无脊椎动物结构与功能总结
【精品PPT】无脊椎动物的生殖系统结构与功能及生殖方式的演化
软体动物门:
❖ 不少雌雄异形,异体受精,体内或体外受 精。
❖ 陆生类雌雄同体。同体类型生殖系统比较 复杂,一般包括两性腺,在不同时期可以 分别产生精子和卵子,输精管末端有阴茎, 输卵管末端为阴道,两者由共同的生殖孔 通向体外。
❖ 双壳类雌雄异体,生殖腺位于足上部的内 脏团中,每个生殖腺有1短管开口于内腮 的腮上腔。
母体产生孢子,孢子萌发并 长成部分受损伤或丧失 海星、涡
后,重新形成的过程
虫
❖ 原生动物主要是以二 分裂的方式进行繁殖 的。
❖ 例如草履虫的生殖, 虽然有大小核的区别, 但是还是以二分裂进 行生殖。
❖ 但同时也存在有性生 殖有融合、接合、自 体受精和假配3种。
出芽生殖:母体上
配子生殖
❖ 同配生殖:有性生殖时进行交配的两个配子在形 态、大小和结构方面相同,性别分化不明显,常 以“十”“一”表示。
❖ 异配生殖:一种是生理的异配生殖,参加结合的 配子形态上并无区别,但交配型不同,只有不同 交配型的配子才能结合。 另一种是形态的异配生殖,参加结合的配子形状 相同,但大小和性表现不同。
动物的生殖
1
生殖方式的演化
2
无脊椎动物结构与功能概述
无脊椎动物的生殖方式
❖ 地球上所有动物的繁衍与进化,都是采用代代相 传的方式来延续的。繁殖后代生儿育女是动物的 自然天性,也是保存自身物种继续生存的天生本 能。这是动物自然选择、选择自然而生存的生态 演化结果,也是动物适应环境和气候变化的生理 体现。
❖ 扁形动物的生殖腺由中胚层产生,雌雄同体; ❖ 线虫动物多为雌雄异体,生殖腺与生殖管相连; ❖ 自环节动物起,生殖腺均由体腔上皮产生。
❖ 原生动物不存在发育问题; ❖ 大部分无脊椎动物的细胞分裂为全裂; ❖ 海绵动物的发育出现了逆转现象; ❖ 无脊椎动物的发育中有直接发育和间接发育; ❖ 间接发育中的幼虫阶段在不同的门类中有所不同。
无脊椎动物总结
四、体节和身体分部
假分节: ①原生动物有孔目Rheophax nodulosa的外壳常由一系列沿 直线轴排列的小室组成。 ②腔肠动物群体。e.g. 桧叶螅的水螅体,在螅茎两侧对称 而前后重复地排列着。 ③扁形动物 ④线形动物:躯体表面有横缢,但内部结构无分节,在许 多自由生活的线虫中,角质膜的衍生物如刺、鳞片、刚 毛都有分节现象。 同律分节:环节动物-不仅在于身体的各种内部器官, 而且体节交界处能清楚地看到横缢,附肢(疣足、刚毛) 等外部器官也按节重复排列。 异律分节:节肢动物-躯体的分部和附肢形态的分化。
原生动物
海绵
腔肠动物
线虫 动物
扁形动物
环节 动物 棘皮动物 软体动物 节肢动物
七、消化系统
原生动物只有胞内消化,可用伪足或胞口摄食, 另外还可植食和腐食性;
海绵动物仍然是胞内消化;
腔肠动物开始有了消化管;胞内和胞外消化;
扁形动物为胞外消化,但消化管是不完全的; 线虫动物出现了完全的消化管,并且有了分化; 环节动物以后由于真体腔的出现,消化管更加复 杂和分化,同时有了消化腺。
无脊椎动物的共同特征
1. 无脊索及脊椎 2. 中枢神经系统位于消化管腹面 3. 如有心脏则位于消化管背面
原生动物门
最原始的真核生物—— 包括一切单细胞、多细胞群体的单细胞生物
鞭毛纲 植鞭亚纲:眼虫 肉足纲 变形虫 孢子纲 间日疟原虫 纤毛纲 大草履虫
动鞭亚纲:利什曼原虫(引起“黑热病”
细胞分化出能完成不同生理功能的胞 器,如伸缩泡、胞口、胞咽、鞭毛等。 有植物性营养、动物性营养和渗透性营 养方式。 以鞭毛、纤毛、肉足为运动器进行运动。 排泄和呼吸主要靠渗透作用完成; 生殖分为无性生殖和有性生殖方式。
动物的结构与功能
动物的结构与功能动物是地球上最为复杂多样的生物群体之一,它们具有各种独特的生理结构和特定的功能。
这些特征和功能对于动物的生存和适应环境起着至关重要的作用。
本文将探讨不同类别动物的结构与功能,并阐述它们如何帮助动物在自然界中生存。
一、脊椎动物的结构与功能脊椎动物是指具有脊柱的动物,包括鱼类、两栖类、爬行类、鸟类和哺乳类。
脊椎动物的结构与功能之间存在着密不可分的联系。
1. 鱼类鱼类的特殊结构包括鱼鳞、鱼鳍和侧线系统。
鱼鳞能够保护鱼的皮肤免受外界环境的伤害,鱼鳍则提供了稳定和灵活的游泳能力。
侧线系统则帮助鱼类感知周围的水流和水压,有助于其追踪猎物和避免捕食者的袭击。
2. 两栖类两栖类如青蛙具有适应两种环境的能力,即水生和陆生。
青蛙的前肢适于游泳,后肢则适于跳跃和行走。
此外,青蛙的皮肤能够吸收水分和氧气,使其在陆地上生活时能够进行呼吸。
3. 爬行类爬行类动物如蛇和鳄鱼在结构上具有柔韧的身体和鳞片。
这些身体结构赋予了它们在陆地和水中自由移动的能力。
蛇通过脱皮来更新鳞片,而鳄鱼的鳞片可以提供保护和保温的功能。
4. 鸟类鸟类的翅膀是其最为显著的特征之一,翅膀的结构使得鸟类能够飞行。
此外,鸟类的骨骼轻盈而坚固,可以承受高速飞行时产生的冲击力。
鸟类的羽毛结构能够提供保暖、伪装和飞行稳定的功能。
5. 哺乳类哺乳类动物拥有独特的哺乳腺和乳头,这是它们哺育幼崽的特殊方式。
哺乳类的牙齿结构适应了它们各自的饮食习惯,例如食草动物的牙齿适合咀嚼植物纤维,肉食动物的尖锐牙齿则适合撕咬和咀嚼肉类。
二、无脊椎动物的结构与功能无脊椎动物是指没有脊柱的动物,包括昆虫、蠕虫、软体动物等。
