概率论与数理统计第二章随机变量及其分布 ppt课件

合集下载

《概率论与数理统计》课件-第2章随机变量及其分布 (1)

《概率论与数理统计》课件-第2章随机变量及其分布 (1)
则称X服从参数为λ的泊松分布, 记为 X ~ P() .
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)

概率论与数理统计ch2随机变量及其概率分布精品PPT课件

概率论与数理统计ch2随机变量及其概率分布精品PPT课件
P( X 3) P( A1A2 A 3) (1 p)3 ;
10
X0
1
2
3
p p p(1-p) (1-p)2p (1-p)3
11
例:若随机变量X的概率分布律为
P( X k ) c k ,k 0,1, 2,, 0
k!
求常数c.
12
解:
1 P{X k}
k 0
k
c
ce
k0 k !
求(1)随机观察1个单位时间,至少有3人候车 的概率; (2)随机独立观察5个单位时间,恰有4个单 位时间至少有3人候车的概率。
29
解:1 P(X 3) 1 P( X 0) P( X 1) P(X 2)
1 e 4.8 (1 4.8 4.82 ) 0.8580 2!
2 设5个单位时间内有Y个单位时间是
15
对于一个随机试验,如果它的样本空间只
包含两个元素,即 S {e1, e2} ,我们总能
在S上定义一个服从(0-1)分布的随机
变量。
0, X X (e) 1,
当e e1, 当e e2.
来描述这个随机试验的结果。
检查产品的质量是否合格,对新生婴儿 的性别进行登记,检验种子是否发芽以 及前面多次讨论过的“抛硬币”试验都 可以用(0-1)分布的随机变量来描述 。
P A 1 2
如果是不放回抽样呢?
21
设A在n重贝努利试验中发生X次,则
P( X k) Cnk pk (1 p)nk,k 0,1,,n
并称X服从参数为p的二项分布,记
X ~ B(n,p)
n
注:1 ( p q)n Cnk pk qnk 其中q 1 p k 0
22
推导:以n=3为例,设Ai={ 第i次A发生 }

概率论与数理统计 第二章 随机变量及其分布

概率论与数理统计 第二章 随机变量及其分布
解:
6 6 X ~ ( ), 且 P X 0 e 即 e e 6
P { X 2 } 1 P { X 2 } 1 P { X 0 } P { X 1 }
6 6 1 e 6 e 0 . 9826
A={X=1},B={X=2},C={X=0}
② 设Y为进行5次试验中成功的次数,则 D={Y=1},F={Y1},G={Y3}
随机变量的分类
离散型随机变量 随机变量 连续型 非离散型 奇异型(混合型)
§2 离散型随机变量的分布律(P27)
定义 若随机变量X取值x1, x2, …, xn, … ,且取这些 值的概率依次为p1, p2, …, pn, …, 则称 P{X=xk}=pk, (k=1, 2, … ) 为X的分布律。 可表为 X~ P{X=xk}=pk, (k=1, 2, … ), 或…
k k n
k 0 , 1 , , n
若以X表示n重贝努里试验中事件A发生的次数, P(A)=p, 则称X服从参数为n,p的二项分布。 记作X~b(n,p), 其分布律为:
P { X k } p ( 1 p ), ( k 0 , 1 ... n ) C n
kk
n k
例2 掷一颗骰子10次,求(1)双数点出现6次的概率? (2)“3”点出现两次的概率? 解:(1)设X表出现双数点的次数,则X~b(10,1/2) 6 6 10 6 6 10 1 1 1 所求概率: P ( X 6 ) C ( ) ( ) C ( ) 10 10 2 2 2 (2) 设Y表出现“3”点的次数,则Y~b(10,1/6) 2 1258 所求概率为: P ( Y 2 ) C () () 10

