第七章--spss非参数估计
SPSS第七章SPSS的非参数检验
7.1.2.3 二项分布检验应用举例
储户对未来收入看法检验,为检验储户是 对未来的收入是持乐观态度还是悲观态度, 我们将检验用户持乐观态度的概率是否为 0.6,这里采用二项分布检验法,具体结 果如下图:
Binomial T est Category Group 1 <= 1 Group 2 > 1 Total N 77 236 313 O bserved Prop. .2 .8 1.0 Test P rop. .6 Asymp. Sig. (1-tailed) .000a,b
7.1.3 单样本的K-S检验
可以解决的问题:推断样本来自的总体是否 服从一个理论分布,是一种拟合优度检验; 基本思想:根据数据,推断总体分布是否服 从某一理想分布,推断两者是否显著差异
正态分布、均匀分布、指数分布、泊松分布等
适用于探索连续型随机变量的分布
7.1.3.2 单样本K-S检验的基本操作
7.1.2.3 二项分布检验应用举例
产品合格率检验,为检验产品合格率是否 大于90%,抽出25个样品检验并得到检测 数据,其中1表示一级品,0表示非一级品, 这里采用二项分布检验法,具体结果如下 图:
Binomial T est Category Group 1 合格 Group 2 不合格 Total N 19 4 23 O bserv ed Prop. .8 .2 1.0 Test P rop. .9 Exact Sig . (1-tailed) .193a
7.1.1.3 总体卡方检验应用举例
为研究心脏病人猝死人数与日期的关系, 收集到168个观察数据;周一到周日死亡 人数分别是55 23 18 11 26 20 15,现用 这些样本,推断猝死人数在一周的分布是 否是2.8:1:1:1:1:1:1,采用总体分布卡方 检验,结果如下图:
第7章SPSS的非参数检验 ppt课件
ppt课件
19
SPSS多独立样本非参数检验
(一)目的:
– 与样本在相同点的累计频率进行比较.如果相差 较小,则认为样本所代表的总体符合指定的总体 分布.
ppt课件
9
SPSS的单样本K-S检验
K-S检验
(4)基本步骤:
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
ppt课件
17
SPSS两独立样本非参数检验
4. 极端反应检验(Moses Extreme Reaction)
首先,将两样本混合并按升序排序。
然后,求出控制样本的最小秩和最大秩,并计算
出跨度=最大—最小+1。
为了消除样本数据中极端值对分析结果的影响,
在计算跨度之前可按比例去除控制样本中部分靠近两端
的样本值,然后再求跨度,得到截头跨度。
样本数据和分组标志 ppt课件
14
SPSS两独立样本非参数检验
(四)基本方法
1.曼-惠特尼U检验(Mann-Whitney U):平均秩检验
将两样本数据混合并按升序排序 求出其秩 对两样本的秩分别求平均 如果两样本的平均秩大致相同,则认为两总体分布无显著 差异
ppt课件
15
SPSS两独立样本非参数检验
如果跨度或截头跨度较大,则说明是由于两类样
本数据充分混合的结果,p即pt课:件认为两总体分布无显著差异18 .
SPSS两独立样本非参数检验
(五)基本操作步骤
菜单选项:analyze->nonparametric tests->2 independent sample 选择待检验的变量入test variable list框 选择一种或几种检验方法
SPSS中非参数检验
SPSS中非参数检验要领的施用一、Chello-SquareChello-Square是对单个样本作检验的推断要领,用于推断目前掌握的样本是否来自某特别指定分布总体,属拟合优度检验〔1〕。
要求供给假定总体的理论频数;默认总体为均匀分布时无需供给理论频数。
Chello-Square 过程通过阐发实际频数与理论频数吻合的程序来完成检验,是以特别适合于频数资料的阐发,也只接受和处理频数资料,如病人经疗治后治愈、好转、有用和失效的人次总的说来是否相同(实为治愈、好转、有用和失效的几率或时机是否相同),成就优、良、中、差的学出生次总的说来是否相同,赞同某种不雅点的人次总的说来是否达到80%,等等。
要求样本足够大,按不雅察值自小到大的挨次供给理论频数。
理论频数通过主会话框中Expected Values的Values选项供给,All categories equal是默认项,即均匀分布。
若只想推断样本中某一范围内的频数是否来自某种特别指定分布总体,可通过主会话框中Expected Range的Use speciffied range选项供给范围的上、下限。
