中考数学易错
中考数学易错题系列解决二次函数与一元二次方程中的常见错误
中考数学易错题系列解决二次函数与一元二次方程中的常见错误在中考数学考试中,二次函数与一元二次方程是一个重要的知识点,也是学生易犯错误的地方。
为了帮助同学们更好地掌握这部分内容并避免错误,本文将针对二次函数与一元二次方程的常见错误进行解析和解决方案,希望能为同学们在中考数学中的备考提供帮助。
一、二次函数中的常见错误及解决方法1.错误:对二次函数的顶点和轴线的理解不准确。
二次函数的一般形式为f(x)=ax²+bx+c,其中二次项的系数a不为零。
顶点坐标为(-b/2a,f(-b/2a)),轴线方程为x=-b/2a。
很多同学在计算顶点时,容易弄错符号或漏掉除以2a的步骤,导致计算结果出现错误。
解决方法:在计算顶点坐标时,要注意对符号和运算的准确性。
如此题f(x)=2x²+4x+3,则计算顶点坐标的步骤为:x=-4/(2×2)=-1,代入函数得f(-1)=2×(-1)²+4×(-1)+3=1-4+3=0,所以顶点坐标为(-1,0)。
2.错误:对二次函数的图像特征理解不准确,如开口朝上还是朝下、图像与x轴的交点等。
二次函数的开口方向由二次项的系数a的正负确定,开口朝上(a>0)或朝下(a<0);图像与x轴的交点对应于方程f(x)=0的解,即求解一元二次方程的根。
解决方法:首先要理解二次函数图像的开口方向是由二次项的系数决定的。
例如f(x)=3x²-2x+1,由于a=3>0,所以图像开口朝上。
其次,在求解交点时,要将二次函数转化为一元二次方程,并应用求根公式或配方法求解。
典型案例:已知二次函数f(x)=x²-4x+3,求解方程f(x)=0的解。
解:将f(x)=0代入二次函数得x²-4x+3=0,该方程为一元二次方程,可以使用因式分解或求根公式求解。
方法一:因式分解法根据观察,可以将方程对应的二次函数写成(x-3)(x-1)=0的形式,再分别令两个因式为零,即得到方程的解为x=3和x=1。
易错点03 函数-中考数学考试易错题(解析版)
易错点03 函数1.平面直角坐标系与函数2.一次函数的图像与性质3.一次函数的应用4.反比例函数5.二次函数的图像性质与性质6.二次函数的应用01各个待定系数表示的意义。
1.一次函数y=﹣3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】解答:解:∵一次函数y=﹣3x﹣4,k=﹣3,b=﹣4,∵该函数经过第二、三、四象限,不经过第一象限,故选:A.1.已知反比例函数y=bx的图象如图所示,则一次函数y=cx+a和二次函数y=ax2﹣bx+c在同一直角坐标系中的图象可能是()A.B.C.D.【答案】D【解析】∵反比例函数的图象在一、三象限,∵0b>,A.∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,a>,∵0b>不相符,故A错误;∵0b<,与0B. ∵二次函数的开口向下,对称轴在y轴右侧,∵a、b异号,∵0a<,b->,∵0与已知b>0矛盾故B错误;C.∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,∵0a<,b>,∵0∵二次函数图象与y轴交于负半轴,c<,∵0∵一次函数y=cx+a的图象过二、三、四象限,故C错误;D. ∵二次函数的开口向上,对称轴在y轴右侧,∵a、b异号,a>,c<0∵0b-<,则b>0,∵0所以一次函数图象经过第一、二、四象限故D 正确;故选D .20(1)k -有意义,则一次函数(1)1y k x k =-+-的图象可能是( ) A . B .C .D .【答案】A【解析】解:∵0(1)k -有意义,∵10,10k k -≥-≠,∵k -1>0,∵一次函数(1)1y k x k =-+-的图象可能是A ,故选:A .3.已知抛物线2(1)y m x x =++的开口向上,则m 的取值范围是( ).A .1m >B .1m <C .1m >-D .1m <-【答案】C【解析】解:根据题意,∵抛物线2(1)y m x x =++的开口向上,∵10m +>,∵1m >-;故选:C .02 各种函数解析式的求法以及函数与几何图形的关系应用。
中考数学常考易错点-平面直角坐标系及函数的图象
平面直角坐标系及函数的图象易错清单1.能确定较复杂函数的自变量取值范围吗?【例1】(山东济宁)函数中的自变量x的取值范围是().A. x≥0B. x≠-1C. x>0D. x≥0且x≠-1【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【答案】根据题意,得x≥0且x+1≠0,解得x≥0.故选A.【误区纠错】本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.2.能利用直角坐标系探讨点的坐标的变化规律.【例2】(山东泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点,B(0,4),则点B2014的横坐标为.【解析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【答案】∵,BO=4,故答案为10070.【误区纠错】此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.由特殊总结一般性.3.借助函数图象描述问题中两个变量之间的关系.【例3】(山东烟台)如图,点P是ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是().【解析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【答案】点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选A.【误区纠错】本题主要考查了动点问题的函数图象.注意分段考虑.名师点拨1.会画出直角坐标系,能标识点在平面直角坐标系的位置.2.能根据点的坐标的正、负性确定点的对称性及所在象限.3.理解函数的意义,会解释并区分常量与变量,能列简单的函数关系,会进行描点法画函数的图象.4.能列举函数的三种表示方法.5.会求出函数中自变量的取值范围,如保证分母不为零,使二次根式有意义等.6.能利用代入法求函数的值.7.能利用函数变化规律进行准确猜想、判断.提分策略1.函数的概念及函数自变量的取值范围.函数自变量的取值范围一般从三个方面考虑:(1)当函数关系式是整式时,自变量可取全体实数;(2)当函数关系式是分式时,考虑分式的分母不能为0;(3)当函数关系式是二次根式时,被开方数为非负数.此题就是第三种情形,考虑被开方数必须大于等于0.【解析】根据二次根式的意义,被开方数不能为负数,据此求解.【答案】 C2.函数解析式的求法.具体地说求函数的解析式和列一元一次方程解实际问题基本相似,即弄清题意和题目中的数量关系,找到能够表示所求问题含义的一个相等的关系,根据这个相等的数量关系,列出所需的代数式,从而列出两个变量之间的关系式.【例2】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用y1(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【答案】(1)从纸箱厂定制购买纸箱费用y1=4x.蔬菜加工厂自己加工纸箱费用y2=2.4x+16000.(2)y2-y1=(2.4x+16000)-4x=16000-1.6x,由y1=y2,得16 000-1.6x=0,解得x=10000.∴当x<10000时,y1<y2.选择方案一,从纸箱厂定制购买纸箱所需的费用低.∴当x>10000时,y1>y2.选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.∴当x=10000时,y1=y2.两种方案都可以,两种方案所需的费用相同.3.坐标系中的图形的平移与旋转.求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质,二是利用图形的全等关系;三是确定变换前后点所在的象限.【例3】在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度称为1次变换.如图,已知等边三角形ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续9次这样的变换得到△A'B'C',则点A的对应点A'的坐标是.4.运用函数的图象特征解决问题.(1)由函数图象的定义可知图象上任意一点P(x,y)中的坐标值x,y是解析式方程的一个解,反之,以解析式方程的任意一解为坐标的点一定在函数的图形上.(2)注意方程与函数的结合,抓住“方程(方程的解)——点的坐标——函数图象与性质”这个网,结合数学知识,用数形结合法来解题.【例4】小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.②小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时分,此时小刚离家1100米,所以点B的坐标是(20,1100).点C的坐标是(50,1100),点D的坐标是(60,0),设线段CD所在直线的函数解析式是s=kt+b,将点C,D的坐标代入,得所以线段CD所在直线的函数解析式是s=-110t+6600.5.分段函数的应用自变量在不同的范围内取值时,函数y和x有不同的对应关系,这种函数称为分段函数,解决分段函数的有关问题时,关键是弄清自变量的取值范围,选择适合的解析式解决问题.【例5】如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是().【答案】 B专项训练一、选择题1.(四川中江县一模)已知点A(a,1)与点A'(-5,b)是关于原点O的对称点,则a+b的值为().A. 1B. 5C. 6D. 42. (深圳模拟)已知点A(a+2,a-1)在平面直角坐标系的第四象限内,则α的取值范围为().A. -2<a<1B. -2≤a≤1C. -1<a<1D. -1≤a≤23.(宁夏银川外国语学校模拟)已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是().4. (内蒙古赤峰模拟)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步回到家里.下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的函数关系的大致图象是().5.(2013·广东佛山模拟)在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y的值是().A. 2B. 8C. -2D. -86.(2013·湖北宜昌调研)在正方形ABCD中,点P从点C出发沿着正方形的边依次经过点D,A向终点B运动,运动的路程为x(cm),△PBC的面积为y(cm2),y随x变化的图象可能是().7. (2013·河南南阳模拟)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA,OB,使OA=OB;再分别以点A,B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为().(第7题)A. m+2n=1B. m-2n=1C. 2n-m=1D. n-2m=1二、填空题8. (广西玉林模拟)在平面直角坐标系中,点(0,2)到x轴的距离是.9. (甘肃天水模拟)函数中,自变量x的取值范围10.(四川达州模拟)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).(第10题)11.(2013·北京房山区一模)如图,在平面直角坐标系中,以原点O为圆心的同心圆半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A1,A2,A3,A4,…,则点A31的坐标是.(第11题)三、解答题12. (四川峨眉山二模)如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC 先向右平移4个单位,再向下平移2个单位,得到△A'B'C'.在坐标系中画出△A'B'C',并写出△A'B'C'各顶点的坐标.(第12题)13.(2013·辽宁葫芦岛一模)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A,B的坐标分别为(3,2),(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为的长为.(第13题)参考答案与解析1. D[解析]a=5,b=-1.2. A[解析]由a+2>0,a-1<0,得-2<a<1.4. C[解析]先慢步行走,再打了一会儿太极拳,最后原路跑步回到家里.只有C图能反映爷爷离家的距离y(米)与时间x(分钟)之间的函数关系6.A[解析]利用图象可以发现△PBC的面积,从增大到不变,再到不断减小,结合图象可选出答案.7. B[解析]根据题意可知OC为∠AOB的平分线,点C的坐标为(m-1,2n)且在第一象限,点C到x轴、y轴距离为m-1,2n,根据角平分线上的点到角两边距离相等,可知m-1=2n,所以m-2n=1.8. 2[解析]点p(a,b)到x轴的距离是|b|,到y轴的距离是|a|.9.x≥0且x≠1[解析]根据被开方数具有非负性且分母不等于零,得x≥0且x≠1.10. (2n,1)[解析]A4 (2,0),A8(4,0),A12(6,0),∴A4n (2n,0).11.[解析]根据31÷4=7……3,得出A31在直线y=x上,在第三象限,且在第8个圆上,求出OA31=8,通过解直角三角形即可求出答案.12.图略; 各顶点坐标为A'(2,2),B'(3,-2),C'(0,-6).。
中考数学易错题系列之代数运算解析式运算常见错误
中考数学易错题系列之代数运算解析式运算常见错误代数运算是中考数学中的一大重点考点,也是容易出错的部分。
在解析式运算中,同学们经常会犯一些常见的错误。
本文将针对这些常见错误进行分析和解决,帮助同学们在中考数学中避免这些错误。
一、符号的使用错误在解析式运算中,同学们常常会犯到符号的使用错误,如混淆加法和乘法的符号,或者忽略括号的作用。
这些错误会导致最终答案出错。
在解析式运算中,加法的符号是"+",乘法的符号是"×",并且乘法在运算优先级中大于加法。
因此,同学们在运算时要注意区分加法和乘法的符号,不要混淆使用。
同时,在运算中,使用括号可以改变运算的优先次序,从而避免错误。
同学们要养成使用括号的习惯,根据运算顺序正确地使用括号,确保运算的准确性。
二、未化简算式在解析式运算中,同学们有时候会在得到结果后未进行进一步的化简,从而导致答案出错。
化简算式是指将算式中的项合并简化,去除冗余部分。
同学们要在得到结果后,仔细检查算式中是否还有合并简化的余地,并及时进行化简。
这样可以避免答案冗杂,提高解答的准确性。
三、代数式求值错误在解析式运算中,同学们有时候会在代数式求值的过程中出错,导致最终结果错误。
代数式求值是指根据给定的数值,将代数式中的未知数替换为具体的数值,计算得出结果。
在进行代数式求值时,同学们要仔细阅读题目,正确把握数值的取值范围,准确替换未知数,并进行正确的计算。
只有在求值上下文下,代数式才能得到准确的结果。
四、未列清楚步骤在解析式运算中,同学们有时候会在列式子的过程中步骤不清晰,从而导致结果错误。
在进行解析式运算时,同学们要养成规范列式子的习惯,确保每一步都清晰可读。
可以使用等号对齐、竖式计算等方式,使得列式子过程清晰明了。
这样不仅可以减少错误的发生,还有助于提高解答的整体逻辑性和可读性。
五、对常见公式理解不深在解析式运算中,同学们应掌握一些常见的代数运算公式,如乘法分配律、加法结合律等。
中考数学易错题解析解方程的常见错误及纠正方法
中考数学易错题解析解方程的常见错误及纠正方法解方程是中学数学中的重要内容,也是容易出错的一个知识点。
在中考数学中,解方程题经常会出现,并且常常成为学生们易错的地方。
本文将从解方程的常见错误入手,探讨解方程题的正确解法和纠正方法,帮助同学们在中考数学中避免这些错误。
一、常见错误1. 忽略分配律:在解方程问题中,常常会有分配律的运算。
例如:2(x + 1) = 3(x - 2)。
有些同学会漏掉分配律,直接将2乘以x和1,3乘以x和2,导致最后得到的方程错误。
2. 步骤混乱:解方程是一个需要有条不紊进行的过程,但有些同学容易在解题过程中步骤混乱。
例如:直接代入计算,没有按照顺序进行合并同类项、消元等步骤,导致最后答案错误。