概率论与数理统计--第二章PPT课件

概率论与数理统计--第二章PPT课件
由概率的可列可加性得X的分布函数为
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]

pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32

概率论第2章ppt课件

概率论第2章ppt课件

(5) P{恰好2.5分钟}
.
11
第2章 随机变量及其分布
解:
习题19
(1) P{至多3分钟} P { X 3 } F X (3 ) 1 e 0 .4 3 0 .69 (2) P{至少4分钟}
P { X 4 } 1 P { X 4 } 1 F X ( 4 ) e 0 .4 4 0 .20
同理 P{X2}5219 P{X3}4217
36 36
36 36
P{X4}3215 P{X5}2213
36 36
36 36
P{X 6} 1 36
.
3
第2章 随机变量及其分布
习题8
8. 甲乙两人投篮,投中的概率分别为0.6和0.7。今各投三次。求(1)两人投中次数 相等的概率;(2)甲比乙投中次数多的概率.
.
9
第2章 随机变量及其分布
习题16
16. 有一繁忙的汽车站,每天有大量汽车通过,设一辆汽车在一天的某段时间内 出事故的概率为0.0001. 在某天的该时间段内有1000量汽车通过。问出事故的车辆 数不小于2的概率是多少?(利用泊松定理计算)
解:令在该段时间内发生事故的车辆数目为X, 根据题意知:
0
20
22 4
令 y x2
AI1A1 4
I b3/2
.
15
第2章 随机变量及其分布
习题22(2)
22(2) 研究了英格兰在1875年~1951年期间,在矿山
发生导致不少于10人死亡的事故的频繁程度,得知
相继两次事故之间的时间T(日)服从指数分布,其
概率密度为
fT
(t)
1
et
241
, /241
(1) 解:从8杯酒中随机地挑选4杯,共有

概率论与数理统计第二章课件PPT

概率论与数理统计第二章课件PPT

例2 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯泡数 .
X ~ B (3, 0.8),
P( X k)C (0.8) (0.2) , k 0,1,2,3
k 3 k
3k
P{X 1} =P{X=0}+P{X=1} =(0.2)3+3(0.8)(0.2)2
X
p
1
0
1
2
3 0.1
a b 0.2 0.3
求a,b满足什么条件。
a b 0.4, a 0, b 0
一旦知道一个离散型随机变量X的分布律后,我们便可求得X
所生成的任何事件的概率。特别地,对任意 a ,有 b
P a X b P X x P X x i i a x b a x b 1 1 pk

用泊松定理 取 =np=(400)(0.02)=8, 故 近似地有 P{X2}=1- P{X=0}-P {X=1}
=1-(1+8)e-8=0.996981.
泊松分布(Poisson distribution)
定义2 设随机变量X的可能取值为0,1,2,…,n,…,而X 的分布律为
pk P X k
路口1
路口2
路口3
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
1 1 1 P(X=3)= P( A1 A2 A3 ) =1/8 2 2 2

X
p
0
1
2
3
1 2
1 4

《概率论与数理统计》教学课件(共8章)第2章 随机变量及其概率分布

《概率论与数理统计》教学课件(共8章)第2章 随机变量及其概率分布

显然,p1+p2+p3+p4=1。
2.1 离散型随机变量
2.1.2 离散型随机变量的分布律
(2) X为直到取得白球时的取球次数。因为每次取出的黑球仍放回去,所以X的所有可能取值是一
切正整数1, 2, …,n, ….由于是放回抽样,故每次抽球的试验是独立的。由独立事件的概率乘法公式,得
X的分布律:
p1=P{X=1}=25, p2=P{X=2}=35×25=265,
概率论与数理统计
第2章 随机变量及其概率分布
2.1 离散型随机变量 2.2 连续型随机变量 2.3 分布函数 2.4 随机变量函数的分布
2.1 离散型随机变量
2.1.1 随机变量的概念
在第1章中,我们讨论了随机事件及其概率.为了全面研究随机试验的结果,我们引入随机变量这 一十分重要的概念。我们所讨论的随机事件几乎无一例外地可用随机变量来描述,用随机变量描述随 机现象是概率论中最重要的方法。
P{X>6}=P{X=7}+P{X=8}+P{X=9} =C97(0.2)7(0.8)2+C98(0.2)8(0.8)+(0.2)9 ≈0.0003.
这一结果表明,供应6个人的需电量,超负荷的可能性仅为0.03%。也就是说,平均在大约55.6h 中,可能有一分钟超负荷。
2.1 离散型随机变量
2.1.3 几种常见的概率分布律
称X=X(ω)为该试验的一个随机变量。
本书中,用大写字母X, Y, Z, W等表示随机变量,用小写字母x, y, z, w等表示实数。
随机变量的取值随着试验的结果而定,因而在试验之前,只能知道它可能取值的范围,而不能预
知它取哪一个值。且试验的所有结果的出现都有一定的概率,因而随机变量的取值也有一定的概率。

