有理数的加法(二)教学设计

合集下载

人教版七年级数学上册第一章有理数《有理数的加法》第二课时教案

人教版七年级数学上册第一章有理数《有理数的加法》第二课时教案

课题 1.3.1有理数的加法(2)备课时间序号授课时间主备人授课班级七年级课标要求理解有理数的运算律,能解决简单问题。

教学目标知识与技能:能用运算律简化有理数加法的运算。

过程与方法:经历有理数加法运算律的探索过程,理解有理数加法的运算律。

情感态度价值观:使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力。

教学重点加法交换律和结合律,及其合理、灵活的运用教学难点合理运用运算律教学方法类比教学过程设计师生活动设计意图一、引出课题回顾复习:小学时已学过的加法运算律有哪几条?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题。

二、分析问题、探究新知1.有理数加法交换律的学习问题1:我们如何知道加法交换律在有理数范围内是否适用?问题2:我们如何用语言来叙述有理数加法的交换律呢?教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变。

”问题3 :你能把有理数加法的交换律用字母来表示吗?〔1〕式子中的字母分别表示任意的一个有理数。

(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。

(2)在同一个式子中,同一个字母表示同一个数.2.有理数加法结合律的学习.(基本步骤同于加法交换律的学习)学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证由学生回答得出a+b=b+a后,教师说明“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律.让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性板书设计:1.3.1 有理数的加法有理数的加法中,两个数相加, 交换加数的位置,和不变。

加法交换律:a+b=b+a有理数的加法中,三个数相加, 先把前两个数相加,或者先把 后两数相加,和不变。

北师大版数学七年级上册《有理数的加法法则》教学设计2

北师大版数学七年级上册《有理数的加法法则》教学设计2

北师大版数学七年级上册《有理数的加法法则》教学设计2一. 教材分析《有理数的加法法则》是北师大版数学七年级上册的教学内容。

本节课的主要内容是让学生掌握有理数的加法法则,并能够熟练运用这些法则进行计算。

教材通过引入日常生活中的实例,让学生感受有理数加法的实际意义,进而引导学生探索并总结有理数加法的基本法则。

教材内容由浅入深,逐步引导学生理解和掌握有理数加法的本质。

二. 学情分析学生在进入七年级之前,已经学习了有理数的基本概念,对数的概念有一定的了解。

但是,由于有理数加法涉及到正负数的运算,学生可能对此概念感到困惑。

因此,在教学过程中,需要关注学生的学习兴趣,通过生动有趣的实例,引导学生积极参与课堂讨论,激发学生的学习热情。

三. 教学目标1.让学生掌握有理数的加法法则,能够熟练运用这些法则进行计算。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生的学习兴趣,增强学生对数学学科的认同感。

四. 教学重难点1.重难点:有理数的加法法则的掌握和运用。

2.难点:理解正负数加法的本质,能够熟练运用加法法则进行计算。

五. 教学方法1.采用问题驱动的教学方法,通过设置问题引导学生思考和探索。

2.运用实例教学,结合日常生活,让学生感受有理数加法的实际意义。

3.采用合作学习的方式,鼓励学生积极参与课堂讨论,培养学生的团队协作能力。

4.运用激励评价,关注学生的学习过程,提高学生的自信心。

六. 教学准备1.教学课件:制作课件,包括教材内容、实例、问题等。

2.教学素材:准备一些与生活相关的实例,用于引导学生思考和探索。

3.教学设备:准备投影仪、计算机等教学设备。

七. 教学过程1.导入(5分钟)利用生活实例引入有理数加法的话题,例如:“小明买了一支铅笔,花费了2元,后又买了一支橡皮,花费了1元,请问小明一共花费了多少元?”引导学生思考和讨论,激发学生的学习兴趣。

