第六章气浮分离法

合集下载

第六章气浮分离法..

第六章气浮分离法..

附着后: W2=σ气粒
界面能的减少△W=σ水气+σ水粒-σ气粒 三力之间关系: σ水粒 = σ气粒 + σ水气 COS(180-θ)
σ
l-g
△W = σ水气 (1-COSθ)
θ
σ
s-g
悬浮物与气泡附着的条件:
△W>0 ,△W越大,推动
力越大,越易气浮。
σ
s-l
△W = σ水气 (1-COSθ)

气浮分离应具备两个必要条件:
A. 所需分离溶质应为表面活性物质,或能与表面活性剂相结 合(静电作用、疏水性吸附等)的物质,它们都可吸附在气 液界面上。 B. 富集质在分离过程中借泡沫与原料液分离并在塔顶富集。
分离作用主要取决于组分在气-液界面上吸附的
选择性和程度,其本质是各种物质在溶液中表面活 性的差异。
教学内容
6.1 气浮分离原理
6.2 气浮分离法类型
6.3 气浮分离装置与操作
6.4 影响气浮分离效率的主要因素
6.5 气浮分离特点及应用
6.1 气浮分离原理

气浮分离: 以气泡作分离介质来富集和分离表面 活性物质的一种新型分离技术。根据表面吸附的 原理,利用通气鼓泡在液相中形成的气泡为载体, 对液相中的溶质或颗粒进行分离,因此又称泡沫 吸附分离或泡沫分离。 过程:通入空气→产生微细气泡→SS附着在气泡 上→上浮
泡沫层
有机溶剂 (可溶解浮 选物)
析出第 三相
光度测定
选择另一溶 剂溶解后光 度测定
溶剂浮选与吸光光度法直接结合,即溶剂浮选光度 法,具有分离量大、选择性及灵敏度高的独特优点。
饮用水中痕量铜的测定
水样用酒石酸和 EDTA 隐蔽,控制 pH6-6.4 ,加 N aDDTC (砷试剂,二乙基二硫代氨基甲酸钠)浮选,

分散空气气浮法

分散空气气浮法

分散空气气浮法原理:涡凹气浮装备有一个周围表面分布了小孔的曝气圆盘,电动机转动曝气圆盘,产生一个负压区,使得水面上方的空气被吸入,再从浸没在水中的出口释放出来。

当曝气圆盘表面的小孔产生气泡时,旋转的圆盘会把气泡切割成直径为10-100微米的细小气泡碎片。

这些气泡碎片会附着在诸如油类和脂肪等细小固体上。

气泡缓慢上升,同时把固体带到水面。

涡凹气浮的优点:1)气泡直径:气泡直径可以根据情况进行调整。

2)节省投资:省去压力容器、空压机、循环泵等设备,设备占地面积减少40%--60%。

3)运行费用低:由于省去压力容器、空压机、循环泵等设备,节省运行费用40%--90% 。

4)无噪音:槽内没有需要维修的部件。

5)不需要清理喷嘴:即时启动,可频繁关启。

溶气气浮的分类及设计原理作者:李玛丽摘要:溶气气浮(DAF)是气浮的一种,它利用水在不同压力下溶解度不同的特性,对全部或部分待处理(或处理后)的水进行加压并加气,增加水的空气溶解量,通入加过混凝剂的水中,在常压情况下释放,空气析出形成小气泡,粘附在杂质絮粒上,造成絮粒整体密度小于水而上升,从而使固液分离。

关键词:溶气气浮DAF 脱气系统溶气气浮(DAF)是气浮的一种,它利用水在不同压力下溶解度不同的特性,对全部或部分待处理(或处理后)的水进行加压并加气,增加水的空气溶解量,通入加过混凝剂的水中,在常压情况下释放,空气析出形成小气泡,粘附在杂质絮粒上,造成絮粒整体密度小于水而上升,从而使固液分离。

