生物化学-第六章生物氧化

合集下载

生物化学(6.3)--作业生物氧化(附答案)

生物化学(6.3)--作业生物氧化(附答案)
氧化磷酸化: [答案]代谢物脱下的还原当量(H++e)经电子传递链至氧生成 H20 而释放的能量用以磷酸化 ADP 生成 ATP。氧化和磷酸化反应是偶联在一起的,称为氧化磷酸化。
P/O 比值: [答案]物质氧化时,每消耗一摩尔氧原子所需消耗无机磷的摩尔数。
解偶联作用: [答案]不影响呼吸链中氢原子或电子的传递顺序,但能减弱或停止 ATP 合成的磷酸化反应, 这种使氧化与磷酸化拆离而阻断能量转换的作用,称为解偶联作用。
第六章 生物氧化
名词解释 生物氧化: 解偶联剂: 呼吸链: 细胞色素氧化酶: NADH 氧化呼吸链: 底物水平磷酸化: 氧化磷酸化: P/O 比值: 解偶联作用: 高能磷酸化合物: 超氧化物歧化酶(SOD): 递氢体和递电子体: 化学渗透假说: α-磷酸甘油穿梭(a-glycerophosphateshuttle) 苹果酸—天冬氨酸穿梭(malate-asparateshuttle) 加单氧酶:
问答题
1. 简述体内能量以及水生成的方式。 2. 以感冒或患某些传染性疾病时体温升高说明解偶联剂对呼吸链作用的影响。 3. 何谓呼吸链,它有什么重要意义? 4. 试述线粒体体外的的物质脱氢是否可以产生能量?如可以,是通过何种机制? 5. 给受试大鼠注射 DNP(二硝基苯酚)可能引起什么现象?其机制何在? 6. 当底物充足时(如乳酸等),在呼吸链反应系统中加入抗霉素 A,组分 NADH 和 Cytaa3 的 氧化还原状态是怎样的? 7. 何谓加单氧酶(monooxygenase)?简述其存在部位、组成、催化的反应及其特点。 8. 在磷酸戊糖途径中生成的 NADPH,如果不去参加合成代谢,那么它将如何进一步氧化? 9. 生物氧化的主要内容有哪些?试说明物质在体内氧化和体外氧化有哪些异同点? 10. 人体生成 ATP 的方式有哪几种?请详述具体生成过程。 11. NADH 氧化呼吸链和琥珀酸氧化呼吸链有何区别? 12. 胞浆中的 NADH 如何参加氧化磷酸化过程?试述其具体机制。

生物化学之生物氧化

生物化学之生物氧化
作为能量载体,提供合成代谢或分解代谢初始
阶段所需的能量; 供给机体生命活动所需的能量; 生成核苷三磷酸(NTP); 将高能磷酸键转移给肌酸以磷酸肌酸 (creatine phosphate)形式储存。
提供合成代谢或分解代谢 初始阶段所需的能量
G+ATP G-6-P+ADP
脂酸+CoA+ATP
底物水平磷酸化
1,3-BP- 甘 酸 +ADP 油
3-P-甘 油 酸 激 酶
3-P-甘油酸 +ATP
丙酮酸激酶
PEP+ADP
琥珀酰CoA+Pi+GDP
丙酮酸+ATP
琥珀酸+CoA+GTP
琥 珀 酰 CoA合 成 酶
它们都通过底物脱H、 H2O、CO2形成高能键, 并直接转移给ADP或GDP形成ATP或GTP(没有 经过呼吸链)
铁硫簇(Fe4S4)
Fe
3+
+e -e
Fe
2+
呼吸链的几乎每个过程都有Fe-S参与,有9种。含非血红素 铁和对酸不稳定的硫。 主要分布在线粒体内膜上,它与NAD+或NADP+共同组成 复合体,参与电子传递:Fe3+←→Fe2+,而且两个Fe离子中 只有一个参与,所以是单电子传递
泛醌(CoQ)
O H3CO CH3 CH3 H3CO O
复合体Ⅰ:NADH-CoQ还原酶
• 功能:将电子从NADH传递给CoQ • 辅基:FMN(黄素腺嘌呤单核苷酸),铁硫蛋白
NH2 N O
-
N
O
P
O H H OH
N O H H OR
N