3. 求解范围错误:解方程的过程中,有时会得到可行解和不可行解。
但有些同学没有注意到这一点,将不可行解作为最后的解答,造成错误。
二、纠正方法1. 仔细阅读题目:解方程题在中考中常常伴随着实际问题。
在解答问题之前,要仔细阅读题目,理解问题的要求和条件。
只有明确了方程的意义和所求的未知数,才能正确解题。
2. 列方程时注重细节:在列方程时,要注意各项系数的符号、操作的顺序等细节。
特别是运用分配律时,要确保每项都正确进行了乘法运算。
3. 使用合适的解法:解方程可以采用多种方法,如消元法、配方法、因式分解等。
不同方程适用不同的方法,需要根据具体情况灵活选择。
在解题过程中,同学们可以多进行练习,熟悉各种解法的应用场景。
4. 检验答案的可行性:在解得方程的根之后,需要进行合理性检验。
将解代入原方程,看是否符合题目条件和要求。
如果不符合,则需要回顾解题过程,找出可能出错的地方。
5. 多进行归纳总结:经常遇到的错误,需要进行归纳总结,并进行自我纠正。
同学们可以将错题整理出来,反复分析错误的原因,并总结出解题的经验和技巧。
三、解方程题的练习方法为了提高解方程的能力,同学们可以进行以下练习:1. 多做基础题:基础题目是掌握解方程的关键。
中考数学常考易错点《二次函数》知识点梳理
中考数学常考易错点《二次函数》知识点梳理《二次函数》是中考数学中的重要知识点之一,也是考试中容易出错的部分。
为了帮助同学们复习和避免常见错误,下面将对《二次函数》的知识点进行梳理,详细介绍其中的易错点。
《二次函数》是形如y = ax² + bx + c的函数,其中a、b和c是常数,并且a ≠。
它的图像是一个开口向上或向下的抛物线。
下面我们来逐个讲解常见易错点。
1.函数的定义域和值域:在解析式中,x可以取任意实数值,所以函数的定义域是全体实数集R。
而在图像上,如果a>,则函数的值域是[,+∞);如果a<,则函数的值域是(-∞,]。
错误经常出在对值域的判断上,容易忽略函数的开口方向。
2.抛物线的开口和对称轴:当a>时,抛物线开口向上,对称轴是x=-b/2a;当a<时,抛物线开口向下,对称轴是x=-b/2a。
易错点在于判断抛物线的开口方向和对称轴的判断。
3.抛物线的顶点和轴对称性:顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax² + bx + c。
抛物线与对称轴关于顶点具有轴对称性,即对称轴上的点到顶点的距离与对称轴上的点到抛物线的距离相等。
4.求解方程和不等式:与二次函数相关的方程和不等式是中考数学考试中的常见题型。
对于二次方程ax² + bx + c = ,可以使用因式分解、配方法和求根公式等方法求解。
对于二次不等式ax² + bx + c > 或ax² + bx + c < ,可以通过画图法或求解方程法来确定解集。
5.函数的增减性和极值:二次函数的增减性与a的正负有关,当a>时,函数递增;当a<时,函数递减。
相应地,函数的极值与抛物线的开口方向相反,开口向上时有最小值,开口向下时有最大值。
6.函数与坐标轴的交点:函数与x轴的交点称为零点,可以通过求解方程ax² + bx + c = 来求得。
中考数学易错题专题复习 数与式
数与式易错点1:有理数、无理数与实数的有关概念理解错误;对于相反数、倒数、绝对值的意义分不清.例:在实数2π,0.3&,,0,tan 60︒,227,,0.01001001……,0.010010001……(相邻两个1之间依次多一个0)中,无理数有……( )A.2个B. 3个C. 4个D.5个 错解:D 正解:B赏析:错误的主要原因是没有真正理解无理数的概念,只看形式,而没有化简后再判断,无理数的常见类型有:①根号型(开方开不尽),如,等;②定义型,如1.010010001……(相邻两个1之间依次多一个0)等;“π”型,如﹣π等;③三角函数型,如tan 60︒,sin45°等.易错点2:在实数的有关运算中,由于对运算顺序理解不清,不正确使用运算律或没有把握好符号的处理从而出现计算错误.例:计算:2tan 60︒221()2-.错解:原式=22+4=6-正解:原式=22+4=2.赏析:错误的主要原因是把绝对值化简后没有处理好前面的负号.正确的解法应是先化简:tan 60︒2=2,21()2-=211()2=4,再算乘法:2tan 60︒=,然后进行加减混合运算.其中关于负整数指数幂的计算也易出错,其计算公式是1p p a a -=(a ≠0,p 为正整数),如21()2-=211()2=4,易错误地计算为21()2-=14.易错点3:平方根、算术平方根、立方根的意义与区别.例:将7的平方根和立方根按从小到大的顺序排列为_____________________. 错解正解赏析:本题主要从“同一个正数(除1外)的平方比立方要小”而得出 “同一个正数的平方根也比立方根要小”的错误结论,应是“同一个正数(除1外)的平方根比立方根要大”.其方法是:2,2,又∵2,,易错点4:求分式的值时易忽略分母不为零的条件.例:分式22x x -+的值为零,则x 的值为………………………………………………( )A.2B.﹣2C.±2D.任意实数 错解:C 正解:A赏析:本题错解考虑到了分子x -2为零,而忽视了分式有意义的条件——分母x +2不为零.分式的值为零的条件应是分子为零且分母不为零,∴由x -2=0,解得x =±2,又由x +2≠0,得x ≠﹣2,∴x =2.还有分式无意义的条件是分母为零.易错点5:分式的运算:①运算法则和符号的变化;②分子或分母是多项式时要分解因式且要分解到不能分解为止;③结果应化为最简分式.例:先化简,再求值:(2241x x x -+-+2-x )÷2441x x x++-,其中x 满足x 2-4x +3=0.错解:原式=[2241x x x -+--(2)(1)1x x x ---]·21(2)xx -+=2224321x x x x x -+--+-·21(2)x x -+ =(56)1x x ---·2(1)(2)x x --+ =256(2)x x -+.∵x 2-4x +3=0,∴(x -1)(x -3)=0, ∴x 1=1,x 2=3.又∵x -1≠0, ∴x ≠1.∴当x =3时,原式=2536(32)⨯-+=925. 正解:原式=[2241x x x -+--(2)(1)1x x x ---]·21(2)xx -+ =2224321x x x x x -+-+--·21(2)x x -+=21x x +-·2(1)(2)x x --+ =12x -+. ∵x 2-4x +3=0,∴(x -1)(x -3)=0, ∴x 1=1,x 2=3.又∵x -1≠0,x 2+4x +4≠0, ∴x ≠1,x ≠﹣2. ∴当x =3时,原式=12x -+=﹣132+=15-. 赏析:本题一处错误是在去括号时,符号出现了错误,括号前面是“﹣”,去掉括号和它前面的“﹣”号,括号里面的每一项都要改变符号,二处错误是原式有意义的条件只考虑了分母不为零,即x -1≠0,而忽视了除数不能为零的条件,即x 2+4x +4≠0.易错点6:非负数的性质:几个非负数的和为零,则每个非负数都为零;整体代入;完全平方式.例:若(x 2+y 2)2+2(x 2+y 2)-8=0,则x 2+y 2=__________. 错解:2或﹣4 正解:2赏析:本题错误的主要原因是没有注意到题中隐含的条件x 2+y 2≥0,同时把x 2+y 2整体运用也很重要.本题可以用因式分解法来解:(x 2+y 2)2+2(x 2+y 2)-8=0,(x 2+y 2+4)( x 2+y 2-2)=0,∴x 2+y 2+4=0或x 2+y 2-2=0,∴x 2+y 2=﹣4或x 2+y 2=2,∵x 2+y 2≥0,∴x 2+y 2=2.或者用换元法来解:设x 2+y 2=a ,则原方程化为a 2+2a -8=0,∴(a +4)(a -2)=0,∴(a +4)=0或(a -2)=0,∴a =﹣4,a =2,即x 2+y 2=﹣4或x 2+y 2=2,∵x 2+y 2≥0,∴x 2+y 2=2.易错点7:五类计算:绝对值;零指数幂;负整数指数幂;二次根式的化简计算;锐角三角函数.sin 60︒错解1-2+4=2-1+2=1+2.正解22=12+2=2-12=32.赏析:分母有理化时,分母是+-1)=2-1=2,而不是1,错误地理解为分母有理化时分母就是1.同时,逆用二次根式性质3计算=2更简便.二次根式的计算通常先化简,不是最简二次根式化成最简二次根式,分母中有根号时要分母有理化,这一步中熟练掌握二次根式的四条性质和分母有理化的方法很重要,同时还要理解最简二次根式的概念,然后按运算顺序计算,遇有除法时通常先化为乘法再计算,能约分的尽量先约分,在加减计算中要掌握同类二次根式的概念,其合并方法与合并同类项的方法相似.还有,特殊角的三角函数值也易弄错,如sin30°与sin60°,应牢记30°,45°,60°角的三角函数值.特殊角的三角函数值如下表:易错练1.有意义,则x 的取值范围是………………………………………………( ) A.x ≥-1且x ≠2 B.x ≠2 C.x ≥2且x ≠-2 D.x ≥22.下列四个多项式中,能因式分解的是…………………………………………………( )A.a 2+b 2B.a 2-a +0.25C.x 2+4yD.x 2-4y3.已知点A 、B 、C 在同一条数轴上,点A 表示的数是﹣2,点B 表示的数是1,若AC =1,则BC =……………………………………………………………………………………( ) A .3或4 B.1或4 C.2或3 D.2或44.已知(a +b)2=1,(a -b)2=5,则ab 的值为…………………………………………( ) A.﹣4 B.4 C.﹣1 D.15.化简22ab ba a b--的结果为…………………………………………………………………( )A. a 2-b 2B.b 2-a 2C.abD.﹣ab6.据报载,2014年我国发展固定宽带接入新用户250000000户,其中250000000用科学记数法表示为______________________.7.若112x y-=,则分式2272x xy y y xy x --+-=____________.8.n 的最小值为_____________.9.-3--0()π-+2014.10.化简求值:(x +1)2+(x +1)(x -1)-3x (x -1),其中x 1.11.先化简,再求值:221()111a a a a a -÷+--,其中a -1.12.参考答案易错练1.A 解析:由题意,得x +1≥0且x -2≠0,解得x ≥-1且x ≠22.B 解析:a 2-a +0.25=a 2-2×a ×12+(12)2 =(a -12)23.D 解析:∵点A 表示的数是﹣2,AC =1,∴C 点表示的数是﹣1或﹣3,又∵点B 表示的数是1,∴BC =2或4.7. ﹣411解析:由112x y-=,得x-y=﹣2xy,∴原式=()2442()71111x y xy xyx y xy xy---==---+.8.6 解析:∵24n=46n⨯⨯且位整数,∴最小正整数n=6.9. 解:原式=5-3-1+2014=201510.解:原式=x2+2x+1+x2-1-3x2+3x=﹣x2+5x,当x=3-1时,原式=﹣(3-1)2+5(3-1)=23-4+53-5=73-9.11. 解:原式=﹣223(1)(1)3(1)(1)a aa a a aa a-•+-=-+-.当a=2-1时,原式=3(2-1)-(2-1)2=32-3-3+22=52-6.。
中考数学易错题集锦及答案 [整理版]
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A B C D 9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++xx x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=0 21、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±510 26、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( ) A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s2B 、x , s2C 、k x , ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( )A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、30B 、45C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、30B 、60C 、150D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1C 、m ≥1D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( )ABA B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21 C 、21 D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
2023年中考数学一次函数综合易错题(含答案)
2023年中考数学一次函数综合易错题(含答案)一、单选题1.一次函数31y x =-+的图象经过( ) A .一、二、四象限 B .一、三、四象限 C .一、二、三象限D .二、三、四象限2.如图,直线y kx b =+ (k ≠0)经过点A (-3,6),则不等式6kx b +> 的解集为( ).A .x >-3B .x <-3C .x <6D .x >63.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =+的图象大致是( )A .B .C .D .4.如图,线段AB =5,动点P 以每秒1个单位长度的速度从点A 出发,沿线段AB 运动至点B ,以点A 为圆心,线段AP 长为半径作圆.设点P 的运动时间为t ,点P ,B 之间的距离为y ,⊙A 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .一次函数关系,正比例函数关系C .一次函数关系, 二次函数关系D .正比例函数关系,二次函数关系5.笔直的海岸线上依次有A 、B 、C 三个港口,甲船从A 港口出发,沿海岸线匀速驶向C 港口,1小时后乙船从B 港口出发,沿海岸线匀速驶向A 港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B 港口的距高()y km 与甲船行驶时间(h)x 之间的函数关系如图所示,给出下列说法错误的是( )A .A 、B 港口相距400km ; B .B 、C 港口相距200km ;C .甲船的速度为100km/h ;D .乙船出发4h 时,两船相距220km .6.如图,直线2y x b =+与直线1y ax =+相交于点(1,1.5)-,则不等式12ax x b +<+的解集是( )A .1x <-B .1x >-C . 1.5x >D . 1.5x <7.在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个8.一次函数12y x n =-+图像上有两点()12,A y -,()23,B y ,则1y 、2y 的大小关系为( ) A .12y y >B .12y y =C .12y y <D .无法确定9.在同一平面直角坐标系中,函数y =ax +b 与=by ax(其中a ,b 是常数,ab ≠0)的大致图象是( )A .B .C .D .10.在直角坐标系中,将直线y =﹣x 向下平移2个单位后经过点(a ,2),则a 的值为( ) A .0B .4C .﹣4D .﹣311.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =cx(c ≠0)在同一直角坐标系中的图像可能是( )A .B .C .D .12.已知一次函数21y kx k =-+(k 为常数,且0k ≠),无论k 取何值,该函数的图像总经过一个定点,则这个定点的坐标是( ) A .()0,1B .()2,1C .()1,0D .()1,2二、填空题13.已知函数y =2xm ﹣1是正比例函数,则m =_____.14.一次函数y =2x +3的图象上有两点A (1,y 1)、B (﹣2,y 2),则y 1与y 2的大小关系是y 1_____y 2.15.若|1|(2)m y m x -=-是正比例函数,则m 的值为______.16.