椭圆第1,2,3,4,5定义的推导过程和方法

合集下载

椭圆定义及其标准方程

椭圆定义及其标准方程

椭圆定义及其标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

这两个定点F1和F2称为椭圆的焦点,常数2a称为椭圆的长轴长。

椭圆的长轴的中点O称为椭圆的中心,短轴的长度称为椭圆的短轴长。

椭圆的离心率e是一个小于1的正数,它等于焦距与长轴长之比的一半。

椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别为椭圆的长轴长和短轴长。

在坐标系中,椭圆的中心位于原点O(0, 0),长轴与x轴平行,短轴与y轴平行。

椭圆的定义和标准方程给出了椭圆的基本特征,下面我们来详细解释一下椭圆的性质和应用。

首先,椭圆是一种闭合的曲线,它在平面上呈现出一种椭圆形状,具有两个对称轴,分别是长轴和短轴。

椭圆的离心率决定了椭圆的形状,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆趋近于长条形。

其次,椭圆在几何光学、天文学、工程学等领域有着广泛的应用。

在几何光学中,椭圆镜可以将平行光线聚焦到一个焦点上,因此被广泛应用于激光器、望远镜等光学设备中。

在天文学中,行星和卫星的轨道往往呈现出椭圆形状,根据椭圆的性质可以精确描述它们的运动轨迹。

在工程学中,椭圆的形状被广泛运用于汽车、飞机等机械设备的设计中,以提高性能和效率。

另外,椭圆还具有许多有趣的数学性质。

例如,椭圆的面积可以用长轴和短轴的长度来表示,即πab,其中π为圆周率。

椭圆还具有反射性质,即光线从一个焦点射到椭圆上,会经过另一个焦点。

这些性质使得椭圆成为了数学研究和实际应用中的重要对象。

总之,椭圆是一个具有丰富几何性质和广泛应用价值的数学对象,它的定义和标准方程为我们理解和利用椭圆提供了重要的基础。

通过对椭圆的深入研究和应用,我们可以更好地认识和掌握这一重要的数学概念,为科学研究和工程实践提供更多可能性。

椭圆定义及性质整合

椭圆定义及性质整合
4
2
X2
—y21.【解析】解法一:
4
222
P(X,y), MM』),则N(%,yj,因为今11,则y2b2(1得),a ba
y12b2(1
2
X1
ki
k2
y y〔yy1
x x1x x1
22
yy1
22
xx1
b2(1 S) b2(1
2
X1
2
椭圆方程为—
4
1.
解法二:由第三定义知
1一,,一、…
1,且2a 4 ,则则椭圆方程为
[2, 1]所以k1[—,—].
8 4
二、椭圆的性质
焦点三角形
椭圆焦点三角形的边角关系:F1F22c, PF1
PF22a,周长为
2a
2c.设
F1PF2
(1)
当点P处于短轴的顶点处时,顶角 最大;
(3)
(4)
PF1PF2
SPF1F2
PF1F2
推导过程:
2b2
1cos
.2.
b tan —;
2
SB1F1F2
4c2
22
4a24c2
PF1PF2
1cos
1 cos
2 a2
222
2a 2e0x0
1,
最大;
PF1
2b2
1cosmax
PF1
PF24 c2
2 b2
2 n,(当点P为短轴
1 2cos23 1
2
顶点时 取得最大值0,此时cos—
2
代入化简得PF1PF2
2b22
a
1cos
S 1 2b2
⑶由(2)得SPF1F22 r^cos