生物化学 第六章生物氧化

生物化学 第六章生物氧化

1生物化学第六章生物氧化生物化学第六章生物氧化1.相对浓度升高时可加速氧化磷酸化的物质是 A.FAD B.UTP C.NADPH D.NADP+ E.ADP2.线粒体中呼吸链的排列顺序哪个是正确的 A.NADH-FMN-CoQ-Cyt-O 2 B.ADH 2-NAD +-CoQ-Cyt-O 2 C.FADH 2-FAD-CoQ-Cyt-O 2 D.NADH-FAD-CoQ-Cyt-O 2 E.NADH-CoQ-FMN-Cyt-O 23.2H 经过琥珀酸氧化呼吸链传递可产生的ATP 数为 A.1.5 B.2.5 C.4 D.6 E.124.体内细胞色素C 直接参与的反应是 A.叶酸还原 B.糖酵解 C.肽键合成 D.脂肪酸合成 E.生物氧化5.大多数脱氢酶的辅酶是 A.NAD + B.NADP + C.CoA D.Cyt c E.FADH 26.电子按下列各途径传递,能偶联磷酸化的是 A.Cyt —Cytaa 3 B.CoQ--Cytb C.Cytaa 3—O 2D.琥珀酸--FADE.FAD —CoQ7.生命活动中能量的直接供体是 A.三磷酸腺苷 B.脂肪酸 C.氨基酸 D.磷酸肌酸 E.葡萄糖8.下列化合物不属高能化合物的是 A.1,3-二磷酸甘油酸 B.乙酰CoA C.AMPD.氨基甲酰磷酸E.磷酸烯醇式丙酮酸9.每mol 高能键水解时释放的能量大于 A.5KJB.20KJC.21KJD.40KJE.51KJ10.关于ATP在能量代谢中的作用,错误的是A.ATP是生物能量代谢的中心B.ATP可转变为其他的三磷酸核苷C.ATP属于高能磷酸化合物D.ATP与磷酸肌酸之间可以相互转变E.当ATP较富余时,磷酸肌酸将-P转移给ADP生成ATP11.氰化物中毒抑制的是A.细胞色素 bB.细胞色素cC.细胞色素clD.细胞色素aa3E.辅酶Q12.氰化物的中毒机理是A.大量破坏红细胞造成贫血B.干扰血红蛋白对氧的运输C.抑制线粒体电子传递链D.抑制呼吸中枢,使通过呼吸摄入氧量过低E.抑制ATP合酶的活性-.CO中毒是由于A.使体内ATP生成量减少B.解偶联作用C.使Cytaa3丧失传递电子的能力,呼吸链中断D.使ATP水解为ADP和Pi的速度加快E.抑制电子传递及ADP的磷酸化14.下列化合物中除哪一项外都是呼吸链的组成成分A.CoQB.CytbC.CoAD.NAD+E.aa315.生物体内ATP最主要的来源是A.糖酵解B.TCA循环C.磷酸戊糖途径D.氧化磷酸化作用E.糖异生16.通常生物氧化是指生物体内A.脱氢反应B.营养物氧化成H2O和CO2的过程C.加氧反应D.与氧分子结合的反应E.释出电子的反应17.下列有关氧化磷酸化的叙述,错误的是A.物质在氧化时伴有ADP磷酸北生成ATP的过程B.氧化磷酸化过程存在于线粒体内C.P/O可以确定ATP的生成数D.氧化磷酸化过程有两条呼吸链E.电子经呼吸链传递至氧都产生3分子ATP2生物化学第六章生物氧化18.体内CO2来自A.碳原子被氧原子氧化B.呼吸链的氧化还原过程C.有机酸的脱羧D.糖原的分解E.真脂分解19.线粒体氧化磷酸化解偶联是意味着A.线粒体氧化作用停止B.线粒体膜ATP酶被抑制C.线粒体三羧酸循环停止D.线粒体能利用氧,但不能生成ATPE.线粒体膜的钝化变性20.各种细胞色素在呼吸链中传递电子的顺序是A.a→a3→b→c1→c→1/2O2B.b→a→a3→c1→c→1/2O2C.c1→c→b→a→a3→1/2O2D.c→c1→aa3→b→1/2O2E.b→c1→c→aa3→1/2O221.细胞色素b,c1,c和P450均含辅基A.Fe3+B.血红素CC.血红素AD.原卟啉E.铁卟啉22.下列哪种蛋白质不含血红素A.过氧化氢酶B.过氧化物酶C.细胞色素bD.铁硫蛋白E.肌红蛋白23.劳动或运动时ATP因消耗而大量减少,此时A.ADP相应增加,ATP/ADP下降,呼吸随之加快B.ADP相应减少,以维持ATP/ADP恢复正常C.ADP大量减少,ATP/ADP增高,呼吸随之加快D.ADP大量磷酸化以维持ATP/ADP不变E.以上都不对24.人体活动主要的直接供能物质是A.葡萄糖B.脂肪酸C.磷酸肌酸D.GTPE.ATP25.氰化物中毒时,被抑制的是A.Cyt bB.Cyt C1C.Cyt CD.Cyt aE.Cyt aa326.肝细胞胞液中的NADH进入线粒体的机制是A.肉碱穿梭B.柠檬酸-丙酮酸循环C.α-磷酸甘油穿梭3生物化学第六章生物氧化D.苹果酸-天冬氨酸穿梭E.丙氨酸-葡萄糖循环27.能直接将电子传递给氧的细胞色素是A.Cyt aa3B.Cyt bC.Cyt c1D.Cyt cE.Cyt b128.生物氧化的底物是A.无机离子B.蛋白质C.核酸D.小分子有机物E.脂肪29.2,4-二硝基苯酚抑制细胞的功能,可能是由于阻断下列哪一种生化作用而引起A.NADH脱氢酶的作用B.电子传递过程C.氧化磷酸化D.三羧酸循环E.以上都不是30.呼吸链的各细胞色素在电子传递中的排列顺序是A.c1→b→c→aa3→O2B.c→c1→b→aa3→O2C.c1→c→b→aa3→O2D.b→c1→c→aa3→O2E.b→c→c1→aa3→O231.下列哪种物质抑制呼吸链的电子由NADH向辅酶Q的传递:A.抗霉素AB.鱼藤酮C.一氧化碳D.硫化氢E.氰化钾32.下列哪个不是呼吸链的成员之一:A.CoQB.FADC.生物素D.细胞色素CE.Cyt aa333.ATP从线粒体向外运输的方式是:A.简单扩散B.促进扩散C.主动运输D.外排作用E.内吞作用34.生物体直接的供能物质是:A.ATPB.脂肪C.糖D.周围的热能E.阳光4生物化学第六章生物氧化35.肌肉中能量的主要贮存形式是下列哪一种?A.ADPB.磷酸烯醇式丙酮酸C.cAMPD.ATPE.磷酸肌酸36.近年来关于氧化磷酸化的机制是通过下列哪个学说被阐述的?A.巴士德效应B.化学渗透学说C.华伯氏学说D.共价催化理论E.中间产物学说37.线粒体呼吸链的磷酸化部位可能位于下列哪些物质之间?A.辅酶Q和细胞色素bB.细胞色素b和细胞色素CC.丙酮酸和NAD+D.FAD和黄素蛋白E.细胞色素C和细胞色素aa338.代谢中产物每脱下两个氢原子经典型呼吸链时产生A.水和释放能量B.一分子水和三分子ATPC.一分子水和两分子ATPD.一分子水和两分子ATP或三分子ATPE.乳酸和水39.何谓P/O比值A.每消耗一摩尔氧所消耗无机磷的克原子数B.每消耗一摩尔氧所消耗的无机磷克数C.每合成一摩尔氧所消耗ATP摩尔数D.每消耗一摩尔氧所消耗无机磷摩尔数E.以上说法均不对40.有关电子传递链的叙述,错误的是A.链中的递氢体同时也是递电子体B.电子传递的同时伴有ADP的磷酸化C.链中的递电子体同时也是递氢体D.该链中各组分组成4个复合体E.A+D41.在离体肝线粒体悬液中加入氰化物,则1分子β—羟丁酸氧化的P/O比值为A.0B.1C.2D.3E.442.甲亢病人,甲状腺分泌增高,不会出现:A.ATP合成增多B.ATP分解增快C.耗氧量增多D.呼吸加快E.氧化磷酸化反应受抑制43.呼吸链中的递氢体是A.尼克酰胺B.黄素蛋白5生物化学第六章生物氧化C.铁硫蛋白D.细胞色素E. 苯醌44.氧化磷酸化的解偶联剂是A.异戊巴比妥B.寡霉素C.铁鳌合剂D.COE.二硝基酚45.细胞色素氧化酶的抑制剂是A.异戊巴比妥B.寡霉素C.铁鳌合剂D.COE.二硝基酚46.可与ATP合成酶结合的物质是A.异戊巴比妥B.寡霉素C.铁鳌合剂D.COE.二硝基酚47.β-羟丁酸脱下的氢经呼吸链传递,最终将电子传递给A.细胞色素aa3B.H2OC.H+D.O2E.H2O+O248.ATP合成部位在A.线粒体外膜B.线粒体内膜C.线粒体膜间腔D.线粒体基质E.线粒体内膜F1-F0复合体49.体内肌肉能量的储存形式是A.CTPB.ATPC.磷酸肌酸D.磷酸烯醇或丙酮酸E.