上述理论频数需按照假定总体分布计较或需要解答的题目的实际配景确定。
二、BinomialBinomial过程对二值变量的单个样本作检验,推断总体中两类个别的比例是否分别为π和(1-π),π值通过Test Proportion选项供给,默认值是π=0.5〔2〕。
可借助于主会话框中Define Dichotomy的Cut point选项供给截断点,将持续变量转化成二值变量作阐发;若供给的变量已是二值变量,则不需供给截断点。
小样本时输出精确几率,大样本时输出正态近似法的结果。
显然,在大样本时,也可用Chello-Square过程完成。
3、RunsRuns过程借助样本序列的挨次推断总体序列的挨次是否是随机的,属随机性检验。
过程将变量转化成二值变量后再作检验,转化时所用截断点可所以Median、Mode、Mean或指定的数据,需通过Cut Point会话框指明截断点。
SPSS 第七章实验报告
实验实训报告课程名称:统计分析与SPSS的应用开课学期: 2016-2017学年第2学期开课系(部):经济系开课实验(训)室: 10316 学生姓名:专业班级:学号:得分:重庆工商大学融智学院教务处制实验一均值比较与T检验一、实验目的通过本次实验,了解如何进行各种类型均值的比较与检验。
二、实验性质必修,基础层次三、主要仪器及试材计算机及SPSS软件四、实验内容1.MEANS 过程2.非参数单一样本检验3.非参数独立样本检验4.非参数配对样本检验五、实验学时2学时六、实验方法与步骤1.开机2.找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS3.打开一个已经存在的数据文件4.按要求完成上机作业;5. 关闭SPSS,关机。
七、实验注意事项1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。
2.遇到各种难以处理的问题,请询问指导教师。
3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。
4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。
5.上机时间,禁止使用计算机从事与课程无关的工作。
八、上机作业要求:请根据你的分析用Word写出你对以下六题的答案及解释,保存为“班级+姓名+学号.doc”1、课后习题第3题。
请将你的分析结果粘贴到此处,并给出你对分析结果的解释。
2、课后习题第4题。
请将你的分析结果粘贴到此处,并给出你对分析结果的解释。
3、课后习题第5题。
请将你的分析结果粘贴到此处,并给出你对分析结果的解释。
4、课后习题第7题。
请将你的分析结果粘贴到此处,并给出你对分析结果的解释。
5、第七章课后习题第1题。
请将你的分析结果粘贴到此处,并给出你对分析结果的解释。
(选做题)。
SPSS 非参数检验
Step07单击【OK】按钮,结束操作,SPSS软件自动输
出结果。
实例图文分析:人员结构的调动
• 1. 实例内容 某公司经营多年,形成了一套成熟的企业文化和管理体系, 例如根据多年的运营经验,经理层、监察员、办事员三种职务 类别人员比例大约在15:5:80为宜,这样运行效率最高。目 前公司进行人事调整,公司人员结构发生变动,有员工担心是 否人事调整已经导致职务类型比例的失调。请利用数据文件61.sav来解决该问题。 三种职务的期望构成比为15%、5%和80%。而目前样本中 观察到的三种职务的人数比为84:27:363,构成比分别是17. 7%、5.7%和76.6%,和理论值有差异。那么这种差异是由随 机误差造成的,还是真的构成比和以前有所变化?该问题就可 以用χ2检验来实现。相应的假设检验如下。 H0:目前三个职业的总体构成比仍然是15%、5%和80%。 H1:目前三个职业的总体构成比不再是15%、5%和80% 。
实例结果及分析
(1)频数表
SPSS的结果报告中列出了期望频数和实际频数。 显然残差值越小,说明实际频数与期望频数越接近。
Observed N-Expected N
Observed N Clerical 363 27 84 474 Expected N 379.2 23.7 71.1 Residual -16.2 3.3 12.9
0.63 0.95 0.95 0.95 0.91 没有可比较的基 础
1 SPSS 在卡方检验中的应用
