,由于虚像点是光线反方向延长的交点,因此不能用像屏接收,只能通过透镜观察。
(1)、自准直法测凸透镜的焦距光路图如下图1所示。
当物体A 处在凸透镜的焦距平面时,物A 上各点发出的光束,经透镜后成为不同方向的平行光束。
若用一与主光轴垂直的平面镜M 将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。
所成像是一个与原物等大的倒立实像A ′。
所以自准直法的特点是,物、像在同一焦平面上。
自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。
凸透镜焦距: 12f x x =- (1)x 1为物屏在光具座上位置读数,x 2为凸透镜在光具座上位置读数。
(2)、贝塞尔法(共轭法,二次成像法)测凸透镜的焦距利用凸透镜物像共轭对称成像的性质测量凸透镜焦距的方法,叫共轭法。
大物实验报告(3篇)
大物实验报告(3篇)大物实验报告(精选3篇)大物实验报告篇1【实验原理】辉光球发光是低压气体(惰性气体)在高频电场中的放电现象。
辉光球外表为高强度玻璃球壳,球内充有稀薄的惰性气体(如氩气等),中央有一个黑色球状电极。
球的底部有一块振荡电路板,通过电源变换器,将低压直流电转变为高压高频电流加在电极上。
通电后,振荡电路产生高频电场,球内稀薄气体由于受到高频电场的电离作用而光芒四射。
辉光球工作时,在球中央的电极周围形成一个类似于点电荷的场。
当用手(人与大地相连)触及球时,球周围的电场、电势分布再均匀对称,故辉光球在手指的周围处变得更为明亮,产生的弧线顺着手的触摸移动而游动扭曲,随手指移动起舞。
这其实是分子的激发,碰撞、电离、复合的物理过程。
人体为另一电极,气体在极间电场中电离、复合而发生辉光。
【实验现象】辉光球通电后呈静止样。
当人手触摸时中间电极出现放电致球壳触摸处。
五颜六色的闪电会随着手的移动而移动,球内出现放电现象。
一旦手离开,闪电消失。
霓虹灯,把直径为12-15毫米的玻璃管弯成各种形状,管内充以数毫米汞柱压力的氖气或其他气体,每1米加约1000伏的电压时,依管内的充气种类,或管壁所涂的荧光物质而发出各种颜色的光,多用此作为夜间的广告等。
日光灯,亦称荧光灯。
一种利用光质发光的照明用灯。
灯管用圆柱形玻璃管制成,实际上是一种低气压放电管。
两端装有电极,内壁涂有钨酸镁、硅酸锌等荧光物质。
制造时抽取空气,充入少量水银和氩气。
广泛用于生活和工厂的照明光源。
还有一种是氙灯,氙灯是一种高辉度的光源。
它的颜色成分与日光相近故可以做天然色光源、红外线、紫外线光源、闪光灯和点光源等,应用范围很广。
人体辉光,疾病辉光,爱情辉光,意识体能辉光,人体辉光监控。
大物实验报告篇2【实验目的】1、了解示波器的基本结构和工作原理,学会正确使用示波器。
2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。
3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。
大学物理实验仿真实验实验报告
⼤学物理实验仿真实验实验报告仿真实验(单摆测重⼒加速度和单透镜焦距的测定)引⾔随着计算机应⽤的普及,在各个应⽤领域都采⽤计算机设计和仿真,在⼤学物理实验课教学中,除了实际操作外还可以进⾏计算机仿真实验,对有些内容采⽤仿真实验也可以起到很好的效果。
⼀、实验⽬的:1、了解仿真实验特点2、学会⽤仿真实验完成单摆测重⼒加速度3、学会⽤仿真实验完成单透镜焦距的测定⼆、实验仪器:计算机、仿真软件三、实验原理1、单摆的⼯作原理单摆在摆动过程中,当摆⾓⼩于5度时,其运动为简谐运动,周期2224LT g Tπ=?=,通过测定摆长L 与T 可测定加速度g 。
详细请见:课本240-243页 2、单透镜焦距测定的原理凸透镜的成像规律为:像的⼤⼩和位置是依照物体离透镜的距离⽽决定的当u f >>时,极远处的物体经过透镜在后焦点附近成缩⼩的倒⽴实像。
当u f >时,物体越靠近前焦点,像逐渐远离后焦点且逐渐变⼤。
当u f =时,物体位于前焦点,像存在于⽆穷远处。
当u f <时,物体位于前焦点以内,像为正⽴放⼤的虚像,与物体位于同侧,由于虚像点是光线反⽅向延长的交点,因此不能⽤像屏接收,只能通过透镜观察。
(1)、⾃准直法测凸透镜的焦距光路图如下图1所⽰。
当物体A 处在凸透镜的焦距平⾯时,物A 上各点发出的光束,经透镜后成为不同⽅向的平⾏光束。
若⽤⼀与主光轴垂直的平⾯镜M 将平⾏光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平⾯上,此关系就称为⾃准直原理。
所成像是⼀个与原物等⼤的倒⽴实像A ′。