溶气气浮(DAF)适用于处理低浊度、高色度、高有机物含量、低含油量、低表面活性物质含量或具有富藻的水。

相对于其它的气浮方式(详见附录1),它具有水力负荷高,池体紧凑等优点。

但是它的工艺复杂,电能消耗较大,空压机的噪音大等缺点也限制着它的应用。

1 分类(type)根据不同的划分原则,DAF可以有不同的分类。

1.1 根据气泡从水中析出时所处压力的不同,可分为真空式气浮法与压力溶气气浮法两种。

气浮分离

气浮分离

摘要溶剂气浮技术是一种较为简捷有效的水中微量、痕量组分分离与富集方法,也可用于水中有机污染物的去除,它在许多方面优于传统的萃取方法。

本文在自制的溶剂气浮塔内采用间歇分离法对模拟含Zn(Ⅱ)废水进行脱除试验研究。

用十二烷基硫酸钠(SDS)作为表面活性剂,异戊醇作为消泡剂,调节废水pH值,在一定的气体流量条件下,在气浮塔内进行气浮分离。

探索了废水pH值的范围、表面活性剂的投入量、锌离子的浓度以及气浮分离时间对分离效果的影响,得到了优化工艺条件。

处理后的废水中的锌离子浓度小于3mg.L-1。

同时,对处理过程中塔内废水中的锌离子浓度的下降趋势做了研究。

关键词:溶剂气浮;表面活性剂;十二烷基硫酸钠;异戊醇AbstractSolvent sublation technique is a more convenient and effective method for the separation, precondition and removal of organics from the wastewater.In this paper, the disposed of simulated wastewater contained zinc was studied in homemade sublation tower in intermission separation.With regulating waster pH value, and using sculpture acid sodium (SDS) as the surface-active agent, and isoamyl alcohol as the defoamer,wasterwater was treated in the sublation tower under a certain gas flux. The effect of pH range of wastewaters, adding quantity of surfactant, zinc concentration and floatation time on separation was investigated. The optimize process was acquired, and the zinc concentration of disposed wastewater is less than 3 mg.L-1.As the same time, declined trend of zinc concentration in sublation tower was studied in disposed process.Key word:solvent sublation; surfactant; SDS; isoamyl alcohol第一章前言1.1引言目前,镀锌制品被广泛使用,在其生产过程中排放大量的含锌废水。

气浮法实验报告

气浮法实验报告

实验名称:气泡法回收废水中的有机溶剂实验目的:1.了解气泡分离法的原理和分离方法2.找出一种可高效提取水中的有机物的试剂3.应用气泡分离法及相关试剂分离出废水中的有机物实验原理:利用高度分散的微小气泡作为载体粘附于废水中的悬浮污染物,时期浮力大于重力和阻力,从而使污染物上浮至水面,形成泡沫,然后用刮渣设备自水面刮除泡沫,实现固液或液液分离的过程称为气浮。

向水中通入大量微小气泡,使待分离物质吸附于上升的气泡表面而浮升到液面,从而使某组分得以分离的方法,称气浮分离法或气泡分离法。

也称浮选分离或泡沫浮选分离。

原理是设法使水中产生大量的微气泡,以形成水、气、及被去除物质的三相混合体,在界面张力、气泡上升浮力和静水压力差等多种力的共同作用下,促进微细气泡粘附在被去除的微小油滴上后,因粘合体密度小于水而上浮到水面,从而使水中油粒被分离去除。

表面活性剂在水溶液中易被吸附到气泡的气——液界面上。

表面活性剂极性的一端向着水相,非极性的一端向着气相( 如图8 — 9) ,含有待分离的离子、分子的水溶液中的表面活性剂的极性端与水相中的离子或其极性分子通过物理( 如静电引力) 或化学(如配位反应)作用连接在一起。