1.使用目的 卡方检验(Chi-Squar Test)也称为卡方拟合优度检验,是K.Pearso n给出的一种最常用的非参数检验方法。它用于检验观测数据是否与某 种概率分布的理论数值相符合,进而推断观测数据是否是来自于该分 布的样本的问题。 2.基本原理 H 0样本X来自的总体分布服从期 进行卡方检验时,首先提出零假设 : 望分布或某一理论分布。接着,利用实际观测值的频数与理论的期望 c 2,它描述了观察值和理论值之间的 频数之间的差异来构造检验统计量 偏离程度。 3.软件使用方法 SPSS会自动计算出χ2统计量及对应的相伴概率P值。
第7章spss非参数检验
Statistics按钮: 计算卡方值,用于行列
变量的独立性检验
计算pearson和spearman 相关系数
定类资料的行列变 量相关性检验
定序资料的行列变 量相关性检验
定序与定距资料的行 列变量相关性检验
评判内部一致性 相关风险比例 两相关二项分类变量的非参检验
二项分类变量的因、自变量独立性检验
p(1 p) / n
17
【界面设置】
检验的落入第一组的 概率常数值
分组值,小于该值为1 组,其余为1组
注意大小样本的选择
18
【结果形式】
19
7.3 Runs 游程检验 主要用于对二分变量(数值型)或利用断点分 为两组的变量,检验取值的分布随机性或两总体分 布是否一致,即一个case的取值是否影响下一个。 统计原假设H0:样本二分值分布是随机的或两总体分 布相同。
5、 2 Independent Samples 两独立(成组)样本检验
6、 K Independent Samples K个独立样本检验 5、 2 Related Samples 两关联(配对)样本检验 6、 K Related Samples K个关联样本检验
2
7.1 Chi-Square
1、卡方拟合优度检验 (Nonparametric Tests - Chi-Square) 主要用于分析实际频数与理论频数(已知)拟合情况;χ2 值反映了实际频数和理论频数的吻合程度。χ2值越小, 说明实际频数与理论频数越吻合。 适用于一个变量的多项分类数据的检验分析。 统计原假设:实际频数与理论频数相等或实际构成比等于 已知构成比。 k ( f 0 f e )2 卡方统计量为 2
25
【界面设置】
第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
(一)目的 由独立样本数据推断两总体的分布是否存在显著差异
(或两样本是否来自同一总体)。 (二)基本假设 H0:两总体分布无显著差异(两样本来自同一总体) (三)数据要求 样本数据和分组标志
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
– 与样本在相同点的累计频率进行比较。如果相差较小,则认为样
本所代表的总体符合指定的总体分布。
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (4)基本步骤
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
将两样本混合并按升序排序 分别计算两个样本在相同点上的累计频数和累计频率 两个累计频率相减。 如果差距较小,则认为两总体分布无显著差异
应保证有较大的样本数
案例:7-5 p194使用寿命
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
3.游程?检验(Wald-Wolfowitz runs)
一、SPSS单样本非参数检验
(二)总体分布的二项分布检验 (1)目的
通过样本数据检验样本来自的总体是否服从指定的 概率p的二项分布根据 (2)原假设 样本来自的总体与指定的二项分布无显著差异。 (3)案例7-2 p187 产品合格率
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (1)目的
•第七章SPSS非参数检验
五、SPSS多配对样本非参数检验
SPSS第讲非参数检验(共72张PPT)
SPSS应用
Kendall协同系数检验中会计算Friedman检验方 法,得到friedman统计量和相伴概率。如果相伴概
率小于显著性水平,可以认为这10个节目之间没有 显著差异,那么可以认为这5个评委判定标准不一 致,也就是判定结果不一致。
SPSS应用
3.多配对样本的Cochran Q检验
多配对样本的Cochran Q检验也是对多个互 相匹配样本总体分布是否存在显著性差异的统计 检验。不同的是多配对样本的Cochran Q检验所能 处理的数据是二值的(0和1)。其零假设是:样 本来自的多配对总体分布无显著差异。
SPSS应用
单样本K-S检验可以将一个变量的实际频数分
布与正态分布(Normal)、均匀分布(Uniform)、