椭圆定义及性质整合

椭圆定义及性质整合

椭圆定义及性质的应用一、椭圆的定义椭圆第一定义第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.★过点1F 作12PF F ∆的P ∠的外角平分线的垂线,垂足为Q ,则Q 的轨迹方程为222x y a +=.推导过程:延长1F Q 交2F P 于M ,连接OQ ,由已知有PQ 为1MF 的中垂线,则1PF PM =,Q 为1F M 中点,212OQ F M ==()1212PF PF +=a ,所以Q 的轨迹方程为 222x y a +=.(椭圆的方程与离心率学案第5题)椭圆第二定义第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆.2PF e d =(d 为点P 到右准线的距离),右准线对应右焦点,其中2PF 称作焦半径,左、右准线公式2a x c=±..椭圆的焦半径公式为:1020,PF a ex PF a ex =+=-.推导过程:2200aPF ed e x a exc⎛⎫==-=-⎪⎝⎭;同理得10PF a ex=+.简记为:左加右减a在前.由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数. (离心率、焦点弦问题)例1:(2010全国卷Ⅱ理数12题)已知椭圆2222:1(0)x yC a ba b+=>>的离心率为3,过右焦点F且斜率为(0)k k>的直线与C相交于,A B两点.若3AF FB=u u u r u u u r,则k=()A.1 D.2B【解析】解法一:1122(,),(,)A x yB x y,∵3AF FB=u u u r u u u r,∴123y y=-,∵2e=,设2,a t c==,b t=,∴222440x y b+-=,直线AB方程为x my=.代入消去x,∴222(4)0m y b++-=,∴2121222,44by y y ym m+=-=-++,则2222222,344by ym m-=--=-++,解得212m=,则k= 0k>.解法二:设直线l为椭圆的右准线,e为离心率,过,A B别作11,AA BB垂直于l,11,A B为垂足,过B作BH垂直于1AA与H,设BF m=,由第二定义得,11,AF BFAA BBe e==,由3AF FB=u u u r u u u r,得13mAAe=,2mAHe=,4AB m=,则21cos42mAH eBAHAB m e∠====,则sin BAH∠=tan BAH∠=,则k=0k>.故选B.(离心率、焦点弦问题)例2:倾斜角为6π的直线过椭圆)0(12222>>=+babyax的左焦点F,交椭圆于,A B 两点,且有3AF BF=,求椭圆的离心率.33【解析】解法一:,AF BF 为左焦点上的焦半径,所以过,A B 两点分别作垂直于准线的直线且和准线交于11,A B 两点,从B 点作1BH AA ⊥.因为3AF BF =,设BF m =,则3AF m =,4AB m =,又因为11AF BF e AA BB ==,则1BF m BB e e ==,13m AA e =,所以2m AH e=,在ABH ∆中,6BAH π∠=,所以32AH AB =,解得33e =. 解法二:如图,设,3BF m AF m ==,则122,23BF a m AF a m =-=-,在12AF F ∆中,由余弦定理得222394(23)cos 62232m c a m m cπ+--==⨯⨯,化简得23326cm b am =-+①,222534(2)cos 6222m c a m m cπ+--=-=⨯⨯,化简得2322cm b am -=-+②,①+②×3化简得,223b m a =,代入①解得3e =. 椭圆第三定义第三定义:在椭圆)0(12222>>=+b a by a x 中,,A B 两点关于原点对称,P 是椭圆上异于,A B 两点的任意一点,若PB PA k k ,存在,则1222-=-=⋅e a b k k PBPA .(反之亦成立).(★焦点在Y 轴上时,椭圆满足22ba k k PB PA -=⋅) 推导过程:设(,)P x y ,11(,)A x y ,则11(,)B x y --.所以12222=+b y a x ①,1221221=+by a x ②;由①-②得22122212b y y a x x --=-,所以22212212a b x x y y -=--,所以222111222111PA PB y y y y y y b k k x x x x x x a -+-⋅=⋅==--+-为定值. 例1:已知椭圆)0(12222>>=+b a by a x 的长轴长为4,若点P 是椭圆上任意一点,过原点的直线l 与椭圆相交与N M ,两点,记直线PN PM ,的斜率分别为21,k k .若4121-=⋅k k ,则椭圆的方程为 . 1422=+y x .【解析】解法一:(,)P x y ,11(,)M x y ,则11(,)N x y --,因为12222=+b y a x ,则)1(2222ax b y -=,)1(221221a x b y -=,则222212222211112222221111(1)(1)14x x b b y y y y y y b a a k k x x x x x x x x a ----+-⋅=⋅===-=--+--.且42=a ,则椭圆方程为1422=+y x .解法二:由第三定义知4122-=-a b ,且42=a ,则则椭圆方程为1422=+y x .例2:已知椭圆)0(13422>>=+b a y x 的左右顶点分别为21,A A ,点P 在椭圆上,且直线2PA 的斜率的取值范围是]1,2[--,那么直线1PA 的斜率的取值范围是 .]43,83[.【解析】设1PA ,2PA 的斜率分别为21,k k ,则432221-=-=⋅a b k k ,又]1,2[2--∈k ,所以]43,83[1∈k . 二、椭圆的性质焦点三角形椭圆焦点三角形的边角关系:122F F c =, 122PF PF a +=,周长为22a c +.设12F PF θ∠=. (1)当点P 处于短轴的顶点处时,顶角θ最大;(2)221221cos b PF PF a θ⋅=≤+,当且仅当12PF PF =时取等号;(3)122tan2PF F S b θ∆=;(4)12112122PF F B F F S S c b bc ∆∆≤=⨯⨯=,当且仅当12PF PF =时取等号. 推导过程:(1)()()()2222222212002222222120004444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---===-⋅-+, 当00x =时,cos θ有最小值2222a c a-,即12F PF θ∠=最大; (2)22212124cos 2PF PF c PF PF θ+-=⋅,()221212122cos 24PF PF PF PF PF PF c θ⋅=+-⋅-则有,21221cos b PF PF θ⋅=+,2221220max 2221cos 1cos 12cos 12b b b PF PF θθθ⋅=≤=+++-,(当点P 为短轴顶点时θ取得最大值0θ,此时0cos 2b a θ=),代入化简得221221cos b PF PF a θ⋅=≤+. (3)由(2)得12222212sin 2sin cos tan21cos 2222cos 2PF F b b S b θθθθθθ∆=⨯⋅=⋅=+. (离心率问题)例1.已知12,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左右焦点,椭圆C 上存在一点P ,使得1290F PF ∠=︒,则椭圆C 的离心率的取值范围是__________.【解析】解法一:在椭圆中,焦点三角形顶角最大时点B 位于短轴的交点处,由题意得145F BO ∠≥︒, 所以1FO OB ≥,即c b ≥,解得e ∈. 解法二:设(,)P x y ,由题意得椭圆C 上存在一点P ,使得12F P F P ⊥u u u r u u u u r,即(,)(,)0x c y x c y +-=,化简,得222x y c +=,与12222=+b y a x 联立,消去y 得2222222a c ab x a b -=-,由椭圆范围知220x a ≤<,即22222220a c a b a a b -≤<-,化简得222b c a ≤<,解得[2e ∈. 变式1:已知12,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左右焦点,椭圆C 上存在一点P ,使得12F PF ∠为钝角,则椭圆C 的离心率的取值范围是__________.【解析】在椭圆中,焦点三角形顶角最大时点B 位于短轴的交点处,12F PF ∠为钝角,所以145F BO ∠>︒,所以1FO OB >,即c b >,解得,1)2e ∈. 变式2:已知12,F F 分别是椭圆)0(1:2222>>=+b a b y a x C 的左右焦点,椭圆C 上存在一点P ,使得1260F PF ∠=︒(变式3:12120F PF ∠=︒),则椭圆C 的离心率的取值范围是__________.1[,1)2【解析】在椭圆中,焦点三角形顶角最大时点B 位于短轴的交点处,由题意得130F BO ∠≥︒,所以11sin sin 302c F BO a ∠=≥︒=,则1[,1)2e ∈.变式3:e ∈.(离心率问题)例2.已知12,F F 是椭圆)0(1:2222>>=+b a b y a x C 的左右焦点,若在直线2a x c=上存在点P ,使得线段1PF 的中垂线过点2F ,则椭圆的离心率的取值范围是________.e ∈【解析】22PF c =,22PF F H ≥,即22a c c c ≥-解得:e ∈. (焦点三角形面积问题)例3.已知椭圆21221925F F y x 、,=+为焦点,点P 为椭圆上一点,123F PF π∠=,求21PF F S ∆.33【解析】解法一:设12,,PF m PF n ==则有10m n +=,在21F PF ∆中由余弦定理得mn n m c -+==222644,则mn mn n m 31003)(642-=-+=,则12=mn ,则333sin 2121==∆πmn S PF F .