所以⾃准直法的特点是,物、像在同⼀焦平⾯上。
⾃准直法除了⽤于测量透镜焦距外,还是光学仪器调节中常⽤的重要⽅法。
凸透镜焦距: 12f x x =- (1)x 1为物屏在光具座上位置读数,x 2为凸透镜在光具座上位置读数。
(2)、贝塞尔法(共轭法,⼆次成像法)测凸透镜的焦利⽤凸透镜物像共轭对称成像的性质测量凸透镜焦距的⽅法,叫共轭法。
大学物理仿真实验报告
大学物理仿真实验报告篇一:大学物理仿真实验报告大学物理仿真实验报告实验日期:2011年5月31日实验人员:机自实验名称:热敏电阻的温度特性一、实验目的:1、了解热敏电阻的电阻—温度特性及测温原理;2、学习惠斯通电桥的原理及使用方法;3、学习坐标变换、曲线改直的技巧。
二、实验原理:热敏电阻---实验原理半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A、B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为惠斯通电桥的工作原理:如图所示:四个电阻R0,R1,R2,Rx 组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。
在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。
当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。
平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx 即可求出。
电桥灵敏度的定义为:式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。
实验仪器三、实验仪器及使用方法:直流单臂电桥、检流计、待测热敏电阻和温度计、调压器、稳压电源。
四、实验内容:1、从室温开始,每隔5°C测量一次Rt,直到85°C。
撤去电炉,使水慢慢冷却,测量降温过程中,各对应温度点的Rt。
2、作ln Rt ~ (R1 / T)曲线,确定式(R1)中常数A和B五、数据记录及处理:1、数据处理结果如下:2、作ln Rt ~ (R1 / T)曲线如下:六、实验结论,误差分析及建议:1、实验结论:了解了惠斯通电桥的原理及使用方法;基本掌握坐标变换、曲线改直的技巧。
作ln Rt ~ (R1 / T)曲线,成线性关系。
2、误差分析:由于在记录过程中温度计视数在变化,故出现误差; 电源不稳定,造成系统误差;数据处理时产生偶然误差。
3、建议:1)在使用检流计时,要注意保护检流计,不要让大电流通过检流计,实验中间要用跃接2)实验过程中要注意电池按钮和接通检流计按钮的使用,检流计按钮先使用粗,然后再使用细,不要两个按钮同时使用。
大物仿真实验报告傅里叶光学
大物仿真实验报告---傅里叶光学大学物理仿真实验报告姓名:白轩宇班级:物联网11学号:2110509006学院:电信学院傅里叶光学一、实验目的1.学会利用光学元件观察傅立叶光学现象。
2.掌握傅立叶光学变换的原理,加深对傅立叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
二、实验所用仪器及使用方法防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30µm),水平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,白屏三、实验原理平面波Ee(x,y)入射到p平面(透过率为)在p平面后Z=0处的光场分布为:E(x,y)= Ee(x,y)图1 入射光波被p平面的图形(或孔径)衍射根据惠更斯原理(Huygens’ Principle),在p平面后任意一个平面p’处光场的分布可看成p平面上每一个点发出的球面波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。
(1)这里:=球面波波长;n=p平面(x,y)的法线矢量;K=(波数)是位相和振幅因子;cos(n,r)是倾斜因子;在一般的观察成像系统中,cos(n,r)1。
r=Z+,分母项中rz;(1)式可用菲涅尔衍射积分表示:(菲涅尔近似 Fresnel approximation)(2)当z更大时,即z>>时,公式(2)进一步简化为夫琅和费衍射积分:(Fraunhofer Approximation)(3)这里:位相弯曲因子。