泊松分布(Poisson)、指数(Exponential)分 布进行比较。其零假设H0为样本来自的总体与指定
的理论分布无显著差异。
SPSS应用
6.2 两配对样本非参数检验
6.2.1 统计学上的定义和计算公式
SPSS应用
两配对样本非参数检验的前提要求两个样本 应是配对的。在应用领域中,主要的配对资料包 括:具有年龄、性别、体重、病况等非处理因素 相同或相似者。首先两个样本的观察数目相同, 其次两样本的观察值顺序不能随意改变。
SPSS应用
SPSS中有以下3种两配对样本非参数检验方 法。
SPSS应用
1验.两配对样本的McNemar变化显著性检
SPSS应用
2.两配对样本的符号(Sign)检验
当两配对样本的观察值不是二值数据时,无法 利用前面一种检验方法,这时可以采用两配对样本
的符号(Sign)检验方法。其零假设为:样本来
自的两配对样本总体的分布无显著差异。
SPSS教程-非参数检验
一般用来对两个独立样本的均数、中位数、离 散趋势、偏度等进行差异比较检验。
两个样本是否独立,主要看在一个总体中抽取 样本对另外一个总体中抽取样本有无影响。
Mann-Whitney检验
=0.18576
计算表
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
单样本K-S检验
利用样本数据推断样本来自的总体是否服从某一理论 分布,是一种拟合优度的检验方法,适用于探索连续 型随机变量的分布
步骤
计算各样本观测值在理论分布中出现的理论累计概率值F(x) 计算各样本观测值的实际累计概率值S(x) 计算理论累计概率值与实际累计概率值的差D(x) 计算差值序列中最大绝对差值D
针麻效果
(1) Ⅰ Ⅱ Ⅲ Ⅳ
表
肺癌 (2) 10 17 19 4
三种病人肺切除术的针麻效果比较肺化脓症Fra bibliotek肺结核
(3)
(4)
24
48
41
65
33
36
7
8
合计 (5) 82 123 88 19
SPSS基本操作
与例7的操作相同
随机区组设计资料的秩和检验
M检验(Friedman法)法计算步骤
将每个区组的数据由小到大分别编秩 计算各处理组的秩和Ri 求平均秩:R=1/2b(k+1) 计算各处理组的( Ri-R) 求M 查M界值表,F近似法
参数统计(parametric statistics) : 在 统计推断 中,若样本所来自的总体分布为已知的函数形式 (正态/近似正态分布),但其中的参数未知,统 计推断的目的就是对这些未知参数进行估计/检验, 这类统计推断方法称参数统计。
SPSS软件应用-第七章非参数检验
病例号 照射前 照射后
1
1.0 0.0
2
1.0 18.0
3
0.0 6.7
4
1.2 0.0
5
1.0 29.0
6
1.0 17.0
7
1.0 5.0
8
1.0 6.0
9
1.0 10.0
10
4.0
7.0
Questions &
Answers
饲料
肝脏内铁含量(μg)
A 2.23 1.14 2.63 1.00 1.35
B 5.59 0.96 6.96 1.23 1.61
C 4.50 3.92 10.33 8.23 2.07
练习2
10例食管癌病人在某种药物保护下,做 6000γ的放射照射,观察血中淋巴细胞 畸变百分数,结果如下表。问照射前后 血中淋巴细胞畸变百分数有无差别。
7.1 拟合优度检验(1-Sample K-S Test)
以例7-1数据(数据文件名“diameter_sub.sav”)为例,试检验变量 “trueap_mean”(矢状面管径)是否服从正态分布。
7.1 拟合优度检验(1-Sample K-S Test)
7.1 拟合优度检验(1-Sample K-S Test)
第二步:Analyze Nonparametric Test Legacy Dialogs 2 Related Samples Test
7.5 两个相关样本的非参数检验
7.5 两个相关样本的非参数检验
7.5 两个相关样本的非参数检验
7.6 多个相关样本的非参数检验
牙齿 普通 RPI Y型 编号 卡环 卡环 卡环
7.2 样本率与总体率比较的二项分布检验(Binomial)
spss使用教程非参数检验
SPSS二项分布检验就是根据收集到的样本 数据,推断总体分布是否服从某个指定的二项 分布。其零假设是H0:样本来自的总体与所指 定的某个二项分布不存在显著的差异。
第24页/共152页
SPSS中的二项分布检验,在样本小于或等 于30时,按照计算二项分布概率的公式进行计 算;样本数大于30时,计算的是Z统计量,认 为在零假设下,Z统计量服从正态分布。Z统计 量的计算公式如下