解法二:122tan9tan26PF F S b θπ∆==⨯=(焦点三角形面积问题)例4.过椭圆)0(1:2222>>=+b a b y a x C 中心的直线与椭圆交于,A B 两点,右焦点为2(c,0)F ,则 2ABF ∆的最大面积为_________.bc 【解析】由题意得,A B 关于原点对称,则有212ABF AF F S S ∆∆=,故当A 位于短轴的顶点处时,面积最大,为bc . (焦点三角形边角问题)例5.已知椭圆22194x y +=的两个焦点分别为12,F F ,点P 在椭圆上,(1)在椭圆上满足12PF PF ⊥的点P 的个数是?(2)12PF PF ⋅的最大值是?(3)12F PF ∠为钝角时,点P 的横坐标的取值范围是?【解析】(1)画图知,所求点的个数即为圆222x y c +=与椭圆的交点个数,由于52c b =>=,故有4个点.(2)解法一:设12,,PF m PF n ==则有6m n +=,212()92m n PF PF mn +⋅=≤=,当且仅当m n =时取等号.解法二:由性质得2221220min 2221cos 1(cos )12cos 12b b b PF PF θθθ⋅=≤=+++-,(当点P 为短轴顶点时取得最大值,此时0cos 2b a θ=),代入化简得221221cos b PF PF a θ⋅=≤+. (3)如图所示,222x y c +=与椭圆有4个交点,假设在第一象限的交点为00(,)P x y ,此时122F PF π∠=,设12,,PF m PF n ==则有6m n +=,222420m n c +==,解得4,2m n ==(或2,4m n ==),由等面积法得0222y c mn ⨯=,则05y =,则由勾股定理得22200()c x y n -+=,解得05x =,则由对称性可知,点P 的横坐标的取值范围是3535(,)-. (焦点三角形中与距离最值有关的问题):注意在三角函数与解析几何中最值问题的一个很重要的用法:(1)三角形两边之和大于第三边,当三点在一条线上时取得最小值; (2)两边之差小于第三边.焦点三角形中的最值问题一般是距离之和的最值,且存在定点,故可以用三角形中的不等式来求; ★若点A 为椭圆内一定点,点P 在椭圆上,则有:111AF PA PF AF -≤-≤.(三角形三边关系)★若点A 为椭圆内一定点,点P 在椭圆上,则有:12122a AF PA PF a AF -≤+≤+.推导过程:连接11,,AP AF PF ,()21122AP PF AP a PF a AP PF +=+-=+-由三角形三边关系得111AF PA PF AF -≤-≤,则有12122a AF PA PF a AF -≤+≤+(椭圆定义的应用,三角形三边关系).焦点弦经过椭圆焦点的弦是焦点弦.(1)焦点弦长可用弦长公式求22212121212211()41()4AB k x x x x y y y y k=++-=++-; *(2)设焦点弦所在的直线的倾斜角为θ,则有22222||=cos ab AB a c θ-. *(3)2211ba BF AF =+(F 为某一焦点). (4)2ABF ∆的周长为4a .(离心率、焦点弦问题)(同第二定义例1)例1:(2010全国卷Ⅱ理数12题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于,A B 两点.若3AF FB =u u u r u u u r ,则k =( )A.1B.2C.3D.2B 【解析】解答题解法:1122(,),(,)A x y B x y ,∵ 3AF FB =u u u r u u u r,∴ 123y y =-, ∵ 3e =,设2,3a t c t ==,b t =,∴ 222440x y b +-=,直线AB 方程为3x my b =+.代入消去x ,∴ 222(4)230m y mby b ++-=,∴ 21212223,4mb b y y y y m +=-=-+,则22222232,34mb b y y m -=--=-+,解得212m =,则2k =,0k >.中点弦AB 是椭圆2222:1(0)x y C a b a b +=>>的任意一弦,P 是AB 中点,则1222-=-=⋅e ab k k OPAB .证明:令()()1122,,,A x y B x y ,()00,P x y则()1202x x x+=,()1202y y y +=,()()()()22112212121212222222221..01x y x x x x y y y y a b a b x y a b ⎫+=⎪+-+-⎪⇒+=⎬⎪+=⎪⎭, ()()()()2121221212y y b x x x x a y y -+⇒=--+,由于()()1212AB y y k x x -=-,00OPy k x =,则 22AB OP b k k a⋅=-. 例1:过点(2,1)M 作一条直线l 交椭圆221169x y +=于点AB ,若点M 恰好是弦AB 的中点,求直线l 的方程.【解析】解答题步骤:解法一(点差法):由题意得直线l 有斜率,设其斜率为k ,1122(,),(,)A x y B x y ,00(,)M x y ,代入椭圆方程,有222211221,1169169x y x y +=+=,两式作差得()()()()12121212..0169x x x x y y y y +-+-+=,()()120120916y y y x x x -⨯=--,即19216k ⨯=-,则98k =-.则直线l 的方程为91(2)8y x -=-⨯-,即98260x y +-=. 解法二(代入法):由题意得直线l 有斜率,设其直线方程为1(2)y k x -=-,得12y kx k =+-,代入221169x y +=得222(916)32(12)16(12)1440k x k k x k ++-+--=,则120232(12)24916k k x x x k -+=-==+,解得98k =-,则直线l 的方程为98260x y +-=.这两种方法都体现了设而不求的思想,这是圆锥曲线解题的常用思想.切线及切点弦切线方程:(1)设),(00y x P 为圆222r y x =+上一点,则过该点的切线方程为:200r y y x x =+;(2)设),(00y x P 为椭圆)0(12222>>=+b a by a x 上一点,则过该点的切线方程为:12020=+b y y a x x .切点弦方程:(1)设),(00y x P 是圆222r y x =+外的一点,过点P 作曲线的两条切线,切点N M 、,则切点弦MN 所在直线方程为200r y y x x =+;(2)设),(00y x P 是椭圆外的一点,过点P 作曲线的两条切线,切点N M 、,则切点弦MN 所在直线方程为1220=+byyaxx.例1:以422=+yx上的点)3,1(P为切点的切线方程为_________.【解析】解法一:由题意得切线有斜率,设切线方程为)1(3-=-xky,则03=-+-kykx,则有2132=+-kk,解得33-=k,则切线方程为043=-+yx.解法二:点)3,1(P为切点,由公式得,切线方程为431=⨯+⨯yx,即043=-+yx.例2:以13422=+yx上的点)23,1(P为切点的切线方程为_________.【解析】解法一:由题意得切线有斜率,设切线方程为)1(23-=-xky,代入13422=+yx,化简得3124)23(4)43(222=--+-++kkxkkxk,则有0)3124)(43(4)23(162222=--+--=∆kkkkk,解得21-=k,则切线方程为042=-+yx.解法二:点)23,1(P为切点,由公式得,切线方程为132341=⨯+⨯yx,即042=-+yx.★过椭圆准线上任一点作椭圆和切线,切点弦AB过该准线对应的焦点.推导过程:设2,aM yc⎛⎫⎪⎝⎭,则AB的方程为2221ax y yca b+=,即021y yxc b+=必过点(),0c.★过椭圆焦点弦的两端点作椭圆的切线,切线交点在准线上.光学性质★椭圆的光学性质:过一焦点的光线经椭圆反射后必过另一焦点.★椭圆上一个点P 的两条焦半径12,PF PF 的夹角12F PF ∠被椭圆在点P 处的法线平分.(入射光线、反射光线、镜面、法线)已知:如图,椭圆C的方程为22221x y a b +=,12,F F 分别是其左、右焦点,l 是过椭圆上一点00(,)P x y 的切线,'l 为垂直于l 且过点P 的椭圆的法线,交x 轴于D ,设21,F PD F PD αβ∠=∠=, 求证:αβ=.证明:在2222:1x y C a b+=上,00(,)P x y C ∈, 则过点P 的切线方程为:00221x x y y a b+=,'l 是通过点 P 且与切线l 垂直的法线,则0000222211':()()()y x l x x y b a b a-=-, ∴法线'l 与x 轴交于20((),0)c D x a, ∴22102022||,||c c F D x c F D c x a a=+=-,∴201220||||a cx F D F D a cx +=-,又由焦半径公式得:1020||,||PF a ex PF a ex =+=-,∴1122||||||||F D PF F D PF =,∴PD 是12F PF ∠的平分线, ∴αβ=,∵90ααββ''+=︒=+,故可得αβαβ''=⇔=.例1. 已知椭圆方程为1162522=+y x ,若有光束自焦点(3,0)A 射出,经二次反射回到A 点,设二次反射点为,B C ,如图所示,则ABC D 的周长为 .20【解析】:∵椭圆方程为1162522=+y x 中,225169c =-=, ∴(3,0)A 为该椭圆的一个焦点,∴自(3,0)A 射出的光线AB 反射后,反射光线BC 定过另一个焦点(3,0)A ¢-,故ABC D 的周长为:''44520AB BA A C CA a +++==⨯=.。