虽然它们的结构不同,但它们也具有各自的功能。
1. 昆虫昆虫的身体由头、胸部和腹部组成,具有六条腿和一对触角。
昆虫体表覆盖有坚硬的外骨骼,为它们提供了保护和支持。
昆虫的复眼提供了广角视野,触角则用于感知周围的环境和猎物。
2. 蠕虫蠕虫的身体长而柔软,适应了它们在土壤和水中生活的特殊需求。
无脊椎动物学总结
1. 诸论:分类阶元(等级)界(Kingdom) 门(Phylum) 纲(Class) 目(Order) 科(Family) 属(Genus) 种(Species)中间阶元:如在某一分类等级下可加设亚-(Sub-)即:亚门、亚纲、亚科等。
在某一分类等级上可加设总-(Super-)即:总纲、总目、总科等。
物种的概念:物种是最基本的分类阶元,由一系列形态结构、生活习性和生理机能相似,能在自然情况下相互交配、产生有繁殖能力的后代的个体组成。
生殖隔离:生殖隔离:在自然情况下,不同物种的个体不发生杂交或杂交不育。
生殖隔离的形式:(1)不发生交配。
由于性行为不同、雌雄性器官不相配合等。
(2)配子不亲和。
即使发生交配,但雌雄配子不能完成受精或受精后杂种胚胎不能正常发育。
(3)杂种不育。
杂种即使能够生长和发育,但不能繁殖后代。
品种与亚种:♦亚种(subspecies):物种内部由于地理上充分隔离后所形成的形态上有一定差别的群体。
如东北虎和华南虎。
如果消除了地理隔离,亚种可互相交配和繁衍后代。
♦品种(variety or breed):经过人工选择,物种内部所产生的具有特定经济性状或形态的群体。
如:家鸭可分为肉用型(如:北京鸭)、卵用型(金定鸭)等不同品种。
学名:属名+种本名命名人姓氏2.原生动物门:原生动物是自然界中最原始、最简单的动物类群,包括一切单细胞和多细胞群体的生物。
其中既有明显属于动物界的草履虫、变形虫等,又有明显属于植物界的衣藻、团藻、绿藻等,还有介于动物界、植物界和真菌界之间的眼虫、粘菌等。
重要名词:胞饮作用和吞噬作用吞噬作用phagocytosis:固态的营养物质,如细菌、有机碎片等被细胞膜包围,脱离细胞膜成为食物泡进入细胞内,并随原生质而流动,这种获得营养的方式称为~。
胞饮作用:液态的营养物质,如氨基酸、蛋白质等被细胞膜内陷形成的胞饮管包围,脱离细胞膜成为胞饮小泡进而细胞内,并随原生质而流动,这种获得营养的方式称为~。
初中生物学无脊椎动物的运动方式与结构
这些运动方式不仅有助于无脊椎动物在各种环境中生存和繁衍,也是 它们对自然环境的适应和进化的表现。
了解无脊椎动物的运动方式与生存环境的关系,有助于我们更好地理 解生物多样性和生态系统的复杂性。
04
无脊椎动物的结构特点
无脊椎动物的一般结构特点
无脊椎动物的身体结构通常由一系列细胞和组织组成,包括表皮、 肌肉、骨骼和内脏等。
无脊椎动物的表皮通常很薄,具有保护和渗透功能,而肌肉则 负责运动和呼吸。
无脊椎动物的骨骼通常由软物质组成,如软骨、硬壳或软壳,起 到支撑和保护作用。
无脊椎动物的内脏通常包括消化、排泄、呼吸和循环等系统, 负责营养吸收、废物排除、气体交换和血液循环等生理功能。
初中生物学无脊椎动 物的运动方式与结构
பைடு நூலகம்单击此处添加副标题
汇报人:
目录
CONTENTS
Part One
添加标题
Part Two
添加标题
Part Three
添加标题
Part Four
添加标题
Part Five
添加标题
Part Six
添加标题
01
添加章节标题
02
无脊椎动物概述
无脊椎动物的定义
无脊椎动物是指没有脊椎骨的动物,包括软体动物、节肢动物、棘皮动 物等。
结构适应性:无脊椎动物的身体结构具有高度的适应性,如节肢动物的 关节和足肢结构使其能够灵活运动,适应各种复杂环境。
生理适应性:无脊椎动物在运动过程中表现出多种生理适应性,如肌肉 的收缩与舒张、呼吸系统的调节等,以适应长时间高强度的运动。
无脊椎动物解剖学重点笔记
无脊椎动物解剖学重点笔记
概述
无脊椎动物解剖学是研究无脊椎动物体内结构和器官功能的学科。
本文档将重点讨论以下几个方面:
1. 无脊椎动物的分类与特点
2. 无脊椎动物的解剖结构
3. 无脊椎动物的器官功能
无脊椎动物的分类与特点
无脊椎动物包括多种生物,如海绵动物、刺胞动物、扁形动物、环节动物、软体动物、节肢动物等。
它们的特点是没有脊椎骨,多
为多细胞生物,生活方式多样。
无脊椎动物的解剖结构
无脊椎动物的解剖结构包括外部形态和内部器官。
外部形态可
以根据不同的动物种类而有所差异,如体型、颜色、壳等。
内部器
官包括消化系统、呼吸系统、循环系统、神经系统等。
无脊椎动物的器官功能
不同种类的无脊椎动物具有不同的器官功能。
例如,海绵动物
的主要功能是过滤食物和排泄废物;昆虫等节肢动物具有复杂的感
觉和运动系统;软体动物具有强大的肌肉和足以保护自身的外壳等。
结论
无脊椎动物解剖学是一个重要的学科,通过研究无脊椎动物的
解剖结构和器官功能,我们可以更好地了解这些生物的生态和生物
学特性。
希望本文档能够对无脊椎动物解剖学的学习有所帮助。
无脊椎动物总结
无脊椎动物总结一、体制:即身体的对称形式1.不对称:大多数原生动物、珊瑚和苔藓动物2。
球面辐射对称性:例如放射虫和太阳虫。
3、辐射对称:如腔肠动物、原生动物中的表壳虫、钟虫、许多海绵动物。
4、两辐对称:栉水母动物门、海葵。