人数 2 4 7 16 20 25 24 22 16 2 6 1
第49页/共152页
实现步骤
图10-12 在菜单中选择“1-Sample K-S”命令
第50页/共152页
图10-13 “One-Sample Kolmogorov-Smirnov Test”对话框
第51页/共152页
图10-14 “One-Sample K-S:Options”对话框
第28页/共152页
表10-2
35名婴儿的性别
婴儿
Sex
婴儿
Sex
婴儿
Sex
1
1
13
1
25
1
2
0
14
1
26
1
3
1
15
1
27
0
4
1
16
1
28
0
5
1
17
0
29
0
6
1
18
0
30
0
7
0
19
0
31
1
8
0
20
0
32
0
9
0
21
0
33
0
10
SPSS非参数检验
SPSS⾮参数检验实验⽬的:学会使⽤SPSS的简单操作,掌握⾮参数检验。
实验内容: 1.中位数符号检验,检验总体中位数是否等于某个假定的值。
设⼀个随机样本有n个数据,总体中位数的实际值为M,假设的总体中位数值为。
当样本中的数据⼤于假设的中位数时,⽤“+”号表⽰,⼩于假设的中位数时,⽤“-”表⽰;对于恰好等于假设的中位数的数据予以剔出。
若关⼼实际的M与假设的是否有差别,应建⽴假设:;计算检验统计量S+和S-。
S+表⽰每个样本数据与与差值符号为正的个数;S-表⽰每个样本数据与差值符号为负的个数。
计算P值并作出决策。
若P<,拒绝原假设。
2.Wilcoxon符号秩检验,检验总体参数(如中位数)是否等于某个假定的值。
它是对符号检验的⼀种改进,弥补了符号检验的不⾜,要⽐单纯的符号检验更准确⼀些(对应的参数检验—单样本均值检验)。
检验步骤:①计算各样本观察值与假定的中位数的差值,并取绝对值;②将差值的绝对值排序,并找出它们的秩;③计算检验统计量和P值,并作出决策。
3.独⽴样本的检验,Mann-Whitney检验不需要诸如总体服从正态分布且⽅差相同等之类的假设,但要求是两个独⽴随机样本的数据⾄少是顺序数据;Kruskal-Wallis检验不需要总体服从正态分布且⽅差相等这些假设。
该检验可⽤于顺序数据,也可⽤于数值型数据。
要检验k个总体是否相同,提出如下假设。
:所有总体都相同,:并⾮所有总体都相同或等价于,不全相同。
4.秩相关检验,对两个顺序变量之间相关程度的⼀种度量。
Spearman秩相关系数也称等级相关系数,记为,计算公式为,的取值范围为[-1,1];,两种排序之间完全相关;若,两种排序之间为负相关;若,两种排序之间为正相关;若,两种排序之间不相关;越趋于1,相关程度越⾼;越趋于0,相关程度越低。
实验步骤: 1.中位数符号检验SPSS操作,点击【分析】→【⾮参数检验】→【相关样本】,打开【⾮参数检验、两个或更多相关样本】对话框。
SPSS统计学精品课件7-非参数检验
• 7.1 非参数检验概述 • 7.2 非参数检验的优缺点 • 7.3 两个独立样本的非参数检验 • 7.4 多个独立样本的非参数检验
7.1 非参数检验概述
已知分布的总体指标称为参数。统计推断的目的如果是 对样本所属的已知分布的总体的未知参数进行估计或检验,这
类统计推断方法称为参数统计(parametric statistics)。
1.90
2.30
3
0.50
1.20
1.40
2.00
2.20
2.20
4
1.50
1.50
2.50
2.50
——
——
分析步骤如下:
(1)数据录入:如图7-6示。
图7-6
(2)选择Analze菜单下的Nonparametric Tests菜单项 中的Independent Samples命令,如图7-7所示:
7.3 两个独立样本的非参数检验
例7-1 舌诊白苔与剥脱苔脱落细胞计数结果见表715,问两种舌苔脱落细胞数有无差别?
白 苔 组 14 剥脱苔组 26
表7-1 舌诊白苔与剥脱苔脱落细胞计数结果 42 50 50 66 82 94 99 103 107 109 113 147 339 56 114 195 199 215 228 270 448 543 548 620 685 873
曼-惠特尼秩检验 摩西检验
柯尔莫哥罗夫-斯米诺夫检验 沃尔德-沃尔福威茨检验。
图7-3 定义分组范围和统计方法
图7-4
(4)结果分析:见图7-5 。
图7-5结果显示:U=30.0图0,7-5P=0.001, P<0.05,两组脱
落细胞数的差别在0.05水准上有显著的统计学意义,可以认为白 苔组的脱落细胞数多于剥脱苔组。
SPSS-非参数检验