2.呈现(10分钟)呈现教材中的有理数加法法则,通过讲解和示范,让学生初步理解有理数加法的基本法则。

有理数的加法的教案5篇

有理数的加法的教案5篇

有理数的加法的教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作报告、工作计划、心得体会、合同方案、演讲稿、作文大全、教案、述职报告、调查报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work reports, work plans, reflections, contract proposals, speeches, essay summaries, lesson plans, job reports, investigation reports, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!有理数的加法的教案5篇教案能够帮助教师更好地掌握教学进度,合理安排课程内容,一份实用的教案可以帮助教师更好地组织和安排课堂教学活动,提高教学效率,本店铺今天就为您带来了有理数的加法的教案5篇,相信一定会对你有所帮助。

七年级数学上册《有理数的加法》教案 (公开课获奖)2 (新版)新人教版

七年级数学上册《有理数的加法》教案 (公开课获奖)2 (新版)新人教版

有理数的加法教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.小结 五、课时小结: 本节课我们探索了有理数加法的运算律,灵活运用加法的运算律使运算简便.一般情况下,将互为相反数的数结合相加;同分母的分数能凑整的数结合;正数、负数分别相加,以使计算简便.作 业 1、教科书 习题1.3第1题;2、配套练习相关题目。

板 书 设 计一、 复习引入 二、 讲授新课 三、 例题讲解 四、 当堂检测 五、课时小结教 学 反 思组长查阅2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.(二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条D CA BD CABDCAB理、很规范.下面我们来看大屏幕. (演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CA答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D C A B(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习EDCA B P1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷---(3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

有理数的加法第二课时

有理数的加法第二课时

三步五环教学模式《1.3.1有理数的加法(第2课时)》教学设计及评析4、(-0.9)+(-1.8)2、叙述有理数的加法法则.①同号两数相加,取____的符号,并把绝对值____②异号两数相加,绝对值相等时和为__;绝对值不相等时,其和的符号取_____加数的符号,其和的绝对值为较大的绝对值____较小的绝对值;③一个数同零相加_______ 定和鼓励3、出示问题2让学生温故知新,为本节课做铺垫。

【学生活动】1、口答问题1.2、口答问题2.教师予以强调。

活动二诱导尝试,探究新知(20分钟) 1、看哪一组的人算的又对又快第一组第二组你有什么发现?2、小学我们学过加法交换律,在有理【教师活动】1、演示课件2、参与各小组的计算,对学生回答给予肯定和鼓励,交流中与学生探究归纳出有理数加法的运算侓。

3、结合情境归纳运算侓并板书。

【学生活动】1、小组合作交流,比赛算的速度。

并汇报计算结果。

2、通过具体的实例,组【媒体使用】略【赏析】依次出示问题探讨一到四内容。

(1)引入竞争机制,将数学活动趣味化,全员参与,体现“人人学有价值的数学”的课程理念。

(2)经历“特殊——般”的认知过程帮助学生获得观察类比、归纳猜想的数学活动经验,培养学生清晰而有条理地表达自己的思考过程的能力和科学意识,进一步发展演绎推理能力。

(3)让学生自探数学知识,自获数学结论,自由发表见解,自觉积累数学活动经验、建构新的认知结构,发展学生。

有理数的加减混合运算(二)教案

有理数的加减混合运算(二)教案

第二章有理数及其运算6.有理数的加法混合运算(二)一学生起点分析:学生的知识技能基础:在上一节课的学习中学生已经学习了有理数的加减混合运算,初步接触了含有小数或分数的有理数的加减混合运算,知道加减混合运算利用加法法则和减法法则可以统一成加法进行运算,但还不够熟练,对在混合运算中如何运用加法交换律和结合律还不了解。

[来源:]学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力;经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力;同时在本章前面的数学学习中学生已经具备了一定的运算技能,能够解决一些简单的实际问题。