5、两侧对称:扁形动物及以后的动物所具有。
此外,棘皮动物是五辐对称的;腹足动物的内脏质量是不对称的,但它的头和脚是对称的。
二、胚层1.无生殖层:多孔动物没有生殖层。
原生动物不关心生殖层的结构。
2.两个胚层:腔肠动物,在形态和功能上有分化和分工。
3.三个胚层:都有三个来自扁平动物的胚层。
三、体节玛瑙:以前称为线形动物的各种动物。
2.同节律亚段:环节动物3、异律分节:环节动物的一部分及节肢动物。
四、运动器官和肌肉(一)运动器官1.运动细胞器:原生动物的纤毛、鞭毛和伪足。
2、鞭毛、纤毛(指多cell动物):如:海绵动物的幼体、腔肠动物的幼体、扁形动物幼体。
疣足和鬃毛:环节动物的原始附属物。
节肢动物和翅膀:节肢动物的运动器官。
斧足类、腹足类和头足类:软体动物。
6.手腕和气管足类:棘皮动物有(II)肌肉1、皮肌cell:腔肠动物。
2、皮肌囊:蠕形动物所具有。
3.束肌:属于节肢动物。
五、体腔1.无体腔:腔肠动物和扁平动物。
2.体腔1)假体腔:线形动物具有。
2) Eucoelom:属于环节动物之后的所有动物。
3)混合体腔:节肢动物。
软体动物是真、假体腔同时存在,环节动物中的蛭纲也具真体腔,但退化,里面填充了结缔动物,也充满血液,称血窦。
固着生活的苔藓腕足和帚虫动物的真体腔却很发达。
棘皮动物的真体腔一部分变成围血系统和水管系统。
六、体表和骨骼单细胞原生动物的体表是细胞膜,有保护、吸收、分泌、物质交换、粘附等功能。
动物的胃由皮层和多孔的体壁组成。
腔肠动物的体壁由内胚层和外胚层发育而来。
扁形、线形、环节具皮肌囊,环节动物的体表具较薄的角质膜。
软体动物表面有壳,可分为外壳和内壳。
它由地幔分泌。
节肢动物有甲壳素外骨骼。
无脊椎动物总结
第十四章无脊椎动物总结第一节无脊椎动物的比较形态和比较解剖一、体制所谓体制就是身体的对称形式1、无对称:大多原生动物、腔肠动物的珊瑚虫纲、苔藓动物2、球形辐射对称身体呈圆球形,通过中心轴可分为无限或有限个相同的两半,此对称形式适应于在水中生活,上下、左右环境都一样。
如放射虫、太阳虫。
3、辐射对称通过身体和固定的轴可分为若干对称面,也适应于水中漂浮和固定生活,能分为上、下端,身体的其余部分相似。
eg:腔肠动物、原生动物中的表壳虫、钟虫、许多海绵动物。
4、两侧对称是扁形动物及以后的动物所具有,是适应于水底爬行生活的结果,由于两侧对称的出现,使动物的生理机能有所加强。
5、两辐对称界于辐射对称和两侧对称之间,也可算辐射对称,是栉水母动物门所具有的。
另外:棘皮动物为五辐对称腹足类为不对称,但它的头部和足是左右对称的,它身体的一部分器官,系统退化掉。
二、胚层1、无胚层:多孔动物无胚层。
原生动物无所谓胚层的构造。
2、两胚层:腔肠动物,在形态和机能上有分化和分工。
3、三胚层:从扁形动物开始都具三胚层。
中胚层的产生在动物进化上有重要意义,也是动物由水→陆的一个重要基础。
它有端cell法——原口动物和体腔囊法——后口动物。
三、体节1. 无体节:线形动物以前的各类动物。
扁形动物的绦虫类是假分节现象,具有真体腔的动物才有分节现象,但软体动物无分节,而棘皮动物的幼体具有分节现象,它具有三个体腔囊。
所以可能是由3体节的祖先进化而来。
2、同律分节:环节动物同律分节是指组成躯体的体节在形态和机能上大致相同,且内部器官按体节排列,同律分节较原始,但它起源于中胚层,它为高级的发展奠定了基础,在动物进化上具有重要意义。
3、异律分节:环节动物的一部分及节肢动物所具有是指组成躯体的各体节在形态和机能上均有不同,在分节中的体节出现愈合现象,在愈合中出现了体节群现象,异律分节对身体的进一步发展具有重要意义,不同的体节群具有不同的功能。
象节肢动物不仅身体分节,而且附肢也出现分节现象,且附肢与身体之间通过关节相连结。
无脊椎动物总结
神经系统更趋集中而呈链状索式由一对咽上神经节(“脑”)、左右1对围咽神经、咽下神经节和纵贯全身的腹神经索构成。腹神经索由纵行的神经合并而成,在每个体节内形成一神经节。每个体节的神经节发出2—5条侧神经。
有两种类型
A.腺体结构:与后肾同源。一端是排泄孔,开口于体表,另一端是盲端。如,触角腺、颚腺、基节腺
B.马氏管:位于中肠和后肠的交界处。由内胚层或外胚层形成的盲管,游离在动物的血腔中收集血淋巴中的代谢物。
代谢产物由体腔液中的变形细胞吞噬经皮鳃排出,代谢废物主要是氨和尿素
呼吸系统
无呼吸系统,通过体表或光合作用完成,有些是厌氧的
身体由体盘和腕组成,成体为次生性的五辐射对称,幼体为两侧称,全部海生;体壁由表皮层、真皮层(结缔组织和肌肉层)和体腔膜组成。内骨骼由中胚层形成;骨片位于体壁的结缔组织内,骨片向外突出形成棘、刺等。有皮鳃和水管系统;棘皮动物为辐射型卵裂
所包括的纲
鞭毛虫纲:绿眼虫;
肉足虫纲:变形虫;
孢子虫纲:疟原虫;纤毛虫纲:草履虫
钙质海绵纲
六放海绵纲
寻常海绵纲
水螅纲(水螅、薮枝螅)
钵水母纲(海月水母、海蛰)
珊瑚纲(海葵、珊瑚虫)
涡虫纲(三角涡虫)
吸虫纲(华枝睾吸虫)
涤虫纲(猪带绦虫)
线虫动物门
(无尾感器纲、尾感器纲)
轮虫动物门
多毛纲(沙蚕)
寡毛纲(蚯蚓)
蛭纲(蚂蝗)
单板纲(新碟贝)
腹足纲(圆田螺)
掘足纲(角贝)
瓣鳃纲(河蚌)
具有原体腔(假体腔)的动物,这个类群包括多个门的动物
无脊椎动物的形态结构与生理.