概率论与数理统计第二章_PPT课件

概率论与数理统计第二章_PPT课件

3,4,5
1.随机变量的定义
设E是一个随机试验,S是其样本空间.我们称样本空
间上的函数 X X e e S
为一个随机变量,如果对于任意的实数 x,集合
e : X e x X x
X (e)
e
都是随机事件.
随机变量的特点:
R
S
1). X的全部可能取值是互斥且完备的
2). X的部分可能取值描述随机事件
实例2 若随机变量 X 记为 “连续射击, 直至命 中时的射击次数”, 则 X 的可能值是:
1 , 2 , 3 , . 实例3 设某射手每次射击打中目标的概率是0.8, 现该射手射了30次,则随机变量 X 记为“击中目标 的次数”,则 X 的所有可能取值为:
0 ,1 ,2 ,3 , ,3 . 0
( 5 ) 对 于 随 机 变 量 , 我 们 常 常 关 心 的 是 它 的 取 值 .
( 6 )我 们 设 立 随 机 变 量 ,是 要 用 随 机 变 量 的 取 值 来 描 述 随 机 事 件 .
实例2 掷一个硬币, 观察出现的面 , 共有两个 结果: e1(反面朝 ), 上
e2 (正面朝 ), 上 若用 X 表示掷一个硬币出现正面的次数, 则有
1 ,2 ,3 , . 注意 X(e) 的取值是可列无穷个!
实例7 某公共汽车站每隔 5 分钟有一辆汽车通 过, 如果某人到达该车站的时刻是随机的, 则
X(e) 此人的等车,时间
是一个随机变量. 且 X(e) 的所有可 能取值为: [0,5].
实例8 设某射手对目标进行射击,如果我们以目标 中心为坐标原点,考查射击点的平面位置(坐标), 为了便于研究,我们引入两个变量X,Y,其中
若用 X 表示该家女孩子的个数时 , 则有

概率论与数理统计 第二章随机变量及其分布剖析PPT课件

概率论与数理统计 第二章随机变量及其分布剖析PPT课件
抛硬币实验
射手射击击中目标.
这种对应关系在数学上表现为一种实值函数.
w.
X(w) R
对于试验的每一个样本点w,都对应着一个实数 X(w),而X(w)是随着实验结果不同而变化的一个 变量。

随机变量的定义
设 随 机 实 验 E的 样 本 空 间 , 若 对 每 一 个 样 本 点
, 都 有 唯 一 的 实 数 X()与 之 对 应 ,则 称 X()为 随 机 变 量 , 简 记 为 X.
P (X k ) ( 1 p )k 1 p , (k 1 ,2 , )
则称随机变量X服从以p为参数的几何分布,
记作
X ~G(p) 。
超几何分布
设N个元素分为两类,有M个属于第一类,N-M
个属于第二类。现在从中不重复抽取n个,其 中包含的第一类元素的个数X的分布律为
P(Xk)CM kC C N n N n kM, (k0,1, ,l) 其中l=min{M,n}, 则称随机变量X服从参数为 的超几何分布,记作 X~H(N,M,n)
由泊松定理,n重贝努里试验中稀有事件 出现的次数近似地服从泊松分布.
例5. 某车间有5台车床,由于种种原因(由 于装、卸工作等),时常需要停车.设各 台车床的停车或开车是相互独立的. 若车床在任一时刻处于停车状态的 概率是1/3,求车间中恰有一台车床处 于停车状态的概率。
解:X:处于停车状态的车床数
密度函数 f (x)在某点处a的高度,并不反映 X取值的概率. 但是,这个高度越大,则X 取a附近的值的概率就越大. 也可以说,在 某点密度曲线的高度反映了概率集中在该 点附近的程度.
f (x)
o
x
例1 :某型号电子管的寿命X(小时)的概率密度为