SPSS-⾮参数检验⾮参数检验(卡⽅(Chi-square)检验、⼆项分布(Binomial)检验、单样本K-S(Kolmogorov-Smirnov)检验、单样本变量值随机性检验(Runs Test)、两独⽴样本⾮参数检验、多独⽴样本⾮参数检验、两配对样本⾮参数检验、多配对样本⾮参数检验)参数检验:T检验、F检验等常⽤来估计或检验总体参数,统称为参数检验⾮参数检验:这种不是针对总体参数,⽽是针对总体的某些⼀般性假设(如总体分布)的统计分析⽅法称⾮参数检验1.总体分布的卡⽅(Chi-square)检验(Q统计量)定义:总体分布的卡⽅检验适⽤于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。
特点:⽐较适⽤于⼀个因素的多项分类数据分析。
总体分布的卡⽅检验的数据是实际收集到的样本数据,⽽⾮频数数据。
SPSS操作2.⼆项分布检验(Z统计量)⼆项分布:从这种⼆分类总体中抽取的所有可能结果,要么是对⽴分类中的这⼀类,要么是另⼀类,其频数分布称为⼆项分布⼆项分布检验:SPSS⼆项分布检验就是根据收集到的样本数据,推断总体分布是否服从某个指定的⼆项分布SPSS操作3.SPSS单样本变量值随机性检验(Z统计量)定义:单样本变量值的随机性检验是对某变量的取值出现是否随机进⾏检验,也称为游程检验(Run过程)SPSS操作4.SPSS单样本K-S检验(Z统计量)定义:单样本K-S检验是利⽤样本数据推断总体是否服从某⼀理论分布的⽅法,适⽤于探索连续型随机变量的分布形态SPSS操作5.两独⽴样本⾮参数检验定义:两独⽴样本的⾮参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来⾃的两个独⽴总体分布是否存在显著差异。
⼀般⽤来对两个独⽴样本的均数、中位数、离散趋势、偏度等进⾏差异⽐较检验。
检验⽅法:①两独⽴样本的Mann-Whitney U检验(主要检验总体均值有没有显著差异)②两独⽴样本的K-S检验③两独⽴样本的游程检验④两独⽴样本的极端反应检验SPSS操作6.多独⽴样本⾮参数检验定义:多独⽴样本⾮参数检验分析样本数据是推断样本来⾃的多个独⽴总体分布是否存在显著差异SPSS多独⽴样本⾮参数检验⼀般推断多个独⽴总体的均值或中位数是否存在显著差异检验⽅法:①多独⽴样本的中位数检验②多独⽴样本的K-W检验③多独⽴样本的Jonkheere-Terpstra检验SPSS操作7.两配对样本⾮参数检验定义:两配对样本(2 Related Samples)⾮参数检验是在对总体分布不很清楚的情况下,对样本来⾃的两相关配对总体分别进⾏检验。
《SPSS数据分析教程》――非参数检验PPT课件
卡方检验的原理(1)
卡方检验的原假设是:
H0样本来自的总体的分布与假设的分布(又称期望分 布或者理论分布)无显著差异。
适用于探索连续型随机变量的分布。 K-S检验的基本思想:根据样本数据和用户的指定构
造理论分布,查看分布表得到相应的理论累计概率分 布函数;利用样本数据计算各样本点的累计概率,得 到经验累计概率分布函数;计算这两个函数在相同变 量点上的差值,得到差值序列。K-S检验主要对差值 序列进行研究。 SPSS的K-S检验可以检验四种理论分布:正态分布、 均匀分布、泊松分布和指数分布。
研究定类变量和定序变量之间的关系。
SPSS非参数检验
新的用户界面统一了方法的选择,根据样本的 个数来组织方法。
非参数统计过程仍然保留了SPSS18以前的非参 数检验的界面,称为“旧对话框”,它的输出 仍然为传统的表格方式展现检验结果。同时可 以选择输出描述性统计量和四分位数,而新用 户界面下没有。
6.3独立样本非参数检验
独立样本非参数检验使用一个或多个非参数检 验方法来识别两个或更多个组间的差别。对于 两个分布未知的总体,或者两个总体的分布不 服从正态时,我们无法应用T检验来比较两个 总体。可以转而应用非参数的方法来比较两个 总体的中心位置的差异。独立样本是指样本来 自的总体相互独立。
独立样本包括两个独立样本或者两个以上的独立样本。 SPSS提供的独立样本非参数检验的方法有:
《SPSS数据分析教程》 ——非参数检验
整体概况
第七章--spss非参数估计
第七章非参数检验1、为分析不同年龄段人群对某商品满意程度的异同,进行随机调查收集到以下数据:请选择恰当的非参数检验方法,以恰当形式组织上述数据,分析不同年龄段人群对该商品满意程度的分布状况是否一致。
原假设:不同年龄段人群对该商品满意程度的分布无显著差异。