无脊椎动物的形态结构与生理一、体制指动物躯体结构的排列形式和规律。
一般分为有规律可寻(对称)无规律可寻(不对称)不对称(尾草履虫、变形虫)球辅对称(太阳虫、团藻虫)辐射对称(钟虫)球辐对称:通过身体中心点可分成许多相同的两半。
海绵动物不对称或辐射对称原生动物腔肠动物辐射对称或两辐对称辐射对称:指通过身体的中央轴有许多个切面可以将身体分为左右相等的两部分(对称面)。
主要适应附着、漂浮、及不太运动的生活方式。
两辐对称;通过动物体轴仅可分成两个对称面。
(如海葵)扁形动物两侧对称;通过体轴只有一个对称面。
两侧对称的重要意义;(1)使动物身体明显地分为前后、背腹和左右,由不定向运动变为定向运动。
(2)使动物由水中固着或漂浮生活向水底爬行生活及陆地爬行奠定了基础。
扁形动物以后的各类群全部是两侧对称。
仅有两个特例; 1. 软体动物腹足纲;由于胚胎发育发生了扭转,因此成体不对称。
2. 棘皮动物早期发育的羽腕幼虫及短腕幼虫(两侧对称),成体由于适应不太运动的生活方式产生了次生性的辐射对称。
二、胚层与体腔 1.胚层指多细胞动物胚胎发育时期由于细胞分化而形成的特殊区域。
多细胞动物早期的胚胎发育;受精→卵裂→囊胚→原肠胚→中胚层和体腔的形成→胚层分化海绵动物没有明确的胚层分化,体壁由两层细胞构成。
由于胚胎发育的“逆转现象”,故不能称其为外胚层和内胚层(只称皮层和胃层)。
两个胚层(外胚层、内胚层)中胶层不是细胞结构。
腔肠动物扁形动物以后各类群由于出现了中胚层,故都称为三胚层动物。
2. 体腔指动物体消化道与体壁之间的腔隙。
扁形动物及以前各类群没有体腔原体腔(线形动物)动物出现原体腔原体腔指胚胎发育的囊胚腔演化形成的体壁与脏壁之间的腔隙。
原体腔(假体腔、初生体腔)特点:(1)只有体壁中胚层,没有肠壁中胚层和体腔膜。
(2)腔内充满体腔液。
(3)体腔对外没有孔道。
环节动物具有真体腔(次生体腔)蛭类除外。
真体腔指中胚层的脏壁与体壁分离后,形成的动物内脏和体壁之间的腔隙。
动物学无脊椎动物部分知识总结
1绪论1生物学的观点和研究方法描述法比较法实验法2生物学三个统一的基本原理3五界分类法原核植物界原生生物界真菌界植物界动物界4生物的基本特征5物种的定义是具有一定形态特征和生理特征及一定的自然分布区的生物类群,是生物分类的基本单位,一个物种中个体一般不与其他物种的个体交配或交配之后,一般不能产生有生殖能力的后代。
6分类阶元7双名法及书写方法第二章动物体的基本结构与机能上皮组织密集的上皮细胞和少量细胞间质构成,是人体最大的组织。
保护、分泌结缔组织由细胞和大量细胞间质构成,结缔组织的细胞间质包括基质、细丝状的纤维和不断循环更新的组织液,具有重要功能意义。
支持、连接、营养、保护等肌肉组织由特殊分化的肌细胞构成的动物的基本组织。
能收缩和舒张,引起运动神经组织(即神经细胞)和神经胶质所组成接受刺激产生兴奋传导兴奋第三章原生动物门门的特征:1整个身体由单个细胞组成细胞器运动细胞器:纤毛鞭毛摄食细胞器:胞口、胞咽、食物泡感觉细胞器:眼点调节体内水分的细胞器:收集管、收缩泡2身体微小3原始性动物界最早的祖先4对不良环境有特殊的适应性(包囊包囊膜)5一些种类为群体单细胞动物(多细胞动物细胞分化为组织,再进一步形成器官、系统群体单细胞动物细胞一般没有分化,最多只有体细胞和生殖细胞的分化。
体细胞没有分化。
群体内的各个个体具有相对独立性)代表动物草履虫分类鞭毛纲植鞭亚纲有色素体具表膜动鞭亚纲无色素体不具坚硬的表膜无性(纵二分裂)有性(配子或真各个个体结合结合)肉足纲有薄质膜明显的外质内质(凝胶质溶胶质)外形不断改变根足亚纲(大变形虫)、伪足:(叶状、丝状、根)辐足亚纲轴伪足孢子纲全部寄生,无运动器,生活史复杂,很多种类具顶复合器(类锥体、极环、棒状体、微线体)疟原虫红细胞前期在人的肝脏中进行临床意义决定潜伏期的长短红细胞内期在人体的红细胞内进行~~~觉得疟疾症状反复发作的间隔时间红细胞外期在人体肝脏中进行~~~疟疾复发的根本原因有性在无脊椎体内无性在有脊椎体内纤毛纲其他名词解释细胞内消化低等动物的消化方式指食物在细胞内部进行消化的一种方式过程为:食物在细胞内行程食物泡之后与溶酶体溶合成消化泡,分解后的营养物质为细胞所用。
无脊椎动物总结
无脊椎动物总结I、原生动物门一、名词解释:·无脊椎动物:体内无脊椎,除脑外,中枢神经系统均位于消化管腹侧的一类低等动物。
·类器官:原生动物的细胞是一个能营独立生活的有机体,除了一般细胞的基本结构以外,还由细胞分化成了一些相当于高等动物体内器官的结构,以此完成各种生活机能。
这些结构称做细胞器,又称做类器官。
·包囊:是原生动物不摄取营养的阶段,周围有囊壁包围,富有抵抗不良环境的能力,是原虫的感染阶段。
·滋养体:是原生动物摄取营养的阶段,能够活动、摄取营养、生长繁殖,是寄生原虫的寄生阶段。
·植物性营养:有些生物体内具有色素体能进行光合作用制造食物,这种营养方式称为光合营养(植物性营养),也称自养。
动物性营养:有些生物靠吞食固体的食物颗粒或微小生物来补充自身的有机质,称为吞噬营养(动物性营养)。
腐生性营养:有些生物通过体表渗透吸收周围呈溶解状态的有机物,以此补充自身有机质,称为渗透营养(腐生性营养)。
·伪足:在变形虫体表任何部位形成的临时性的细胞质突起,是变形虫的运动器官,还具有摄食功能。
·变形运动:细胞中溶胶质和凝胶质的转换和流动造成了原生动物(常为肉足纲动物)的变形运动。
(由于肌动蛋白在肌球蛋白上的滑动造成)二、简述题:1、间日疟原虫的生活史:在人体内:红血细胞前期:疟原虫的子孢子随雌按蚊的唾液进入人体内,侵入肝细胞,以胞口摄取肝细胞质为营养(这时称为滋养体),成熟后通过复分裂进行裂体生殖。
即核先分裂成很多个,称为裂殖体。
裂殖体分裂形成很多裂殖子或潜隐体。
疟原虫侵入红血细胞以前,在肝细胞里发育的时期称为红血细胞前期。
裂殖子成熟后,涨破肝细胞,散发在体液和血液中,一部分裂殖子被吞噬,另一部分侵入红血细胞,开始红血细胞内期的发育。
还有一部分又侵入其他肝细胞,进入红血细胞外期。
红血细胞内期:裂殖子侵入红细胞中,逐渐长大,成为环状体。
几小时内环状体增大,变成大滋养体,由此再一步发育成裂殖体。
无脊椎动物学总结
软体动物:开管式循环(头足类除外). 软体动物:开管式循环(头足类除外). 节肢动物:开管式循环. 节肢动物:开管式循环. 棘皮动物:不发达,在围血窦内. 棘皮动物:不发达,在围血窦内.