概率论与数理统计教程茆诗松版第二章ppt课件

概率论与数理统计教程茆诗松版第二章ppt课件

4/22/2020
华东师范大学
第二章 随机变量及其分布
第8页
2.1.3 离散随机变量的分布列
➢ 设离散随机变量 X 的可能取值为: x1,x2,……,xn,……
称 pi=P(X=xi), i =1, 2, …… 为 X 的分布列.
➢ 分布列也可用表格形式表示:
X x1 P p1
x2 …… xn …… p2 …… pn ……
4/22/2020
华东师范大学
第二章 随机变量及其分布
注 意 点 (2)
第11页
对离散随机变量的分布函数应注意: (1) F(x)是递增的阶梯函数; (2) 其间断点均为右连续的; (3) 其间断点即为X的可能取值点; (4) 其间断点的跳跃高度是对应的概率值.
4/22/2020
华东师范大学
第二章 随机变量及其分布
第二章 随机变量及其分布
第1页
第二章 随机变量及其分布
§2.1 随机变量及其分布 §2.2 随机变量的数学期望 §2.3 随机变量的方差与标准差 §2.4 常用离散分布 §2.5 常用连续分布 §2.6 随机变量函数的分布 §2.7 分布的其他特征数
4/22/2020
华东师范大学
第二章 随机变量及其分布
(2) F(x) 是 (∞, +∞) 上的连续函数; (3) P(X=x) = F(x)F(x0) = 0;
4/22/2020
华东师范大学
第二章 随机变量及其分布
注意点(2)
第18页
(4) P{a<X≤b} = P{a<X<b} = P{a≤X<b} = P{a≤X≤b} = F(b)F(a).
(5) 当F(x) 在x点可导时, p(x) = F ( x )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