当通入气泡时,表面活性剂就将这些物质连在一起定向排列在气——液界面,被气泡带到液面,形成泡沫层,从而达到分离的目的。

影响气浮分离效率的主要因素1. 溶液的酸度2. 表面活性剂浓度:表面活性剂浓度不宜超过临界胶束浓度,过量的表面活性剂会形成胶束使沉淀溶解。

3. 离子强度:离子强度大,对气浮分离不利。

4. 形成络合物或沉淀的性质:螯合物以及离子缔合物的稳定性与分离效率都有直接关系。

5. 其它因素:一般要求气泡直径在0.1—0.5之间,气泡流速为1—2ml.cm-2.min-1 为宜。

气体常用氮气或空气。

通气时间因方法而不同。

气浮法处理工艺必须满足下列基本条件才能完成气浮处理过程,达到污染物质从水中去除的目的:1.必须向水中提供足够量的微小气泡。

气浮法

气浮法
变小,利于气粒结合。
对σ水-气影响较大的主要是物质表面的亲水基团,亲水基 越多,则σ水-气越小,越不易被气浮处理(如乳化油及洗涤
废水等);同时亲水基越多,污染粒子乳化严重,表面电 位增高也影响粘附。
泡沫的稳定性
由上面的讨论可知,水中表面活性剂的存 在对气浮处理有不利影响。 但是,气浮处理时,一般又要求水中含有 一定量的表面活性剂,以保证气泡具有足 够的稳定性。如果表面活性剂含量过低, 则应投加一定量的起泡剂。 为什么?
水-粒 水-气 cos(180 ) 粒-气
式中:θ——接触角(也称湿润角)。
由此可得:
E 水-气(1 cos )
上式表明,并不是水中所有的污染物质都能与气 泡粘附,是否能产生较好的粘附,与该类物质的接触
角θ 、水的表面张力σ水-气有关。
当θ>900时,颗粒为疏水表面。θ→180°时, cosθ→ -1,ΔE→2σ水-气,这类物质憎水性强(称憎
污水处理技术中,浮上法固-液或液-液分离技术应 用的几方面:
石油、化工及机械制造业中的含油污水的油水分离;
工业废水处理;
污水中有用物质的回收;
取代二次沉淀池,特别是用于易产生活性污泥膨胀的 情况;
剩余活性污泥的浓缩。
水中颗粒与气泡的粘附条件
悬浮颗粒能否与气泡粘附主要
取决于颗粒表面的性质。颗粒
b
B H1
L
3 2 1
5
8
8
7
4
6
i
L2
L2
图 8-5 双室平流式电解气浮池
1-入流室;2-整流栅;3-电极组;4-出口水位调节器; 5-刮渣机;6-浮渣室;7-排渣阀;8-污泥排除口
分散空气浮上法

气浮分离法

气浮分离法

溶剂浮选(萃取浮选法) 溶剂浮选(萃取浮选法)
在浮选溶液的表面加有少量比水轻的有机溶 在浮选物浮出水相时, 剂,在浮选物浮出水相时,若该物质溶于有机 则可以直接测定; 相 , 则可以直接测定 ; 若该物质不溶于有机 相,则水相和有机相之间形成第三相,即为浓 则水相和有机相之间形成第三相, 缩相,从而达到浮选分离的目的。 缩相,从而达到浮选分离的目的。
浮选装置与操作
浮渣或泡沫层
样品液 气泡
烧结板
空气
浮选法类型 ● 离子浮选法 ● 沉淀浮选 溶剂浮选(浮选萃取法) ● 溶剂浮选(浮选萃取法)
ห้องสมุดไป่ตู้
离子浮选法原理
首先让溶液中欲分离富集离子或它与络合剂作用形 成络阳离子或络阴离子, 成络阳离子或络阴离子 , 与带相反电荷离子的表面活 性剂作用生成疏水性的离子缔合物。然后通气起泡, 性剂作用生成疏水性的离子缔合物 。 然后通气起泡 , 离子缔合物被吸附在气泡表面而上浮至溶液表面, 离子缔合物被吸附在气泡表面而上浮至溶液表面 , 将 其与母液分开后便可达到分离的目的。 其与母液分开后便可达到分离的目的 。 实现离子浮选 方式有两种: 方式有两种: 欲富集离子直接被浮选; ① 欲富集离子直接被浮选;“无机络阴离子或酸根 离子” 离子” ② 欲富集离子先与适当的络合剂作用形成络合物离 子缔合物,然后通过浮选此种络合物而达到浮选目的。 子缔合物 , 然后通过浮选此种络合物而达到浮选目的 。 有机试剂螯合离子” “有机试剂螯合离子”
回 收 率
表面 离子
剂 离子
pH
表面活性剂: 相反电荷” 表面活性剂 :带“ 相反电荷 ” ,其作用是将亲水 沉淀转为疏水沉淀便于浮选以及形成稳定的泡沫层。 沉淀转为疏水沉淀便于浮选以及形成稳定的泡沫层 。 气泡大小 2) 载体的选择 ① 对象元素的回收率 ② 从大量共存元素中分离的可能性 ③ 定量阶段载体元素的干扰情况 ④ 易得的高纯度载体元素等 3) 应用