十,神经系统和感觉器官
原生动物,海绵动物:无神经系统 原生动物,海绵动物: 腔肠动物: 腔肠动物:散漫的神经系统 扁形动物: 扁形动物:梯式神经系统 线形动物: 线形动物:梯式神经系统 环节动物: 环节动物:索式神经系统 软体动物:由脑, 软体动物:由脑,侧,脏,足神经节和其间的 联络神经构成神经系统, 联络神经构成神经系统,头足类的脑有软骨保 护.
线虫动物:纵肌 线虫动物: 环节动物:疣足,刚毛,纵肌, 环节动物:疣足,刚毛,纵肌,环肌 节肢动物:节肢,横纹肌, 节肢动物:节肢,横纹肌,翅 软体动物: 软体动物:足 棘皮动物: 棘皮动物:腕,管足
七,消化系统
原生动物,海绵动物:细胞内消化. 原生动物,海绵动物:细胞内消化. 腔肠动物:消化管(消化循环腔)有口无肛门, 腔肠动物:消化管(消化循环腔)有口无肛门, 细胞内,细胞外消化. 细胞内,细胞外消化. 扁形动物:消化管有口无肛门,寄生种类消化 扁形动物:消化管有口无肛门, 管退化或消失. 管退化或消失.
五,体表和骨胳
原生动物:质膜(薄,加厚),外壳 原生动物:质膜( 加厚),外壳 ), 海绵动物:骨针, 海绵动物:骨针,海绵丝 腔肠动物: 腔肠动物:角质或石灰质的骨胳 扁形动物: 扁形动物:体表具纤毛 线形动物,轮虫动物: 线形动物,轮虫动物:体表具角质膜
环节动物:体表具角质膜,常有刚毛 环节动物:体表具角质膜, 软体动物,腕足类: 软体动物,腕足类:石灰质贝壳 节肢动物: 节肢动物:几丁质外骨胳 棘皮动物: 棘皮动物:内骨胳
4,两侧对称:动物有前,后,背,腹之分, ,两侧对称:动物有前, 腹之分, 左右两侧对称.适应爬行. 左右两侧对称.适应爬行. 扁形动物以上都是两侧对称,但腹足类, 扁形动物以上都是两侧对称,但腹足类,棘皮 动物例外. 动物例外.
动物生物学:13无脊椎动物总结
原腔动物:皮肌囊构造,但不完整,被体线分为四列。 由三层组成,坚韧富有弹性,起保护作用。 角质层:由上皮分泌形成,主要成分为蛋白质厚且有弹性,起保
护作用。 表皮层:合胞体,背腹及两侧加厚形成体线。 肌肉层:仅一层纵肌。
两侧对称的意义:
两侧对称的动物出现前、后、左、右和背、腹之分。
前方分化为头部,神经和感官相对集中于此;后方为 尾端。背部司保护,腹部司运动。
两侧对称使运动定向,身体各部分分化和功能分工。
两侧对称是动物由水生进化到陆生的重要条件之一。
由此可见,两侧对称使动物体进入一个新的更高的分 化阶段和获得更广泛意义的适应。
真体腔(次生体腔),位于体壁中胚层与内胚层消化道之间。 端细胞法或体腔囊法,裂开形成体腔; 外胚层的表皮与中胚层形成的肌肉组成体壁,中胚层形成的 肌肉与内胚层的内皮层形成肠壁; 体壁与肠壁具体腔膜以及肠系膜; 体腔内容纳各种器官、系统以及体腔液; 动物机体结构上的进步,生理功能完善。
无脊椎动物总结
1. 体制和分节 2. 胚层和体腔 3. 体壁和骨骼 4. 肌肉和运动 5. 营养和消化 6. 呼吸和排泄 7. 循环系统 8. 神经系统和感觉器官 9. 生殖系统和发育
1.体制和分节
1.1 体制
动物的体制:即动物体的基本形式。通常指动物身体 的对称性,即机体各部分的布局和比例。反映了动物 的主动适应环境的能力和水平。
扁形动物出现三胚层:
复杂的肌肉层,运动机能加强、新陈代谢加强; 促进排泄系统(原肾、后肾)、神经系统以及生殖系统的分
化; 三胚层组织、器官、系统的分化,促进动物体结构的发展和
各器官生理的复杂化,动物达到了器官系统水平。 中胚层的出现对动物的结构和机能的进一步发展有很大的意
动物的结构与功能知识点总结
动物的结构与功能知识点总结动物的结构与功能是生物学中的一个重要研究领域,它关注的是动物体内外部结构与其功能之间的关系。
通过对动物的结构与功能进行研究,我们能够更好地了解动物的适应性、生存策略以及演化过程。
本文将对动物的结构与功能的相关知识进行总结。
一、动物体内结构与功能1.细胞与组织结构- 动物的基本组成单位是细胞,细胞结构的不同决定了其功能的多样性。
- 动物体内的细胞可以组成不同的组织,如肌肉组织、神经组织等,不同组织具有不同的功能。
2.器官系统- 动物的体内由多个器官系统组成,这些器官系统相互配合完成各种生理功能。
- 常见的器官系统包括消化系统、呼吸系统、循环系统、神经系统等。
3.呼吸与循环- 动物进行呼吸与循环的过程是为了维持其生命活动所需的氧气和养分的运输。
- 不同的动物有不同的呼吸结构和循环方式,如鱼类通过鳃呼吸,而哺乳动物通过肺呼吸。
4.神经系统与感知器官- 动物的神经系统控制着其各种生理和行为反应。
- 动物通过感知器官,如眼睛、耳朵、鼻子等,来感知外界的刺激,然后将信息传递给大脑进行处理。
5.排泄与调节- 动物通过排泄系统将代谢废物排出体外,维持内部环境的稳定。
- 调节机制使动物能够对内外环境变化做出适应性反应。
二、动物体外结构与功能1.外骨骼与内骨骼- 一些无脊椎动物具有外骨骼,如昆虫的壳,这种结构为其提供了保护和支持。