如果用空间频率做为新的坐标有:,若傅立叶变换为(4) (3)式的傅立叶变换表示如下:E(x’,y’,z)=F[E(x,y)]=c图2 空间频率和光线衍射角的关系tg==,tg===,=可见空间频率越高对应的衍射角也越大,当z越大时,衍射频谱也展的越宽;由于感光片和人眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因子(5)理论上可以证明,如果在焦距为f的汇聚透镜的前焦面上放一振幅透过率为g(x,y)的图象作为物,并用波长为的单色平面波垂直照明图象,则在透镜后焦面上的复振幅分布就是g(x,y)的傅立叶变换,其中空间频率,与坐标,的关系为:,。
大物仿真实验报告热敏电阻的温度特性-V1
大物仿真实验报告热敏电阻的温度特性-V1以下为正文内容:
热敏电阻是一种电阻值与温度变化呈反比例关系的电子元件。
在实际应用中,热敏电阻常用于温度测量、温度控制等领域。
本文主要介绍了利用大物仿真软件进行的热敏电阻温度特性实验,并总结了实验结果。
一、实验介绍
在大物仿真软件中,我们选用了热敏电阻Rt作为被测元件,在一定的电压U下,通过不同的温度T,测量热敏电阻的电阻值R,进而绘制出热敏电阻的电阻-温度特性曲线。
本文中采用的热敏电阻型号为MF52。
二、实验步骤与结果
1. 搭建电路:将电源接到电阻与热敏电阻组成的串联电路上,开启电源。
将测量手段接入电路,通过测量热敏电阻的电阻值得到其在不同温度下的电阻值,记录数据。
2. 实验数据处理:将测量得到的电阻-温度数据绘制成图表,得到热敏电阻的电阻-温度特性曲线。
3. 实验结果:我们得到了热敏电阻的电阻-温度特性曲线,结果表明热敏电阻在不同温度下的电阻值变化与温度呈反比例关系,即随着温度的升高,热敏电阻的电阻值逐渐降低。
同时,我们还发现在一定范围内,热敏电阻的电阻值变化与温度变化的比例系数相对稳定,可用于温度测量和控制。
三、实验总结
本实验利用大物仿真软件进行了热敏电阻的电阻-温度特性曲线绘制实验,结果表明热敏电阻在不同温度下的电阻值变化与温度呈反比例关系,且在一定范围内比例系数相对稳定。
该实验验证了热敏电阻的基本特性,并为其在实际应用中提供了理论基础。
大物仿真实验报告热敏电阻的温度特性(1)
大物仿真实验报告热敏电阻的温度特性(1)实验背景:热敏电阻的温度特性是指在不同温度下,热敏电阻的电阻值变化情况。
热敏电阻是指在一定温度范围内电阻值随温度变化而变化的电阻器件。
其应用广泛,例如在汽车引擎中使用用于测量水温,或在空调中使用用于测量室内温度等。
实验目的:本次实验旨在了解热敏电阻的基本特性,探究其电阻值与温度之间的关系,并通过仿真实验的结果对理论进行验证。
实验原理:热敏电阻将温度变化给传感器,传感器在传递到仪表中转化为电信号。
热敏电阻分为两种:正温度系数电阻和负温度系数电阻。
正温度系数电阻,随温度的升高,电阻值也随之升高;负温度系数电阻,随温度的升高,电阻值随之降低。
仿真实验过程:本次实验采用Multisim软件对热敏电阻的温度特性进行仿真,具体步骤如下:1.利用仿真器件库中的电阻器添加热敏电阻器件。
2.将测得的不同温度数据导入Multisim软件中。
3.在Multisim软件中将温度数据与电阻值的关系图形化。
4.分别绘制不同温度下,热敏电阻的电阻值图形,并进行比较分析。
实验结果:通过Multisim软件仿真得到的热敏电阻的电阻值-温度特性曲线如下所示:从图中可以看出,在不同温度下,热敏电阻的电阻值呈现出不同的趋势。
在较低温度下,电阻值随温度的增加而增加,而在较高温度下,电阻值反而随温度的升高而下降。
根据电阻温度系数的定义,我们可以知道这是由于热敏材料呈正温度系数或负温度系数导致的。
结论:通过本次实验,我们得出了热敏电阻的温度特性曲线,在实验结果的基础上,我们得到如下结论:1.热敏电阻器件随温度变化导致电阻值变化。
2.热敏电阻器件具有一定的温度灵敏度。
3.热敏电阻器件的温度特性可以根据实验结果进行比较并分析。
综上所述,本次实验深入了解了热敏电阻的基本特性,探究了其电阻值与温度之间的关系,并通过仿真实验的结果对理论进行了验证,为我们今后更好地应用和开发热敏电阻器件提供了帮助。
大物仿真实验实验报告 刚体的转动惯量
实验名称:刚体的转动惯量一实验简介:在研究摆的中心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。
转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。
二实验目的:1.用实验方法验证转动惯量,并求转动惯量。
2.观察转动惯量与质量的分布关系。
3.学习作图的曲线改直法,并由作图法处理实验数据。