气浮法简介

气浮法简介

全溶气流程
7 3 4
8
10
浮 渣
5 2 1
6
9 出 水
全溶气流程图 图 8-9 全溶气方式加压溶气浮上法流程
1-原水进入;2-加压泵;3-空气加入;4-压力溶气罐 (含填料层);5-减压阀;6-气浮池;7-放气阀; 8-刮渣机;9-集水系统;10-化学药剂
部分溶气流程
7 3 压 力 表
4
8
10
浮 渣

微孔曝气气浮法
2.2、剪切气泡气浮法 将空气引至一个高速旋转混合器或叶轮机的附近,通过高速旋转混合器或叶轮机的高速剪切,将引入的空气切割粉碎成细小气泡。
剪切气泡气浮法
3、溶解空气气浮法 溶解空气气浮法是在一定的压力下让空气溶解在水中,然后在减压条件下析出溶解空气,形成微气泡。根据气 泡析出时所处压力的不同可分为真空气浮法和加压气浮法两种。 3.1真空气浮法 废气在常压下被曝气,使其充分溶气,然后在真空条件下,使废水中溶气析出,形成细微气泡,粘附颗粒杂质 上浮于水面形成泡沫浮渣而除去。此法优点是:气泡形成、气泡粘附于微粒以及絮凝体的上浮都处于稳定环境, 絮体很少被破坏。气浮过程能耗小。其缺点是:容气量小,布、不适于处理含悬浮物浓度高的废水;气浮在负 压下运行,刮渣机等设备都要在密封气浮池内,所以气浮池的结构复杂,维护运行困难,故此法应用较少。 3.2加压气浮法 (1)工作原理:在加压条件下,使空气溶于水,形成空气过饱和状态。然后减至常压, 使空气析出,以微小气泡释放于水中,实现气浮,此法形成气泡小,约20~100μm,处 理效果好,应用广泛。 (2)加压溶气气浮工艺流程: 加压溶气气浮可分为:全溶气流程、部分溶气流程、回流加压溶气流程。
3.4压力溶气气浮法系统的组成及设计(P71)

气浮分离法

气浮分离法

第六章气浮分离法6.1 概述泡沫吸附分离现象是日常生活个常见的现象,利用肥皂泡沫去除身体或衣物卜的污垢就是一个最好的例子。

什么是气浮分离法?采用某种方式,向水样中通入大量微小气泡,使待分离物质(如离子、分子、胶体、固体颗粒、悬浮微粒),因其表面活性不同,可被吸附或粘附在从溶液中升起的泡沫表面上, 从而使某组分得以分离的方法,称气浮分离法或气泡分离法。