- 脊椎动物拥有内骨骼,它不仅提供了支持和保护作用,还参与了运动等生理功能。
2.运动器官- 动物的运动器官包括肌肉和骨骼,它们配合工作实现动物的运动。
- 不同种类的动物有不同的运动方式,如鸟类的飞行、鱼类的游泳等。
3.外形与适应- 不同的动物形态适应了不同的生活方式和环境。
- 动物通过形态的改变,如颜色、斑纹等,来进行种群间的识别和伪装等行为。
4.生殖与繁衍- 动物通过繁殖来延续物种,常见的繁殖方式包括性繁殖和无性繁殖。
- 不同的动物有不同的生殖器官和繁殖行为。
结语:通过对动物的结构与功能的研究,我们可以深入了解动物的适应性、生存方式和演化过程。
无脊椎动物 鉴定-概述说明以及解释
无脊椎动物鉴定-概述说明以及解释1.引言1.1 概述无脊椎动物是一类生物学上的分类,它们在演化过程中没有发展出脊椎骨,因此在形态结构上与脊椎动物有着明显的差异。
无脊椎动物种类繁多,包括昆虫、蛤类、海星、蠕虫等多个门,构成了生物世界中数量最为庞大的群体之一。
它们在生态系统中起着重要的作用,参与了食物链的循环、土壤肥力的维持等关键生态功能。
了解无脊椎动物的分类、生态作用和重要性,对于生物保护和生态平衡的维护具有重要意义。
在本文中,我们将深入探讨无脊椎动物的特点、分类以及其在生态系统中的作用,希望能够引起人们对这一重要物种群体的关注和保护。
1.2 文章结构文章结构:本文主要分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的。
在概述中简要介绍了无脊椎动物的概念和重要性。
文章结构部分则说明了文章主要分为引言、正文和结论三个部分,以及各部分的内容安排。
目的部分明确了本文的主要目的是对无脊椎动物进行鉴定和探讨。
正文部分分为什么是无脊椎动物、无脊椎动物的分类和无脊椎动物的生态作用三个小节。
在什么是无脊椎动物部分中,将介绍无脊椎动物的定义、特点和丰富多样的种类。
在无脊椎动物的分类部分,将详细介绍无脊椎动物的分类系统及各类的特征。
在无脊椎动物的生态作用部分中,将探讨无脊椎动物在生态系统中的重要作用和影响。
结论部分将对无脊椎动物的重要性、如何进行保护与研究以及未来展望进行总结和展望。
通过本文的分析,读者将更加全面地了解无脊椎动物,并意识到其在生态系统中的重要作用,进而加强对无脊椎动物的保护和研究工作。
1.3 目的本文的主要目的是通过对无脊椎动物的鉴定,帮助读者更好地了解和认识这一类群。
无脊椎动物是种类繁多、数量庞大的动物群体,它们在自然界中扮演着重要的角色。
通过对无脊椎动物的分类、生态作用等方面的介绍,我们可以更深入地了解它们在生态系统中的作用和重要性。
同时,本文还旨在引起人们对无脊椎动物的保护与研究的重视。
无脊椎动物形态生理特点总结
意义:运动能力和新陈代谢的加强,增强对环境的适应能力
发达的真体腔
来源:中胚层裂开形成
特点:在体壁和脏壁上都存在中胚层形成的肌肉层和体腔膜
意义:1.使身体有了一定形状,增强了运动能力
2.肌肉层加强了消化功能(出现了机械消化),并促使消化管分化,循环系统和排泄系统发展,从而使代谢功能增强
书肺:外胚层内陷物,空腔中有许多扁平中空的突起,称为肺叶,气体交换通过肺叶壁进行
气管:体壁向内凹陷,分支而形成的管状呼吸器官。以气门开口于外,纵横伸入身体组织中,形成一个复杂的气管系统,微细气管末端封闭,与组织进行气体交换
水生种类-与后肾同源的囊状后肾-绿腺、基节腺等
陆生种类-肠壁外凸形成的马氏管(排尿酸、鸟嘌呤)—对陆生干燥生活的适应
体型
体壁
体腔
特殊结构1
特殊结构2
特殊结构3
消化系统和摄食
循环系统
呼吸系统
排泄系统
神经系统和感官
生殖和发育
原生动物
原生动物门
1.体型微小、形态多样
2.单细胞构成
包囊:淡水原生动物不良环境下形成
作用:1.抵抗外界不利环境,有利于个体生存
2.有利于扩散
3.有利于在不利条件下繁殖
1.植物性营养
2.动物性营养
胞内消化无性生殖:Fra bibliotek芽生殖有性生殖:雌雄同体或异体异体受精
发育中存在胚层逆转,间接发育,经历两囊幼虫
真后生动物
二胚层辐射对称
腔肠动物门
辐射对称
对固着或漂浮生活的适应
外胚层(保护、感觉、运动)中胶层内胚层(营养)
形成原始的组织
原始消化循环腔(有口无肛门)-胞外消化
无脊椎动物的比较完整版
无脊椎动物的形态结构与生理一、体制指动物躯体结构的排列形式和规律。
一般分为有规律可寻(对称)无规律可寻(不对称)•原生动物不对称(尾草履虫、变形虫)球辅对称(太阳虫、团藻虫)辐射对称(钟虫)球辐对称:通过身体中心点可分成许多相同的两半。
•海绵动物不对称或辐射对称•腔肠动物辐射对称或两辐对称辐射对称:指通过身体的中央轴有许多个切面可以将身体分为左右相等的两部分(对称面)。
主要适应附着、漂浮、及不太运动的生活方式。
两辐对称;通过动物体轴仅可分成两个对称面。