椭圆第二定义的证明推导

椭圆第二定义的证明推导

椭圆第二定义的证明推导【摘要】本文通过引角法证明了椭圆的第二定义,探讨了椭圆的几何性质,推导了椭圆方程,并证明了焦半径关系和焦半径与半长轴的关系。

通过这些推导和证明,我们对椭圆的定义和性质有了更深入的了解。

椭圆是几何学中重要的曲线之一,对于理解和应用椭圆曲线在数学和工程领域起着重要作用。

本文总结了椭圆第二定义的证明推导过程,希望为读者提供清晰的逻辑结构和直观的理解。

通过本文的阐述,我们可以更加深入地探讨椭圆的相关问题,拓展数学知识的应用范围。

【关键词】椭圆,第二定义,证明推导,引角法,几何性质,方程,焦半径,半长轴,总结1. 引言1.1 椭圆第二定义的证明推导所谓椭圆的第二定义,指的是一个点到椭圆上两焦点距离之和等于常数2a的性质。

这个性质可以通过引角法进行证明。

我们可以考虑椭圆的一个特殊情况,即圆的情况。

对于圆来说,两焦点到圆上的任意一点的距离之和永远等于直径的长度,这是因为圆的定义就是两焦点之间距离相等的特殊椭圆。

接着,我们可以考虑将圆延伸成一个椭圆,同样可以证明椭圆上的任意一点到两焦点的距离之和等于常数2a。

这个证明可以通过一系列几何推理和三角学知识来完成。

通过这种方式,我们可以更深入地理解椭圆的性质,而不仅仅是通过数学公式来描述。

椭圆的几何性质还包括焦半径关系的证明和椭圆方程的推导等等,这些内容将在接下来的正文部分详细讨论。

通过对这些内容的理解和证明,我们可以更加全面地了解椭圆这一数学概念。

2. 正文2.1 引角法证明椭圆第二定义椭圆是平面几何中的一个重要概念,它在数学和物理学中有着广泛的应用。

椭圆有两种定义方式,一种是通过焦点和两焦距之和不变的性质进行定义,另一种则是通过引角法进行定义。

在本篇文章中,我们将重点讨论椭圆的引角法证明。

引角法证明椭圆的定义是一种几何证明方法,通过引角的角度关系来证明椭圆的性质。

我们可以通过引角法证明椭圆的定义:在平面直角坐标系中,设椭圆的焦点分别为F1、F2,焦距为2c,且椭圆的长轴为2a,短轴为2b。

椭圆的定义及其标准方程教学设计

椭圆的定义及其标准方程教学设计

椭圆的定义及其标准方程教学设计
一、教材分析
椭圆是选修2-1第二章《椭圆》第一节的内容,在这一节中主要学习椭圆的定义及其标准方程,它是本章也是整个解析几何中最重要的内容之一,这节课是在学生学习了坐标平面上圆的方程的基础上,运用曲线与方程理论解决具体的二次曲线的又一个实例,它是坐标法研究曲线的几何性质的又一次实际演练,同时也是进一步研究椭圆几何性质的基础,此外,它还为后面研究双曲线和抛物线这两种圆锥曲线提供打下基础,因此本节课具有承上启下的重要作用。

二、教学目标
目标:1)知识与技能:感受椭圆定义构建的过程,归纳出椭圆的定义;
2)过程与方法:经历从具体情境中抽象出椭圆模型的过程,依据椭圆的定义推导椭圆的标准方程;
3)情感、态度与价值观:进一步体会数形结合的数学思想方法。

三、教学重难点
重点:掌握椭圆的定义及其标准方程,理解坐标法的基本思想。

难点:椭圆的标准方程的建立、推导和化简过程以及坐标法的应用。

四、学情分析
学情:在学习本节课之前,学生已经学习了直线与圆的方程,对曲线和方程的概念具备了一些了解和运用的经验,用坐标法研究几何问题也有了初步的认识,但由于学生对解析几何的学习程度还不够深,对坐标法解决几何问题掌握还不够,此外,对含有两个根式之和的等式化简的运算较为生疏,去根号的方法选择不当等会成为学生推导标准方程的“拦路虎”。

圆锥曲线(抛物线、椭圆、双曲线)标准方程推导

圆锥曲线(抛物线、椭圆、双曲线)标准方程推导

圆锥曲线(抛物线、椭圆、双曲线)标准方程推导几何定义是在平面中,由所有满足到一定点与到一定直线距离相等的点所组成的图形,把这个定点称为焦点(focus)、定直线称为准线(directrix)。

为了方便推导,把这一定点放在x轴正方向上,定直线垂直x 轴放在x轴负半轴上,且原点刚好在两者中间。

上面这些都仅仅是为了推导方便而已。

设曲线上的点坐标为(x,y),于是,\begin{aligned} d(F, P) &=d(P, D) \\ \sqrt{(x-a)^{2}+(y-0)^{2}} &=|x+a| \\ (x-a)^{2}+y^{2}&=(x+a)^{2} \\ x^{2}-2 a x+a^{2}+y^{2} &=x^{2}+2 ax+a^{2} \\ y^{2} &=4 a x \end{aligned}四种不同开口的标准型:二、椭圆(Ellipse)几何意义是在平面中,由所有到两个顶点距离之和为定值的点所组成的图形,把这两个定点称为焦点(foci),也是为了推导的方便,把这两个焦点对称放在x轴正负半轴上,令两段距离之和为2a,根据两点之间距离公式进行如下推导:\begin{aligned} d\left(F_{1}, P\right)+d\left(F_{2}, P\right) &=2 a \\ \sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}} &=2 a \\ \sqrt{(x+c)^{2}+y^{2}}=& 2 a-\sqrt{(x-c)^{2}+y^{2}} \\ (x+c)^{2}+y^{2}=& 4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \\ &+(x-c)^{2}+y^{2} \\x^{2}+2 c x+c^{2}+y^{2}=& 4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \\ &+x^{2}-2 c x+c^{2}+y^{2} \\ 4 c x-4 a^{2}=&-4 a \sqrt{(x-c)^{2}+y^{2}} \\ c x-a^{2}=&-a\sqrt{(x-c)^{2}+y^{2}} \\ \left(c x-a^{2}\right)^{2}=& a^{2}\left[(x-c)^{2}+y^{2}\right] \\ c^{2} x^{2}-2a^{2} c x+a^{4}=& a^{2}\left(x^{2}-2 cx+c^{2}+y^{2}\right) \\ \left(c^{2}-a^{2}\right)x^{2}-a^{2} y^{2} &=a^{2} c^{2}-a^{4} \\ \left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2} &=a^{2}\left(a^{2}-c^{2}\right) \end{aligned}令 b^2=a^2-c^2 (根据三角形两边之和大于第三边推出c<a)所以,\begin{aligned} b^{2} x^{2}+a^{2} y^{2} &=a^{2} b^{2} \\ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} &=1\end{aligned}常见的两种椭圆标准方程,一种是横躺在x轴上,一种是“站立”着,关键就是看x和y下面哪个数值比较大,哪个大,那么长的对称轴就在哪个方向上。

从数学史看教材中椭圆定义和方程的推导 (3)

从数学史看教材中椭圆定义和方程的推导 (3)

从数学史看教材中椭圆定义和方程的推导椭圆是数学中的一个重要概念,广泛应用于几何、物理、天文学等领域。

作为数学中的基础知识,椭圆在初中、高中以及大学数学课程中都有着重要的地位。

然而,在教材中椭圆的定义和方程往往被过于简化,不足以完全展现其数学意义和历史意义。

因此,本论文旨在从数学史的角度出发,对教材中椭圆的定义和方程进行具体的推导和分析,并结合历史上的实际问题加深理解。

二、定义的推导椭圆的定义最初可以追溯到古希腊时期。

当时,希腊人发现了一条特殊直线,被称为焦点,以及一条特殊几何形状,被称为轴。

根据轴和焦点的定义,椭圆可以定义为平面上所有到两个给定焦点的距离之和等于定值的点构成的集合。

如下图所示:![椭圆定义图](/img/ellipsedefinition.png)其中,F1和F2是两个焦点,2a表示轴的长度,2c表示焦距的长度,P是椭圆上的某个点。

根据椭圆的这一定义,可以推导出椭圆的方程。

对于椭圆上的任意一点P(x,y),有:$$PF_1+PF_2=2a$$根据焦距的定义,可以得到:$$PF_1+PF_2=2\\sqrt{c^2+x^2}$$因此,椭圆的方程为:$$(\\frac{x^2}{a^2}+\\frac{y^2}{b^2})=1,a^2=b^2+c^2$$其中,a和b分别表示椭圆轴的长度,c表示焦距的长度。