figure('color','w')
figure('color','w')
bar(x,pk,0.1,'r')
plot(x,pk,'r.','MarkerSize',31) ylim([0 0.6]) xlim([0,2.3])
ylim([0 0.6]) text(x(1),pk(1), num2str(pk(1)),'FontSize',21); xlim([0,2.3]) text(x(2),pk(2), num2str(pk(2)),'FontSize',21);
tex),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);
text(x(2),pk(2), num2str(pk(2)),'FontSize',21);
text(x(3),pk(3), num2str(pk(3)),'FontSize',21); figure('color','w')
一、离散型随机变量的定义及其分布律
1.离散型随机变量的定义 如果随机变量X所有可能的取值是有限个或无 穷可列个,则称X为离散型随机变量。
2.离散型随机变量的分布律
要掌握一个离散型随机变量的分布律,必须 且只需知道以下两点:
(1) X所有可能的取值: Xx1,x2,,xk, (2)X取每个值时的概率: P(Xxk)pk,k1,2,3,
P ( X x k ) p kk 1 , 2 , 3 , ( 1 )
称 (1) 式为离散型随机变量X的分布律. 注:离散型随机变量X的分布律可用公式法和表格 法描述。
1)公式法: P ( X x k ) p k k 1 ,2 ,3 ,
2) 表格法:
X x1 x2 L pk p1 p2 L
例如:上例中,事件“正面出现两次”可表示为:“X=2” ;
事件“正面至少出现一次”可表示为:“X≥1”; “0<X≤2”表示事件“正面至少出现一次”。
(3)随机变量的特点: 具有随机性:在一次试验之前不知道它取哪一个 值,但事先知道它全部可能的取值。
随机变量的取值具有一定的概率:
例如:上例中P(X=2)=1/4; P(X≥1)=3/4;
例1:将一枚硬币连掷两次,求“正面出现的次 数X ”的分布律。
解:在此试验中,所有可能的结果有: e1=(正,正);e2=(正,反); e3=(反,正) ;e4=(反,反)。
于是,正面出现的次数X ”的分布律:
X0 1 2
pk 1/4 2/4 1/4
图形表示
程序
x=[0, 1, 2];
pk=[1/4,2/4,1/4];
令X=“报童每天卖出的报纸份数” 试将“报童赔钱”这一事件用X的取值表 示出来。
解:分析
{报童赔钱}
{卖出报纸的钱不够成本}
当 0.50 X<1000× 0.3时,报童赔钱.
故{报童赔钱}{X 600}
3、随机变量的概率分布 对于一个随机试验,我们关心下列两件事情: (1)试验会发生一些什么事件? (2)每个事件发生的概率是多大?
1、随机变量的定义:
设E是一个随机试验,其样本空间为S={e},在E 上引入一个变量X,如果对S中每一个样本点e,都 有一个X的取值X(e)与之对应,我们就称X为定义 在随机试验E的一个随机变量.
2、随机变量的说明 (1)随机变量的表示:常用字母X,Y,Z,….表示; (2)引入随机变量的目的: 用随机变量的取值范围表示随机事件,利用高等数 学的工具研究随机现象。
第二章 随机变量及其分布
关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数
第一节 随 机 变 量
在上一章中,我们把随机事件看作样本空间 的子集;这一章里我们将引入随机变量的概念, 用随机变量的取值来描述随机事件。
一、随机变量 引例:
E1: 将一枚硬币连掷两次,观察正反面出现的情况。
引入随机变量后, 上述说法相应变为下列表述方式: (1)随机变量X可能取哪些值? (2)随机变量X取某个值的概率是多大?
对一个随机变量X,若给出了以上两条,我们 就说给出了随机变量X的概率分布(也称分布律)。
这一章我们的中心任务是学习离散型随机变量 与连续型随机变量的概率分布.
§2 离散型随机变量及其分布
figure('color','w')
stem(x,pk,'r.','MarkerSize',31)
plot(x,pk,'r.','MarkerSize',31) hold on plot(x,pk,'r-.') ylim([0 0.6]) hold off
ylim([0 0.6]) xlim([0,2.3]) text(x(1),pk(1), num2str(pk(1)),'FontSize',21); text(x(2),pk(2), num2str(pk(2)),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);
令X=“正面出现的次数”,则X是一个随着试 验结果不同而取值不同的量,其对应关系如下:
基本结果(e) 正面出现的次数X(e)
e1=(正,正)
2
e2=(正,反)
1
e3=(反,正)
1
e4=(反,反)
0
由上可知,对每一个样本点e,都有一个X的取值X(e)
与之对应。我们把X称为定义在这个试验上的随机变量。
E2:掷一枚骰子,观察出现的点数. 令X=“正面出现的点数”
E3:某产品的使用寿命X,X>=0.
E4:掷一枚质地均匀的硬币,观察正反面出现的 情况.
令X
1, 0,
正面 反面
一般地,对每一个随机试验,我们都可以引入 一个变量X,使得试验的每一个样本点都有一个X 的取值X(e)与之对应,这样就得到随机变量的概念.
P(0<X ≤2)=3/4;
(4)随机变量的类型: 离散型与连续型随机变量。 这两种类型的随机变量因其取值方式的不同各
有特点,学习时注意它们各自的特点及描述方式 的不同。
例1(用随机变量的取值表示随机事件)一报童 卖报,每份报0.50元, 其成本为0.30元。 报馆每天给 报童1000份报纸,并规定卖不出的报纸不得退回。
相关文档
最新文档