如图,已知函数2y x b =+与函数3y kx =-的图像交于点P ,则不等式32kx x b ->+的解集是______.17.函数23x y -=的图象在y 轴的截距是______. 18.某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为______cm . 19.疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种.甲地经过a 天后接种人数达到30万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y (万人)与各自接种时间x (天)之间的关系如图所示,当乙地完成接种任务时,甲地已接种疫苗的人数为______万人.20.如图,在平面直角坐标系中,点A ,B 的坐标分别为()1,3,()2,0,点P 是y 轴上的一个动点,当ABP 的周长最小时,ABP 的面积为 _____.三、解答题21.“冰墩墩”和“雪容融”分别是北京2022年冬季奥运会和冬残奥运会的吉祥物.该吉祥物深受全世界人民的喜爱,某生产厂家经授权每天生产两种吉祥物挂件共600件,且当天全部售出,原料成本、销售单价及工人生产提成如下表所示:设该厂每天制作“冰墩墩”挂件x 件,每天获得的利润为y 元. (1)求出y 与x 之间的函数关系式;(2)若该厂每天投入总成本不超过23800元,应怎样安排“冰墩墩”和“雪容融”制作量,可使该厂一天所获得的利润最大,请求出最大利润和此时两个挂件的制作量.22.已知一次函数y =(3 - k )x - 2k 2 + 18 (1)k 为何值,它是正比例函数?(2)k 满足什么条件时,y 随x 的增大而减小?23.“五一”假期,小明一家将随团到某风景区旅游,集体门票的收费标准是:25人以内(含25人),每人30元;超过25人时,超过部分每人20元. (1)写出应收门票费y (元)与游览人数x (人)之间的关系式;(2)若小明一家所在的旅游团购门票花了1250元,则该旅游团共有多少人.24.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(020x<<)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?25.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?26.如图,直线y=kx+b(k>0)与x轴、y轴分别交于点A,B,且OA=3,OB=4.(1)求直线AB的函数表达式;(2)若C是第一象限内的直线AB上一点,当⊙AOC的面积为6时,求点C的坐标.27.如图,已知抛物线2=++(a≠0)的对称轴为直线x=﹣1,且抛物线y ax bx c经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使MA+MC的值最小,求点M的坐标;(3)设P为抛物线的对称轴x=﹣1上的一个动点,求使⊙BPC为直角三角形的点P 的坐标.28.如图1,直线y=2x+b过点A(﹣1,﹣4)和B(m,8),它与y轴交于点G,点P是线段AB上的一个动点.(1)求出b的值,并直接写出m=,点G的坐标为;(2)点P关于坐标轴对称的点Q落在直线y=﹣12x﹣52上,求点P的坐标;(3)过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.①如图2,将⊙PGE沿直线PG翻折,当点E的对应点E′落在x轴上时,求点P 的坐标;②在点P从A运动到点B的过程中,点E′也随之运动,直接写出点E′的运动路径长为.参考答案1.A2.A3.A4.C5.D6.B7.D8.A9.A10.C11.A12.B13.2 14.> 15.0 16.4x < 17.23- 18.24 19.36 20.2 21.(1)由题意得:()()()5063641728600y x x =--+---()236000600x x =+<<;(2)解:由题意得()()()36628760023800x x +++-≤, ⊙42210003523800x x +-≤, ⊙400x ≤, ⊙20>,⊙y 随x 增大而增大,⊙当400x =时,y 最大,最大为24003600=4400⨯+, 600-400=200件,⊙当每天生产“冰墩墩”400件,“雪容融”200件时,可使该厂一天所获得的利润最大,最大为4400元. 22.(1)⊙函数是正比例函数,⊙点(0,0)在函数图象上,代入图象解析式得:0=-2k 2+18, 解得:k =±3.又⊙y =(3-k )x -2k 2+18是正比例函数, ⊙3-k ≠0, ⊙k ≠3.故k =-3. (2)⊙y 随x 的增大而减小,⊙根据一次函数图象性质知,系数小于0,即3-k <0, 解得:k >3.23.(1)解:(1)由题意得:当025x ≤≤时,票价是每人30元 ⊙30y x =;当25x >时,超过部分每人20元, ⊙()3025252020250y x x =⨯+-⨯=+,⊙综上所述:()()300252025025y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(x 为整数);(2)解:⊙小明一家所在的旅游团购门票花了1250元, ⊙12503041.725÷≈>,⊙旅游团购门票的张数超过25张, ⊙202501250x +=, 解得50x =,⊙该旅游团共有50人. 答:该旅游团共有50人.24.解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+, 将点(1,110)、(3,130)代入一次函数表达式得:1101303k bk b =+⎧⎨=+⎩,解得:10100k b =⎧⎨=⎩,故函数的表达式为:10100y x =+;(2)由题意得:(10100)(5535)1760x x +⨯--=, 整理,得210240x x --=. 解得112x =,22x =-(舍去). 所以5543x -=.答:这种消毒液每桶实际售价43元.25.(1)解:由图可知,设一次函数的解析式为y kx b =+,把点(25,50)和点(35,30)代入,得25503530k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩, ⊙一次函数的解析式为2100y x =-+;(2)解:根据题意,设当天玩具的销售单价是x 元,则(10)(2100)600x x -⨯-+=,解得:140x =,220x =,⊙当天玩具的销售单价是40元或20元;(3)解:根据题意,则(10)(2100)w x x =-⨯-+,整理得:22(30)800w x =--+;⊙20-<,⊙当30x =时,w 有最大值,最大值为800;⊙当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元. 26.(1)⊙OA =3,OB =4,⊙A (3,0),B (0,-4),把A (3,0),B (0,-4)分别代入y =kx +b 得304k b b +=⎧⎨=-⎩, 解得434k b ⎧=⎪⎨⎪=-⎩, ⊙直线AB 的解析式为y =43x -4;(2)设C 443t t ⎛⎫- ⎪⎝⎭,, ⊙⊙AOC 的面积为6, ⊙12×3×443t ⎛⎫- ⎪⎝⎭=6, 解得t =6,⊙点C 的坐标为(6,4).27.(1)解:抛物线的对称轴为直线x =﹣1,且抛物线经过A (1,0), 故点B 的坐标为(﹣3,0),设抛物线的表达式为y =()()12a x x x x --=()()()21323a x x a x x -+=+-,将点C 坐标代入上式得:3=a (﹣3),解得a =﹣1,⊙抛物线的解析式为:223y x x =--+;把B (﹣3,0),C (0,3)代入y =mx +n 得:303n m n =⎧⎨=-+⎩,解得31n m =⎧⎨=⎩, ⊙直线的解析式为y =x +3;(2)解:设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小.把x =﹣1代入直线y =x +3得y =2,故M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);(3)解:设P (﹣1,t ),B (﹣3,0),C (0,3),则2BC =18,2PB =()2213t -++=24t +,()2231PC t =-+,若点B 为直角顶点时,则222BC PB PC +=,即18+24t +=()231t -+,解得t =﹣2;若点C 为直角顶点时,则BC 2+PC 2=PB 2,即24t +=18+()231t -+,解得t =4,若P 为直角顶点时,则222BC PB PC =+,则24t ++()231t -+=18,解得t ,综上,点P 的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1或(﹣1). 28.解:(1)把点A (﹣1,﹣4)代入直线y =2x +b 得-2+b=-4,解得 b=-2,所以直线解析式为y=2x -2,把点B (m ,8)代入y=2x -2得2m -2=8,解得m=5,令x=0,则y=-2,⊙点G 坐标为(0,-2)故答案为:b=-2,m=5,G ((0,-2));(2)⊙点P 在直线AB 上,⊙设点P 坐标为(p ,2p -2).当点P 与Q 关于y 轴对称时,则点Q 坐标为(-p ,2p -2),代入y =﹣12x ﹣52得 152222p p -=-, 解得 13p =-,此时2p -2=83-,⊙P 1坐标为1833⎛⎫- ⎪⎝⎭,-, 当点P 与Q 关于x 轴对称时,则点Q 坐标为(p ,-2p+2),代入y =﹣12x ﹣52得 152222p p --=-+, 解得 3p =,则2p -2=4,⊙P 2坐标为()3,4,⊙点P 的坐标为1833⎛⎫- ⎪⎝⎭,-或()3,4; (3)①如图2,设直线AB 与x 轴交于点M ,则2x -2=0,⊙x=1,⊙点M 坐标为(1,0),⊙GE⊙x 轴,⊙⊙EGM=⊙E'MG ,⊙⊙PGE 沿直线PG 翻折得到⊙⊙PGE '⊙⊙EGM=⊙E'GM ,⊙⊙E'MG=⊙E'GM ,⊙E'M=E'G ,设GE=GE'= E'M=m ,在Rt⊙GE'O 中,()22221m m =+-,解得 52m =,⊙点P 横坐标为52把x=52代入y=2x -2得y=3,⊙点P 坐标为5,32⎛⎫ ⎪⎝⎭;②由题意得,当点P 位于点A 时,点E 的横坐标为-1,当点P 运动点B 时,点E 横坐标为5,⊙P 从A 运动到点B 的过程中,点E 的运动路径长为6,⊙点E ′与点E 关于直线AB 对称,⊙P 从A 运动到点B 的过程中,点E ′的运动路径长也为6.故答案为为:6。
中考数学 易错压轴选择题精选:一次函数选择题(及答案)100
中考数学易错压轴选择题精选:一次函数选择题(及答案)100一、易错压轴选择题精选:一次函数选择题1.如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小B.k>0,b<0C.当x<0时,y<0 D.方程kx+b=2的解是x=﹣12.直线l1:y=ax+b与直线l2:y=mx+n在同一平面直角坐标系中的图象如图所示,则关于x 的不等式ax+b<mx+n的解集为()A.x>﹣2 B.x<1 C.x>1 D.x<﹣23.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC 扫过的面积为()A.4 B.8 C.16 D.824.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min5.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <-6.如图,一次函数1y ax b 与一次函数24y kx =+的图象交点()1,3P ,则下列说法正确的个数是( )①1x =是方程3ax b +=的一个解; ②方程组4y ax b y kx =+⎧⎨=+⎩的解是31x y =⎧⎨=⎩;③不等式4ax b kx +>+的解集是1x >; ④不等式44ax b kx +<+<的解集是01x <<.A .1B .2C .3D .47.如图1,点P 从△ABC 的顶点A 出发,沿A ﹣B ﹣C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是( )A .10B .12C .20D .248.一次函数y =ax +b 的图象如图所示,则不等式ax +b ≥0的解集是( )A .2x ≥B .2x ≤C .4x ≥D .4x ≤9.如图,在平面直角坐标系中,边长为1的正方形ABCD 中,AD 边的中点处有一动点P ,动点P 沿P→D→C→B→A→P 运动一周,则P 点的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )A .B .C .D .10.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大 B .函数值随自变量x 的增大而减小 C .函数图象关于原点对称D .函数图象过二、四象限11.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( ) A .mB .m -C .2m n -D .2m n -12.关于直线1y x =-+的说法正确的是() A .图像经过第二、三、四象限 B .与x 轴交于()1,0 C .与y 轴交于()1,0-D .y 随x 增大而增大13.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把△ABO 缩小,则点A 的对应点A′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)14.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )A .22B .22.5C .23D .2515.如图,直线y=-x+2分别交x 轴、y 轴于点A ,B ,点D 在BA 的延长线上,OD 的垂直平分线交线段AB 于点C .若△OBC 和△OAD 的周长相等,则OD 的长是( )A .2B .22C .522D .416.如图,若直线y=kx+b 与x 轴交于点A (-4,0),与y 轴正半轴交于B ,且△OAB 的面积为4,则该直线的解析式为( )A .y=12x+2 B .y=2x+2 C .y=4x+4 D .y=14x+4 17.如图,直线3y kx =+经过点(2,0),则关于x 的不等式30kx +≥的解集是( )A .2x >B .2x <C .2x ≥D .2x ≤18.已知直线2y x =与y x b =-+的交点的坐标为(1,a ),则方程组2y xy x b=⎧⎨=-+⎩的解是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .23x y =⎧⎨=⎩D .13x y =⎧⎨=⎩19.已知,一次函数1y kx b =+和2y x a =+的图像如图,则下列结论:① k<0;② a>0;③若1y ≥2y ,则x ≤3,则正确的个数是( )A .0个B .1个C .2个D .3个20.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ①,A B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后2.5小时追上甲车; ④当甲、乙两车相距50千米时,51544t =或 其中正确的结论有( )A .1个B .2个C .3个D .4个21.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( ) A .第二、四象限 B .第一、二、三象限 C .第一、三象限D .第二、三、四象限22.关于直线(:)0,l y kx k k =+≠下列说法正确的是( )A .点()0,k 不在l 上B .直线过定点()1,0-C .y 随x 增大而增大D .y 随x 增大而减小23.如图,函数y =kx +b (k ≠0)的图象经过点B (2,0),与函数y =2x 的图象交于点A ,则不等式0<kx +b <2x 的解集为( )A .12x <<B .2x >C .0x >D .01x <<24.已知平面上点O (0,0),A (3,2),B (4,0),直线y =mx ﹣3m +2将△OAB 分成面积相等的的两部分,则m 的值为( ) A .1 B .2 C .3 D .﹣1 25.在一次函数y =kx +1中,若y 随x 的增大而增大,则它的图象不经过第( )象限 A .