三、历史问题的应用除了在数学中的应用,椭圆也在历史上有着广泛的应用。

在18世纪末,法国科学家拉格朗日就将椭圆引入到天文学中,利用椭圆轨道证明了开普勒行星运动定律。

在19世纪,德国天文学家开普勒就利用椭圆轨道研究了彗星的运动。

此外,椭圆还应用于火箭、卫星等领域的轨道设计中。

这些应用都充分体现了椭圆在现实生活中的重要性。

下面,结合历史上的实际问题,具体应用椭圆的定义和方程。

1.天文学:彗星的轨道研究开普勒是将椭圆轨道引入天文学中的先驱。

他发现,行星绕太阳的轨道并不是圆形的,而是椭圆形的。

椭圆四种定义证明过程

椭圆四种定义证明过程

椭圆四种定义证明过程1.引言1.1 概述椭圆是数学中的一个重要概念,它是平面上距离两个固定点之和恒定的点的集合。

在几何学中,椭圆经常出现在各种问题中,例如行星运动的轨道、天体运动的路径以及光的折射等等。

本文旨在通过四种不同的定义证明过程,深入探讨椭圆的特性和性质。

在这四种定义证明过程中,我们将从不同的角度出发,通过不同的推理方法,分别证明椭圆的四种定义方式的等价性。

在第一种定义的证明过程中,我们将从几何的角度出发,通过对椭圆的定义进行推导和证明。

我们将引入椭圆焦点和单位圆的概念,通过推导两个焦点和几何中心之间的关系,最终得出椭圆的几何定义。

在第二种定义的证明过程中,我们将从代数的角度出发,通过对椭圆的代数表达式进行推导和证明。

我们将引入椭圆的离心率和标准方程的概念,通过推导标准方程中的各个系数之间的关系,最终得出椭圆的代数定义。

在第三种定义的证明过程中,我们将从切线的角度出发,通过对椭圆的切线方程进行推导和证明。

我们将引入椭圆的切线和法线的概念,通过推导切线和法线方程中的各个参数之间的关系,最终得出椭圆的切线定义。

在第四种定义的证明过程中,我们将从焦点和弦的角度出发,通过对椭圆的焦点弦长的关系进行推导和证明。

我们将引入椭圆焦点和弦的概念,通过推导焦点和弦长度与椭圆的关系,最终得出椭圆的焦点定义。

通过这四种不同的定义证明过程,我们将全面了解椭圆的性质和特点,深入探究其与几何、代数、切线以及焦点弦的关系。

同时,这些证明过程也将为我们提供一种思考问题的方法和逻辑推理的技巧。

希望本文能够帮助读者更好地理解椭圆,并在数学领域中有所启发。

1.2文章结构文章结构部分的内容如下:2. 正文2.1 定义一的证明过程2.2 定义二的证明过程2.3 定义三的证明过程2.4 定义四的证明过程本文将详细介绍椭圆的四种定义证明过程。

为了便于阅读和理解,本文按照以下结构展开叙述:2.1 定义一的证明过程在本节中,将详细阐述椭圆的第一种定义,并给出相应的证明过程。

关于椭圆的第一定义和第二定义(关于椭圆的第一定义和第二定义的最值转化问题)

关于椭圆的第一定义和第二定义(关于椭圆的第一定义和第二定义的最值转化问题)

关于椭圆的第一定义和第二定义(关于椭圆的第一定义和第二定义的最值转化问题)首页>生活常识 >正文关于椭圆的第一定义和第二定义(关于椭圆的第一定义和第二定义的最值转化问题)发布日期:2023-09-21 12:26:22 次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的'并、补、交、非'也就解决了。

还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。

在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。

关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。

函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。

对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。

另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。

二次函数的零点的δ判别法,这个需要你看懂定义,多画多做题。

这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。

考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。

这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。

次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。

还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。

在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。

函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。

关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。

函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

椭圆第一定义是如何诞生的?

椭圆第一定义是如何诞生的?