所有的三磷酸核苷酸50.细胞色素在呼吸链中传递电子的顺序是A.a→a3→b→c1→cB.b→a→a3→c1→cC.b→c1→c→aa3D.c1→c→b→a→a3E.c→c1→aa3→b51.运动消耗大量ATP时A.ADP增加,ATP/ADP比值下降,呼吸加快B.ADP减少,ATP/ADP比值恢复正常C.ADP大量减少,ATP/ADP比值增高,呼吸加快D.ADP大量磷酸化,以维持ATP/ADP比值不变E.以上都不对6生物化学第六章生物氧化52.对氧化磷酸化有调节作用的激素是A.甲状腺素B.肾上腺素C.肾皮质素D.胰岛素E.生长素53.线粒体内膜两侧形成质子梯度的能量来源是A.ATP水解B.磷酸肌酸水解C.电子传递链在传递电子时所释放的能量D.磷酸烯醇式丙酮酸E.磷酸酐54.氰化物中毒致死的原因是A.抑制了肌红蛋白的Fe3+B.抑制了血红蛋白的Fe3+C.抑制了Cyt b中的Fe3+D.抑制了Cyt c中的Fe3+E.抑制了Cyt aa3中的Fe3+55.细胞色素在呼吸链中传递电子的顺序是A.a→a3→b→c→c1B.a3→b→c→c1→aC.b→c1→c→aa3D.b→c1→c→aa3E.c1→c→aa3→b56.通常,生物氧化是指生物体内A.脱氧反应B.营养物氧化成H2O和CO2的过程C.加氧反应D.与氧分子结合的反应E.释出电子的反应57.CO和氰化物中毒致死的原因是A.抑制Cytc中Fe3+B.抑制Cytaa3中Fe3+C.抑制Cytb中Fe3+D.抑制血红蛋白中Fe3+E.抑制Cytc1中Fe3+58.能使氧化磷酸化减慢的物质是A.ATPB.ADPC.CoASHD.还原当量E.琥珀酸59.有关P∕O比值的叙述正确的是A.是指每消耗1mol氧分子所消耗的无机磷的摩尔数B.是指每消耗1mol氧分子所消耗的ATP的摩尔数C.是指每消耗1mol氧原子所消耗的无机磷的摩尔数D.P∕O比值不能反映物质氧化时生成ATP的数目E.P∕O比值反映物质氧化时生成NAD﹢的数目60.各种细胞色素在呼吸链中的排列顺序是A.c→b1→c1→aa3→O2B.c→c1→b→aa3→O2C.c1→c→b→aa3→O27生物化学第六章生物氧化D.b→c1→c→aa3→O2E.c→b1→b→aa3→O261.线粒体外NADH经α-磷酸甘油穿梭作用进入线粒体进行氧化磷酸化,产生几分子ATPA.0B.1C.2D.3E.4-.CO中毒是由于A.使体内ATP生成量减少B.解偶联作用C.抑制电子传递及ADP的磷酸化D.使ATP水解为ADP和Pi的速度加快E.使Cytaa3丧失传递电子的能力,呼吸链中断63.正常生理条件下控制氧化磷酸化的主要因素是A.O2的水平B.ADP的水平C.线粒体内膜的通透性D.底物水平E.酶的活力64.2H经过琥珀酸氧化呼吸链传递可产生的ATP数为A.1.5B.3C.4D.6E.1265.2H经过NADH氧化呼吸链传递可产生的ATP数为A.2B.2.5C.4D.6E.1266.线粒体中呼吸链的排列顺序哪个是正确的A.NADH-FMN-CoQ-Cyt-O2B.FADH2-NAD+-CoQ-Cyt-O2C.FADH2-FAD-CoQ-Cyt-O2D.NADH-FAD-CoQ-Cyt-O2E.NADH-CoQ-FMN-Cyt-O267.氰化物中毒时被抑制的细胞色素是A.细胞色素b560B.细胞色素b566C.细胞色素c1D.细胞色素cE.细胞色素aa368.细胞色素aa3除含有铁以外,还含有A.锌B.锰C.铜D.镁E.钾8生物化学第六章生物氧化69.呼吸链存在于A.细胞膜B.线粒体外膜C.线粒体内膜D.微粒体E.过氧化物酶体70.呼吸链中可被一氧化碳抑制的成分是A.FADB.FMNC.铁硫蛋白D.细胞色素aa3E.细胞色素c71.下列哪种物质不是NADH氧化呼吸链的组分A.FMNB.FADC.泛醌D.铁硫蛋白E.细胞色素c72.哪种物质是解偶联剂A.一氧化碳B.氰化物C.鱼藤酮D.二硝基苯酚E.硫化氰73.ATP生成的主要方式是A.肌酸磷酸化B.氧化磷酸化C.糖的磷酸化D.底物水平磷酸化E.有机酸脱羧74.呼吸链中细胞色素排列顺序是A.b→c→c1→aa3→o2B.c→b→c1→aa3→o2C.c1→c→b→aa3→o2D.b→c1→c→aa3→o2E.c→c1→b→aa3→o275.有关NADH哪项是错误的A.可在胞液中形成B.可在线粒体中形成C.在胞液中氧化生成ATPD.在线粒体中氧化生成ATPE.又称还原型辅酶Ⅰ76.下列哪种不是高能化合物A.GTPB.ATPC.磷酸肌酸D.3-磷酸甘油醛E.1,3-二磷酸甘油酸77.由琥珀酸脱下的一对氢,经呼吸链氧化可产生A.1分子ATP和1分子水B.3分子ATPC.3分子ATP和1分子水9生物化学第六章生物氧化D.2分子ATP和1分子水E.2分子ATP和2分子水78.呼吸链中不具质子泵功能的是A.复合体ⅠB.复合体ⅡC.复合体ⅢD.复合体ⅣE.以上均不具有质子泵功能79.关于线粒体内膜外的H+浓度叙述正确的是A.浓度高于线粒体内B.浓度低于线粒体内C.可自由进入线粒体D.进入线粒体需主动转运E.进入线粒体需载体转运80.心肌细胞液中的NADH进入线粒体主要通过A.α-磷酸甘油穿梭B.肉碱穿梭C.苹果酸—天冬氨酸穿梭D.丙氨酸-葡萄糖循环E.柠檬酸-丙酮酸循环81.丙酮酸脱下的氢在哪个环节上进入呼吸链A.泛醌B.NADH-泛醌还原酶C.复合体ⅡD.细胞色素c氧化酶E.以上均不是82.关于高能磷酸键叙述正确的是A.实际上并不存在键能特别高的高能键B.所有高能键都是高能磷酸键C.高能磷酸键只存在于ATPD.高能磷酸键仅在呼吸链中偶联产生E.有ATP参与的反应都是不可逆的83.机体生命活动的能量直接供应者是A.葡萄糖B.蛋白质C.乙酰辅酶AD.ATPE.脂肪84.参与呼吸链递电子的金属离子是A.铁离子B.钴离子C.镁离子D.锌离子E.以上都不是85.离体肝线粒体中加入氰化物和丙酮酸,其P/O比值是A.2B.3C.0D.1E.486.离体线粒体中加入抗霉素A,细胞色素C1处于A.氧化状态10生物化学第六章生物氧化B.还原状态C.结合状态D.游离状态E.活化状态87.甲亢患者不会出现A.耗氧增加B.ATP生成增多C.ATP分解减少D.ATP分解增加E.基础代谢率升高88.下列哪种物质不抑制呼吸链电子传递A.二巯基丙醇B.粉蝶霉素AC.硫化氢D.寡霉素E.二硝基苯酚89.关于细胞色素哪项叙述是正确的A.均为递氢体B.均为递电子体C.都可与一氧化碳结合并失去活性D.辅基均为血红素E.只存在于线粒体90.不含血红素的蛋白质是A.细胞色素P450B.铁硫蛋白C.肌红蛋白D.过氧化物酶E.过氧化氢酶91.下列哪种酶以氧为受氢体催化底物氧化生成水A.丙酮酸脱氢酶B.琥珀酸脱氢酶C.SODD.黄嘌呤氧化酶E.细胞色素C氧化酶92.下列哪种底物脱下的一对氢经呼吸链氧化生成水,其P/O比值约为3A.琥珀酸B.脂酰辅酶AC.α-磷酸甘油D.丙酮酸E.以上均不是93.高能磷酸键的贮存形式是A.磷酸肌酸B.CTPC.UTPD.TTPE.GTP94.参与构成呼吸链复合体Ⅱ的是A.细胞色素aa3B.细胞色素b560C.细胞色素P45011生物化学第六章生物氧化D.细胞色素c1E.细胞色素c95.参与构成呼吸链复合体Ⅳ的是A.细胞色素aa3B.细胞色素b560C.细胞色素P450D.细胞色素c1E.细胞色素c96.可与ATP合酶结合的是A.氰化物B.抗霉素AC.寡霉素D.二硝基苯酚E.异戊巴比妥97.氧化磷酸化抑制剂是A.氰化物B.抗霉素AC.寡霉素D.二硝基苯酚E.异戊巴比妥98.氧化磷酸化解偶联剂是A.氰化物B.抗霉素AC.寡霉素D.二硝基苯酚E.异戊巴比妥99.细胞色素C氧化酶抑制剂是A.氰化物B.抗霉素AC.寡霉素D.二硝基苯酚E.异戊巴比妥100.体内细胞色素C直接参与的反应是A、叶酸还原B、糖酵解C、肽键合成D、脂肪酸合成E、生物氧化12生物化学第六章生物氧化。