四B .三C .二D .一26.如图①,点P 为矩形ABCD 边上一个动点,运动路线是A →B →C →D →A ,设点P 运动的路径长为x,S△ABP=y,图②是y随x变化的函数图象,则矩形对角线AC的长是()A.25B.6 C.12 D.2427.已知正比例函数y=kx的图象经过点P(-1,2),则k的值是()A.2 B.12C.2-D.12-28.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)29.如图,在矩形ABCD中,一动点P从点A出发,沿着A→B→C→D的方向匀速运动,最后到达点D,则点P在匀速运动过程中,△APD的面积y随时间x变化的图象大致是()A.B.C.D.30.如图,已知直线3:3l y x=,过点()0,1A作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点1A;过点1A作y轴的垂线交直线l于点1B,过点1B作直线l的垂线交y轴于点2A,…,按此作法继续下去,则点2020A的坐标为()A .()0,2020B .()0,4040C .()20200,2D .()20200,4【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:一次函数选择题 1.D 【分析】根据一次函数的性质判断即可. 【详解】 由图象可得:A 、y 随x 的增大而增大;B 、k >0,b >0;C 、当x <0时,y >0或y <0;D 、方程kx+b =2的解是x =﹣1, 故选:D . 【点睛】考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键. 2.B 【分析】由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b <mx+n 解集. 【详解】解:观察图象可知,当x <1时,ax+b <mx+n , ∴不等式ax+b <mx+n 的解集是x <1 故选B . 【点睛】本题考查了一次函数与一元一次不等式的关系,根据交点得到相应的解集是解决本题的关键. 3.C 【解析】试题分析:∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3,BC=5,∵∠CAB=90°,∴AC=4,∴点C的坐标为(1,4),当点C落在直线y=2x﹣6上时,∴令y=4,得到4=2x ﹣6,解得x=5,∴平移的距离为5﹣1=4,∴线段BC扫过的面积为4×4=16,故选C.考点:1.一次函数综合题;2.一次函数图象上点的坐标特征;3.平行四边形的性质;4.平移的性质.4.C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min,故A选项说法正确;B. 小明家离食堂0.6km,食堂离图书馆0.8-0.6=0.2(km),故B选项说法正确;C. 小明吃早餐用了25-8=17(min),读报用了58-28=30(min),故C选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min),故D选项正确.故选C.【点睛】本题考核知识点:函数的图形.重点:分析函数图象,得到相关信息,并进行简单运算. 5.B【分析】利用函数图象,写出直线y1在直线y2下方所对应的自变量的范围即可.【详解】结合图象,当x>3时,y1<y2,即kx+b<x+a,所以不等式kx-x<a-b的解集为x>3.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.6.C【分析】根据函数图象上点的特征和方程及不等式的关系可以直接作出判断.【详解】解:①如图所示,一次函数1y ax b 与一次函数24y kx =+的图象交于点(1,3)P ,则点(1,3)P 位于直线1y ax b 上,所以1x =是方程3ax b +=的一个解,故①说法正确.②如图所示,一次函数1y ax b 与一次函数24y kx =+的图象交于点(1,3)P ,则方程组4y ax b y kx =+⎧⎨=+⎩的解是13x y =⎧⎨=⎩,故②说法错误. ③如图所示,一次函数1y ax b 与一次函数24y kx =+的图象交于点(1,3)P ,则不等式4ax b kx +>+的解集是1x >,故③说法正确.④如图所示,一次函数1y ax b 与一次函数24y kx =+的图象交于点(1,3)P ,且直线24y kx =+与y 轴的交点是(0,4),则不等式44ax b kx +<+<的解集是01x <<,故④说法正确.综上所述,说法正确的个数是3, 故选:C . 【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.7.B 【解析】过点A 作AM ⊥BC 于点M ,由题意可知当点P 运动到点M 时,AP 最小,此时长为4, 观察图象可知AB=AC=5,∴BM=22AB AM -=3,∴BC=2BM=6, ∴S △ABC =1BC?AM 2=12, 故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB 、AC 的长,以及点P 运动到与BC 垂直时最短是解题的关键. 8.B 【分析】利用函数图象,写出函数图象不在x 轴下方所对应的自变量的范围即可. 【详解】解:不等式ax +b ≥0的解集为x ≤2. 故选:B .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.D【解析】试题解析:动点P 运动过程中:①当0≤s≤时,动点P 在线段PD 上运动,此时y=2保持不变; ②当<s≤时,动点P 在线段DC 上运动,此时y 由2到1逐渐减少; ③当<s≤时,动点P 在线段CB 上运动,此时y=1保持不变; ④当<s≤时,动点P 在线段BA 上运动,此时y 由1到2逐渐增大; ⑤当<s≤4时,动点P 在线段AP 上运动,此时y=2保持不变.结合函数图象,只有D 选项符合要求.故选D .考点:动点问题的函数图象.10.A【详解】解:设正比例函数解析式(0)y kx k =≠,∵正比例函数过(2,3)-,∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称,∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的.故选A .11.D【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.12.B【分析】根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、∵k=-1<0,b=1>0,∴图象经过第一、二、四象限,故本选项错误;B、、∵当x=1时,y=0,∴图象经过点(1,0),故本选项正确;C、∵当x=-1时,y=2,∴图象不经过点(-1,0),故本选项错误;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误.故选B【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.13.D【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA' OA=1 3.∴A EAD'=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.14.B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x ≤12时函数的解析式为y=kx+b(k ≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.15.B【分析】根据直线解析式可得OA 和OB 长度,利用勾股定理可得AB 长度,再根据线段垂直平分线的性质以及两个三角形周长线段,可得OD=AB .【详解】当x=0时,y=2∴点B (0,2)当y=0时,-x+2=0解之:x=2∴点A (2,0)∵点C 在线段OD 的垂直平分线上∴OC=CD∵△OBC 和△OAD 的周长相等,∴OB+OC+BC=OA+OD+AD∴OB+BC+CD=OA+OD+ADOB+BD=OA+OD+AD 即OB+AB+AD=OB+OD+AD∴AB=OD在Rt △AOB 中=故选B【点睛】本题主要考查了一次函数图象上点坐标特征、线段垂直平分线的性质、以及勾股定理. 16.A【分析】先利用三角形面积公式求出OB=2得到B (0,2),然后利用待定系数法求直线解析式.【详解】∵A (-4,0),∴OA=4,∵△OAB 的面积为4∵12×4×OB=4,解得OB=2,∴B (0,2),把A (-4,0),B (0,2)代入y=kx+b ,402k b b -⎨⎩+⎧==, 解得122k b ⎧⎨⎩==, ∴直线解析式为y=12x+2.故选:A .【点睛】本题考查了待定系数法求一次函数关系式:设一次函数解析式为y=kx+b (k≠0),要有两组对应量确定解析式,即得到k ,b 的二元一次方程组.17.D【分析】写出函数图象在x 轴上方及x 轴上所对应的自变量的范围即可.【详解】解:当x ≤2时,y ≥0.所以关于x 的不等式kx +3≥0的解集是x ≤2.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.A【解析】将交点(1,a)代入两直线:得:a=2,a=-1+b,因此有a=2,b=a+1=3,即交点为(1,2),而交点就是两直线组成的方程组2y xy x b=⎧⎨=-+⎩的解,即解为x=1,y=2,故选A.19.C【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x≤3时, y1图象在y2的图象的上方.【详解】根据图示及数据可知:①y1=kx+b的图象经过一、二四象限,则k<0,故①正确;②y2=x+a的图象与y轴的交点在x轴的下方,a<0,故②错误;③当x≤3时, y1图象在y2的图象的上方,则y1≥y2,故③正确.综上,正确的个数是2个.故选:C.【点睛】本题考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.20.B【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且乙用时3小时,即比甲早到1小时,故①②都正确; 设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k=60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt+n ,把(1,0)和(4,300)代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩, ∴y 乙=100t-100,令y 甲=y 乙可得:60t=100t-100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y 甲-y 乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54, 当100-40t=-50时,可解得t=154, 令y 甲=50,解得t=56,令y 甲=250,解得t=256, ∴当t=56时,y 甲=50,此时乙还没出发,此时相距50千米, 当t=256时,乙在B 城,此时相距50千米, 综上可知当t 的值为54或154或56或256时,两车相距50千米,故④错误; 综上可知正确的有①②共两个,故选:B .【点睛】 本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.21.A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子:(1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.22.B【分析】将点的坐标代入可判断A 、B 选项,利用一-次函数的增减性可判断C 、D 选项.【详解】解:A.当x=0时,可得y=k ,即点(0,k )在直线I 上,故A 不正确;B.当x=-1时,y=-k+k=0,即直线过定点(-1,0),故B 正确;C 、D.由于k 的符号不确定,故C 、D 都不正确;故答案为B .【点睛】本题主要考查了一次函数图象与系数的关系,掌握函数图象上点的坐标与函数解忻式的关系及一次函数的增减性是解答本题的关键.23.A【分析】先利用正比例函数解析式确定A 点坐标,然后观察函数图象得到,当x >1时,直线y=2x 都在直线y=kx+b 的上方,当x <2时,直线y=kx+b 在x 轴上方,于是可得到不等式0<kx+b <2x 的解集.【详解】设A 点坐标为(x ,2),把A (x ,2)代入y=2x ,得2x=2,解得x=1,则A 点坐标为(1,2),所以当x >1时,2x >kx+b ,∵函数y=kx+b (k≠0)的图象经过点B (2,0),∴x <2时,kx+b >0,∴不等式0<kx+b <2x 的解集为1<x <2.故选A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.24.B【分析】设点C为线段OB的中点,则点C的坐标为(2,0),利用一次函数图象上点的坐标特征可得出直线y=mx-3m+2过三角形的顶点A(3,2),结合直线y=mx-3m+2将△OAB分成面积相等的的两部分,可得出直线y=mx-3m+2过点C(2,0),再利用一次函数图象上点的坐标特征可求出m的值.【详解】解:设点C为线段OB的中点,则点C的坐标为(2,0),如图所示.∵y=mx﹣3m+2=(x﹣3)m+2,∴当x=3时,y=(3﹣3)m+2=2,∴直线y=mx﹣3m+2过三角形的顶点A(3,2).∵直线y=mx﹣3m+2将△OAB分成面积相等的的两部分,∴直线y=mx﹣3m+2过点C(2,0),∴0=2m﹣3m+2,∴m=2.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,找出关于m的一元一次方程是解题的关键.25.A【分析】利用一次函数的性质得到k>0,则可判断直线y=kx+1经过第一、三象限,然后利用直线y=kx+1与y轴的交点为(0,1)可判断直线y=kx+1不经过第四象限.【详解】∵y=kx+1,y随x的增大而增大,∴k>0,∴直线y=kx+1经过第一、三象限,而直线y=kx+1与y轴的交点为(0,1),∴直线y=kx+1经过第一、二、三象限,不经过第四象限.故选A.【点睛】本题考查了一次函数的性质:对于一次函数y=kx+b,当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.26.A【分析】根据题意易得AB+BC=6,当点P运动到C点时三角形ABP的面积为4,故而可求出AB、BC 的长,进而求出AC.【详解】解:由图像及题意可得:AB+BC=6,当点P运动到C点时三角形ABP的面积为4,即1=42ABPS AB BC⋅=,∴AB=2,BC=4,在Rt ABC中,2225AC AB BC=+=;故选A.【点睛】本题主要考查函数与几何,关键是根据图像得到动点的运动路程,然后利用勾股定理求解线段的长即可.27.C【分析】把点P(-1,2)代入正比例函数y=kx,即可求出k的值.【详解】把点P(−1,2)代入正比例函数y=kx,得:2=−k,解得:k=−2.故选C.【点睛】此题考查待定系数法求正比例函数解析式,解题关键在于把已知点代入解析式.28.B【解析】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC边的长为x米,AB边的长为y米,可得BC+2AB=24,即x+2y=24,即y=-x+12.因为菜园的一边是足够长的墙,所以0<x<24.故选B.29.D【分析】分点P在AB段运动、点P在BC段运动、点P在CD段运动三种情况,分别求函数表达式即可.【详解】当点P 在AB 段运动时,△APD 的面积y 随时间x 的增大而增大;当点P 在BC 段运动时,△APD 的面积y 保持不变;故排除A 、C 选项;当点P 在CD 段运动时,△APD 的面积y 随时间x 的增大而减小;故选:D .【点睛】本题考查的是动点图象问题,涉及到三角形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.30.D【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2020坐标即可.【详解】解:∵直线l 的解析式为3y x =, ∴直线l 与x 轴的夹角为30.∵AB x 轴,∴30ABO ∠=︒.∵1OA =,∴2OB =.∴1A B ⊥直线l ,130BAO ∠=︒, ∴124A O OB ==,∴()10,4A .同理可得()20,16A ,…∴2020A 的纵坐标为20204,∴()202020200,4A . 故选D .【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A 、A 1、A 2、A 3…的点的坐标是解决本题的关键.。