椭圆第一定义是如何诞生的?汪晓勤【期刊名称】《中学数学月刊》【年(卷),期】2017(000)006【总页数】4页(P28-31)【作者】汪晓勤【作者单位】华东师范大学数学系 200241【正文语种】中文在今天的高中数学教科书中,椭圆被定义为“平面上到两定点距离之和等于定值的动点轨迹”,这就是我们通常所说的椭圆的第一定义.古希腊人一开始是通过用平面截圆锥发现三种圆锥曲线的,后来他们也把这些曲线看作“立体轨迹”.但是,他们仍然采用原始的“截线”定义.椭圆是圆锥曲线的一种,而在第一定义中,学生看不到圆锥的影子.要从HPM的视角来设计椭圆概念的教学,就需要在原始定义和第一定义之间建立联系.为此,我们需要回答这样一个历史问题:椭圆的第一定义究竟是如何诞生的?古希腊哲学家普罗克拉斯(Proclus, 5世纪)告诉我们* 普罗克拉斯依据的是欧得姆斯(Eudemus, 公元前4世纪)的记载.欧得姆斯曾著有《算术史》《几何史》和《天文学史》,但均已失传.,柏拉图学派的梅内克缪斯(Menaechmus, 公元前4世纪中叶)是圆锥曲线的发现者,圆锥曲线一开始被称为“梅内克缪斯三线”.梅内克缪斯将圆锥曲线用于解决希波克拉底(Hippocrates)因倍立方问题而提出的两个比例中项问题:在线段a和b之间找两个比例中项,使得a∶x=x∶y=y∶b.梅内克缪斯是通过用垂直于母线的平面去截三种不同的圆锥,分别得到三种曲线的,后来数学家亚里士塔欧(Aristaeus, 公元前4世纪末)分别将其称为锐角圆锥曲线、直角圆锥曲线和钝角圆锥曲线(图1~图3),分别对应于今天的椭圆、抛物线和双曲线.仅仅在圆锥上用平面截得几种曲线,是远远不能享有“发现者”美誉的,梅内克缪斯一定对三种曲线进行了深入研究,并发现了它们的基本性质.根据数学史家希思(T.L.Heath, 1861-1940)的推测[1],梅内克缪斯的研究是直接建立在三种不同的圆锥上的.锐角圆锥曲线(椭圆)的情形如图4所示.SMN是顶角为锐角的圆锥,△SMN为其轴截面.A为母线SM上一点,过A且垂直于SM的平面交SN于B,从而得到锐角圆锥曲线APB.设P为该曲线上任一点,PQ⊥AB;过P且平行于底面的平面截圆锥得圆CPD.作AE∥CD,交母线SN于E,作EG⊥AE,DF⊥CD.由三角形的相似性,得PQ2=CQ·QD=AQ·QF=AQ·QB.由此得到椭圆的基本性质:为常数.这一性质如果用今天的代数语言来表达,便是我们耳熟能详的椭圆标准方程了[2].亚里士塔欧曾著《立体轨迹》一书,对圆锥曲线作了进一步的深入研究.之后,欧几里得又著《圆锥曲线》,对圆锥曲线的研究成果做了系统的总结.可惜,上述两书均未能流传到今天.以梅内克缪斯为代表的早期希腊数学家并没有焦点的概念,因而更谈不上了解椭圆的焦半径性质了.在欧几里得《圆锥曲线》的基础上,阿波罗尼斯(Apollonius, 公元前3世纪)撰写了一部划时代的巨著——《圆锥曲线论》.书中,作者将同一圆锥被不同位置的平面所截得的曲线定义为圆锥曲线.阿波罗尼斯所用的圆锥并不局限于前人的正圆锥,而是更一般的斜圆锥(由平面上一个圆和平面外一点形成).如图5所示,通过类似作图,利用三角形相似性可得(《圆锥曲线论》第1卷命题13):B.从而同样得到椭圆的基本性质(《圆锥曲线论》第1卷命题21).《圆锥曲线论》第3卷对圆锥曲线的与切线相关的一些性质进行了研究.如图8,O为椭圆的中心,AB为椭圆的长轴,OE为短半轴,F1和F2为焦点,AC和BD 与AB垂直,点P为椭圆上异于A, B的任意一点,椭圆在点P处的切线分别与AC和BD交于点C和D.CF2和DF1交于点H,连结HP.阿波罗尼斯首先证明[3]:命题1 AC·BD=OE2.利用椭圆的基本性质,可得AF1·F1B=OE2,故由命题1可得AC·BD=AF1·F1B,即=.因∠A=∠B=90°,故Rt△CAF1与R t△F1BD相似.于是得∠AF1C+∠BF1D=∠AF1C+∠ACF1=90°.类似可得∠AF2C+∠BF2D=90°.故有命题2 ∠CF1D=∠CF2D=90°.由命题2可得C, F1, F2, D四点共圆,故有∠DF1F2=∠DCF2,∠CF2F1=∠CDF1.从而得命题3 ∠ACF1 =∠DCF2,∠CDF1=∠BDF2.接下来,阿波罗尼斯用较繁琐的反证法来证明命题4 HP为椭圆在点P处的法线,即HP⊥CD.由命题4可知,C, F1, H, P和P, H, F2, D分别共圆,故有∠CPF1=∠CHF1,∠DPF2=∠DHF2.于是得命题5 (椭圆的光学性质)椭圆在点P处的两条焦半径与该点处切线所成角相等,即∠CPF1=∠DPF2.命题6 过F1(或F2)向切线CD引垂线,垂足为K,则AK⊥BK.如图9,因C, A, F1, K和K, F1, B, D分别共圆,故∠AKF1=∠ACF1=∠BF1D=∠BKD,于是得∠AKB=∠F1KD=90°.命题7 过椭圆中心O作F2P的平行线,交CD于G,则OG=OA.过F1作F2P的平行线,交DC(或DC的延长线)于L.由命题5知,∠F1PG=∠F1LG;又G为PL的中点,故F1G⊥CD.可见,点G和命题6中的K 为同一点.由命题6知,∠AGB=90°.又OG为AB边上的中线,故OG=OA.命题8 椭圆上任一点处的焦半径之和等于长轴,即PF1+PF2=AB.事实上,PF1+PF2=LF1+PF2=2OG=AB.以上我们看到,阿波罗尼斯花了九牛二虎之力才获得了椭圆的焦半径性质.美国数学家库利奇(J.L.Coolidge,1873-1954)因此说:“人们很想知道,阿波罗尼斯或者他以前的作者是否不曾用过更简单的方法来导出这个性质.”[4]无论如何,在现存的其他古希腊数学文献中,我们并没有找到别的推导方法.拜占庭数学家、以设计圣索菲亚大教堂(图10)而闻名世界的安提缪斯(Anthemius, 474?-574?)在研究燃烧镜时给出了我们今天再熟悉不过的“两钉一线”椭圆画法(今又称“园艺师画法”,图11).这种画法的依据显然就是阿波罗尼斯所发现的“椭圆焦半径之和是定值”这一性质[1].文艺复兴时期,欧洲数学家对圆锥曲线作图法产生了浓厚的兴趣.16世纪意大利数学家、物理学家蒙蒂(G. del Monte, 1545-1607)在其《球体投影理论》(1579)中给出同样的画法.荷兰数学家斯蒂文(S. Stevin, 1548-1620)也提到了这一作图法.蒙蒂还给出了另一种作图法[6]:一条线段的两个端点分别在相互垂直的两条直线运动,则其上异于端点的一点的轨迹就是椭圆.这种作图法可以追溯到普拉克拉斯的一个几何定理,如图11所示.17世纪末,荷兰数学家舒腾(F. van Schooten, 1615-1660)在《数学练习》(1657)中介绍了多种不同的椭圆规[5],其中两种分别对应蒙蒂的上述作图法.有人说蒙蒂是第一个给出椭圆第一定义的人,但笔者没有找到证据.17世纪,德国数学家和天文学家开普勒(J. Kepler, 1571-1630)在出版于1604年的《天文学之光学部分》(图13)中也给出了椭圆的园艺师作图法[7].17世纪荷兰数学家德·维特(J. de Witt, 1625-1672)在其《曲线基础》(1646)中采用了开普勒的作图法来画椭圆.他还把蒙蒂的另一作图法推广到两直线不互相垂直的情形[8].尽管德·维特已经知道圆锥曲线的“焦点-准线”定义,并创用“准线”一词,但他并没有给出椭圆的第一定义.17世纪法国数学家沃利斯(J. Wallis, 1616-1703 )首次采用代数语言将椭圆定义为“具有性质e2=ld-d2的平面图形”,其中t为直径,l为通径(过焦点且垂直于长轴的弦长),(d, e)为椭圆上任意一点的坐标[9].沃利斯的静态定义并没有为后人所采用,但是他为椭圆标准方程的形成奠定了良好的基础.文艺复兴时期,人们逐渐抛弃圆锥来研究圆锥曲线,称之为“绝对的圆锥曲线”,这使得原始定义的必要性被大大弱化.法国数学家和天文学家拉希尔(P. de Lahire, 1640-1719)在《圆锥曲线新基础》(1679)中给出了椭圆的焦半径定义(图16).拉希尔首先提出以下问题:给定线段IT,其中点为C,在CI和CT上分别取点F和D,使得CF = CD.求作一点P,使得PF + PD = IT.拉希尔的作法是:任将IT分成两段,以F为圆心、以其中一段为半径作圆弧;再以D为圆心、以另一段为半径作圆弧,两弧的交点P为所求.然后,拉希尔将点P的轨迹定义为椭圆[10].这是我们所见文献中椭圆第一定义的首次出现.在拉希尔之后,法国数学家洛必达(M. de L’Hospital, 1661-1704)在《圆锥曲线分析》(1707)中采用了园艺师画法以及拉希尔的新定义,并根据该定义来推导椭圆的方程[11].18世纪以后,椭圆第一定义逐渐被广泛采用,且第二定义(焦点-准线定义)也逐渐登上历史舞台.早在古希腊,焦半径性质已经为阿波罗尼斯所发现,而园艺师作图法则早在公元6世纪就为安提缪斯所用,但直到17世纪,人们才逐渐摒弃椭圆的原始定义,历史惊人地跨越了漫长的两千年!尽管古希腊人已经将圆锥曲线看作轨迹,但在解析几何诞生之前,“将曲线看成轨迹”并不是研究曲线性质的前提,人们似乎并不需要采用新定义.只有在解析几何诞生之后,人们需要将曲线看作动点的轨迹以建立其方程,或根据方程研究曲线的性质,而不再依赖几何语言和几何方法,因而原始定义逐渐变得多余,第一定义终于应运而生.另一方面,椭圆的原始定义建立在立体图形上,需要一定的空间想象* 实际上,受直觉的影响,古人对于圆柱和圆锥的截线是否属于同类曲线是有困惑的.,且不易完成,而第一定义完全建立在平面上,相应的园艺师作图法则易于操作.因此,椭圆的第一定义有着巨大的优越性,显然更适合于教学.椭圆脱胎于圆锥,但解析几何的发展、轨迹定义的广泛使用使它们与圆锥分道扬镳、形同陌路,由此产生“旧瓶装新酒”的现象.毫无疑问,只有诉诸历史,我们才能向学生解释这样的现象.【相关文献】[1] Heath T L. A History of Greek Mathematics[M]. London: Oxford University Press, 1921.[2] 汪晓勤.椭圆方程之旅[J].数学通报,2013,52(4):54-58.[3] Apollonius. Conics (translated by Taliaferro R C)[M]//Hutchins R M(ed.). Great Books of the Western World (11). Chicago: Encyclopaedia Britannica, Inc., 1982:780-792.[4] Coolidge J L. A History of the Conic Sections and Quadric Surfaces[M]. New York: Dover Publications, 1968:19-20.[5] Schooten F van. Exercitationum Mathematicarum[M]. Lvgd Batav: Johannis Elsevirii, 1657.[6] Taylor C. An Introduction to the Ancient and Modern Geometry of Conics[M]. Cambridge: Deighten Bell & Co., 1881.[7] Kepler J. Astronomiae Pars Optica Traditur[M]. Francofvrti: Claudium Marnium & Haeredes Ioannis Aubrii, 1604.[8]Boyer C B. History of Analytic Geometry[M]. New York: Scripta Mathematica, 1956:110-117.[9]Wallis J. Tractatus de Sectionibus Conicis. Opera Mathematica[M]. Oxoniae: E. Theatro Sheldoniano, 1695.[10]Lahire P de. Nouvaux Elemens des Sectiones Coniques[M]. Paris: Andre Pralard, 1679.[11] L’Hospital M de. Traité Analytique des Sections Coniques[M]. Paris: Jean Boudot, 1707.。