(如海葵)•扁形动物两侧对称;通过体轴只有一个对称面。
两侧对称的重要意义;(1)使动物身体明显地分为前后、背腹和左右,由不定向运动变为定向运动。
(2)使动物由水中固着或漂浮生活向水底爬行生活及陆地爬行奠定了基础。
•扁形动物以后的各类群全部是两侧对称。
仅有两个特例;1. 软体动物腹足纲;由于胚胎发育发生了扭转,因此成体不对称。
2. 棘皮动物早期发育的羽腕幼虫及短腕幼虫(两侧对称),成体由于适应不太运动的生活方式产生了次生性的辐射对称。
二、胚层与体腔1.胚层指多细胞动物胚胎发育时期由于细胞分化而形成的特殊区域。
多细胞动物早期的胚胎发育;受精→卵裂→囊胚→原肠胚→中胚层和体腔的形成→胚层分化•海绵动物没有明确的胚层分化,体壁由两层细胞构成。
由于胚胎发育的“逆转现象”,故不能称其为外胚层和内胚层(只称皮层和胃层)。
•腔肠动物两个胚层(外胚层、内胚层)中胶层不是细胞结构。
•扁形动物以后各类群由于出现了中胚层,故都称为三胚层动物。
2. 体腔指动物体消化道与体壁之间的腔隙。
•扁形动物及以前各类群没有体腔•原体腔(线形动物)动物出现原体腔原体腔指胚胎发育的囊胚腔演化形成的体壁与脏壁之间的腔隙。
原体腔(假体腔、初生体腔)特点:(1)只有体壁中胚层,没有肠壁中胚层和体腔膜。
(2)腔内充满体腔液。
(3)体腔对外没有孔道。
•环节动物具有真体腔(次生体腔)蛭类除外。
真体腔指中胚层的脏壁与体壁分离后,形成的动物内脏和体壁之间的腔隙。
动物学(无脊椎动物)总结
动物学(无脊椎动物)总结.docx我理解您需要一篇关于动物学(无脊椎动物)的详细总结文档。
虽然我无法为您创建文档,但我可以提供一个详细的内容框架和示例段落,您可以根据这些信息来撰写您的文档。
动物学(无脊椎动物)总结大纲一、封面标题:动物学(无脊椎动物)总结作者姓名完成日期二、摘要研究目的主要内容概述三、引言无脊椎动物的定义无脊椎动物在生态系统中的作用四、无脊椎动物的分类原生动物门特征代表物种腔肠动物门特征代表物种环节动物门特征代表物种软体动物门特征代表物种节肢动物门特征代表物种棘皮动物门特征代表物种五、无脊椎动物的生理结构消化系统循环系统神经系统生殖系统六、无脊椎动物的生态功能食物链中的角色物质循环的贡献生物多样性的维护七、无脊椎动物的适应性形态适应生理适应行为适应八、无脊椎动物的保护与研究濒危物种保护生态研究的重要性科研进展九、案例分析选取几个代表性的无脊椎动物进行详细分析十、结论内容示例封面动物学(无脊椎动物)总结作者姓名:[您的姓名]完成日期:2024年5月25日摘要本文档总结了无脊椎动物的主要分类、生理结构、生态功能以及适应性,旨在加深对这一生物群体的认识和理解。
引言无脊椎动物是动物界中种类繁多、形态各异的一大类群,它们在生态系统中扮演着不可或缺的角色。
无脊椎动物的分类原生动物门特征:单细胞生物,具有运动、摄食和繁殖的能力。
代表物种:变形虫、草履虫。
无脊椎动物的生理结构消化系统描述不同门类无脊椎动物的消化系统特点。
无脊椎动物的生态功能食物链中的角色无脊椎动物在食物链中既是生产者也是消费者。
无脊椎动物的适应性形态适应无脊椎动物通过形态的多样性适应不同的生存环境。
无脊椎动物的保护与研究濒危物种保护强调保护濒危无脊椎动物的重要性和紧迫性。
案例分析选取几个代表性的无脊椎动物,如珊瑚、蜜蜂等,进行详细分析。
结论通过本总结,我们对无脊椎动物有了更全面的认识。
它们不仅是生物多样性的重要组成部分,也是生态系统中不可或缺的成员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
一、无脊椎动物机体的结构和功能
►1、动物的体制
►2、动物的体腔
►3、动物的分节 ►4、胚层的演化
2
1、动物的体制:
是指动物身体的对称性,即机体各部分的布局。 ► 无对称性:原生动物和海绵动物不具有典型的对 称体制 ► 辐射对称:腔肠动物 ► 两辐对称:如海葵,栉水母 ► 两侧对称:扁形动物开始 ► 五辐对称:棘皮动物(次生性辐射对称) ► 软体动物:腹足纲(次生性不对称)
22
9、内分泌系统:
► 内分泌腺:能节作用的无导管腺体称内分泌腺。
► 类型:
虾蟹的内分泌腺(眼柄的X器官,触须或小颚基部的Y器) 和昆虫的内分泌腺(咽侧体,心侧体,前胸腺)
► 功能:调节代谢、生长发育、生殖等生理机能。
23
10、感官系统:
► 类型:
根据器官所在的位置分为:外感受器和内感受器,前者 位于体表,后者位于体内。 根据接受刺激的性质分为: ►感受物理刺激感受器(皮肤感受器、侧线器、平衡器、 听觉器、视觉器、热感受器等) ►感受化学刺激感受器(味觉器、嗅觉器等)
请归纳:真假体腔的含义及其本质差别
4
3、动物的分节:
是两侧对称动物身体沿纵轴方向分出许多节段的现 象。分节是特化的开始,是进化的标志。 ► 假分节:如绦虫、纽虫 ► 环节动物是典型的同律分节动物,而节肢动物是典 型的异律分节动物。 什么是同律分节和异律分节?有何异同点?