名校调研系列卷中考易错题数学
名校调研系列卷中考易错题数学名校调研系列卷中考易错题数学一、立体几何作为中考数学中常见的考点之一,立体几何题目往往让许多考生感到头疼。
名校调研显示,中考易错题多集中在此项内容上。
在解决这类问题时,考生往往容易忽略空间直观的思维,导致求解过程出现错误。
二、函数与方程函数与方程是中考中比较常见的题型,也是学生易错的考点之一。
经过调研发现,考生在解题过程中容易混淆函数的定义域和值域,导致最终答案的错误。
因此,对于函数和方程的理解,要做到准确、清晰才能顺利解题。
三、比例与相似比例与相似也是中考中常出现的题型,但却是让考生感到棘手的内容之一。
调研结果表明,考生在解题过程中往往缺乏严谨的逻辑思维,容易被非常量比例以及相似比例所迷惑,导致答案失准。
细致分析题目是解决这类问题的关键。
四、三角函数三角函数是中考难度较高的题型,同时也是容易引发考生出错的题目之一。
调研显示,考生在计算角度时容易出现转换错误,进而导致计算过程及答案出现失误。
因此,解决三角函数问题时,学生要具备良好的计算技巧,并理解三角函数的基本性质。
五、平面图形平面图形作为中考数学试题中的重要内容之一,也是考生容易出错的一部分。
调研结果表明,考生在解题时常常无法准确地应用平面图形的性质,灵活运用相关知识进行计算,导致求解过程出现错误。
因此,对于平面图形的基本性质和运算要有扎实的理解和掌握。
综上所述,名校调研发现,中考易错题数学主要集中在立体几何、函数与方程、比例与相似、三角函数以及平面图形等内容。
然而,只有通过认真研究这些题目的特点和解题技巧,才能在考试中取得更好的成绩。
希望广大考生充分认识到这些易错题的特点,加强相关知识的学习和掌握,以提高数学成绩为目标,迈向更高的学术之路。
西安市中考数学-整式乘法与因式分解易错压轴解答题精选全文完整版
可编辑修改精选全文完整版西安市中考数学整式乘法与因式分解易错压轴解答题一、整式乘法与因式分解易错压轴解答题1.某同学利用若干张正方形纸片进行以下操作:(1)从边长为a的正方形纸片中减去一个边长为b的小正方形,如图1,再沿线段AB把纸片剪开,最后把剪成的两张纸片拼成如图2的等腰梯形,这一过程所揭示的公式是________.(2)先剪出一个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出两张边长分别为a和b的长方形纸片,如图3,最后把剪成的四张纸片拼成如图4的正方形.这一过程你能发现什么代数公式?(3)先剪出两个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出三张边长分别为a和占的长方形纸片,如图5,你能否把图5中所有纸片拼成一个长方形?如果可以,请画出草图,并写出相应的等式.如果不能,请说明理由.2.好学小东同学,在学习多项式乘以多项式时发现:( x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是: ×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为________.(2)( x+6)(2x+3)(5x-4)所得多项式的二次项系数为________.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=________.3.[数学实验探索活动]实验材料现有若干块如图①所示的正方形和长方形硬纸片.实验目的:用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积,写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.问题探索:(1)小明想用拼图的方法解释多项式乘法(2a+b)(a+b)=2a2+3ab+b2,那么需要两种正方形纸片________张,长方形纸片________张;(2)选取正方形、长方形硬纸片共8块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;(3)试借助拼图的方法,把二次三项式2a2+5ab+2b2分解因式,并把所拼的图形画在虚线方框3内.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如, ···,因此都是奇巧数.(1)是奇巧数吗?为什么?(2)奇巧数是的倍数吗?为什么?5.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次_一项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a1a2x2+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1, a2, c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1, c1位于图的上一行,a2, c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2-x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=2×(-3);然后把1,1,2,-3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(-3)+1×2=-1,恰好等于一次项的系数-1,于是x2-x-6就可以分解为(x+2)(x-3).(1)请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x-6=________.(2)【理解与应用】请你仔细体会上述方法,并尝试对下面两个二次三项式进行分解因式:Ⅰ.2x2+5x-7=________;Ⅱ.6x2-7xy+2y2=________ .(3)【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解.如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:Ⅰ.分解因式3x2+5xy-2y2+x+9y-4=________ .Ⅱ.若关于x,y的二元二次式x2+7xy-18y2-5x+my-24 可以分解成两个一次因式的积,求m的值.________Ⅲ.己知x,y为整数,且满足x2+3xy+2y2+2x+3y=-1,请写出一组符合题意的x,y的值.________6.数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1、图2、图3分别能解释的乘法公式.(2)用4个全等的长和宽分别为a、b的长方形拼摆成一个如图4的正方形,请你写出这三个代数式(a+b)2、(a﹣b)2、ab之间的等量关系.(3)根据(2)中你探索发现的结论,完成下列问题:①当a+b=5,ab=﹣6时,则a﹣b的值为________.②设,B=x﹣2y﹣3,计算:(A+B)2﹣(A﹣B)2的结果________.7.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(请选择正确的一个)A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.a2+ab=a(a+b)(2)若x2-y2=16,x+y=8,求x-y的值;(3)计算:.8.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02, 12=42﹣22, 20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?9.一天,小明和小红玩纸片拼图游戏.发现利用图①中的三种材料各若干可以拼出一些图形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:________.(2)图④中阴影部分的面积为________.观察图④请你写出(a+b)2、(a﹣b)2、ab 之间的等量关系是________.(3)如图⑤,小明利用7个长为b,宽为a的长方形拼成如图所示的大长方形;①若AB=4,若长方形AGMB的面积与长方形EDHN的面积的差为S,试计算S的值(用含a,b的代数式表示)②若AB为任意值,且①中的S的值为定值,求a与b的关系.10.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一大重要研究成果.如图所示的三角形数表,称“杨辉三角”.具体法则:两侧的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律:(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:(﹣3)4+4×(﹣3)3×2+6×(﹣3)2×22+4×(﹣3)×23+24.11.现有若干张如图1所示的正方形纸片A,B和长方形纸片C.(1)小王利用这些纸片拼成了如图2的一个新正方形,通过用两种不同的方法计算新正方形面积,由此,他得到了一个等式:________;(2)小王再取其中的若干张纸片(三种纸片都要取到)拼成一个面积为a2+3ab+nb2的长方形,则n可取的正整数值是________,并请你在图3位置画出拼成的长方形________;(3)根据拼图经验,请将多项式a2+5ab+4b2分解因式.12.乘法公式的探究及应用.(1)如图,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式:________(用式子表达)(4)运用你所得到的公式,计算下列各题:① ,②【参考答案】***试卷处理标记,请不要删除一、整式乘法与因式分解易错压轴解答题1.(1)(2)a2+b2+2ab=(a+b)2(3)解:能拼成长方形.如图.(不止一种)画图正确得分.等式: 2a2+3ab+b2=(a+b)(2a+b) .(等式左右两边交换不扣分)解析:(1)(2)(3)解:能拼成长方形.如图.(不止一种)画图正确得分.等式: .(等式左右两边交换不扣分)【解析】【分析】(1)图1阴影部分面积为S1=a2-b2,图1阴影部分面积为S2=,根据展开前后图形的面积相等得到S1=S2,所以;(2)图3四个图形面积和为S3=a2+b2+2ab,图4的面积S4=(a+b)2,因为图4为图3的四个图形拼成,所以S3=S4,即;(3)图5六个图形面积和为S5=2a2+b2+3ab,画出的长方形的面积S=(a+b)(2a+b),因为画出的长方形为图5的六个图形拼成,所以S5=S,即. 2.(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0∴a=-3.解析:(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0∴a=-3.(4)2021.【解析】【解答】解:(1)由题意可得(x+2)(3x+1)(5x-3)一次项系数是:1×1×(-3)+3×2×(-3)+5×2×1=-11.(2)由题意可得( x+6)(2x+3)(5x-4) 二次项系数是:.(4)通过题干以及前三问可知:一次项系数是每个多项式的一次项分别乘以其他多项式常数项然后结果相加可得.所以(x+1)2021一次项系数是:a2020=2021×1=2021.【分析】(1)求一次项系数,用每个括号中一次项的系数分别与另外两个括号中的常数项相乘,最后积相加即可得出结论.(2)求二次项系数,还有未知数的项有x、2x、5x,选出其中两个与另一个括号内的常数项相乘,最后积相加即可得出结论.(3)先根据(1)(2)所求方法求出一次项系数,然后列出等式求出a的值.(4)根据前三问的规律即可计算出第四问的值.3.(1)3;3(2)解:∵大长方形长为a+3b,宽为a+b∴面积S=(a+3b)(a+b)又∵大长方形由三个大正方形,一个小正方形和四个小长方形组成∴面积S=a2+4ab+3b2∴a2解析:(1)3;3(2)解:∵大长方形长为a+3b,宽为a+b∴面积S=(a+3b)(a+b)又∵大长方形由三个大正方形,一个小正方形和四个小长方形组成∴面积S=a2+4ab+3b2∴a2+4ab+3b2=(a+3b)(a+b)(3)解:∵由2b2+5ab+2a2可知大长方形由两个小正方形和两个大正方形以及五个长方形组成,如图∴2b2+5ab+2a2=(2b+a)(b+2a).【解析】【解答】(1)∵(2a+b)(a+b)=2a2+3ab+b2;∴拼图需要两个小正方形,一个大正方形和三个小长方形∴需要3个正方形纸片,3个长方形纸片.【分析】(1)根据多项式(2a+b)(a+b)=2a2+3ab+b2可发现矩形有两个小正方形,一个大正方形和三个小长方形.(2)正方形、长方形硬纸片一共八块,面积等于长为a+3b,宽为a+b的矩形面积.所以a2+4ab+3b2=(a+3b)(a+b)(3)正方形、长方形硬纸片共9块,画出图形,面积等于长为a+2b,宽为2a+b的矩形面积,则2a2+5ab+2b2=(2a+b)(a+2b)4.(1)解:36是奇巧数,理由:;50不是奇巧数,理由:找不到连续的两个偶数平方差为50(2)解:设两个连续的偶数为n+2、n,则,奇巧数是 4 的倍数.【解析】【分析】解析:(1)解:36是奇巧数,理由:;50不是奇巧数,理由:找不到连续的两个偶数平方差为50(2)解:设两个连续的偶数为n+2、n,则,奇巧数是的倍数.【解析】【分析】(1)根据定义是两个现需偶数的平方差判断即可.(2)将进行运算、化简,便可发现是4的倍数.5.(1)(x+3)(x-2)(2)(x-1)(2x+7);(2x-y)(3x-2y)(3)(x+2y-1)(3x-y+4);解:如图,∵关于x,y的二元二次式x2+7xy-18y2-解析:(1)(x+3)(x-2)(2)(x-1)(2x+7);(2x-y)(3x-2y)(3)(x+2y-1)(3x-y+4);解:如图,∵关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(-2)=-18,(-8)×3=--24;而7=1×(-2)+1×9,-5=1×(-8)+1×3,∴m=9×3+(-2)×(-8)=43或m=9×(-8)+(-2)×3=-78.故m的值为43或者-78.;x=-1,y=0(答案不唯一)【解析】【解答】(1)将式子x 2 -x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=3×(-2);然后把1,1,3,-2按下图所示的摆放,按对角线交叉相乘再相加的方法,得到1×(+3)+1×(-2)=-1,恰好等于一次项的系数1,于是x 2+ x-6就可以分解为(x+3)(x-2).(2)根据基本原理,同样得出十字交叉图:Ⅰ. II.∴ 2x2+5x-7= (x-1)(2x+7), 6x2-7xy+2y2=(2x-y)(3x-2y);(3)Ⅰ. 根据 ax2+bxy+cy2+dx+ey+f 分解因式的基本原理得如图所示的双十字交叉图:所以 3x2+5xy-2y2+x+9y-4= (x+2y-1)(3x-y+4) ;Ⅱ如图:x2+7xy-18y2-5x+my-24可以分解成(x-2y+3)(x+9y-8),或分解成:(x-2y-8)(x+9y+3),所以m=43或-78.III.x2+3xy+2y2+2x+3y=-1, 得 x2+3xy+2y2+2x+3y+1=0,如图所示:得(x+2y+1)(x+y+1)=0,∴ x+2y+1=0,或x+y+1=0,或 x+2y+1=0且x+y+1=0∴如当x=-1时,y=0,或x=3,y=-4等均可使上式成立。
中考数学 易错压轴选择题精选:平行四边形选择题(含答案)50