椭圆的定义与标准方程

椭圆的定义与标准方程

椭圆的定义与标准方程
首先,让我们来了解一下椭圆的定义。

椭圆可以被定义为平面上到两个定点
F1和F2的距离之和等于常数2a的点P的轨迹。

这两个定点被称为焦点,常数2a
被称为椭圆的长轴。

椭圆还有一个重要的参数e,被定义为焦距与长轴的比值,即
e=c/a,其中c为焦距。

当e小于1时,椭圆是一个封闭曲线,当e等于1时,椭圆
变成一个圆。

接下来,我们来看一下椭圆的标准方程。

椭圆的标准方程可以写成(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为长轴的长度,b为短轴的长度。


过标准方程,我们可以很容易地得到椭圆的中心、长短轴的长度以及椭圆的离心率等重要信息。

在实际问题中,椭圆有着广泛的应用。

比如在天体力学中,行星围绕太阳运动
的轨道就是椭圆;在工程中,椭圆的反射性质被应用在抛物面天线的设计中;在数学建模中,椭圆可以用来描述很多现实世界中的问题,比如椭圆的轨迹可以用来描述地球绕太阳的运动轨迹等。

总之,椭圆作为一种重要的几何图形,具有着丰富的数学性质和广泛的应用价值。

通过本文的介绍,相信读者对椭圆的定义与标准方程有了更清晰的认识,也能够更好地理解椭圆在实际问题中的应用。

希望本文能够对读者有所帮助,谢谢阅读。

椭圆周长公式的推导、证明、检验、评价与应用

椭圆周长公式的推导、证明、检验、评价与应用

椭圆周长公式的推导、证明、检验、评价与应用-----------三探椭圆周长的计算(终结篇)四川省美姑县中学 周钰承★ 关键词:椭圆周长,标准公式,近似计算,初等公式。

★ 内容提要:本文搜集了各种椭圆周长公式。

无论是标准公式还是近似公式,本文将对部分公式给予证明,或推导,或否定,或检验、评价与应用,希望广大读者喜欢。

★ 目录:一、椭圆周长标准公式的推导与椭圆周长准确值的计算 二、两个高精度的椭圆周长初等公式 三、椭圆周长公式集锦与评价一、椭圆周长的标准公式的推导与椭圆周长精确值的计算宇宙间宏观物体的运动轨迹大都是椭圆,但其周长不能准确的计算出来。

经过数学家的计算与证明,最终得出椭圆周长没有准确的初等公式,但可以用椭圆积分的级数形式表示。

下面对椭圆周长的一个标准公式进行证明和计算。

在平面直角坐标系内,椭圆的标准方程是:12222=+by ax ,.0,0>>b a参数方程是: ()πθθθ20,sin ,cos ≤≤==b y a x 函数图像为:若某条光滑曲线,能用参数方程表示:()t X x =,()t Y y =βα≤≤t ,该曲线长度可表示为:()[]()[]dt t Y t X L ⎰+=βα22''故椭圆周长为:()θθθθθθθθπππd e a d bad b a C ⎰⎰⎰-=+-=+=2222222222222cos14coscos14cossin4其中ac ab ae =-=222是椭圆的离心率。

下面用泰勒公式展开θ22cos 1e - 先由()()+--+-++=+32!3)2)(1(!2111x k k k x k k kx x k……令K=1/2可得:()()∑∞=---++=+21!2!!321211n nnn n x n x x令θ22cos e x -=可得:()∑∞=---=-2222222!2cos !!322cos 1cos 1n nn n n e n e e θθθ所以:()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡---=---=⎰∑⎰∑⎰∞=∞=22222222222022cos !2!!32cos 224!2cos !!322cos 14πππθθθθπθθθn nnnn nn n d n e n d e a d n e n e a C 这个式子可以化简。

椭圆第二定义及其应用

椭圆第二定义及其应用

椭圆第二定义及其应用在新课标课本(人教A 版)《椭圆》中,有这样一道例题“例6 点),(y x M 与定点)0,4(F 的距离和它到直线425:=x l 的距离的比是常数54,求点M 的轨迹”。

我们知道,点M 的轨迹是长轴、短轴长分别为10、6的椭圆,如果对这道例题进行推广,就得到椭圆的第二定义(比值定义).定义:平面内与一个定点F 的距离和一条定直线的距离之比为常数)10(<<e e 的点的轨迹是椭圆. 定点F 称为椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.椭圆第二定义的巧妙运用可以使题目化繁为简,下面举例如下: 一、求距离[例1]椭圆的方程为16410022=+y x 上有一点P ,它到椭圆的左准线的距离等于10,求点P 到它的右焦点的距离.解:∵64,10022==b a ,∴66410022=-=-=b ac ,∴a c e ==53106= 依椭圆第二定义,设P 点到椭圆左焦点的距离为d ,则5310=d ,∴6=d ∴点P 到椭圆右焦点距离为2×10-6=14评述:椭圆第二定义的巧妙运用可以使题目化繁为简,熟练掌握椭圆第二定义灵活地将它应用到解题当中,是我们在学习中的重要训练对象.二、求最值[例2]已知定点A (-2,3),点F 为椭圆1121622=+y x 的右焦点,点M 在该椭圆上移动时,求|MA |+2|FM |的最小值,并求出此时点M 的坐标.分析:设M (x ,y ),则有⎪⎩⎪⎨⎧=++-+-++=+11216)2(2)3()2(2222222y x y x y x FM MA 由①可将y 用x 表示出来,将其代入②,则式子|MA |+2|FM |可转化成一个关于x 的一元函数,再求其最小值.以上解法,思路可行,计算量却很繁琐,不妨换一种思考方法.解:∵a =4,b =23,c =2∴e =21 右焦点F (2,0),右准线方程l :x =8设点M 到右准线l 的距离为d ,则21==e dFM 得2|MF |=d ∴|MA |+2|MF |=|MA |+d由于点A 在椭圆内,过A 作A K ⊥l ,K 为垂足,易证|A K|为|MA |+d 的最小值,其值为8+2=10∵M 点的纵坐标为3,得横坐标为23① ②∴|MA |+|2MF |的最小值为10,点M 的坐标为(23,3)评述:(1)以上解法就是椭圆第二定义的巧用,将问题转化成点到直线的距离去求,就可以使题目变得简单易解了.(2)一般地,如果遇到一个定点到定直线问题应联想到椭圆第二定义. 三、推导公式[例3]设P (x 0,y 0)是离心率为e 的椭圆,方程为12222=+by a x 上的一点,P 到左焦点F 1和右焦点F 2的距离分别为1r 和2r .求证:0201,ex a r ex a r -=+=证明:由椭圆第二定义,得e ca x PF =+201∴|PF 1|=e ca x 20+=e )(20c a x +,∴|PF 1|=0ex a +又e cax PF =-202,∴|PF 2|=e ca x 20-=e )(20c a x -, ∴|PF 2|=0ex a -,综上所述0201,ex a r ex a r -=+= 注意:|PF 1|=0ex a +,|PF 2|=0ex a -,称为(00,y x )点椭圆的焦半径,焦半径公式在解题中的作用应引起我们广大师生的注意.[例4]已知椭圆1922=+y x ,过左焦点F 作倾斜角为30°的直线交椭圆于A 、B 两点,求弦AB 的长. 解法一:∵a =3,b =1,c =22,∴F (-22,0)∴直线方程为y =)22(31+x 与1922=+y x 联立消元,得4x 2+122x +15=0 ①设A (x 1,y 1),B (x 2,y 2)则依韦达定理,得x 1+x 2=-32,x 1x 2=415∴|AB |=21221214)(32311x x x x x x -+=-+,∴|AB |=2解法二:由于所求线段AB 是椭圆的“焦点弦”,故也可用“焦半径”公式计算:|AB |=|AF |+|BF |=2a +e (x 1+x 2)=2评述:一般地,遇到点到椭圆焦点的距离问题,可采用“焦半径”公式处理.。