这些为本节课的学习作了很好的奠基和知识准备。

二教学任务分析:本节课就是在前面学习的基础上进一步熟练有理数的加减混合运算时,体会可以适当地运用加法交换律和结合律来简化运算.为了避免学习对单纯的运算产生厌烦情绪,所以利用游戏来训练有理数的加减混合运算,以增加学习的趣味性.本课时的教学目标如下:1.让学生熟练地进行有理数加减混合运算,并利用运算律简化运算.[来源:学.科.网]2.灵活运用有理数运算法则进行加减混合运算.熟练掌握有理数的加减混合运算及其运算顺序.3.能根据具体问题,适当运用运算律简化运算.三教学过程设计[来源:Z。

xx。

k.]本节课设计了六个教学环节:第一环节:问题引入;第二环节:讲授新课;第三环节:合作学习;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。

[来源:ZXXK][来源:学&科&网]第一环节:问题引入活动内容:请学生说出-6+9-8-7+3两种读法.活动目的:复习前面所学的知识,引出今天所学的内容,起到温故知新的作用。

活动的实际效果: 学生多数能从有理数加法和减法的关系说出上式的两种读法.[来源:Zxxk.] 第二环节:讲授新课活动内容:通过游戏来进一步熟练有理数的加减混合运算(课前每人准备红色卡片和白色卡片共20张,在每张卡片上写上任意数字).游戏规则如下:(1)四人一组,每组选一学生当代表,在同组的80张卡片中,抽取4张,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.[来源:学,科,网Z,X,X,K](2)每组四人都计算,然后看结果的正确与否,再看一看谁用的计算方法最简便。

数学有理数的加法教案精选8篇

数学有理数的加法教案精选8篇

数学有理数的加法教案精选8篇有理数的加法教案篇一(一)知识与技能目标1、经历探索有理数加法法则的过程,理解有理数的加法法则。

2、运用有理数加法法则熟练进行整数加法运算。

(二)过程与方法目标1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

3、渗透由特殊到一般的唯物辩证法思想(三)情感态度与价值观目标(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

(3)培养学生合作意识,体验成功,树立学习自信心。

二、教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则三、教学组织与教材处理:在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。

新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。

信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)=+5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。

又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。

同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。

有理数的加法教案优秀15篇

有理数的加法教案优秀15篇

有理数的加法教案优秀15篇有理数的加法教案篇一一、教学目标(一)知识与技能1、使学生掌握有理数加法法则,并能运用法则进行计算;2、在有理数加法法则的教学过程中,注意培养学生的运算能力。

(二)过程与方法1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

(三)情感、态度与价值观1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。

2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。

二、教学重点会用有理数加法法则进行运算。

三、教学难点异号两数相加的#39;法则。

四、教学方法探究法、引导发现法五、教具准备多媒体课件、导学案六、教学过程(一)创设情景,引入新课。

小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把�(二)探究新知1、大家开始画数轴,以原点为起点,规定向右的�(1)若两次都是向右走,很明显,一共向右走了5米。

记作:(+2)+(+3)= +5(2)若两次都是向左走,很明显,一共向左走了5米。

记作:(-2)+(-3)= -5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。

记作:(+2)+(-3)= -1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。

记作:(-2)+ (+3)= +12、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。

我们可以借助数轴来得知两个有理数相加的结果。

请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。

1)(-4)+ (-1)2)(+5)+(-3)3)(-4)+(+7)4)(-6)+33、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。

《有理数的加法(第2课时)》精品教案

《有理数的加法(第2课时)》精品教案

有理数的加法
第2课时有理数加法的运算律
一、教与学目标:
1.使学生能够比较灵活地运用加法的运算律,简化加法运算;
2.体会简便运算的常用策略,渗透字母表示数的意识.
二、教与学重点难点:
使学生能比较灵活的运用加法运算律,简化加法运算.
三、教与学方法:
自主探究、合作交流.
四、教与学过程:
五、课堂小结:
通过本节课的学习,你有哪些收获还有哪些疑惑
加法交换律:两个数相加,交换加数的位置,和()
即 a+b=()
加法结合律:三个数相加,先把前两个数相加,或则先把后两个数相加,和().
即(a+b)+c=a+()
六、作业布置:。