也称浮选分离或泡沫浮选分离。

本身没有表面活性的物质,经加入表面活性剂后可变为有活性的物质,亦可用浮选法分离。

这是分离和富集痕量物质的一种有效方法。

问题:1. 特分离物质为什么会选择性地吸附在气泡上?2. 如何最大限度达到富集效果?下面介绍泡沫吸附分离技术的基本原理。

6.2 气浮分离法的分离机理上面提到在气浮分离法中用到表面活性剂,那么我们首先介绍一下表面活性剂的性质,以及它在水中的表现行为。

一.表面活性剂的结构和在水界面上取向表面活性剂的分子一般由两部分组成,一部分是亲水的、极性的,另一部分是疏水的、非极性。

如以硬脂酸为例,它具有亲水的极性头,如COHO部分,也具有疏水的非极性尾,即R—CH2—(CH2)n一部分。

如下图所示:COHO R CH2(CH2)n可以用“”来表示表面活性剂的分子.其中“”表示极性头,““表示非极性尾。

在水—油体系中,表面活性剂分子将聚集在水—油界面上并定向地排列,其中的极性头向着水相.非极性尾向着油相。

而在气—液界面上,一般是极性头向着水.非极性尾向着伸向气相。

图6.1为表面活性剂在界面上取向的情况。

图6.1表面活性剂在界面上取向(以下不讲,如果温度、压力和组成一定,则液体的表面张力也一定。

若向此体系加入少量物质而引起此液体表面张力的明显下降,这种物质就称为表面活性剂。

表面活性剂溶入溶液后表现出两个基本性质:1 水溶液中溶解行为是很快地聚集在水面并形成亲水基团在水中,亲油基伸向气相的定向单分子排列,使空气和水的接触面减小,从而使表面张力急剧下降,同时,多余的分子则在溶液内部形成分子状态的聚集体--胶束,并分布在液相主体内;2 超过表面活性剂形成胶束的最低浓度后,溶液表面张力不再降低,但在相界面上,由于上述定向排列的单分子层的作用,具有选择性的定向吸附作用,会显著地改变原溶液的界面的性质,造成各种界面作用,泡沫分离就是充分利用表面活性剂的界面作用发展起来的一种新型的分离方法。

气浮分离法

气浮分离法

第六章气浮分离法6.1 概述泡沫吸附分离现象是日常生活个常见的现象,利用肥皂泡沫去除身体或衣物卜的污垢就是一个最好的例子。

什么是气浮分离法?采用某种方式,向水样中通入大量微小气泡,使待分离物质(如离子、分子、胶体、固体颗粒、悬浮微粒),因其表面活性不同,可被吸附或粘附在从溶液中升起的泡沫表面上, 从而使某组分得以分离的方法,称气浮分离法或气泡分离法。

也称浮选分离或泡沫浮选分离。

本身没有表面活性的物质,经加入表面活性剂后可变为有活性的物质,亦可用浮选法分离。

这是分离和富集痕量物质的一种有效方法。

问题:1. 特分离物质为什么会选择性地吸附在气泡上?2. 如何最大限度达到富集效果?下面介绍泡沫吸附分离技术的基本原理。

6.2 气浮分离法的分离机理上面提到在气浮分离法中用到表面活性剂,那么我们首先介绍一下表面活性剂的性质,以及它在水中的表现行为。

一.表面活性剂的结构和在水界面上取向表面活性剂的分子一般由两部分组成,一部分是亲水的、极性的,另一部分是疏水的、非极性。

如以硬脂酸为例,它具有亲水的极性头,如COHO部分,也具有疏水的非极性尾,即R—CH2—(CH2)n一部分。

如下图所示:COHO R CH2(CH2)n可以用“”来表示表面活性剂的分子.其中“”表示极性头,““表示非极性尾。

在水—油体系中,表面活性剂分子将聚集在水—油界面上并定向地排列,其中的极性头向着水相.非极性尾向着油相。

而在气—液界面上,一般是极性头向着水.非极性尾向着伸向气相。

图6.1为表面活性剂在界面上取向的情况。

图6.1表面活性剂在界面上取向(以下不讲,如果温度、压力和组成一定,则液体的表面张力也一定。

若向此体系加入少量物质而引起此液体表面张力的明显下降,这种物质就称为表面活性剂。

表面活性剂溶入溶液后表现出两个基本性质:1 水溶液中溶解行为是很快地聚集在水面并形成亲水基团在水中,亲油基伸向气相的定向单分子排列,使空气和水的接触面减小,从而使表面张力急剧下降,同时,多余的分子则在溶液内部形成分子状态的聚集体--胶束,并分布在液相主体内;2 超过表面活性剂形成胶束的最低浓度后,溶液表面张力不再降低,但在相界面上,由于上述定向排列的单分子层的作用,具有选择性的定向吸附作用,会显著地改变原溶液的界面的性质,造成各种界面作用,泡沫分离就是充分利用表面活性剂的界面作用发展起来的一种新型的分离方法。