椭圆标准方程的教案6篇

椭圆标准方程的教案6篇

椭圆标准方程的教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如心得体会、演讲致辞、合同协议、规章制度、条据文书、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as insights, speeches, contract agreements, rules and regulations, policy documents, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!椭圆标准方程的教案6篇教案的编写需要充分考虑学生的学习特点和需求,教案能够帮助教师更好地设计评价方式,准确评估学生的学习成果和进步,本店铺今天就为您带来了椭圆标准方程的教案6篇,相信一定会对你有所帮助。

椭圆的三个定义

椭圆的三个定义

+ . y Z


则 m + ”一 2 n① , m 一 一
4 c . r ② , 由 ① ② 得 m ~ n= = = 9 z, 所 以 m= = = 。+
( 责任编 辑
徐 利 杰)

l M F l 一2 a( 2 a> 2 c ) , 下 面 我 们 推 导 椭 圆 的 第二 、 第 三 定 义 。 以 F F 所 在 直 线 为 l z轴 ,
以 F F。的 垂 直 平 分 线 为 轴 , 建 立 平 面 直
f MF f —n +e x, 【 MF I —a —e 3 g , 这 就 是 椭
且 c一 2, a z

( n> 6 >O ) 。若 将 a 。 一c —a ̄ / ( z—f ) +y
两边同除以。 , 得“ 一÷ z 一 ̄ / , _ = = 干 ,
8,e — C




解 得 a 2— 1 6,
即 ÷( 等 一 ) 一  ̄ / = 可 > o , 进 一 步
由椭 圆 的 定 义 知 , 2 a> 2 c, 即 a> c, 令 a 2 一
c 一 b , 整 理 得 椭 圆 的 标 准 方 程 + 一1 a 凸
它 到定 直线 . 7 2 — 8 的 距 离 的 比 是 1 :2 , 求 点 P 的轨迹方 程 , 并 说 明 轨 迹 是 什 么 图形 。 解 : 由第 二 定 义 知 点 P 的 轨 迹 是 椭 圆 ,
数学篇 名师专题讲座
高二使用 2 01 6年 1 2月 下
椭 圆 的第 一 定 义 是 : 平 面 内 与 两 个 定 点
z — n + e - z ,n 一 口 一

计算方法(椭圆、锥体)

计算方法(椭圆、锥体)

1《椭圆定理》及《椭圆常数K1、K2的由来与周长、面积公式推导》2006-09-01椭圆常数K1、K2的由来与周长、面积公式推导(本短文为我的论文《椭圆的奥秘》第一部分《椭圆里的数学》节选。

)椭圆是同心圆依照勾股定理和谐组合。

椭圆中有常数K1和K2,椭圆的常数与椭圆周长、面积计算公式,一个为体,一个为用。

一、椭圆周长、面积计算公式根据椭圆第一定义,用a表示椭圆长半轴的长,b表示椭圆短半轴的长,且a>b>0。

椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

二、椭圆常数由来及周长、面积公式推导过程(一)发现椭圆常数常数在于探索和发现。

椭圆三要素:焦距的一半(c),长半轴的长(a)和短半轴的长(b)。

椭圆三要素确定任意两项就确定椭圆。

椭圆三要素其中两项的某种数学关系决定椭圆周长和面积。

椭圆的周长取值范围:4a<L<2πa(1)椭圆周长猜想:L=(2πa-4a)T(2)T是猜想的椭圆周率。

将(1)等式与(2)等式合并,得:4a<(2πa-4a)T<2πa(3)根据不等式基本性质,将不等式(3)同除(2πa-4a),有:4a/(2πa-4a) <T<2πa /(2πa-4a)(4)简化表达式(4):2/(π-2)<T<π/(π-2)定义:K1=2/(π-2);K2=π/(π-2)计算K1、K2的值会发现K1、K2是两个非常奇特的数:K1=1.75193839388411…… K2=2.75193839388411……椭圆第二常数:K2=K1+1椭圆常数的发现过程描述简单,得来却要复杂得多。

(二)椭圆周长公式推导长期以来我们只用椭圆离心率e=c/a来描述椭圆,却忽视了椭圆a与b的关系。

椭圆定理

椭圆定理

一、椭圆第一定义椭圆第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

椭圆第一定义的数学表达式:MF1+MF2=2a>F1F2(由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂。

)M为动点,F1、F2为定点,a为常数。

在椭圆中,用a表示长半轴的长,b表示短半轴的长,且a>b>0;2c表示焦距。

二、椭圆定理(一)椭圆定理Ⅰ(椭圆焦距定理)椭圆定理Ⅰ:任意同心圆,小圆任意切线与大圆形成的弦等于以大圆半径为长半轴长、小圆半径为短半轴长的椭圆焦距。

该椭圆中心在同心圆圆心,焦点在圆心以焦距一半为半径的圆上。

附图:椭圆的奥秘图解之一(焦距定理)(略)(二)椭圆定理Ⅱ(椭圆第一常数定理)定义1:K1=2/(π-2),K1为椭圆第一常数。

定义2:f=b/a,f为椭圆向心率(a>b>0)。

定义3:T=K1+f,T为椭圆周率。

椭圆定理Ⅱ:椭圆是同心圆依照勾股定理和谐组合,椭圆第一常数K1的数值加上椭圆向心率f的数值等于椭圆周率T的数值。

(三)椭圆定理Ⅲ(椭圆第三常数定理)椭圆具有三特性,也称椭圆三态。

1、当椭圆b>c时,椭圆为向外膨胀型,其焦点在以b为半径的圆内;2、当椭圆b=c时,椭圆为相对稳定型,其焦点在以b为半径的圆上;3、当椭圆b<c时,椭圆为向内收缩型,其焦点在以b为半径的圆外。

定义:任意椭圆长半轴的长a为该椭圆单位,用A表示,称为椭圆单位。

根据椭圆第一定义,a2=b2+c2,且a>b>0,则有:b2+c2=1(椭圆单位)当b=c时,2b2=1(椭圆单位),b=根号1/2(椭圆单位)。

定义:K3=根号1/2,K3为椭圆第三常数。

椭圆定理Ⅲ:椭圆第三常数K3与椭圆单位决定椭圆特性。

当椭圆b>c时,椭圆向心率(f)大于椭圆第三常数(K3),椭圆离心率(e)小于椭圆第三常数(K3),椭圆为向外膨胀型;当椭圆b=c时,椭圆向心率(f)和椭圆离心率(e)都等于椭圆第三常数(K3),椭圆为相对稳定型;当椭圆b<c时,椭圆离心率(e)大于椭圆第三常数(K3),椭圆向心率(f)小于椭圆第三常数(K3),椭圆为向内收缩型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档