人教版数学七年级上册1.3.1《有理数的加法》教案2

人教版数学七年级上册1.3.1《有理数的加法》教案2

人教版数学七年级上册1.3.1《有理数的加法》教案2一. 教材分析《有理数的加法》是初中数学的重要内容,也是学习更复杂数学运算的基础。

本节课的内容主要包括有理数的加法法则、加法的运算律以及加法运算的优先级。

通过学习,学生能够理解有理数加法的概念,掌握有理数加法的运算方法,并能够运用加法法则解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了有理数的概念、加减法的基本运算,对数学运算有一定的基础。

但部分学生可能对有理数加法的理解不够深入,对于加法的运算律和优先级规则可能存在模糊之处。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。

三. 教学目标1.理解有理数加法的概念,掌握有理数加法的运算方法。

2.掌握有理数加法的运算律和优先级规则。

3.能够运用加法法则解决实际问题。

4.培养学生的运算能力和逻辑思维能力。

四. 教学重难点1.有理数加法的运算方法。

2.有理数加法的运算律和优先级规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过案例分析,让学生深入了解有理数加法的应用;通过小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.PPT课件。

2.教学案例和习题。

3.的黑板和粉笔。

七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的加法实例,如购物时物品的总价、烹饪时食材的配比等,引导学生关注加法在实际生活中的应用。

同时,提出问题:“你们认为加法有什么运算规律吗?”2.呈现(10分钟)通过PPT课件呈现有理数加法的定义和运算方法,讲解加法的运算律和优先级规则。

结合案例,让学生了解加法在数学中的应用。

3.操练(10分钟)让学生进行有理数加法的运算练习,教师巡回指导,及时发现并纠正学生的错误。

在此过程中,引导学生发现加法的运算律和优先级规则,并加以运用。

4.巩固(5分钟)通过PPT课件呈现一些有关有理数加法的应用题,让学生独立解答。

有理数的加法(2

有理数的加法(2

`有理数的加法一、教材分析本节是有理数的加法的第二课时,它是在有理数加法的基础上进行简便运算的一种方法,为以后进行混合运算打下基础,因此,这一节在本章中占有不可取代的位置。

这节主要通过简化加法运算,让学生体会运算律的作用,让学生知道每进行一步运算都要有根有据,逐步培养学生的逻辑思维能力。

二、学情分析在小学阶段学生学习了加法交换律和结合律,因此学生对运用加法交换律和结合律进行运算并不陌生也很容易掌握,并且初一的学生学习积极性高,探索欲望强烈,所以在教学活动中我紧紧抓住学生的这种心理,鼓励学生参与教学活动,多探索,培养学生的合作交流的能力。

三、教学目标知识与技能:经历探索加法交换律和结合律的验证过程,理解加法交换律和结合律,熟练地运用加法交换律和结合律解题。

过程与方法:通过小组合作交流,验证加法交换律和结合律过程,通过综合运用有理数加法法则及加法运算律,培养学生的观察、比较、归纳及运算能力。

情感态度与价值观:鼓励学生积极参与数学活动,养成认真勤奋、独立思考、合作交流等学习习惯,形成严谨求实的科学态度。

四、教学重点、难点教学重点:运用加法运算律简化运算。

教学难点:如何灵活运用加法运算律五、教法与学法分析教法分析:教学活动的本质是一种合作,一种交流。

学生是学习的主人,教师是学习的组织者、引导者与合作者。

根据学生的年龄特点和已有的知识基础,本节课注重加强知识间横向和纵向联系,拓展探索的空间,体现由具体到抽象的认识过程。

学法分析:新课程指出:学生是学生的主体。

要学生成为真正的主人,需要在数学教学中的过程中,教师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。

本节课主要采用自主学习、合作探究、引领提升、讲练结合的方法展开教学。

六、教学环节及课时安排:复合运拓自达知习作用展我标识巩探规应小检延固究律用结测伸引验快培提巩分入证速养升固层新规解能能新作课律题力力知业课时安排:1课时七、教学过程教师活动学生活动设计意图环节复习巩固,引入新课回顾一有理数的加法分哪几种情况?分别如何运算?回顾二在小学中我们学过哪些加法的运算律?师:小学的加法交换律、结合律在有理数范围内适合吗?让我们一起来探究。