三实验原理:1. 刚体的转动定律具有确定转轴的刚体,在外力矩作用下,将获得较加速度β,其值与外力矩成正比,与刚体的转动惯量成反比即有刚体的转动定律:M=Iβ利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg-t=ma,在t时间内下落的高度为h=at2/2。
刚体收到张力的力矩为T r和轴摩擦力力矩M f。
由转动定律可得到刚体的转动运动方程:T r--M f=I β。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:m(g - a)r - Mf = 2hI/rt2 (2)M f与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:mgr = 2hI/ rt2 (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量I。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:M = K1/ t2 (4)式中K1 =2hI/ gr2为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。
大学物理实验仿真实验实验报告
大学物理实验仿真实验实验报告I. 引言大学物理课程中的实验教学是培养学生科学思维和实践能力的重要环节。
然而,由于实验设备和资源的限制,学生往往难以亲自进行所有的物理实验。
为了解决这一问题,许多高校开始采用物理实验仿真实验,即利用计算机模拟技术进行物理实验的虚拟仿真。
本实验报告将详细介绍一次大学物理实验仿真实验的进行过程和结果。
II. 实验目的本次实验的目的是通过物理仿真软件,模拟测量并分析简谐振动的周期时间与质量、弹性系数的关系。
通过实验,掌握简谐振动的基本原理和实验方法,并通过仿真实验,加深对实验数据的分析和处理能力。
III. 实验原理简谐振动是指物体在一个恢复力作用下沿同一直线往复运动的物理现象。
其周期T与质量m以及弹性系数k之间的关系可以通过以下公式表示:T = 2π√(m/k)根据该公式,我们可以推导出质量对周期的影响,以及弹性系数对周期的影响。
通过仿真实验,我们可以得到不同质量和弹性系数下的周期时间数据,进而分析它们之间的关系。
IV. 实验装置与方法本次实验采用XXX物理仿真实验软件进行,该软件能够通过计算机模拟出各种物理实验的过程和结果。
具体的实验步骤如下:1. 打开XXX物理仿真实验软件,进入简谐振动实验模块。
2. 设置初始条件,包括质量、弹性系数等参数。
3. 点击开始按钮,开始模拟实验过程。
4. 观察模拟实验的过程,记录下每次振动的周期时间。
5. 根据记录的周期时间数据,计算出不同质量和弹性系数下的平均周期时间。
6. 绘制周期时间与质量、弹性系数之间的关系曲线。
V. 实验结果与分析根据模拟实验过程中记录的数据,我们计算出了不同质量和弹性系数下的平均周期时间,并绘制了周期时间与质量、弹性系数之间的关系曲线。
通过曲线的趋势,我们可以得出以下结论:1. 质量对周期时间的影响:质量越大,周期时间越长。
这是因为质量越大,惯性力也就越大,所需的恢复力也越大,导致周期时间增加。
2. 弹性系数对周期时间的影响:弹性系数越大,周期时间越短。
大学物理仿真实验报告
实验名称:碰撞过程中守恒定律的研究 实验日期:实验人:1. 实验目的:利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。
定量研究动量损失和能量损失在工程技术中有重要意义。
同时通过实验还可提高误差分析的能力。
2. 实验仪器和使用:实验仪器:主要有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等。
1.气垫导轨是以空气作为润滑剂,近似无摩擦的力学实验装置。
导轨由优质三角铝合金管制成,长约 2m ,斜面宽度约7cm ,管腔约18.25cm ,一端密封,一端通入压缩空气。
铝管向上的两个外表面钻有许多喷气小孔,压缩空气进入管腔后,从小孔喷出。
导轨的一端装有滑轮,导轨的二端装有缓冲弹簧,整个导轨安装在工字梁上,梁下有三个支脚,调节支脚螺丝使气垫保持水平。
2.光电计时系统由光电门和数字毫秒计或电脑计时器构成。
光电门安装在气轨上,时间由数字毫秒计或电脑计时器测量。
3.气源是向气垫导轨管腔内输送压缩空气的设备。
要求气源有气流量大、供气稳定、噪音小、能连续工作的特点,一般实验室采用小型气源,气垫导轨的进气口用橡皮管和气源相连,进入导轨内的压缩空气,由导轨表面上的小孔喷出,从而托浮起滑块,托起的高度一般在0.1mm 以上。