人民卫生出版社《生物化学》第六章 生物氧化

人民卫生出版社《生物化学》第六章  生物氧化

⊿Gº’ = -nF ⊿Eº'
n:传递电子数;F:法拉第常数
➢ 合成1摩尔ATP 需能量约30.5kJ
偶联部位
NADH~CoQ CoQ~Cytc Cyta-a3~O2
电位变化 (∆E0')
0.36V 0.21V 0.53V
自由能变化 (∆G0')
69.5KJ/mol 40.5KJ/mol 102.3KJ/mol
三、NADH和FADH2是呼吸链的电子供体
1、NADH氧化呼吸链 NADH →复合体Ⅰ→CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
2、琥珀酸氧化呼吸链 琥珀酸 →复合体Ⅱ →CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
呼吸链各组分的排列顺序的实验依据
➢ 标准氧化还原电位 ➢ 特异抑制剂阻断 ➢ 还原状态呼吸链缓慢给氧 ➢ 将呼吸链拆开和重组
生物氧化与体外氧化之不同点
生物氧化
➢ 反应环境温和,酶促反应逐步进 行,能量逐步释放,能量容易捕 获,ATP生成效率高。
体外氧化
➢ 能量突然释放。
➢ 通过加水脱氢反应使物质能间接 获得氧;脱下的氢与氧结合产生 H2O,有机酸脱羧产生CO2。
➢ 物质中的碳和氢直接氧 结合生成CO2和H2O 。
生物氧化的一般过程
胞液侧 4H+
2H+ 4H+ Cyt c
+
+++++ +
++
+
Q

--
NADH+H+
NAD+

-
延胡索酸
琥珀酸

Ⅲ- - -

生物化学__生物氧化

生物化学__生物氧化

生物氧化(一)名词解释1.生物氧化2.呼吸链3.底物水平磷酸化(一)名词解释1.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。

生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。

生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。

2.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。

电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。

3.氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成ATP的作用,称为氧化磷酸化。

氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式。

5.底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成A TP(或GTP)的过程称为底物水平磷酸化。

此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。

(二) 填空题1.生物氧化有3种方式:____脱氢_____、_脱电子__________和_____与氧结合_____ 。

2.生物氧化是氧化还原过程,在此过程中有___酶;______、______辅酶;___和_____电子传递体___ 参与。

7.生物体内高能化合物有___焦磷酸化合物;;;______、___酰基磷酸化合物______、____烯醇磷酸化合物;_____、__胍基磷酸化合物;_______、____硫酯化合物_____、______甲硫键化合物___等类。

8.细胞色素a的辅基是____血红素A;_____与蛋白质以_____非共价____键结合。

基础生物化学-生物氧化

基础生物化学-生物氧化

内膜约含 80%的蛋白质,包括电子传递链和氧 化磷酸化的有关组分,是线粒体功能的主要 担负者 。 线粒体 的内腔 充满半流动的基质 (衬质),其中包含大量的酶类以及线粒体 DNA和核糖体。 线粒体基质酶类包括 TCA酶类、脂肪酸-氧化 酶类和氨基酸分解代谢酶类。
哺乳动物线粒体 DNA 为环状分子,编码包括 细胞色素氧化酶、细胞色素 b 和 F0 疏水亚基 在内的10多种蛋白质,约占内膜总蛋白质的 20%,其余的蛋白质均由核基因编码,在细 胞质中合成后运入线粒体。 线粒体内膜的内表面有一层排列规则的球形颗 粒,通过一个细柄与构成嵴的内膜相连接, 这就是ATP合酶(偶联因子F1-F0)。
6.1.1.3 生物氧化中CO2和H2O的生成 ① CO2的生成 代谢底物在酶的作用下经一系列脱氢、加水等 反应,转变为含羧基的化合物,经脱羧反应 生成CO2,包括直接脱羧和氧化脱羧。
② H2O的生成 生物氧化中底物脱下的氢与氧结合生成水。
6.1.2 生物氧化的自由能变化 6.1.2.1 自由能概念 生物体不能直接利用热能做动,在生命活动过 程中所需的能量都来自体内生化反应释放的 自由能。 自由能(free energy) :在恒温、恒压条件下一 个体系可用于做有用功的能量。又称Gibbs自 由能,以G表示。
②黄素蛋白(flavoproteins) 与电子传递链有关的黄素蛋白有两种,分别以 FMN和FAD为辅基。
在FAD、FMN分子中的异咯嗪部分可进行可逆 的脱氢加氢反应。氧化型黄素辅基从NADH接 受两个电子和一个质子,或从底物(如琥珀酸) 接受两个电子和两个质子而还原: NADH+H++FMN=NAD++FMNH2 琥珀酸+FAD=延胡索酸+FADH2

生物化学第六章 生物氧化(共77张PPT)

生物化学第六章 生物氧化(共77张PPT)