有理数加法(第二课时)

有理数加法(第二课时)

指导思想 理论依据
教学背 景分析
教学目标 重难点分析
探究活动(三)
教学过程 课后反思
例1:运用加法交换律和结合律做简便运算
设互师小计相:组意评独 讨图价:,立 论逐学完 ,渐生成 并归经例总纳历结1出独,如加立再法完何请交成计换,三算律对名方和比学法结运生最合算板律过优书使程. 用,,过小然程组后中讨的论具,
本节课的设计要做到:利用有理数加法法则和小
学阶段的加法交换律和结合律的学习经验,通过探 究发现在有理数加法运算中加法交换律和加法结合 律仍然成立,逐步感受理解运算律可以简化运算, 并逐渐总结经验,灵活运用运算律简化运算,培养学 生运算能力和简单的逻辑推理能力.
指导思想 理论依据
教学背 景分析
教学目标 重难点分析
体方法,经历探究算理到算法的过程,进一步理解运算律简 化运算的作用.培养学生理解算理,归纳算法,提高运算能 力,及合作交流学习能力.
指导思想 理论依据
教学背 景分析
教学目标 重难点分析
教学过程 课后反思
探究活动(四) 练一练:书上第50页3题,
师:看谁算的又快又对,请优先做完的同学经验介绍.
设计意图:通过5个小练习,学生解题速度的比较,再进验 证灵活使用运算律简化运算的作用,并通过具体算法更好的 理解运算律简化运算的作用.
本节教学设计,我注重学生在学习活动中主体地位, 学生能广泛参与自主探究、合作交流中,经历了在有理 数中加法交换律和结合律的简化作用的探究过程,并具 体算法的经验积累,进而更好理解算理,培养学生的运 算能力.
, 加法法则,同时
(2)(-9)+(-12)=________, 得到在有理数中
(-12)+(-9)=_______, 加法交换律仍然

《有理数的加法》教案 (公开课获奖)2

《有理数的加法》教案 (公开课获奖)2

有理数的加法教学目的和要求:1.使学生理解加法运算率在加法运算中的作用,能运用加法运算律简化加法运算。

2.培养学生计算能力;在算法优化过程中培养学生观察能力和思维能力。

3.培养学生观察、比拟、归纳及运算能力。

教学重点和难点:重点:有理数加法运算律。

难点:灵活运用运算律使运算简便。

教学工具和方法:工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。

〔问题情境式教学法〕 教学过程: 一、复习引入:1.表达有理数加法法那么。

2.计算:〔1〕6.18 +(); (2)(+5)+(-12); (3)(―12)+(+5); (4)3.75 + 2.5 +(); (5)21 +(–32)+(–21)+(–31)。

说明:通过练习稳固加法法那么,暴露计算优化问题,引出新课。

〔情境导入〕〔问题一:宋国有个非常喜欢猴子的老人。

他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意。

因为粮食缺乏,老人想限制口粮。

那天,他成心先对猴子们说:“猴子们,给你们吃橡子,早晨三颗晚上四颗,好不好?〞 众猴子听了都很愤怒。

老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?〞众猴子非常快乐,大蹦大跳起来。

大家听完故事,请说说你的看法。

学生答复,可能有以下情形:1 :猴子们很笨,老人很聪明。

因为老人一天之内给的橡子数目是一样的,都是 7 个。

2 :猴子性子急,他先收到多的就快乐了。

3 :那老人为什么不早五颗晚二颗,猴子不是更快乐了?4 :人家老人聪明的就在这里,早5 晚 2 相差太多,会造成晚饭不饱。

老人是利用了数学的加法交换律,满足了猴子们。

教师归纳并引入新课。

问题二:小学学过的加法运算律有哪些呢? 学生答复:加法交换律和加法结合律。

问题三:谁能用字母来表示呢?学生答复 :加法交换律是 a+b=b+a ,加法结合律是 (a+b)+c=a+(b+c)教师归纳:我们已经知道,小学所学的有些规律,在初中由于负数的引进而变得不成立。