?3.实验原理:如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即ii v m ∑=恒量 (1) 实验中用两个质量分别为m 1、m 2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有2211202101v m v m v m v m +=+ (2)对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。
当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。
最新大学物理仿真实验实验报告1
最新大学物理仿真实验实验报告1实验目的:本次实验旨在通过物理仿真软件,加深对基本物理原理的理解,并掌握使用现代科技手段进行物理实验的方法。
通过模拟不同的物理现象,提高分析和解决物理问题的能力。
实验原理:在本次实验中,我们将利用仿真软件模拟光的折射和反射现象。
光的折射遵循斯涅尔定律,即入射光线、折射光线和法线都在同一平面内,且入射角和折射角的正弦之比等于两种介质的折射率之比。
反射则遵循反射定律,即入射角等于反射角,且入射光线、反射光线和法线都在同一平面内。
实验设备:1. 物理仿真软件(如PhET Interactive Simulations)2. 计算机及显示器3. 数据记录表格实验步骤:1. 打开物理仿真软件,并选择适当的模拟实验模块。
2. 设定初始条件,如光源位置、介质的折射率、观察屏幕的位置等。
3. 启动模拟,观察光在不同介质间的传播情况,记录入射角、折射角和反射角。
4. 更改介质的折射率,重复步骤3,观察折射和反射角的变化。
5. 对收集到的数据进行分析,验证斯涅尔定律和反射定律。
实验结果与分析:在实验过程中,我们观察到当光从低折射率介质进入高折射率介质时,折射角小于入射角;反之,折射角大于入射角。
此外,反射角始终等于入射角,这一点在所有模拟实验中都得到了验证。
通过改变入射角和介质的折射率,我们得到了一系列的数据,这些数据与理论预测相符,从而验证了斯涅尔定律和反射定律的正确性。
结论:通过本次仿真实验,我们成功模拟了光的折射和反射现象,并验证了相关的物理定律。
实验结果表明,物理仿真软件是一种有效的教学和研究工具,可以帮助学生更好地理解复杂的物理概念。
此外,仿真实验的可重复性和可控性为深入研究提供了便利。
大物仿真实验报告-副本分析
一、 实验目的1、熟悉仪器内部各部件配置,功能和使用方法2、观察传感器结构及应变片位置,熟悉仪器上的电桥线路3、按照图4的电路图连接电路,测量传感器单臂电桥V-W 曲线,并求灵敏度。
测重物W 与电压V 的关系曲线,增加砝码(上升曲线)和减小砝码(下降曲线)时各测一条。
分别求出上升曲线和下降曲线的灵敏度并求出灵敏度S 的平均值。
4、测量传感器半桥和全桥的灵敏度,并与单臂电桥进行比较 。
二、 实验原理1. 物理基础如果沿导线轴线方向施加拉力或压力使之产生变形,其电阻也会随之变化,这种现象称为应变电阻效应,如图1所示,电阻应变式传感器正是基于此效应而产生的。
图1金属丝受力时几何尺寸变化示意图一般的金属材料,在弹性范围内,其泊松比通常在0.25~0.4之间,因此在1.5~1.8之间,而其电阻率也稍有变化,一般金属材料制作的应变敏感元件的灵敏系数值为2左右,但其具体大小需要经过实验来测定。
2. 金属材料电阻应变片的结构电阻应变片是常用的电阻应变敏感元件,其结构如右图2所示,由1-敏感栅、2-引线、3-粘接剂、4-盖层和5-基底等组成。
其中敏感栅是用厚度为0.003~0.010mm 的金属箔制成栅状或用金属丝制成。
图2 应变片的结构示意图S V W =∆∆0(12)k d νρρε=++12ν+0k3. 电阻应变式传感器的转换电路应变片将应变量转换成电阻相对变化量,为了测量,通常采用各种电桥线路。
根据接入电桥桥臂的工作应变片的位置和数量,可以将电桥电路分为如图3所示的几种情况:图3 电桥电路我们知道电桥平衡的条件为:电桥相对两臂电阻的乘积相等或相邻两臂的电阻比值相等,即或 (5)1) 单臂电桥在四臂电桥中,如果只有R1为工作应变片,由于应变而产生相应的电阻变化为,而R2、R3和R4为固定电阻,则称此电桥为单臂电桥,如图3-b 所示。
U0为电桥输出电压。
初始状态下,电桥处于平衡状态,U0=0。
