人教版数学八年级上全章导学案 第11章三角形全章导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学八年级上全章导学案 第11章三角形全章导学案
11.1 与三角形有关的线段
11.1.1 三角形的边
学习目标:
1、通过观察、操作、想象、推理、交流等活动,发掌空间观念、推理能力和有条理地表达能力;
2、结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形
三边之间的不等关系.
学习重点:三角形三边之间的不等关系.
学习难点:应用三角形的三边之间的不等关系判断三条线段能否组成三角形 教学过程: 一、学前准备
1.三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?
2.能从右图中找出4个不同的三角形吗?
二、探究新知: 1、你所知道的三角形的定义是什么?
问题:根据你的理解,下列的图形是三角形吗?
三角形的定义: 2、三角形的有关概念:
①边: 。 ②角: 。 ③顶点: 。
问题:右图中三角形的三个顶点分别是 ,
三条边分别是 ,
三个内角分别是 。
3、三角形的表示:
如右图,以A 、B 、C 为顶点的三角形记作 ,读作 。
4、 边都相等的三角形叫做等边三角形;有 条边相等的三角形叫做等腰三角形。
A B C
D E
F G A B
C a b
c
问题:那么等边三角形是否属于等腰三角形呢?
三角形的分类:
①按三个内角的大小分类:、和。
②按边进行分类。
5、自主探究
(1)任意画一个△ABC,从点B出发,沿边到点C,有几条路线?
(2)各条路线的长有什么关系?说明理由.
结论:三角形任意两边之和;三角形任意两边之差。
6.例题讲解
例:有一条长为18cm的细绳围成一个等腰三角形
(1)如果腰长是底边长的2倍,那么各边的长是多少?
(2)能围成有一边的长为4cm的等腰三角形吗?为什么?
三、练习内容
1、课本练习
2、等腰三角形的两边长分别为3cm,5cm.
(1) 求这个三角形的周长。
(2)若两边分别为2cm,5cm呢?
四、小结:
本节课的收获:
你还有什么疑惑?
五、当堂清
1.用木棒钉成一个三角架,两根小棒分别是7cm和10cm,第三根小棒可取()
A、20cm
B、 3cm
C、11cm
D、2cm
2.下列三条线段,不能组成三角形的是()
A、 3 4 6 B 、8 9 15 C 、20 18 5 D、16 30 14
3.已知等腰三角形一边等于5cm,一边等于10cm,另一边应等于()
A、5cm
B、 10cm
C、5或10cm
D、 12cm
4.一个三角形的两边分别是5cm和11cm,第三边的长是一个偶数,则第三边的长是()
A、2cm
B、 4cm
C、6cm
D、8cm
5、已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围。若x是奇数,则x的值是;若x是偶数,则x的值是。
6、一个等腰三角形的一边是2cm,另一边是9cm ,则这个三角形的周长是 cm
7、一个等腰三角形的一边是5cm,另一边是7cm ,则这个三角形的周长是 cm 参考答案:1.C 2.D 3.B 4.D 5.1cm<x<7cm,3cm或5cm,2cm,4cm或6cm
6.9
7.17或19
人教版数学八年级上导学案11.1.2 三角形的高、中线与角平分线
学习目标:
(-)知识与技能
1、三角形的高、中线与角平分线的定义
2、三角形的高、中线与角平分线的画法
(二)过程与方法
通过观察、操作、交流等活动发展空间观念和推理能力。
(三)情感态度价值观
培养学生的动手能力和识图能力
学习重点:三角形的高、中线与角平分线的定义.
学习难点:对直角三角形和钝角三角形的三条高的认识和理解.
学习过程:
一、预习●导学
如图所示: ∆ABC 中,有一条线条,一端在顶点A 处.另一端从点B 沿着BC 边移动到点C,观察移动过程中形成的无数条线(AD.AE.AF.AG ……)中,有没有特殊位置的线条?你认为有那些特殊位置?
①在这些线条中,有一条线条垂直于边BC ②有一条线条的端点是BC 的中点 ③还有一条线条平分BAC ∠
D C
B A
D C B A 21
D C
B A
2.过一点如何做已知线段的垂线? 在下面试着画一画
.
二、学习●研讨 知识点1:三角形的高
(1)定义 的线条叫做三角形的高线,简称三角形的高. 三角形的高有三条,特别地.三角形的高不一定在三角形内部.三角形的三条高交于一点.叫三角形的垂心 (2
)请画出下列三角形的高
归纳:锐角三角形有 条高,它们相交于一点,交点在三角形 ,. 钝角三角形有 高,它们相交于一点,交点在三角形 。直角三角形有 ,它们相交于一点交点在 。 注意:三角形的高是线段
(几何语言) ∵AD 是ΔABC 上的高 ∴AD ⊥BC (∠ADB =∠ADC =
(1)
(2) (3)
逆向:∵AD ⊥BC 垂足是D
∴AD 是ΔABC 的边 BC 上的高
知识点2:三角形的中线
(( 逆向:
(3)画出下列三角形的中线
(4)在一个三角形中,有几条中线?她们的位置又如何呢?(重心)
知识点3:三角形的角平分线(内心)
(1)定义: (2)几何语言(图3):
3)逆向:
(3)画出下列三角形的角平分线
(4)三角形的平分线与角的平分线有何区别?
(1) (2)
(3) (1)
(2) (3) 图3 A B C D
1 2 图2 B C