有理数的加法教案优秀6篇

有理数的加法教案优秀6篇

有理数的加法教案优秀6篇有理数的加法教案篇一一、教学目标1.知识与技能(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。

2.过程与方法通过观察,比较,归纳等得出有理数加法法则。

能运用有理数加法法则解决实际问题。

3.情感态度与价值观认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二、教学重难点及关键:重点:会用有理数加法法则进行运算。

难点:异号两数相加的法则。

关键:通过实例引入,循序渐进,加强法则的应用。

三、教学方法发现法、归纳法、与师生轰动紧密结合。

四、教材分析“有理数的加法”是人教版七年级数学上册一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

五、教学过程(一)问题与情境我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。

例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。

章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。

于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。

(二)师生共同探究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。

这节课我们来研究两个有理数的加法。

两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量。

若我们规定赢球为“正”,输球为“负”,打平为“0”。

比如,赢3球记为+3,输1球记为-1。

学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球。

也就是(+3)+(+1)=+4。

有理数的加法(第2课时)教学案

有理数的加法(第2课时)教学案

教材分析有理数的加法是有理数运算的一个非常重要的内容,它建立在小学算术运算的基础上。

由于有理数的加法是有理数运算的开始,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。

同时,学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义。

本节是第2课时。

学情分析新课程标准中特别重视学法的指导,我结合所教的七年级学生,已经具有一定的分析解决问题的能力,好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,在教学中,一方面要运用直观生动的问题,有意识地创设适合学生自主学习的环境,让学生在学习过程中自己体验和发现解决问题;另一方面要创造条件和机会,让学生发表见解,不但让学生“学会”,还要让学生“会学”、“乐学”。

设计理念七年级年龄段的学生思维活跃、求知欲强、有较强的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中,人人都自信满满,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

教学目标1、经历探索有理数加法运算律的归纳概括过程,会运用运算律进行简化运算。

2、运用有理数的加法运算解决简单的实际问题,体会数学与现实世界的密切联系,增强应用意识。

学习重点1、探索有理数加法运算律的归纳概括,会用运算律进行化简运算;2、能运用有理数加法运算律解决简单的实际问题。

学习难点探索有理数加法运算律的归纳概括,会用运算律进行化简运算。

教学准备先一天发放导学卡,让学生预习完成。

多媒体、投影仪。

教学过程设计三个阶段学习内容教师行为期望学生行为课题: 1.5有理数的加法(第2课时)课型:新授课时: 1主备人:审核人:授课时间:年月日自主学习阶段【旧知回顾】1、在小学,我们学过的加法运算律有哪些?2、它们的内容是什么?3、请一两个例子来?【新知探究】一、做一做1、计算:⑴5+(-13)=_______ (-13)+5=_______⑵(-4)+(-8)=_______ (-8)+(-4)=_______2、计算⑴[3+(-8)]+(-4)=______3+[(-8)+(-4)]=______⑵[(-6)+(-12)]+15=_______(-6)+[(-12)+15]=_______二、总结规律:1、通过上面的计算,我们发现,有理数的加法仍满足和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章有理数及其运算
4.有理数的加法(二)
一学生起点分析:
学生在小学学过加法运算,知道加法的交换律和结合律,学生在上一课时已经探索总结出了有理数的加法法则,并进行了一定量的练习,但熟练程度还不够,并且对过去的加法交换律和结合律是否对有理数适用未进行探讨。

二教学任务分析:
和有理数的加法运算律一样,有理数加法运算律的得出也是要学生自主探索,同时通过具体运算体会运算律对计算的简便之处。

本课时教学重点是有理数加法运算律,并能运用加法运算律简化运算;教学难点是灵活运用运算律简化运算。

具体教学目标如下:知识与技能:
1.进一步熟练掌握有理数加法的法则;
2.掌握有理数加法的运算律,并能运用加法运算律简化运算。

过程与方法:
启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。

情感、态度与价值观:
1.培养学生的分类与归纳能力。

2.强化学生的数形结合思想。

3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。

三教学过程设计:
本节课设计了六个教学环节:第一环节:情境引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。