步骤:建立SPSS数据数据→加权个案→对频次进行加权→分析→非参数检验→旧对话框→两个独立样本→把年龄段导入分组变量、满意程度导入检验变量列表→确定表7-1检验统计量a满意程度最极端差别绝对值.121正.121负.000Kolmogorov-Smirnov Z 2.217渐近显著性(双侧).000a. 分组变量: 年龄段分析:从上表中可以看出,在显著水平为0.05下得到的sig值均为0.00<0.05,故拒绝原假设,即认为不同年龄段人群对该商品满意程度的分布存在显著差异。
2、利用习题二第6题数据,选择恰当的非参数检验方法,分析本次存款金额的总体分布与正态分布是否存在显著差异。
原假设:本次存款金额的总体分布与正态分布无显著差异步骤:分析→非参数检验→旧对话框→单个独立样本K-S检验→本次存款金额导入检验变量列表→正太分布检验→确定表7-2单样本 Kolmogorov-Smirnov 检验本次存款金额N282正态参数a,b均值4738.09标准差10945.569最极端差别绝对值.333正.292负-.333Kolmogorov-Smirnov Z 5.585渐近显著性(双侧).000a. 检验分布为正态分布。
b. 根据数据计算得到。
分析:如上表,在显著水平为0.05下得到的sig值均为0.00<0.05,故拒绝原假设,认为本次存款金额的分布与正太分布有显著差异。
3、利用习题二第6题数据,选择恰当的非参数检验方法,分析不同常住地人群本次存款金额的总体分布是否存在显著差异。
原假设:不同常住地人群本次存款金额的总体分布无显著差异。
步骤:分析→非参数检验→旧对话框→2个独立样本→常住地导入分组变量、本次存款金额导入检验变量列表→确定表7-3检验统计量a本次存款种类最极端差别绝对值.280正.000负-.280Kolmogorov-Smirnov Z 2.138渐近显著性(双侧).000a. 分组变量: 常住地分析:从图中可以看出,在显著水平为0.05下得到的sig值均为0.00<0.05,故拒绝原假设,认为不同常住地人群本次存款金额的总体分布存在显著差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章非参数检验
1、为分析不同年龄段人群对某商品满意程度的异同,进行随机调查收集到以下数据:请选择恰当的非参数检验方法,以恰当形式组织上述数据,分析不同年龄段人群对该商品满意程度的分布状况是否一致。
原假设:不同年龄段人群对该商品满意程度的分布无显著差异。
步骤:建立SPSS数据数据→加权个案→对频次进行加权→分析→非参数检验→旧对话框→两个独立样本→把年龄段导入分组变量、满意程度导入检验变量列表→确定
表7-1
检验统计量a
满意程度
最极端差别绝对值.121
正.121
负.000
Kolmogorov-Smirnov Z 2.217
渐近显著性(双侧).000
a. 分组变量: 年龄段
分析:从上表中可以看出,在显著水平为0.05下得到的sig值均为0.00<0.05,故拒绝原假设,即认为不同年龄段人群对该商品满意程度的分布存在显著差异。
2、利用习题二第6题数据,选择恰当的非参数检验方法,分析本次存款金额的总体分布与正态分布是否存在显著差异。
原假设:本次存款金额的总体分布与正态分布无显著差异
步骤:分析→非参数检验→旧对话框→单个独立样本K-S检验→本次存款金额导入检验变量列表→正太分布检验→确定
表7-2
单样本 Kolmogorov-Smirnov 检验
本次存款金额
N282
正态参数a,b均值4738.09
标准差10945.569
最极端差别绝对值.333
正.292
负-.333
Kolmogorov-Smirnov Z 5.585
渐近显著性(双侧).000
a. 检验分布为正态分布。
b. 根据数据计算得到。
分析:如上表,在显著水平为0.05下得到的sig值均为0.00<0.05,故拒绝原假设,认为本次存款金额的分布与正太分布有显著差异。
3、利用习题二第6题数据,选择恰当的非参数检验方法,分析不同常住地人群本次存款金
额的总体分布是否存在显著差异。
原假设:不同常住地人群本次存款金额的总体分布无显著差异。
步骤:分析→非参数检验→旧对话框→2个独立样本→常住地导入分组变量、本次存款金额导入检验变量列表→确定
表7-3
检验统计量a
本次存款种类
最极端差别绝对值.280
正.000
负-.280
Kolmogorov-Smirnov Z 2.138
渐近显著性(双侧).000
a. 分组变量: 常住地
分析:从图中可以看出,在显著水平为0.05下得到的sig值均为0.00<0.05,故拒绝原假设,认为不同常住地人群本次存款金额的总体分布存在显著差异。
4、利用习题二第6题数据,选择恰当的非参数检验方法,分析不同收入人群本次存款金额的总体分布是否存在显著差异。
原假设:不同收入人群本次存款金额的总体分布无显著差异。