中考数学 易错压轴选择题精选:平行四边形选择题(含答案)50一、易错压轴选择题精选:平行四边形选择题1.如图,在正方形ABCD 中,AB =4,E 是CD 的中点,将BCE 沿BE 翻折至BFE ,连接DF ,则DF 的长度是( )A .55B .255C .355D .4552.如图,BD 为平行四边形ABCD 的对角线,45DBC ∠=︒,DE BC ⊥于E ,BF CD ⊥于F ,DE 、BF 相交于H ,直线BF 交线段AD 的延长线于G ,下面结论:①2BD BE =;②A BHE =∠∠;③AB BH =;④BHD BDG ∠=∠其中正确的个数是( )A .1B .2C .3D .43.如图所示,四边形ABCD 是边长为1的正方形,E 为BC 边的中点,沿AP 折叠使D 点落在AE 上的点H 处,连接PH 并延长交BC 于点F ,则EF 的长为( )A 525-B 55-C .353D .144.如图,矩形ABCD 的面积为20cm 2,对角线相交于点O .以AB 、AO 为邻边画平行四边形AOC 1B ,对角线相交于点O ;以AB 、AO 为邻边画平行四边形AO 1C 2B ,对角线相交于点O 2 :……以此类推,则平行四边形AO 4C 5B 的面积为( )A .58cm 2B .54cm 2C .516cm 2D . 5 32cm 2 5.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 36.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个7.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .48.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE AF =,AC 与EF 相交于点G .下列结论:①AC 垂直平分EF ;②BE DF EF +=;③当15DAF ∠=︒时,AEF 为等边三角形;④当60EAF ∠=︒时,AEB AEF ∠=∠.其中正确的结论是( )A .①③B .②④C .①③④D .②③④9.如图,矩形ABCD 的对角线AC 、BD 交于点O ,点P 在边AD 上从点A 到点D 运动,过点P 作PE ⊥AC 于点E ,作PF ⊥BD 于点F ,已知AB=3,AD=4,随着点P 的运动,关于PE+PF 的值,下面说法正确的是( )A .先增大,后减小B .先减小,后增大C .始终等于2.4D .始终等于310.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个11.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE =AD ,DF =BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC≠2HG ;②∠GDH =∠GHD ;③图中有8个等腰三角形;④CDG DHF S S △△=.其中正确的结论有( )个A .1B .2C .3D .412.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定13.如图,在矩形ABCD 中,AB =8,BC =4.将矩形沿AC 折叠,CD ′与AB 交于点F ,则AF :BF 的值为( )A .2B .53C .54D .3 14.如图,ABCD 中,点E 是AD 上一点,BE ⊥AB ,△ABE 沿BE 对折得到△BEG ,过点D 作DF ∥EG 交BC 于点F ,△DFC 沿DF 对折,点C 恰好与点G 重合,则AB AD的值为( )A .12B 3C 2D .3215.如图,在ABC 中,AB =AC =6,∠B =45°,D 是BC 上一个动点,连接AD ,以AD 为边向右侧作等腰ADE ,其中AD =AE ,∠ADE =45°,连接CE .在点D 从点B 向点C 运动过程中,CDE △周长的最小值是( )A .62B .626+C .92D .926+16.如图,四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为1S 、2S 、3S ,若1S =3,3S =8,则2S 的值为( )A .22B .24C .44D .4817.如图,点P ,Q 分别是菱形ABCD 的边AD ,BC 上的两个动点,若线段PQ 长的最大值为85 ,最小值为8,则菱形ABCD 的边长为( )A .4 6B .10C .12D .1618.如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .22B .222C .252D 22+19.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE =552;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .520.如图,在菱形ABCD 中,若E 为对角线AC 上一点,且CE CD =,连接DE ,若5,8AB AC ==,则DE AD=( )A .104B .105C .35D .4521.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCD S AB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDE BOC S S =④,其中正确的有( )A .1个B .2个C .3个D .4个22.如图,ABCD 的对角线AC 、BD 相较于点O ,AE 平分∠BAD 交BC 于点E ,∠ADC =60°,AB =12BC ,连接OE ,下列结论:①∠CAD =30°;②·ABCD A S AB C =;③OA =OB ;④OE =14B C .其中成立的个数是( )A .1B .2C .3D .423.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A.(2)n﹣1B.2n﹣1C.(2)n D.2n24.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2 B.3 C.4 D.525.如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为234﹣6;④当OD⊥AD时,BP=2.其中结论正确的有()A.1个B.2个C.3个D.4个26.如图,在ABC中,AB=5,AC=12,BC=13,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.6013B.3013C.2413D.121327.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH ∥BF ,②GH=14BC ,③BF=2OD ,④∠CHF=45°.正确结论的个数为( )A .4个B .3个C .2个D .1个28.已知,如图,在菱形ABCD 中.(1)分别以C ,D 为圆心,大于12CD 长为半径作弧,两弧分别交于点E ,F ;(2)作直线EF ,且直线EF 恰好经过点A ,且与边CD 交于点M ;(3)连接BM .根据以上作图过程及所作图形,判断下列结论中错误..的是( )A .∠ABC =60°B .如果AB =2,那么BM =4C .BC =2CMD .2ABM ADM S S =△△29.如图,在□ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上(E 不与A 、B 重合),连接EF 、CF ,则下列结论中一定成立的是 ( )①∠DCF=12∠BCD ;②EF=CF ;③2BEC CEF S S ∆∆<;④∠DFE=4∠AEF A .①②③④B .①②③C .①②D .①②④ 30.如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将ADE 沿AE 对折至AFE ,延长交BC 于点G ,连接AG.则BG 的长( )A .1B .2C 3D .3【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:平行四边形选择题1.D【分析】由勾股定理可求BE的长,由折叠的性质可得CE=EF=2,BE⊥CF,FH=CH,由面积法可求CH=455,由勾股定理可求EH的长,由三角形中位线定理可求DF=2EH=455.【详解】解:如图,连接CF,交BE于H,∵在正方形ABCD中,AB=4,E是CD的中点,∴BC=CD=4,CE=DE=2,∠BCD=90°,∴BE2216425BC CE+=+=∵将△BCE沿BE翻折至△BFE,∴CE=EF=2,BE⊥CF,FH=CH,∵S△BCE=12×BE×CH=12×BC×CE,∴CH=55,∴22165 455CE CH-=-=,∵CE=DE,FH=CH,∴DF=2EH=55,故选:D.【点睛】本题考查了翻折变换,正方形的性质,全等三角形的判定与性质,掌握折叠的性质是本题的关键.2.B【分析】通过判断△BDE为等腰直角三角形,根据等腰直角三角形的性质和勾股定理可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A=∠C,则∠A=∠BHE ,于是可对②进行判断;证明△BEH ≌△DEC ,得到BH=CD ,接着由平行四边形的性质得AB=CD ,则AB=BH ,可对③进行判断;因为∠BHD=90°+∠EBH ,∠BDG=90°+∠BDE ,由∠BDE >∠EBH ,推出∠BDG >∠BHD ,可判断④.【详解】解:∵∠DBC=45°,DE ⊥BC ,∴△BDE 为等腰直角三角形,,BE DE BD ∴====,所以①错误;∵BF ⊥CD ,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C ,∵四边形ABCD 为平行四边形,∴∠A=∠C ,∴∠A=∠BHE ,所以②正确;在△BEH 和△DEC 中BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,所以③正确;∵∠BHD=90°+∠EBH ,∠BDG=90°+∠BDE ,∵∠BDE=∠DBE >∠EBH ,∴∠BDG >∠BHD ,所以④错误;故选:B .【点睛】本题考查平行四边形的性质,全等三角形的性质和判定,等腰直角三角形的判定和性质,三角形外角的性质.熟练掌握平行四边形的性质并能灵活运用是解题关键,本题中主要用到平行四边形对边相等,对角相等.3.A【分析】首先证明Rt △AFB ≌Rt △AFH ,推出BF=FH ,设EF=x ,则BF=FH=12x -,在Rt △FEH 中,根据222,EF EH FH =+构建方程即可解决问题;【详解】解:连接AF .∵四边形ABCD 是正方形, ∴AD=BC=1,∠B=90°,∵BE=EC=12, ∴225AB BE += 由翻折不变性可知:AD=AH=AB=1,∴51-, ∵∠B=∠AHF=90°,AF=AF ,AH=AB ,∴Rt △AFB ≌Rt △AFH ,∴BF=FH ,设EF=x ,则BF=FH=12x -, 在Rt △FEH 中,∵222,EF EH FH =+ ∴22215()1),22x x =-+- ∴5252x -= 故选:A .【点睛】本题考查翻折变换、正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会利用参数构建方程解决问题,4.A【分析】设矩形ABCD 的面积为S=20cm 2,由O 为矩形ABCD 的对角线的交点,可得平行四边形AOC 1B 底边AB 上的高等于BC 的12,依此类推可得下一个图形的面积是上一个图形的面积的12,然后求解即可. 【详解】 设矩形ABCD 的面积为S=20cm 2,∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12, ∴平行四边形AOC 1B 的面积=12S , ∵平行四边形AOC 1B 的对角线交于点O 1,∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12, ∴平行四边形AO 1C 2B 的面积=12×12S=22S , ……依此类推,平行四边形AO 4C 5B 的面积=52S =5202=58(cm 2), 故选:A .【点睛】本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的12是解题的关键. 5.D【分析】由于在四边形中,MN ∥AB ∥DC ,EF ∥DA ∥CB ,因此MN 、EF 把一个平行四边形分割成四个小平行四边形.可设MN 到DC 的距离为h 1,MN 到AB 的距离为h 2,根据AB=CD ,DE=AF ,EC=FB 及平行四边形的面积公式即可得出答案.【详解】解:∵MN ∥AB ∥DC ,EF ∥DA ∥CB ,∴四边形ABCD ,四边形ADEF ,四边形BCEF ,红、紫、黄、白四边形都为平行四边形, ∴AB=CD ,DE=AF ,EC=BF .设MN 到DC 的距离为h 1,MN 到AB 的距离为h 2,则S 1=DE •h 1,S 2=AF •h 2,S 3=EC •h 1,S 4=FB •h 2,因为DE ,h 1,FB ,h 2的关系不确定,所以S 1与S 4的关系无法确定,故A 错误; S 1+S 4=DE •h 1+FB •h 2=AF •h 1+FB •h 2,S 2+S 3=AF •h 2+EC •h 1=AF •h 2+FB •h 1,故B 错误; S 1+S 3=CD •h 1,S 2+S 4=AB •h 2,又AB=CD ,而h 1不一定与h 2相等,故C 错误;S 1·S 4=DE •h1•FB •h 2=AF •h 1•FB •h 2,S 2·S 3=AF •h 2•EC •h 1=AF •h 2•FB •h 1,所以S 1·S 4=S 2·S 3, 故D 正确;故选:D .【点睛】本题考查平行四边形的判定与性质,注意掌握平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a •h .其中a 可以是平行四边形的任何一边,h 必须是a 边与其对边的距离,即对应的高.6.B【分析】根据菱形的性质,利用SAS 证明即可判断①;根据△ABF ≌△CAE 得到∠BAF=∠ACE ,再利用外角的性质以及菱形内角度数即可判断②;通过说明∠CAH≠∠DAO ,判断△ADO ≌△ACH 不成立,可判断③;再利用菱形边长即可求出菱形面积,可判断④.【详解】解:∵在菱形ABCD 中,AB=AC=1,∴△ABC 为等边三角形,∴∠B=∠CAE=60°,又∵AE=BF ,∴△ABF ≌△CAE (SAS ),故①正确;∴∠BAF=∠ACE ,∴∠FHC=∠ACE+∠HAC=∠BAF+∠HAC=60°,故②正确;∵∠B=∠CAE=60°,则在△ADO 和△ACH 中,∠OAD=60°=∠CAB ,∴∠CAH≠60°,即∠CAH≠∠DAO ,∴△ADO ≌△ACH 不成立,故③错误;∵AB=AC=1,过点A 作AG ⊥BC ,垂足为G ,∴∠BAG=30°,BG=12, ∴AG=22AB BG -=32, ∴菱形ABCD 的面积为:BC AG ⨯=312⨯=32,故④错误; 故正确的结论有2个,故选B.【点睛】本题考查了全等三角形判定和性质,菱形的性质和面积,等边三角形的判定和性质,外角的性质,解题的关键是利用菱形的性质证明全等.7.D【分析】由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积=185,得出④正确. 【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中, AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF =∠CFG +∠FCG ,又∵∠BGF =∠AGB +∠AGF ,∴∠CFG +∠FCG =∠AGB +∠AGF ,∵∠AGB =∠AGF ,∠CFG =∠FCG ,∴∠AGB =∠FCG ,∴AG ∥CF ,∴③正确;∵△CFG 和△CEG 中,分别把FG 和GE 看作底边,则这两个三角形的高相同. ∴35CFG CEG S FG S GE ==, ∵S △GCE =12×3×4=6, ∴S △CFG =35×6=185, ∴④正确;正确的结论有4个,故选:D .【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.8.A【分析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=x ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,可证明△AEF 是等边三角形,从而可得∠AEF=60°,而△CEF 是等腰直角三角形,得∠CEF=45°,从而可求出∠AEB=75°,进而可得结论.