O O- P
O-
O O P O-
O-
NH2
N
N
焦磷酸
ATP(三磷酸腺苷) 千卡/摩尔
O O- P
O-
O O- P
O-
O O- P
O-
NN OCH2 O
HH
H
H
OH OH
(3)烯醇式磷酸化合物
COOH O CO PO CH2 O
磷酸烯醇式丙酮酸
千卡/摩尔
2.氮磷键型
O
NH
PO
C NH O
N CH3 C H 2C O O H
利用专一性电子传递抑制剂选择性的阻断呼吸 链中某个传递步骤,再测定链中各组分的氧化-还原 状态情况,是研究电子传递中电子传递体顺序的一 种重要方法。
2、常用的几种电子传递抑制剂及其作用部位
(1)鱼藤酮、安密妥、杀粉蝶菌素:其作用是阻断电子在NADH— Q还原酶内的传递,所以阻断了电子由NADH向CoQ的传递。
3.生成二氧化碳的氧化反应
(1)直接脱羧作用 氧化代谢的中间产物羧酸在脱羧酶的催化下,直接
从分子中脱去羧基。例如丙酮酸的脱羧。 (2)氧化脱羧作用
氧化代谢中产生的有机羧酸(主要是酮酸)在氧化脱
羧酶的催化下,在脱羧的同时,也发生氧化(脱氢)作用。 例如苹果酸的氧化脱羧生成丙酮酸。
第二节、生物能及其存在形式
4、复合体Ⅳ: 细胞色素c氧化酶
功能:将电子从细胞色素c传递给氧
复合体IV
还原型Cytc → CuA→a→a3→CuB
→O2
其中Cyt a3 和CuB形成的活性部位将电子交给O2。
复 合 体 Ⅳ 的 电 子 传 递 过 程
Cytc
e-
胞液侧

生物化学5——生物氧化讲述

生物化学5——生物氧化讲述

(二)ATP的生成和利用
ATP
肌酸
磷酸 肌酸
氧化磷酸化 底物水平磷酸化 ~P
ADP
生物体内能量的储存和利 用都以ATP为中心。
~P 机械能(肌肉收缩) 渗透能(物质主动转运) 化学能(合成代谢) 电能(生物电) 热能(维持体温)
2. 解偶联剂 使氧化与磷酸化偶联过程脱离。如 解偶联蛋白、2,4-二硝基酚。
3. ATP合酶抑制剂 对电子传递及ATP合酶均有 抑制作用。如寡霉素。
(二)甲状腺激素
使ATP分解加速,Na+,K+–ATP酶和解偶联蛋 白基因表达均增加。
(三)ADP/ATP比值的调节
比值增大,氧化加快,ATP生成增加; 比值减小,氧化减慢,ATP生成减少。
ADP
ATP ADP
ATP
二、氧化磷酸化得偶联机制
(一)偶联部位
测定手段:P/O比
NADH氧化呼吸链 P/O比:3
存在3个偶联部位
琥珀酸氧化呼吸链 P/O比:2
存在2个偶联部位
四、影响氧化磷酸化的因素
(一)抑制剂
1. 呼吸链抑制剂 阻断呼吸链中某些部位电子传 递。如鱼藤酮、氰化物、CO等。
五、高能化合物的储存和利用
(一)高能化合物
1.高能键 能释放大于 21 KJ/mol 能量的化学键, 如高能硫酯键和高能磷酸键,以 “”表示。
2.高能化合物:含有高能键的化合物,如ATP、 辅酶A、磷酸肌酸等。
肌酸激酶
肌酸 +ATP
C P +ADP 磷酸肌酸
磷酸肌酸作为肌肉和脑组织中能量的一种储存形式。
(一)生物氧化的方式
生物氧化与物质在体外的氧化 方式在化学本质上是相同的,生物 氧化的方式有加氧、脱氢和失电子 反应。

第六章生物氧化 (2)

第六章生物氧化 (2)

1.复合体Ⅰ(NADH-泛醌还原酶)
将电子从还原型烟酰胺腺嘌呤二核苷酸 (reduced nicotinamide adenine dinucleotide, NADH),传递给泛醌
NADH
e FMN
FeS
CoQ
H+
(1)辅酶Ⅰ和辅酶Ⅱ
NAD+(辅酶I,coenzyme I,Co I)与NADP+ (辅酶II,coenzyme II,Co II)是烟酰胺脱 氢酶类的辅酶,结构如下:
自学
第二节 其他氧化体系
自学
第六章 生 物 氧 化
掌握:呼吸链 NADH氧化呼吸链、FAD氧 化呼吸链,氧化磷酸化。
熟悉:ATP和其它高能化合物。 了解:影响氧化磷酸化的因素,胞液中
NADH的氧化 胞液NADH的两种穿梭途径。
一般了解:其它氧化体系。
物质在生物体内氧化分解并释放出能 量的过程称为生物氧化。
与体外燃烧不同的是,生物体内的生 物氧化过程是在37℃,近于中性的含 水环境中,由酶催化进行的;反应逐 步释放出能量,相当一部分能量以高 能磷酸酯键的形式储存起来。
直接将底物分子中的高能键转变为ATP分 子中的末端高能磷酸键的过程称为底物水 平磷酸化。

底物水平磷酸化仅见于下列三个反应

1,3-二磷酸甘油酸+ADP 油酸+ATP
3-磷酸甘油酸激酶 3-磷酸甘

磷酸烯醇式丙酮酸+ADP 酸+ATP
丙酮酸激酶
烯醇式丙酮
⑶ 琥珀酰CoA+H3PO4+GDP +CoA+GTP
3.复合体Ⅲ(泛醌-细胞色素c还原酶):
2Cytb + Cytc1 +(Fe-S)

生物化学 生物氧化(6)

生物化学 生物氧化(6)

基质 嵴 内膜
外膜
外膜 膜间腔 F1-F0复合体
内膜
F1亚基 F0亚基
膜间腔
线粒体结构模式图
线粒体嵴的分子组成
2020/6/11
27
线粒体的结构
2020/6/11
呼吸链
28
二、电子传递链的组成及电子传递顺序
1、电子传递中有四个复合体参与:
OO CH3 C O P O-
O-
乙酰磷酸
O
O
RC O P O A
O
O
O-
H3N+ C O P OO-
酰基腺苷酸
O
O
氨甲酰磷酸 RCH C O P O A
N+H3
O-
氨酰基腺苷酸
(B) 焦磷酸化合物
OO
O- P O P O-
O-
O-
焦磷酸
O O- P
O-
ATP(三磷酸腺苷)
7.3千卡/摩尔
O O- P
O-
O O- P
O-
NH2
N
N
NN OCH2 O
HH
H
H
OH OH
(C)烯醇式磷酸化合物
COOH O CO PO CH2 O
磷酸烯醇式丙酮酸 14.8千卡/摩尔
(2) 氮磷键型
O
O
NH
PO
NH
PO
C NH O N CH3 CH2COOH
C NH O N CH3 NH2 CH2CH2CH2CHCOOH
CH2 H3C S+ A
3.最重要的高能化合物ATP (三磷酸腺苷)
NH2
N
N
~ ~ O-