气浮分离法

气浮分离法

1) 主要影响因素 酸度 :pH大小直接影响待 富集离子和捕集剂的存在形式, 影响到共沉淀的效果,因而影 响浮选效果。在沉淀浮选中, 应注意沉淀的表面电荷随 pH 变化。如 Fe(OH)3 共沉淀 , 以 pH 9.6 左右为界 , 酸性一侧沉 淀带正电荷,碱性一侧带负电 荷。这时要选用不同的表面活 性剂。
表面活性剂 阴离子 阳离子
回 收 率
+
9.6 pH
表面活性剂:带“相反电荷”,其作用是将亲水 沉淀转为疏水沉淀便于浮选以及形成稳定的泡沫层。
气泡大小 2) 载体的选择 ① 对象元素的回收率 ② 从大量共存元素中分离的可能性 ③ 定量阶段载体元素的干扰情况
④ 易得的高纯度载体元素等
3) 应用
泡沫层
从底部通入 大量气泡
溶质吸附在 气泡上并随 之上升
问题:1 为什么溶质会选择性地吸附在气泡上?
2 如何最大限度达到富集效果?
水中痕量Cu、Ni、Pb的AAS测定
取250m水样于烧杯,加10 mg / ml AlCl3 3 ml , 加 1mg / ml 油酸钠(顺式 -9- 十八烯酸 纳),搅拌,再用1 mol / LNH4OH调pH 9.5, 形成 Al(OH)3 共沉淀 , 继续搅拌 15 min 。另取 一浮选槽,加入少量H2O, 调好气流,观察气泡 大小合适,倒入上述沉淀液 ,用 25 ml 0.1 mol / L NH4OH洗涤烧杯并转入浮选槽。调整 气流40 -60 ml / min浮选5 min,让上层形成 稳定的泡沫层。关气,抽滤除去下层母液,往 泡 沫 层 加 20 ml EtOH 消 泡 , 再 用 50 ml 0.1mol / L NH4OH洗涤沉淀,分别抽滤除尽 乙醇和氨水。沉淀加4 ml 2 mol / L HNO3 片 刻,溶解后收集于 10 ml 容量瓶,用 4 ml 2 mol / L HNO3 洗 涤 小 烧 杯 , 再 2 mol / L

第六章 气浮

第六章 气浮

第六章气浮6-1气浮工艺的基本原理与类型6.1.1 基本原理对于废水中粒径较小,比重≤1的悬浮物或胶体,前面介绍的方法较难去除,可采用本章介绍的方法——气浮法进行处理。

气浮法是用于从液相中分离固体或液态颗粒的工艺。

它通过在液相中造成的小气泡(通常是空气泡)与颗粒物质接触后形成气泡与颗粒的结合体,使其浮力增大至足以将颗粒上升到液体表面而加以去除的工艺。

按stokes公式:2)(181dgu sLμρρ-=。

若ρL-ρS>0,则颗粒在液体中上浮,上浮速度取决于ρL-ρS的值和d的大小。

气浮的基本原理是:在一定条件下,向被处理水中通入空气,并产生或以微小气泡的形式释放,使水中细小的SS粘附在气泡上并随之上浮至水面而形成浮渣,达到固液分离的目的。

6.1.2 处理对象用于去除难于自然沉淀和上浮的细微颗粒及比重接近于1的悬浮颗粒。

(1)石油工业或煤气发生站的含乳化油废水(0.5~25μm);(2)毛纺工业洗毛废水中的羊毛脂及洗涤剂;(3)食品工业废水中的油脂;(4)洗煤车间废水中的细煤粉颗粒(0.5~1mm)(5)造纸废水中的纸浆;(6)纤维工业废水中的细小纤维;(7)地表水体中的藻类;(8)废水处理工艺出水中残留的细小的絮体或污泥;(9)污泥气浮浓缩处理。

6.1.3 水处理中的应用情况1、给水处理替代常规的澄清工艺,尤其适用于低浊、含藻类及浮游生物的给水处理中;原来溶于水中,经混凝处理后转为不溶的悬浮物;2、废水处理去除悬浮物、油粒、纤维、活性污泥及藻类的去除; 3、污泥浓缩; 4、替代二沉池对易产生污泥膨胀的工艺可提高稳定性。

6.1.4基本工艺条件(1)必须向水中提供足够量的微细气泡; (2)必须使气泡与水中悬浮颗粒相粘附;(3)必须使水中的杂质在表面形成稳定的浮渣层,停留足够长时间。

本章将从理论角度来探讨在实际操作中满足这些工艺条件的可行性。

6.1.5主要特点与沉淀处理工艺相比,有以下特点:(1)处理负荷高(一般为5~10m 3/m 2.h ,高达12m 3/m 2.h)、基建投资低(停留时间仅需20~40min ) ;(2)出水DO 高,不发生腐化现象,利于后续生物处理; (3)浮渣稳定、含水率低(一般低于96%),便于后处理和处置;(4)电耗高:处理一吨水要比普通沉淀法多耗0.02~0.04度电,运行费用较高; (5)设备维护和维修工作量大,处理效果浮渣易受风雨影响。