(一)情境引入,提出问题:
活动内容:
1.叙述有理数的加法法则.
2.小学学过的加法的运算律是不是也可以扩充到有理数范围?
3.计算下列各题,并说明是根据哪一条运算法则?
(1)(-9.18)+6.18; (2)6.18+(-9.18); (3)(-2.37)+(-4.63);
4.计算下列各题:
(1)[8+(-5)]+(-4); (2)8+[(-5)+(-4)];
(3)[(-7)+(-10)]+(-11); (4)(-7)+[(-10)+(-11)];
(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].
活动目的:复习旧知识,为新的知识内容做准备。

活动的实际效果:学生知道了小学的加法运算和有理数加法运算的联系与区别:进行有理数加法运算,先要根据具体情况正确地选用法则,确定“和”的符号,这与小学里学过的数的加法是不同的,而计算“和”的绝对值,用的是小学里学过的加法或减法运算;同时巩固了有理数的加法运算。

(二)活动探究,猜想结论:
活动内容:通过上面练习,引导学生得出:
交换律——两个有理数相加,交换加数的位置,和不变.
用代数式表示:
a+b=b+a.
运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示:
(a+b)+c=a+(b+c).
这里a、b、c表示任意三个有理数.
活动目的:通过特例归纳有理数的加法交换律、结合律。

活动的实际效果:让学生自己总结,参与教学活动,从而使学生积极主动地学习,并且营造了良好的学习氛围.
(三)验证明确结论:
活动内容:
例1计算:16+(-25)+24+(-32).
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算比较简便.
解: 16+(-25)+24+(-32)
=16+24+(-25)+(-32) (加法交换律)
=(16+24)+[(-25)+(-32)] (加法结合律)
=40+(-57) (同号相加法则)
=-17 (异号相加法则) 提出问题引起学生反思:此题你是抓住数的什么特点使计算简化的?依据是什么?
总结常用的三个规律:
1、一般地,总是先把正数或负数分别结合在一起相加。

2、有相反数的可先把相反数相加,能凑整的可先凑整。

3、有分母相同的,可先把分母相同的数结合相加。

活动目的:体会加法运算律对运算的简化作用,并且根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.活动的实际效果:本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:消去互为相反数的两数(其和为0)、同号结合或凑整数.
(四)运用巩固:
活动内容:
计算:(要求注理由)
(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);
(3)(-7)+(-6.5)+(-3)+6.5.
活动目的:通过习题,加深学生对有理数加法运算律的理解。

活动的实际效果:教师指定几名学生板演,并引导学生发现解题过程中出现的问题,及时解决。

(五)课堂小结:
活动内容:请同学们谈一谈这节课的体会和收获。

1、通过具体有理数的计算,把加法运算律从非负数范围扩大到有理数的范围。

2、掌握加法运算律的法则及公式,并适当的运用运算律进行简化计算。

3、有理数加法解决实际问题,体会求简意识。

(六)布置作业:
课本65页:知识技能 1、2、3、4. 问题解决 1.
四、教学设计反思
1.课堂上应当把更多的时间留给学生
在课堂教学中应当把更多时间交给学生。

本节课中有理数运算律的探究,例题的讲解,习题的完成,知识的总结尽可能的全部由学生完成,教师所起的作用是点拨,评价和指导。

这样做,可以更好的体现以学生为中心的教学思想,能更好的提高学生的综合能力。

2.不要忽视代数推理对学生的思维训练作用
我们一向会错误地认为,推理训练是几何教学的目的,代数可以不讲推理.其实,计算本身就是推理,计算法则、运算性质都是进行计算的根据.学生要知道每进行一步运算都要有根有据.这样通过运算就能逐步培养学生的逻辑思维能力.。

相关文档
最新文档