P O-

生物化学第六章生物氧化

生物化学第六章生物氧化

(还原剂) (氧化剂)
可写成 A2+ B3+
A3+
B2+
2019/11/23
生物化学教研室
9
第三节 生成ATP的氧化体系
一、呼吸链的概念
代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所 催化的连锁反应逐步传递,最终与氧结合生成水。由 于此过程与细胞呼吸有关,所以将传递链称为呼吸链, 也叫电子传递呼吸链。
氧化酶,而其它均为不需氧脱氢酶。其中a与 a3很难分开,常写为aa3。
在微粒体中主要为细胞色素b5、p450。p450作用 与aa3类似 。
2019/11/23
生物化学教研室
19
细胞色素的结构
2019/11/23
生物化学教研室
20
呼吸链复合体
人线粒体呼吸链通过上述5大类成分形成4个复合体。
2019/11/23
P/O比值:每消耗1摩尔原子氧所消耗的无机磷 原子的摩尔数。
2019/11/23
生物化学教研室
39
2、氧化磷酸化的偶联机制
内模胞浆侧
化 学 渗 透 学 说内膜基侧2019/11/23
生物化学教研室
40
ATP合酶(复合体Ⅴ)
由F1和F0组成。 F1 在线粒体内膜基质 侧形成颗粒状突起, 催化ATP的生成。 F膜0镶中嵌。在当线H+粒顺体浓内度 梯度经回流时,γ 亚基发生旋转,3个 β 亚基构象变化, 由紧密结合型变为 开放型,释放ATP。
根据呼吸链各组分的标准氧化还原电位测定(电位越 低越容易失去电子)、利用呼吸链特异性的阻断剂测 定其氧化和还原状态的吸收光谱及离体线粒体各组分 的氧化顺序等实验,确定了呼吸链各组分的排列顺序, 并发现体内存在两条主要的呼吸链。

第六章 生物氧化

第六章 生物氧化
所有生命都利用太阳能
三大 营养 物质
氧化 分解
糖、脂肪和蛋白质等有机物在体内的逐步氧化分 解化(成bCiOol2o和gicHa2lOo,xid并at释ion放)出。能量的过程称为生物氧
与体外燃烧不同的是,生物体内的生物氧化过程 是在37℃,近于中性的含水环境中,由酶催化进 行的;反应逐步释放出能量,相当一部分能量以 高能磷酸酯键的形式储存起来。
能够抑制第二位点的有抗霉素A和二巯基 丙醇; (复合体III)
能够抑制第三位点的有 CO、H2S和CN-、 N3- 。 其 中 , CN- 和 N3- 主 要 抑 制 氧 化 型 Cytaa3-Fe3+,而CO和H2S主要抑制还原型 Cytaa3-Fe2+。 (复合体IV)
2.解偶联剂: 不抑制呼吸链的递氢或递电子过程,但能使氧
生物氧化实际上是需氧细胞呼吸作用中的一系列 氧化还原反应,所以又称为细胞氧化或细胞呼吸。
思考:以下关于营养物质在体内氧化和体外燃烧的叙述正确的是
A.逐步释出能量 B.氧和碳原子化合产生CO2 C.需要催化剂 D.彻底氧化产生相同产物 E.体外燃烧释出的能量大于体内氧化
生物氧化过程: 代谢物分子脱氢,并解离成氢离子和电子; 电子经过中间载体传给氧分子,激活氧; H+和O2-结合成H2O ,并释放能量;
每消耗一摩尔氧原子所消耗的无机磷的摩 尔数称为P/O比值。
合 成 1molATP 时 , 需 要 提 供 的 能 量 至 少 为 ΔG0'=-30.5kJ/mol,相当于氧化还原电位差 ΔE0'=0.2V。故在NADH氧化呼吸链中有三 处可生成ATP,而在琥珀酸氧化呼吸链中, 只有两处可生成ATP。
首先由NADH提供1个质子和2个电子,加上线粒体 基质内1个质子,使FMN还原成FMNH2.FMNH2内 膜胞浆侧释放出2个质子,将2个电子Fe-S.

第6章 生物氧化

第6章 生物氧化
其作用是催化电子从琥珀酸转至泛醌,但不转 移质子。 至少由4条肽链组成,含有黄素蛋白(FAD), 铁硫蛋白和细胞色素(cytochrome,Cyt)b560。 电子传递的方向为:琥珀酸→FAD→Fe-S→Q。 反应结果为:琥珀酸+Q→延胡索酸+QH2
生物化学与分子生物学教研室
FMN的结构
黄素蛋白中的FAD的结构
1、复合体Ⅰ—— NADH脱氢酶
其作用是催化NADH的2H传递至泛醌(辅酶Q), 同时将4个质子由线粒体基质(M侧)转移至膜 间隙(C侧)。 动物的复合物Ⅰ由42条肽链组成,呈L型,含有 黄素蛋白(FMN为辅酶)和铁硫蛋白(铁硫簇为 辅酶),分子量接近1MD,以二聚体形式存在。 电子传递的方向为:NADH→FMN→Fe-S→Q,总 的反应结果为:NADH + 5H+M + Q→NAD+ + QH2 + 4H+C
生物化学与分子生物学教研室
线粒体结构
生物化学与分子生物学教研室
(一) 呼吸链的组成
用胆酸、脱氧胆酸处理线粒体内膜,可以得到 四个具有电子传递功能的酶复合体和1个ATP合酶。
辅酶Q和细胞色素C 不属于任何一种复合物。辅 酶Q溶于内膜、细胞色素C位于线粒体内膜的外侧, 属于膜的外周蛋白。
生物化学与分子生物学教研室
(Fe-S)
O2
-
NDP
-
ATP
寡霉素
生物化学与分子生物学教研室
2、ADP的调节作用:ADP增多,促进磷酸化。 3、甲状腺激素:促进氧化磷酸化;使偶联蛋白 基因表达增加,引起耗氧和产热增加。 4、线粒体DNA突变
生物化学与分子生物学教研室
四、ATP
(一)高能化合物与ATP

生物化学 第六章 生物氧化

生物化学   第六章 生物氧化

电子传递链(呼吸链)
琥珀酸 复 合 体 Ⅰ
2H
复合体Ⅱ FAD.H2 (Fe-S)
2H 2H 2e
2H NAD+
复 合 体 琥珀酸氧化呼吸链 Ⅳ
2e
FMN (Fe-S)
Q10
2H+
Cytb Cytc1 2e (Fe-S) 复合体Ⅲ H2O
Cytc
2e
aa3
2e
NADH氧化呼吸链
O2-
1 2 O2
第三节 ATP的生成
(二)呼吸链成分的排列
由以下实验确定 ① 标准氧化还原电位 ② 拆开和重组 ③ 特异抑制剂阻断 ④ 还原状态呼吸链缓慢给氧
呼吸链中各种氧化还原对的标准氧化还原电位 氧化还原对 NAD+/NADH+H+ FMN/ FMNH2 FAD/ FADH2 Cyt b Fe3+/Fe2+ Q10/Q10H2 Cyt c1 Fe3+/ Fe2+ Cyt c Fe3+/Fe2+ Cyt a Fe3+ / Fe2+ Cyt a3 Fe3+ / Fe2+ 1/2 O2/ H2O Eº (V) ' -0.32 -0.30 -0.06 0.04(或0.10) 0.07 0.22 0.25 0.29 0.55 0.82
故又称混合功能氧化酶(mixed-function oxidase) 或羟化酶(hydroxylase)。 上述反应需要细胞色素P450 (Cyt P450)参与。
微粒体氧代谢的意义
参与体内正常物质代谢,如羟化、合成等
参与体内生理活性物质的灭活及药物、毒
物解毒转化和代谢清除反应、保护机体