步骤:分析→非参数检验→旧对话框→2个独立样本→不同收入人群导入分组变量、本次存款金额导入检验变量列表→确定
表7-4
检验统计量a
本次存款金额
最极端差别绝对值.361
正.006
负-.361
Kolmogorov-Smirnov Z 2.238
渐近显著性(双侧).000
a. 分组变量: 月收入水平
分析:在图中可以看出,在显著水平为0.05下得到的sig值均为0.00<0.05,所以拒绝原假设,即认为不同收入人群本次存款金额的总体分布存在显著差异。
5、选择恰当的非参数检验方法,对“裁判打分.sav”数据随机选取10%的样本,并以恰当形式重新组织数据后,分析不同国家裁判对运动员的打分标准是否一致。
原假设:不同国家裁判对运动员的打分标准无显著差异
步骤:数据→选择个案→随机个案样本→样本→大约10%所有个案→继续→确定
表7-5
描述性统计量
N均值标准差极小值极大值
意大利388.4947.809397.109.80
韩国388.8658.791947.409.90
罗马尼亚388.0632.767037.109.70
法国388.9395.627977.709.90
中国 38 8.0421 .67649 7.10 9.50 美国 38 8.8658 1.00143 7.00 10.00 俄罗斯
38
8.0737
.92113
7.00
9.80
步骤:挑选初选中的数据→国家和评分组建新的SPSS 数据→分析→非参数检验→多个独立样本检验→把评分导入检验量→把国家导入分组→确定 表7-6
秩
国家 N 秩均值 评分
意大利 38 134.26 韩国 38 166.03 罗马尼亚 38 97.22 法国 38 171.45 中国 38 96.54 美国 37 164.86 俄罗斯 37 97.05
总数
264
表7-7
表7-8
Jonckheere-Terpstra 检验a
评分 国家 中的水平数 7 N
264 J-T 观察统计量 13691.500 J-T 统计量均值
14934.500 J-T 统计量的标准差 708.825 标准J-T 统计量 -1.754 渐近显著性(双侧) .079
a. 分组变量: 国家
表7-9
检验统计量a
N 38 卡方 155.226 df
6 渐近显著性 .000
a. Friedman 检验
频率
国家
意大利韩国罗马尼亚法国中国美国俄罗斯评分> 中值2025112872512 <= 中值18132710311225表7-10
检验统计量b
评分
N264
中值8.5000
卡方43.248a
df6
渐近显著性.000
a. 0 个单元 (.0%) 具有小于 5 的期望频率。
单元最小期望频率为 17.9。
b. 分组变量: 国家
分析:根据上表,在秩检验和中值检验中,在显著水平为0.05下得到的sig值均为0.00,小于0.05,拒绝原假设,认为不同国家对其评分有显著影响。
但是在JTerpstra 检验中在显著水平为0.05下得到的sig值均为0.079,大于0.05,接受原假设,不同国家对其评分不具有显著影响。
6、为分析大众对牛奶品牌是否具有偏好性,随机挑选超市了收集其周一至周六各天三种品牌牛奶的日销售额数据,如下表:请选择恰当的非参数检验方法,以恰当形式组织上述数据进行分析,并说明分析结论。
原假设:日期与品牌的分布无显著差异
步骤:建立spss数据→加权个案→销售额进行加权→分析→非参数检验→两个独立样本检验→确定
表7-11::
秩
星期N秩均值
品牌12162.76
22383.80
33172.63
43277.83
52681.27
61667.16
总数149
表7-12
检验统计量a,b
品牌
卡方 4.469
df5
渐近显著性.484
a. Kruskal Wallis 检验
检验统计量a,b
品牌
卡方 4.469
df5
渐近显著性.484
a. Kruskal Wallis 检验
b. 分组变量: 星期
表7-13
频率
星期
1234567
品牌> 中值481010930 <= 中值1715212217130
表7-14
检验统计量b
品牌
N149
中值 2.00
卡方 2.787a
df5
渐近显著性.733
表7-15
Jonckheere-Terpstra 检验a
品牌
星期中的水平数6
N149
J-T 观察统计量4706.000
J-T 统计量均值4578.500
J-T 统计量的标准差281.561
标准J-T 统计量.453
渐近显著性(双侧).651
a. 分组变量: 星期
分析:根据上表7-11到7-15,在显著水平为0.05下得到的sig值均大于0.05,故接受原假设,认为日期与品牌的分布无显著差异。