气浮分离法

气浮分离法

三.影响气浮分离效率的主要因素
1.溶液的酸度 对分离效果影响最为显著的因素 溶液的酸度:对分离效果影响最为显著的因素 溶液的酸度
分离过程中一选择适当的PH,以保证好的分离效果
2.表面活性剂浓度 表面活性剂浓度 在浮选过程中,表面活性剂可改变被浮选 物的表面性质和稳定气泡,它直接影响着浮选 分离的成败。但表面活性剂的用量量计 4—气体分布器 5—内环流筒 6—环流反应器 7—输液泵 8—表面活性剂 9—取样口 10—泡沫液收集
在水溶液上覆盖一层与水不相 混溶的有机溶剂, 混溶的有机溶剂,当采取某种方式 使水中产生大量微小气泡后, 使水中产生大量微小气泡后,已显 表面活性的待分离组分就会被吸附 和粘附在这些正在上升的气泡表面。 和粘附在这些正在上升的气泡表面。 溶入有机相或悬浮于两相界面形成 第三相. 第三相.从而达到分离溶液中某种 组分的目的。 组分的目的。
气浮分离法
气浮分离法:
采用某种方式,向水中通入大量微小气泡, 采用某种方式,向水中通入大量微小气泡,在 一定条件下使呈表面活性的待分离物质吸附或 粘附于上升的气泡表面而浮升到液面, 粘附于上升的气泡表面而浮升到液面,从而使 某组分得以分离的方法, 某组分得以分离的方法,称气浮分离法或气泡 吸附分离法。 吸附分离法。 分离和富集痕量物质的一种有效方法 分离和富集痕量物质的一种有效方法
分离的类型
1 . 离 子 气 浮 分 离 法 在含有待分离离子(或配离子) 在含有待分离离子(或配离子)的溶 液中.加入带相反电荷 相反电荷的某种表面活性 液中.加入带相反电荷的某种表面活性 使之形成疏水性物质。通入气泡流, 剂,使之形成疏水性物质。通入气泡流, 表面活性剂就在气—液界面上定向排列。 表面活性剂就在气—液界面上定向排列。 同时表面活性剂极性的一端与待分离的 离子连结在一起而被气泡带至液面。 离子连结在一起而被气泡带至液面。

气浮法

气浮法

气浮法溶气气浮(DAF)是气浮的一种,它利用水在不同压力下溶解度不同的特性,对全部或部分待处理(或处理后)的水进行加压并加气,增加水的空气溶解量,通入加过混凝剂的水中,在常压情况下释放,空气析出形成小气泡,粘附在杂质絮粒上,造成絮粒整体密度小于水而上升,从而使固液分离。

溶气气浮(DAF)适用于处理低浊度、高色度、高有机物含量、低含油量、低表面活性物质含量或具有富藻的水。

相对于其它的气浮方式(详见附录1),它具有水力负荷高,池体紧凑等优点。

但是它的工艺复杂,电能消耗较大,空压机的噪音大等缺点也限制着它的应用。

1 分类(type)根据不同的划分原则,DAF可以有不同的分类。

1.1 根据气泡从水中析出时所处压力的不同,可分为真空式气浮法与压力溶气气浮法两种。

前者利用抽真空的方法在常压或加压下溶解空气,然后在负压下释放微气泡,供气浮使用;后者是在加压情况下,使空气强制溶于水中,然后突然减压,使溶解的气体从水中释放出来,以微气泡形式粘附上絮粒,一起上浮。

1.1.1 真空式气浮池,虽然能耗低,气泡形成和气泡与絮粒的粘附较稳定;但气泡释放量受限制;而且,一切设备部件,都要密封在气浮池内;气浮池的构造复杂;只适用于处理污染物浓度不高的废水(不高于300mg/l),因此实际应用不多。