生物化学-第六章生物氧化-精选文档

生物化学-第六章生物氧化-精选文档
线粒体呼吸链
二.呼吸链分组成成分
1.烟酰胺脱氢酶类
S-2H NAD/NADP S NADH/NADPH
2.黄素脱氢酶类
NADH FMN NAD FMN2H
S-2H FAD S FAD2H
3.铁硫蛋白类 Fe3+ Fe2+
-----半胱------半胱----- S Fe S S S Fe S S
-----半胱------半胱-----
4.细胞色素类
细胞色素(简写为cyt. )是含铁的电子传递体,辅基为 铁卟啉的衍生物,铁原子处于卟啉环的中心,构成血红 素。各种细胞色素的辅基结构略有不同。线粒体呼吸链 中主要含有细胞色素a, a3,b, c 和c1等,组成它们的辅基 分别为血红素A、B和C。细胞色素a, b, c可以通过它们 的紫外-可见吸收光谱来鉴别。 细胞色素a, b, c 和c1是通过Fe3+ Fe2+ 的互 变起传递电子的作用的。 a3是通过Cu2+ Cu+ 的互 变起传递电子的作用的。
5.辅酶Q---泛醌 泛醌(简写为Q)或辅酶-Q(CoQ):它是电子传递链中 唯一的非蛋白电子载体。为一种脂溶性醌类化合物。
O CH3O CH3O O CH3 (CH2CH C CH2)nH CH3
n=6-10
NADH泛醌还原酶
NADHCoQ 还原酶 复合体
CoQ2H-CytC 还原酶复合体
1.呼吸链的组成成分 2.氧化磷酸化的机制
难点:
第一节、生物氧化概念及特点
一.生物氧化概念
有机物在生物体内彻底氧化生成CO2和H2O, 并放出能量的作用。也称细胞呼吸/组织呼吸。 包括物质分解和产能
O2 呼吸作用
细胞呼吸(微生物)

第六章 生物氧化

第六章   生物氧化

E0‘(V)
-0.32 -0.219 -0.219
氧化还原对
Cyt c1 Fe3+ /Fe2+ Cyt c Fe3+ /Fe2+ Cyt a Fe3+ /Fe2+
E0‘(V)
0.22 0.254 0.29
Cyt bL(bH) Fe3+/Fe2+
Q10 /Q10H2
0.05(0.10)
0.06
Cyt a3 Fe3+ /Fe2+
FMN(FAD)的结构:
CH2OPO32H H H C C C CH2 H3C N N O OH OH OH
N H3C N
异 咯 嗪
O
异咯嗪环的作用:
FMN/FAD
FMNH /FADH
FMNH 2/FADH
2
(氧化型)
(还原型)
铁硫蛋白 铁硫蛋白(Fe-S)共有
9种同工蛋白;分子中
含有由半胱氨酸残基硫
目录
泛醌从复合体Ⅰ、Ⅱ募集还原当量和电子并穿 梭传递到复合体Ⅲ。
电子传递过程:CoQH2→(Cyt bL→Cyt bH)
→Fe-S →Cytc1→Cytc
目录
细胞色素类:
这是一类以铁卟啉为辅基的酶。在生物氧 化反应中,其铁离子可为+2价亚铁离子,也可 为+3价高铁离子,通过这种转变而传递电子。
R=H: NAD+;
R=H2PO3: NADP+
目录
NAD+(NADP+)和NADH(NADPH)相互转变
氧化还原反应时变化发生在五价氮和三价氮之间。
目录
FMN结构中含核黄素,发挥功能的部位是异 咯嗪环,氧化还原反应时不稳定中间产物是 FMNH· 。在可逆的氧化还原反应中显示3种分子状 态,属于单、双电子传递体。

大学生物化学第六章生物氧化笔记划重点

大学生物化学第六章生物氧化笔记划重点

第六章生物氧化第一节名解:生物氧化:化学物质在生物体内的氧化分解。

能够传递氢离子、电子.称为递氢体eg. NAD+/NADP+线粒体内膜上能够传递电子. 称为递电子体eg.铁硫蛋白NAD+或NADP+和NADH或NADPH的转变:氧化还原反应时变化发生在五价氮和三价氮之间。