7
4、胚层的演化
► 单细胞动物:原生动物 ► 细胞水平多细胞动物:海绵动物 ► 两胚层动物:腔肠动物 ► 三胚层动物:扁形动物之后
► 无脊椎动物循环系统(请总结)
16
7、生殖系统和发育
► 生殖方式
无性生殖:分裂生殖、出芽生殖、孢子生殖、复分裂生 殖、包囊生殖、芽球生殖等 有性生殖:接合生殖、配子生殖 单性生殖:孤雌生殖
► 世代交替:生物生活史中无性世代和有性世代相互
交替的现象。
► 产仔方式:
卵生: 卵胎生:
► 无脊椎动物的感受器:
单细胞动物的整个身体就是感受器;腔肠动物具有感觉 细胞和感官(?);扁形动物的感官… … (请总结!!)
24
感官的基本功能:
感受外界环境的变化 感受身体内部环境的变化。
25
对 胚 体 体 肌 称 层 腔 节 肉 和 运 动 原生
体 表 和 骨 骼
营 呼 排循 生 神 外 发 与 养 吸 泄环 殖 经 形 育 人 和 感 关 官 系 消 化
请总结:中胚层出现的生物学意义!!
8
二、动物器官系统的结构与功能
► 构成高等动物机体的器官系统包括皮肤系统、
骨骼系统、肌肉系统、呼吸系统、消化系统、 排泄系统、循环系统、生殖系统、内分泌系 统、神经系统、感官等。
9
1、皮肤系统
► 无脊椎动物的皮肤结构简单,往往只有单层上皮
细胞; ► 有的动物(扁形动物、原腔动物、环节动物等)其 皮肤与肌肉层紧贴,构成皮肌囊。 ► 上皮细胞向外分泌角质膜或外骨骼。 ► 表皮成合胞体:下沉上皮——吸虫和绦虫
理解各种对称体制出现的生物学意义!!
3
2、动物的体腔
体腔:是指动物体内脏器官周围的腔隙,它的形
成在动物进化上具有重要的意义。体腔的形成与中 胚层的分化有关。
► 无体腔动物:扁形动物等。
► 假体腔动物:轮虫动物、线虫动物等。
► 真体腔动物:环节动物、软体动物、节肢动物、
棘皮动物、半索动物、脊索动物等。 ► 其中软体动物假体腔仍较发达,真假体腔并存; 而节肢动物真假体腔相沟通,为混合体腔。
进 化 地 位
生 活 方 式
主 要 类 群
代 表 动 物
海绵
腔肠 扁形 原腔 环节 软体 节肢 棘皮
26
10
2、骨骼系统
► 无脊椎动物只有外骨骼(除了软体动物的头
足纲和棘皮动物外), ► 它是由上皮细胞分泌的角质层、珊瑚骨骼、 几丁质骨骼、贝壳等。
11
3、消化系统:
► 基本构成: 消化道:口、口腔、咽、食道、胃、小肠、大肠、直肠、 肛门。
消化腺:唾液腺、肝、胰、及胃腺、肠腺。 ► 基本功能:
胎生:
17
► 动物的发育
受精——卵裂——囊胚——原肠胚——三胚层 胚——器官构建——新个体 胚胎发育 胚后发育 间接发育和直接发育 变态 幼体期: ( 请总结!)
18
无脊椎动物的幼虫
► 海绵动物——两囊幼虫 ► 腔肠动物——浮浪幼虫 ► 扁形动物——毛蚴、胞蚴、雷蚴、尾蚴、囊蚴 ► 环节动物——担轮幼虫 ► 软体动物——担轮幼虫、面盘幼虫、钩介幼虫 ► 甲壳动物——无节幼虫、蚤状幼虫、大眼幼虫 ► 昆虫——稚虫、若虫 ► 棘皮动物——羽腕幼虫,短腕幼虫 ► 半索动物——柱头幼虫
19
8、神经系统:
► 无脊椎动物的神经系统的发展:
网状神经、梯形神经、筒状神经、链索状神经、 集中型链索状神经。(软体动物和棘皮动物的神 经系统的特点是什么?)
20
21
►神经系统的基本功能:
通过神经联络全身各部分使动物成为统一体;
对外来信息分析、综合、贮存和加工处理;
调控全身使各器官维持最佳工作状态; 对外实现最适的反应活动; 保证组织代谢营养平衡。
摄取营养物质 物理性、化学性分解这些物质 吸取其精华 排除其糟粕——排遗
12
► 原生动物、海绵动物没有消化系统可言,只
有简单的细胞内消化; ► 腔肠动物具有消化循环腔,属于不完全消化 系统,开始有了细胞外消化; ► 扁形动物有了口、咽、肠的分化,但仍是不 完全消化系统; ► 从原腔动物开始出现肛门; ► 环节动物的消化道开始分化,且能分泌消化 液; ► 软体动物开始消化道更复杂,且有了独立的 消化腺-肝胰腺。
13
4、无脊椎动物呼吸系统
个体较小的种类,相对表面积较大,可通过体表 扩散,就能满足气体交换的需要。(哪些动物?) 个体较大的动物相对表面积缩小,发展特殊的呼 吸结构, 水生动物出现了鳃(软体动物开始), 陆生动物发展了气管和肺呼吸。(请总结!)
14
5、排泄系统
► 排泄:动物将新陈代谢的最后产物和整体平
衡剩余物排出体外的过程称排泄。 ► 排泄与排遗是不同的概念。 ► 无脊椎动物的排泄系统: (请总结!)
低等动物通过体表排泄;原肾管排泄(扁形动物、原腔动 物);后肾管排泄(环节动物、软体动物);触角腺、基 节腺、马氏管、体表排泄(节肢动物);皮鳃、管足、体 表排泄(棘皮动物)。
► 水生动物代谢废物主要是氨,陆生动物是尿
酸(盐)或尿素。
15
6、循环系统:
► 循环系统:是动物运送血液和淋巴液,使之
运行于器官组织之间的管道系统。 ► 类型:开管式循环系统(软体动物、节肢动 物等)和闭管式循环系统(环节动物、棘皮 动物、脊索动物。(名词含义?) ► 血液循环基本结构:心脏、动脉、小动脉、 毛细血管、小静脉、静脉、门静脉等。