【详解】解:①四边形ABCD 是正方形,∴AB ═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD ⎧⎨⎩==, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故①正确).②设BC=a ,CE=y ,∴BE+DF=2(a-y )EF=y ,∴BE+DF 与EF关系不确定,只有当y=()a 时成立,(故②错误).③当∠DAF=15°时,∵Rt △ABE ≌Rt △ADF ,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF 为等边三角形.(故③正确).④当∠EAF=60°时,由①知AE=AF ,∴△AEF 是等边三角形,∴∠AEF=60°,又△CEF 为等腰直角三角形,∴∠CEF=45°∴∠AEB=180°-∠AEF-∠CEF=75°,∴∠AEB≠∠AEF ,故④错误.综上所述,正确的有①③,故选:A .【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.9.C【分析】在矩形ABCD 中,由矩形边长,可得矩形面积是12,进而得134AOD ABCD S S ==矩形,由矩形对角线相等且互相平分得AO OC =,OB OD =,AC BD =,利用勾股定理可解得5AC =,则52OA OD ==,111()3222AOD AOP DOP S S S OA PE OD PF OA PE PF =+=+=+==,即可求出PE+PF 的值.【详解】解:连接PO ,如下图:∵在矩形ABCD 中,AB=3,AD=4,∴12ABCD S AB BC ==矩形,AO OC =,OB OD =,AC BD =,5AC , ∴1112344AOD ABCD S S ==⨯=矩形, 52OA OD ==, 11115()()322222AOD AOP DOP S S S OA PE OD PF OA PE PF PE PF =+=+=+=⨯+=,∴12 2.45PE PF +==; 故选C .【点睛】本题主要考查了矩形的性质,利用等积法间接求三角形的高线长及用勾股定理求直角三角形的斜边;利用面积法求解,是本题的解题突破点.10.A【分析】根据正方形的性质,以及中点的性质可得△FGN ≌△HAN ,即证①;利用角度之间的等量关系的转换可以判断②;根据△AKH ∽△MKF ,进而利用相似三角形的性质即可判断③;设AN=12AG=x ,则AH=2x ,FM=6x ,根据△AKH ∽△MKF 得出2163AH x MF x ==,再利用三角形的面积公式求出△AFN 的面积,再利用DHKM ADM AKH S SS =-即可求出四边形DHKM的面积,作比即可判断④.【详解】 ∵四边形EFGB 是正方形,CE=2EB ,四边形ABCD 是正方形∴G 为AB 中点,∠FGN=∠HAN=90°,AD=AB即FG=AG=GB=12AB 又H 是AD 的中点AH=12AD ∴FG=HA又∠FNG=∠HNA∴△FGN ≌△HAN ,故①正确;∵∠DAM+∠GAM=90°又∠NFG+∠FNG=90°即∠FNG=∠GAM∵∠FNG+∠NFG+90°=180°∠AMD+∠DAM+90°=180°∠FNG=∠GAM=∠AMD∴DAM NFG ∠=∠,故②正确;由图可得:MF=FG+MG=3EB△AKH ∽△MKF ∴13KH AH KF MF == ∴KF=3KH又∵NH=NF 且FH=KF+KH=4KH=NH+NF∴NH=NF=2KH∴KH=KN∴FN=2NK ,故③正确;∵AN=GN 且AN+GN=AG∴可设AN=12AG=x ,则AH=2x ,FM=6x 由题意可得:△AKH ∽△MKF 且相似比为:2163AH x MF x == ∴△AKH 以AH 为底边的高为:11242x x ⨯= ∴212AFN S AN FG x =⨯⨯= 112225DHKM ADM AKH S S S AD DM AH x =-=⨯⨯-⨯⨯ 211172422222x x x x x =⨯⨯-⨯⨯= ∴2:7AFN DHKM S S =,故④正确; 故答案选择A .【点睛】本题考查了矩形、全等三角形的判定与性质以及相似三角形的判定与性质,难度较大,需要熟练掌握相关基础知识.11.B【分析】关键结合图形证明△CHG ≌△EGD ,即可逐项判断求解【详解】解:∵DF=BD ,∴∠DFB=∠DBF ,∵AD ∥BC ,DE=BC ,∴四边形DBCE 是平行四边形,∠DFB=∠GBC ,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB ,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE ,∵DE=DC ,∴∠DEG=∠DCE ,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°-(∠BGD+∠EGF ),=180°-(∠BGD+∠BGC ),=180°-(180°-∠DCG )÷2,=180°-(180°-45°)÷2,=112.5°,∴∠GHC=∠DGE ,∴△CHG ≌△EGD ,∴∠EDG=∠CGB=∠CBF ,∴∠GDH=90°-∠EDG ,∠GHD=∠BHC=90°-∠CGB ,∴∠GDH=∠GHD故②正确;∴∠GDH=∠GHD又∠EFB=22.5°,∴∠DHG=∠GDH=67.5°∴∠GDF=90°-∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF∴HF=2HG,显然CE≠HF=2HG,故①正确;∵△CHG ≌△EGD ,∴CHG EGD S S ∆∆=∴CHG DHG EGD DHG S S S S ∆∆∆∆+=+,即CDG DHGE S S △四边形=而=EFG DHGE DHF S S S ∆+四边形△,故CDG DHF S S ≠△△故④不正确;结合前面条件易知等腰三角形有△ABD ,△CDB ,△BDF ,△CDE ,△BCG ,△DGH ,△EGF ,△CDG ,△DGF 共9个,∴③错误;故正确的有①②,有2个,故选:B【点睛】本题主要考查对三角形的内角和定理,全等三角形的判定和性质,等腰三角形的性质和判定,正方形的性质,等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.12.B【分析】连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,根据已知条件易证△BHK≌△ABC,继而由全等三角形的性质得S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,再由全等三角形的判定可得△BCJ≌△HKL,进而可得S1=S△BHK=S△ABC,由正方形的性质和全等三角形的判定可知△ABC≌△AIG,继而可得S△ABC=S△AIG=S2,等量代换即可求解.【详解】解:连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,由题意可知:四边形BCED是正方形,四边形ACFG是正方形,四边形ABHI是正方形,∠ACB=90°∴∠CEH=∠ECK=90° ,CE=BC∵∠BKH=90°,∴四边形CEHK是矩形,∴ CE=HK又∠HBK+∠ABC=90°, ∠BAC+∠ABC=90°∴∠HBK=∠BAC∴△BHK≌△ABC(AAS)∴S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,∵∠ABC+∠CBJ=90°,∠BHK+∠KHL=90°∴∠CBJ=∠KHL∴△BCJ≌△HKL(ASA)∴S△BCJ=S△HKL,∴S1=S△BHK=S△ABC,∵四边形ACFG是正方形,四边形ABHI是正方形,∴AB=AI,AC=AG,∠G=∠ACB=90°∴△ABC≌△AIG(SAS)∴S△ABC=S△AIG=S2,即S1=S2故选:B【点睛】本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.13.B【分析】由折叠的性质可得∠DCA =∠ACF ,由平行线的性质可得∠DCA =∠CAB =∠ACF ,可得FA =FC ,设BF =x ,在Rt △BCF 中,根据CF 2=BC 2+BF 2,可得方程(8﹣x )2=x 2+42,可求BF =3,AF =5,即可求解.【详解】解:设BF =x ,∵将矩形沿AC 折叠,∴∠DCA =∠ACF ,∵四边形ABCD 是矩形,∴CD ∥AB ,∴∠DCA =∠CAB =∠ACF ,∴FA =FC =8﹣x ,在Rt △BCF 中,∵CF 2=BC 2+BF 2,∴(8﹣x )2=x 2+42,∴x =3,∴BF =3,∴AF =5,∴AF :BF 的值为53, 故选:B .【点睛】本题考查矩形的性质、翻折变换、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.B【分析】根据平行线的性质和轴对称的性质,利用SAS 证明BEG DEG ≅,进而得到ADG 90∠=︒,设AB=x ,则AG=2x ,CD=x ,2243x x x -,即可求解.【详解】解:在ABCD 中∵DF ∥EG∴∠DEG=∠DFB∵△ABE 沿BE 对折得到△BEG∴∠DEG =2∠A∵∠DFB =∠C +∠CDF∠A=∠C∴∠CDF=∠A∵△DFC 沿DF 对折∴∠BGE=∠DGEBG=DGEG=EG∴BEG DEG ≅∵BE⊥AB∴ADG 90∠=︒设AB=x ,则AG=2x ,CD=x ,=∴3AB AD == 故选:B .【点睛】此题主要考查平行线的性质、轴对称的性质、全等三角形的判断和性质、勾股定理,熟练运用平行线的性质和轴对称的性质证明BEG DEG ≅是解题关键.15.B【分析】 如图(见解析),先根据等腰直角三角形的判定与性质可得90,BAC DAE BC DE ∠=∠=︒==,再根据三角形全等的判定定理与性质可得BD CE =,从而可得CDE △周长为BC +,然后根据垂线段最短可求出AD 的最小值,由此即可得.【详解】在ABC 中,6,45AB AC B ==∠=︒,ABC ∴是等腰直角三角形,90,BAC BC ∠=︒==在ADE 中,,45AD AE ADE =∠=︒,ADE ∴是等腰直角三角形,90,DAE DE ∠=︒==,90BAD CAD CAE CAD ∴∠+∠=∠+∠=︒,BAD CAE ∴∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,BD CE ∴=,CDE ∴周长为622CD CE DE CD BD DE BC DE AD ++=++=+=+, 则当AD 取得最小值时,CDE △的周长最小,由垂线段最短可知,当AD BC ⊥时,AD 取得最小值,AD ∴是BC 边上的中线(等腰三角形的三线合一),1322AD BC ∴==(直角三角形斜边上的中线等于斜边的一半), CDE ∴周长的最小值为62232626+⨯=+,故选:B .【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线、三角形全等的判定定理与性质、垂线段最短等知识点,正确找出两个全等三角形是解题关键.16.C【分析】根据已知条件得到AB 3CD =2,过A 作AE ∥CD 交BC 于E ,则∠AEB =∠DCB ,根据平行四边形的性质得到CE =AD ,AE =CD =2BAE =90°,根据勾股定理得到BE 22AB AE +,于是得到结论.【详解】∵S 1=3,S 3=8∴AB 3,CD =2过A 作AE ∥CD 交BC 于E则∠AEB =∠DCB∵AD ∥BC∴四边形AECD 是平行四边形∴CE =AD ,AE =CD =22 ∵∠ABC +∠DCB =90°∴∠AEB +∠ABC =90°∴∠BAE =90°∴BE =3811+=∵BC =2AD∴BC =2BE =211∴S 2=()221144=故选:C .【点睛】本题考查平行四边形的判定和性质,勾股定理,能正确作辅助线构造直角三角形是解决此题的关键.17.B【分析】当点P 和点A 重合时,当点C 和点Q 重合时,PQ 的值最大,当PQ ⊥BC 时,PQ 的值最小,利用这两组数据,在Rt△ABQ 中,可求得答案.【详解】当点P 和点A 重合时,当点C 和点Q 重合时,PQ 的值最大,85PQ =当PQ ⊥BC 时,PQ 的值最小,∴PQ=8,∠Q=90°,在Rt △ACQ 中, ()2285816.CQ =-=在Rt △ABQ 中,设AB=BC=x ,则BQ=16-x ,∴AQ 2+BQ 2=AB 2即82+(16-x )2=x 2解之:x=10.故答案为:B .【点睛】本题考查菱形的性质和勾股定理的运用,解题关键是根据菱形的性质,判断出PQ 最大和最小的情况.18.B【分析】取DC 的中点E ,连接OE 、DE 、OD ,根据三角形的任意两边之和大于第三边可知当O 、E 、D 三点共线时,点D 到点O 的距离最大,再根据勾股定理求出DE 的长,根据直角三角形斜边上的中线等于斜边的一半求出OE 的长,两者相加即可得解.【详解】取AB 中点E ,连接OE 、DE 、OD ,90MON ∠=︒,122OE AB ∴==. 在Rt DAE ∆中,利用勾股定理可得22DE =.在ODE ∆中,根据三角形三边关系可知DE OE OD +>,∴当O 、E 、D 三点共线时,OD 最大为222OE DE +=+.故选B .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O 、E 、D 三点共线时,点D 到点O 的距离最大是解题的关键.19.C【分析】①由翻折知∠ABE=∠AB'E=90º,再证∠M=∠CB'E=∠B'AD 即可;②借助轴对称可知;③利用计算,勾股定理求B′D ,构造方程,求EB ,在构造勾股定理求55;④由相似CB':BM=CE:BE,BM=103,在计算B'M>5;⑤证△BEG≌△B′PG得BE=B′P,再证菱形即可.【详解】①由折叠性质知∠ABE=∠AB'E=90º,∴∠CB'E+∠AB'D=90º∵∠D=90º∴∠B'AD+∠AB'D=90º∴∠CB'E=∠B'AD,∵CD∥MB,∴∠M=∠CB'E=∠B'AD;②点P在对称轴上,则B'P=BP;③由翻折,AB=AB'=5,AD=4,由勾股定理DB'=3,∴CB'=5-3=2,设BE=x=B'E,CE=4-x,在Rt△B′CE中,∠C=90º,由勾股定理(4-x)2+22=x2,解得x=52,∴CE=4-52=32,在Rt△ABE中,∠ABE=90º,AE=22555+5=22⎛⎫⎪⎝⎭;④由BM∥CB′∴△ECB′∽△EBM,∴CB':BM=CE:BE,∴2:BM=32:52, ∴BM=103, 则B'M=221020+4=33⎛⎫ ⎪⎝⎭>5=CD ; ⑤连接BB′,由对称性可知,BG=B′G ,EP ⊥BB′,BE ∥B′P ,∴△BEG ≌△B′PG ,∴BE=B′P ,∴四边形BPB′E 为平行四边形,又BE=EB′,所以四边形BPB′E 是菱形,所以PB′=B'E .故选择:C .【点睛】此题考查了矩形的性质、图形的翻折变换以及相似三角形的性质等知识的应用,此题的关键是能够发现△BEG ≌△B′PG .20.B【分析】连接BD ,与AC 相交于点O ,则AC ⊥BD ,142AO AC ==,由5AD AB ==,根据勾股定理求出DO ,求出EO ,由勾股定理求出DE ,即可得到答案.【详解】解:连接BD ,与AC 相交于点O ,则AC ⊥BD ,在菱形ABCD 中,142AO AC ==, ∵5AD AB CD ===,在Rt △AOD 中,由勾股定理,得:3DO ==,∵=5CE CD =,8AC =,∴853AE =-=,∴431OE =-=,在Rt △ODE 中,由勾股定理,得DE ==∴DE AD = 故选:B.【点睛】本题考查了菱形的性质,勾股定理,以及线段的和差关系,解题的关键是正确作出辅助线,利用勾股定理求出DE 的长度.21.D【分析】求得∠ADB =90°,即AD ⊥BD ,即可得到S ▱ABCD =AD•BD ;依据∠CDE =60°,∠BDE =30°,可得∠CDB =∠BDE ,进而得出DB 平分∠CDE ;依据Rt △BCD 中,斜边上的中线DE =斜边BC 的一半,即可得到AD =BC =2DE ,进而得到AB =DE ;依据OE 是中位线,即可得到OE ∥CD ,因为两平行线间的距离相等,进而得到S △CDE =S △OCD ,再根据OC 是△BCD 的中线,可得S △BOC =S △COD ,即可得到S △CDE =S △BOC .