NAD+/NADP+:烟酰胺腺嘌呤二核苷酸递氢体:FAD/FMN:发挥功能部位是异咯嗪环泛醌(辅酶Q):脂溶性.由10个异戊二烯连接形成较长的疏水侧链递电子体:铁硫蛋白和细胞色素蛋白:Fe2+ →Fe3+ +e-铁原子和硫原子等量:Fe2S2或Fe4S4以铁卟啉(血红素)为辅基根据吸收光谱不同分类名解:电子传递体(呼吸链):线粒体内膜上按一定顺序排列的多种酶(蛋白复合体)通过催化连续的氧化还原反应将代谢物脱下的电子、氢(以NADH和FADH2形式)传递给O2,O2接受电子变为O2-并和H+结合成H2O.分布:线粒体内膜组成:递氢体和递电子体(一)呼吸链的组成1、复合体Ⅰ:NADH-泛醌还原酶功能:接受来自NADH + H+的电子并将其传递给泛醌电子传递:NADH→FMN→Fe-S→泛醌质子泵出:复合体Ⅰ具有质子泵功能,每传递2个e-可将4个H+从内膜基质到胞液侧2、复合体Ⅱ:没有质子泵功能功能:将e-从琥珀酸传递给泛醌3、复合体Ⅲ:具有质子泵功能.2个电子将4H+从内膜基质侧泵到胞液侧QH2→b562→b566→Fe-S→Cyt c1→Cyt c(呼吸链中唯一溶于水的球状蛋白)方法:Q循环(实现了双电子传递体泛醌与单电子传递体细胞色素之间的电子传递)4、复合体Ⅳ:细胞色素c氧化酶功能:有质子泵功能,每传递2个e-可使2个H+向胞液侧转移Cyt c→O2三、呼吸链类型1、NADH氧化呼吸链NADH→复合体Ⅰ→Q→复合体Ⅲ→Cyt c→复合体Ⅳ→O22、琥珀酸氧化呼吸链琥珀酸→复合体Ⅱ→Q→复合体Ⅲ→Cyt c→复合体Ⅳ→O2呼吸链各组分排列顺序由以下实验确定(略)第二节氧化磷酸化和ATP生成名解:氧化磷酸化(机体产生ATP的主要方式):代谢物脱下的氢生成NADH和FADH2,经电子传递链传递逐步失去电子被氧化生成H2O,并释放能量驱动ADP磷酸化生成ATP的过程,又称欧联磷酸化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S
NADH/NADPH 中间体
H2O
2.氧化酶: 如细胞色素氧化酶,VitC氧化酶 3.加氧酶: 如羟化酶
第二节 线粒体氧化体系
一.呼吸链的概念
呼吸链又叫电子传递体系或电子传递链,它是代谢物上的氢原子 被脱氢酶激活脱落后,经过一系列的传递体,最后传递给被激活的 氧原子,而生成水的全部体系。
在真核生物细胞内,它位于线粒体内膜上,原核生物中,它位于 细胞膜上。
乙醇
CH3CHO NADH+H+
乙醛
3. 加氧
O2
H-
CH2CHCOOH
NH2
苯丙氨酸
4. 加水
CHCOOH HOOC-CH
延胡索酸
H2O
HO-
CH2CHCOOH NH2
酪氨酸
COOH CHOH CH2 苹C果O酸OH
五.生物氧化的酶类
1.脱氢酶 (1)黄素核苷酸为辅基的脱氢酶
需氧黄酶(如:氨基酸氧化酶)
难点:
1.呼吸链的组成成分 2.氧化磷酸化的机制
第一节、生物氧化概念及特点 一.生物氧化概念
有机物在生物体内彻底氧化生成CO2和H2O, 并放出能量的作用。也称细胞呼吸/组织呼吸。
包括物质分解和产能
O2
CO2 + H2O
呼吸作用
细胞呼吸(微生物)
二、生物氧化的特点
1.条件温和
生物氧化是在生物细胞内进行的酶促氧化过程,反应 条件温和(水溶液,中性pH和常温)。
+ CO2
(二).氧化脱羧
a-脱羧
CO OH C=O CH3
ℬ-脱羧
COSCoA NAD+ NADH+HC+H3 HSCOA
+ CO2
COOH CHOH CH2 COOH
NAD+
CO OH NADH+HC+=O CH3
+ CO2
四、生物氧化中物质的本质(方式)
1. 失电子
2. 脱氢
CH3-CH2OH NAD+
第六章
生物氧化
生物氧化概念及特点 线粒体氧化体系 生物氧化中能量转移与利用
学习目的与要求:
1.生物氧化概念及特点 2.线粒体氧化体系氧化方式 3.生物氧化中能量转移与利用
重点:
1.生物氧化的特点 2.呼吸链的概念,组成成分及排列順序 3.ATP的生成方式 4.氧化磷酸化的机制 5.影响氧化磷酸化的因素
R-CH-COOH
R-C-COOHH2O R-CH-COOH
NH2 FMN/FADFMN2H/FANDH2H NH3 OH
H2O2
O2
不需氧黄酶
CH2-COOH CH2-COOH
琥珀酸
CHCOOH FAD FAD2H HOOC-CH
延胡索酸
(2)NAD/NADP为辅酶的脱氢酶
S-2H NAD/NADP 中间体-2H ½O2
2. 水的生成
水的生成不是H直接与O作用生成,水是生物氧化反应的产物,又 是生物氧化反应的环境,氧化过程中脱下来的氢,通常由各种载 体,如NADH等传递到氧并生成水。水是许多生物氧化反应的 氧供体。通过加水脱氢作用,直接参予了氧化反应。
3.CO2的生成
CO2的生成不是C直接与O作用生成,而是通过脱羧作用生成。
4. 能量的生成
能量的生成不是暴发式的,而是逐步释放,提高能量利用率。生 物氧化释放的能量,通过与ATP合成相偶联,转换成生物体能够直 接利用的生物能ATP。
三.CO2的生成
(一).直接脱羧
a-脱羧
CO OH C=O CH3 ℬ-脱羧
CO OH C=O CH2 CO OH
CHO

+ CO2
CO OH C=O CH3
2H
SH 2
COOH
2H
C H 2C H 2C O O H
NAD+
FM N H 2 2H
Fe S
FAD
Fe *S C yt b
2e-
复 合 物II (琥珀酸脱氢酶)
CoQ
2Cyt-Fe 2+
2e-
-1 2
O
2
S
NADH
+ H 2H
FM N Fe S
复合物I
CoQH2
2e -
2Cyt-Fe 3+ 2H +
4.细胞色素类
细胞色素(简写为cyt. )是含铁的电子传递体,辅基为 铁卟啉的衍生物,铁原子处于卟啉环的中心,构成血红 素。各种细胞色素的辅基结构略有不同。线粒体呼吸链 中主要含有细胞色素a, a3,b, c 和c1等,组成它们的辅基 分别为血红素A、B和C。细胞色素a, b, c可以通过它们 的紫外-可见吸收光谱来鉴别。
线粒体呼吸链
二.呼吸链分组成成分
1.烟酰胺脱氢酶类
S-2H NAD/NADP S NADH/NADPH
2.黄素脱氢酶类
NADH FMN NAD FMN2H
S-2H FAD S FAD2H
3.铁硫蛋白类 Fe3+ Fe2+
-----半胱------半胱----- SSS Fe Fe SS S
-----半胱------半胱-----
O 2-
H 2O
( NADH-泛 醌 还原 酶 )
C oQ
Cyt-Fe 2+
Fe-S
b
Fe-S
C oQ H 2 2 e - Cyt-Fe 3+
2 e - Cyt-Fe 3+ c1
Cyt-Fe 2+ 2 e -
Cyt-Fe 2+ c
Cyt-Fe 3+ 2H +
2eCyt-Fe
3+
a Cyt-Fe 2+ 2 e -
细胞色素a, b, c 和c1是通过Fe3+ Fe2+ 的互 变起传递电子的作用的。 a3是通过Cu2+ Cu+ 的互 变起传递电子的作用的。
a: a/a3 b c: c/c1
细胞色素c(cytc)
它是电子传递链中一个独立的 蛋白质电子载体,位于线粒体 内膜外表,属于膜周蛋白,易 溶于水。它与细胞色素c1含有 相同的辅基,但是蛋白组成则 有所不同。在电子传递过程中, cytc通过Fe3+ Fe2+ 的互变 起电子传递中间体作用。
细胞色素c氧化酶
简写为cytc 氧化酶,即
Fe2+
复合物IV,它是位于线
粒体呼吸链末端的蛋白
复合物,由12个多肽亚
基组成。活性部分主要
包括cyta和a3。
cyta和a3组成一个复合体, cyta含有铁卟啉, cyta3含有铜原子。 cyta3可以直接以O2为电子受体。
在电子传递过程中,分子中的铜离子可以发生 Cu+ Cu2+ 的互变, 将cytc所携带的电子传递给O2
5.辅酶Q---泛醌
泛醌(简写为Q)或辅酶-Q(CoQ):它是电子传递链中 唯一的非蛋白电子载体。为一种脂溶性醌类化合物。
O
CH3O
CH3
CH3O O
(CH2CH C CH2)nH CH3
n=6-10
NADH泛醌还原酶
NADHCoQ 还原酶 复合体
CoQ2H-CytC 还原酶复合体
三.呼吸链的排列順序
相关文档
最新文档