当有时,电桥输出电压U0为:(6)电桥电压灵敏度定义为:(7)在式(6)中设桥臂比,由于电桥初始平衡时有,略去分母中的,可得(8)于是可以得到单臂为工作应变片时的电桥电压灵敏度为:(9)2) 半桥电桥考虑单臂电桥中U 值的选择受到应变片功耗的限制,为此可通过选择n 值获得最高的灵敏度,由可得,当n=1时,即:R 1=R 2,R 3=R 4时,为最大,并且此时εR R ∆R R∆1423R R R R =1234R R R R =1R ∆1R ∆[]43110211143()()1()()1U R R R R U R R R R R R ∆=++∆+011()k U R R μ=∆21n R R =1234R R R R =11R R ∆()01121nUU R R n =⋅∆+)21k nU n μ=+k μdk dn μ=k μ(10)因此(11)考虑到(8)式中求出U 0时忽略了分母中的项,是近似值,实际值存在有非线性误差,为了减小和克服非线性误差,常用的方法是采用差动电桥,如图3-c 所示,在试件上安装两个工作应变片,一片受拉力,另一片受压力,然后接入电桥的相邻两臂,电桥此时的输出电压U 0为:(12)设平衡电桥初始时R 1=R 2=R 3=R 4,,则因此(13)此时输出电压不存在非线性误差,而且电桥灵敏度比单臂电桥时提高了一倍,还具有温度补偿作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理仿真实验
---------------热敏电阻温度特性曲线实验实验名称:热敏电阻温度特性曲线实验
一.实验简介:
热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。
与一般常用的金属电阻相比,它有大得多的电阻温度系数值。
热敏电阻作为温度传感器具有用料省、成本低、体积小等优点,可以简便灵敏地测量微小温度的变化,在很多科学研究领域都有广泛的应用。
二.实验目的:
了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。
三.实验原理:
半导体热敏电阻的电阻—温度特性
热敏电阻的电阻值与温度的关系为:
A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:
R t是在温度为t时的电阻值。
惠斯通电桥的工作原理
如图所示:
四个电阻R0,R1,R2,Rx组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。
在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。
当B和D
两点电位相等时,G中无电流通过,电桥便达到了平衡。
平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx即可求出。
电桥灵敏度的定义为:
式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。
实验仪器四.实验装置:
直流单臂电桥、检流计、待测热敏电阻和温度计、调压器。
五.实验内容:
从室温开始,每隔5°C测量一次Rt,直到85°C。
撤去电炉,使水慢慢冷却,测量降温过程中,各对应温度点的Rt。
求升温和降温时的各Rt的平均值,然后绘制出热敏电阻的Rt-t特性曲线。
求出t=50°C点的电阻温度系数。
作ln Rt ~ (1 / T)曲线,确定式(1)中常数A和B,再由(2)式求α (50°C时)。
六.实验所测数据:
•不同T所对应的Rt 值
•R t均值,1 / T,及ln R t的值
七.数据处理:
1.热敏电阻的R t-t特性曲线
数据点连线作图
在图上找到T=50所对应的点做切线,可以求得切线的斜率:
K=(500-0)/(0-85)=5.88
由
由此计算出:α=-0.031
二次拟合的曲线:
在图上找到T=50所对应的点做切线,可以求得切线的斜率:
K=(495-0)/(0-84)=5.89
由
由此计算出:α=--0.031
2.ln R t -- (1 / T)曲线
仿真实验画出图线如下图所示
但计算机仿真实验画出的曲线图中A的值计算有误,正确的A=0.0153.将图修正后如下:
A=0.0153,B=3047.5383
由此写出
R t= 0.0153
由此
当T=50时,
思考题:
1. 如何提高电桥的灵敏度?
答:电桥的灵敏度和电源电压,检流计的灵敏度成正比,因此提高电源电压,检流计的灵敏度能提高电桥灵敏度。
另外,检流计电阻,桥臂总阻值,桥臂电阻比也关系到电桥的灵敏度,因此合适的桥臂总阻值,桥臂电阻比也能提高电桥灵敏度。
2. 电桥选择不同量程时,对结果的准确度(有效数字)有何影响?
答:第1测量盘(×1000),即第1测量盘不置于“0”时,结果的有效数字位数都为四位。
但选择不同量程时,电阻精确到的小数位数不同。
选择量程时,要尽量使能读取四位有效数字,即第1测量盘不置于“0”。