【详解】∵∠BCD =60°,四边形ABCD 是平行四边形,∴∠ADC =180°-∠BCD =120°,BC//AD ,BC =AD ,∵DE 平分∠ADC ,∴∠CDE =∠CED =60°=∠BCD ,∴△CDE 是等边三角形,∴CE =CD = AD = BC ,∴E 是BC 的中点,∴DE =BE ,∴∠BDE = ∠CED =30°,∴∠CDB =90°,即CD ⊥BD ,∴S ▱ABCD =CD•BD =AB•BD ,故①正确;∵∠CDE =60°,∠BDE =30°,∴∠ADB =30°=∠BDE ,∴DB 平分∠CDE ,故②正确;∵△CDE 是等边三角形,∴DE =CD =AB ,故③正确;∵O 是BD 的中点,E 是BC 的中点,∴OE 是△CBD 的中位线,∴OE ∥CD ,∴S △OCD =S △CDE ,∵OC 是△BCD 的中线,∴S △BOC =S △COD ,∴S △CDE =S △BOC ,故④正确,故选D .【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、三角形中位线、平行线间的距离相等、直角三角形斜边上的中线等于斜边的一半等,综合性较强,熟练掌握和灵活运用相关性质与定理是解题的关键.22.C【分析】①先根据平行四边形的性质可得120,60,BAD ABC OA OC ∠=︒∠=︒=,再根据角平分线的定义可得60=︒∠BAE ,然后根据等边三角形的判定与性质可得AB AE BE ==,60AEB ∠=︒,又根据等腰三角形的性质、三角形的外角性质可得30ACE CAE ∠=∠=︒,最后根据角的和差即可得;②由①已推得90BAC ∠=︒,再根据2ABCD ABC S S =即可得;③在Rt AOB 中,根据直角边小于斜边即可得;④在ABC 中,利用三角形中位线定理可得12OE AB =,再根据12AB BC =即可得. 【详解】 四边形ABCD 是平行四边形,60ADC ∠=︒,120,60,BAD ABC OA OC ∴∠=︒∠=︒=,AE ∵平分BAD ∠,1602BAE BAD ∴∠=∠=︒, ABE ∴是等边三角形,,60AB AE BE AEB ∴==∠=︒, 12AB BC =, AB AE BE CE ∴===,ACE CAE ∴∠=∠,60AEB ACE CAE ∠=∠+∠=︒,30ACE CAE ∴∠=∠=︒,90,30BAC BAE CAE CAD BAD BAC ∴∠=∠+∠=︒∠=∠-∠=︒,则结论①成立, AB AC ∴⊥,122··2ABCD ABC AB AC AB AC S S ==⨯=∴,则结论②成立, 在Rt AOB 中,OA 是直角边,OB 是斜边,OA OB ∴<,则结论③不成立,,OA OC BE CE ==,OE ∴是ABC 的中位线, 11112224OE AB BC BC ∴==⨯=,则结论④成立, 综上,结论成立的个数是3个,故选:C .【点睛】本题考查了平行四边形的性质、三角形中位线定理、等边三角形的判定与性质等知识点,熟练掌握并灵活运用各判定定理与性质是解题关键.23.B【解析】【分析】先求出第一个正方形面积、第二个正方形面积、第三个正方形面积,…探究规律后,即可解决问题.【详解】第一个正方形的面积为1=20,第二个正方形的面积为(2)2=2=21,第三个正方形的边长为22,…第n 个正方形的面积为2n ﹣1,故选B .【点睛】本题考查了规律型:图形的变化类,正方形的性质,根据前后正方形边长之间的关系找到S n 的规律是解题的关键.24.C【分析】想办法证明S 阴=S △ADE +S △DEC =S △AEC ,再由EF ∥AC ,可得S △AEC =S △ACF 解决问题.【详解】连接AF 、EC .∵BC =4CF ,S △ABC =12,∴S △ACF =13×12=4, ∵四边形CDEF 是平行四边形,∴DE ∥CF ,EF ∥AC ,∴S △DEB =S △DEC ,∴S 阴=S △ADE +S △DEC =S △AEC ,∵EF ∥AC ,∴S △AEC =S △ACF =4,∴S 阴=4.故选C .【点睛】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.25.D【分析】①由矩形的性质得到90OBC ∠=︒,根据折叠的性质得到OB OD =,90PDO OBP ,BOP DOP ∠=∠,推出四边形OBPD 是矩形,根据正方形的判定定理即可得到四边形OBPD 为正方形;故①正确;②过D 作DH OA ⊥于H ,得到10OA =,6OB =,根据直角三角形的性质得到132DH OD ,根据三角形的面积公式得到OAD ∆的面积为113101522OA DH ,故②正确; ③连接OC ,于是得到OD CD OC ,即当OD CD OC +=时,CD 取最小值,根据勾股定理得到CD 的最小值为6;故③正确;④根据已知条件推出P ,D ,A 三点共线,根据平行线的性质得到OPBPOA ,等量代换得到OPAPOA ,求得10AP OA ,根据勾股定理得到1082BP BC CP ,故④正确.【详解】解:①四边形OACB 是矩形,90OBC ∴∠=︒,将OBP ∆沿OP 折叠得到OPD ∆, OB OD ∴=,90PDO OBP ,BOP DOP ∠=∠,45BOP ,45DOP BOP ,90BOD =∴∠︒,90BOD OBP ODP , ∴四边形OBPD 是矩形,OB OD =,∴四边形OBPD 为正方形;故①正确;②过D 作DH OA ⊥于H ,点(10,0)A ,点(0,6)B ,10OA ∴=,6OB =,6OD OB,30BOP DOP , 30DOA , 132DH OD , OAD ∴∆的面积为113101522OA DH ,故②正确; ③连接OC ,则OD CD OC ,即当OD CD OC +=时,CD 取最小值,6ACOB ,10OA =, 2222106234OC OA AC ,2346CD OC OD ,即CD 的最小值为2346;故③正确;④⊥OD AD ,90ADO ∴∠=︒, 90ODP OBP ,180ADP ,P ∴,D ,A 三点共线,//OA CB ,OPBPOA , OPBOPD , OPAPOA , 10AP OA ,6AC =, 221068CP , 1082BP BC CP ,故④正确;故选:D .【点睛】本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.26.B【分析】。
历年中考数学易错题(含答案解析)
历年中考数学易错题(含答案解析)历年中考数学易错题汇编1、数轴上,若A、B为原点两旁的点,则它们表示的两个有理数是()。
A、互为相反数B、绝对值相等C、符号相同的数D、都是负数2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是()。
A、2aB、2bC、2a-2bD、2a+b3、轮船顺流航行时速度为m千米/小时,逆流航行时速度为(m-6)千米/小时,则水流速度为()。
A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有()。
A、1个B、3个C、4个D、无数个5、下列说法错误的是()。
A、两点确定一条直线B、线段是直线的一部分C、一条直线是一个平面D、把线段向两边延长即是直线6、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是()。
A、当m≠3时,有一个交点B、m1时,有两个交点C、当m1时,有一个交点D、不论m为何值,均无交点7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)2=R2,则两圆的位置关系是()。
A、内切B、外切C、内切或外切D、相交9、有理数中,绝对值最小的数是()。
A、-1B、1C、0D、无穷小10、1的倒数的相反数是()。
A、-1B、-2C、2D、1/211、若|x|=x,则-x一定是()。
A、正数B、非负数C、负数D、非正数12、两个有理数的和除以这两个有理数的积,其商为1,则这两个有理数为()。
A、互为相反数B、互为倒数C、互为相反数且不为0D、有一个为113、长方形的周长为x,宽为2,则这个长方形的面积为()。
A、2xB、2(x-2)C、x-4D、x-214、“比x的相反数大3的数”可表示为()。
A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么下列说法正确的是()。
A、a2比a大B、a2比a小C、a2与a相等D、a2与a的大小不能确定16、数轴上,A点表示-1,现在A开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A点表示的数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O G FB DACE中考数学易错题1.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .2 .5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )3 如图,将沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且12EF AB =;②BAF CAF ∠=∠;③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .44 如图,在四边形ABCD 中,动点P 从点A 开始沿A B C D 的路径匀速前进到D 为止。
在这个过程中,△APD 的面积S 随时间t 的变 化关系用图象表示正确的是( )5如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G.连接GF.下列结论:①∠AGD=112.5°;②tan ∠AED=2;③S △AGD=S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG.其中正确结论的序号是 .6 福娃们在一起探讨研究下面的题目:参考下面福娃们的讨论,请你解该题,你选择的答案是( )贝贝:我注意到当 0x =时,0y m =>. 晶晶:我发现图象的对 称轴为12x =. 欢欢:我判断出12x a x <<.迎迎:我认为关键要判断1a -的符号. 妮妮:m 可以取一个特殊的值.stO AstO BstO CstODA D CE F G B s 80 O vt 80 O v 80 O t v O A . B. C . D .80 A D BF E第20题图DCBP A函数2y x x m =-+(m 为常数)的图象如左图, 如果x a =时,0y <;那么1x a =-时,函数值( )A .0y <B .0y m <<C .y m >D .y m =x y O x 1x 27 正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为( ) A .43B .34 C .45D .358 一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0. 其中正确的结论是( )A .①②B .①③C .②③D .①②③9.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )10 如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )A 、20cm B 、24cm C 、10cm π D 、30cm π11 在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac =C 、222b ac =+ D 、22b a c ==12 古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意,可列方程( )A .2π(6010)2π(6010)68x +++=B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯13 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2, 则该半圆的半径为( ).A . (45)+ cmB . 9 cmC . 45cmD . 62cm14 如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )15 如图,边长为a 的正ABC △内有一边长为b 的内接正DEF △,则AEF △的内切圆半径为.16 如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线, B 为切点.则B 点的坐标为A .⎪⎪⎭⎫ ⎝⎛-5823, B .()13,- C .⎪⎭⎫ ⎝⎛-5954, D .()31,-17 如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,,,的位置,则点2008P 的横坐标为 .18 如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .19 课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( ) A .第3天 B .第4天 C .第5天 D .第6天A B C DOP B .ty 045 90 D .t y 045 90 A .ty45 90 C .ty 045 90 (第12题) x y O 1 1 BA1P A O yx (第19题) P 1o 2o 3o 4o CB D A 第(18)题图① 第(18)题图② 1o 2o 3o 4o 5oA B C E D 112 111021 2019 1817161514 13 5498 7 6 2 3(第19题)20如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有 A .2个 B .3个 C .4个 D .5 个21.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升.A.15 B.16 C.17 D.1821.如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD= .A.1B.2C.21 D.41 22.已知:如图所示,抛物线y=ax 2+bx+c 的对称轴为x=-1,与x 轴交于A 、B 两点,交y 轴于点C ,且OB=OC ,则下列结论正确的个数是 . ①b=2a ②a-b+c>-1 ③0<b 2-4ac<4 ④ac+1=bA.1个B.2个C.3个D.4个23.已知:如图,∠ACB=90º,以AC 为直径的⊙O 交AB 于D 点,过D 作⊙O 的切线交BC 于E 点,EF ⊥AB 于F 点, 连OE 交DC 于P ,则下列结论:其中正确的有 .①BC=2DE ; ②OE ∥AB; ③DE=2PD ; ④AC•DF =DE•CD .A.①②③B.①③④C.①②④D.①②③④24 已知:如图,直线MN 切⊙O 于点C ,AB 为⊙O 的直径,延长BA 交直线MN 于M 点,AE ⊥MN ,BF ⊥MN ,E 、F 分别为垂足,BF 交⊙O 于G ,连结AC 、BC ,过点C 作 CD ⊥AB ,D 为垂足,连结OC 、CG. 下列结论:其中正确的有 . ①CD=CF=CE ; ②EF 2=4AE •BF; ③AD •DB=FG •FB ; ④MC •CF=MA •BF. A.①②③ B.②③④ C.①③④ D.①②③④25 如图,M 为⊙O 上的一点,⊙M 与⊙O 相交于A 、 B 两点,P 为⊙O 上任意一点,直线PA 、PB 分别交 ⊙M 于C 、D 两点,直线CD 交⊙O 于E 、F 两点,连结PE 、PF 、BC ,下列结论:其中正确的有 .①PE=PF ; ②PE 2=PA ·PC; ③EA ·EB=EC ·ED ;④rRBC PB (其中R 、r 分别为⊙O 、⊙M 的半径). A.①②③ B.①②④ C.②④ D.①②③④• •DPO 1O 2A BC)•ACDFBP O E•MABF OGCDEN··BAD PO FM E CB EDA CO1 如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC绕点O 按顺时针方向旋转90,则图中由BB ',B A '',A C ',CB围成的阴影部分的面积是 .1 9 2D 3B 4B 5(1,4,5) 6 C 7D 8 C 9 C 10 C 11 A 12 A 13C 14 C 15)a b - 16D 17 2008 18 18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).19 C20 D 252π3第(18)题图②'(第18题)。