1.1.2 压力溶气气浮法是目前国内外最常采用的方法,可选择的基本流程有全流程溶气气浮法、部分溶气气浮法和部分回流溶气气浮法三种。

1.1.2.1 全流程溶气气浮法全流程溶气气浮法是将全部废水用水泵加压,在溶气罐内,空气溶解于废水中,然后通过减压阀将废水送入气浮池。

流程图见图1。

它的特点是:①溶气量大,增加了油粒或悬浮颗粒与气泡的接触机会;②在处理水量相同的条件下,它较部分回流溶气气浮法所需的气浮池小。

③全部废水经过压力泵,所需的压力泵和溶气罐均较其他两种流程大,因此投资和运转动力消耗较大。

1.1.2.2 部分溶气气浮法部分溶气气浮法是取部分废水加压和溶气,其余废水直接进入气浮池并在气浮池中与溶气废水混合。

气浮法工作原理及用注意事项

气浮法工作原理及用注意事项

气浮法工作原理及用注意事项一、气浮法原理水中产生大量的微细气泡形成水、气及被去除物质的三相混合体,在界面张力、气泡上升浮力和静水压力差等多种力的共同作用下,促使微细气泡粘附在被去除的微小油滴上后,因粘合体密度小于水而上浮到水面,从而使水中油类被分离去除。

气浮法通常作为对含油污水隔油后的补充处理,即为二级生物处理之前的预处理。

隔油池出水一般仍含有50至150mg/L的乳化油经过一级气浮法处理,可将含油量降到30mgL左右,再经过二级气浮法处理,出水含油量可达10mg/L以下。

二、气浮法作用除了用来去除污水中处于乳化状态的油以外,气浮法还广泛应用于去除污水中密度接近于水的微细悬浮颗粒状杂质。

比如气浮法可以有效地用于活性污泥的浓缩,还可以以去除污水中的悬浮杂质为主要目的,作为二级生物处理的预处理、保证生物处理进水水质的相对稳定,或是放在二级生物处理之后作为二级生物处理的深度处理、确保排放出水水质符合有关标准的要求。

三、气浮法注意事项为促进气泡与颗粒状杂质的粘附和使颗粒杂质结成尺寸适当的较大颗粒,一般要在形成微细气泡之前,在污水中投加药剂进行混凝处理或加入破乳剂破坏水中乳化态油分的稳定性。

四、气浮法特点(1)不仅对于难以用沉淀法处理的废水中的污染物可以有较可的去除效果,而且对于能用沉淀法处理的废水中的污染物往往也能取得较好的去除效果。

(2)气浮池的表面负荷有可能超过12m3/(m2·h),水流在池中的停留时间只需要10至20min,而池深只需要2m左右,因此占地面积只有沉淀法的1/2至1/8,池容积只有沉淀法的1/4至1/8。

(3)浮渣含水率较低,一般在96%以下,比沉淀法产生同样干重污泥的体积少2至10倍,简化了污泥处置过程、节省了污泥处置费用,而且气浮表面除渣比沉淀池底排泥更方便。

(4)气浮池除了具有去除悬浮物的作用以外,还可以起到预曝气、脱色、降低COD等作用,出水和浮渣中都含有一定量的氧,有利于后续处理,泥渣不易变质。

分离科学与技术第6章 泡沫浮选分离法

分离科学与技术第6章 泡沫浮选分离法

因此,控制适当条件可以分离不同金属离子。
第二节 离子浮选分离法
三、在有机试剂溶液中的离子浮选 某些有机试剂,可作为配位剂与某些元素发生配位反 应,形成可溶的带有电荷或中性的配合物,加入适当表
面活性剂,可被离子浮选分离。
有机试剂:偶氮胂III、二苯卡巴肼、丁基黄原酸钾、
对氨基苯磺酸铵、邻二氮菲等。
第三节 沉淀浮选分离法
第一节 装置与操作
基本操作: 通过微孔玻璃砂芯/塑料筛板送入氮气/空气,使其产生 气泡流,含有待测组分的疏水性物质被吸附在气-液界面
上,随着气泡的上升,浮至溶液表面形成稳定的浮渣
(沉淀 + 泡沫)或泡沫层,从而分离出来。
第二节 离子浮选分离法
金属离子试液中加入配位剂,调节酸度,形成配离子,
再加入与配离子带相反电荷的表面活性剂,形成离子缔合
表面活性剂非极性部分链(烃链)长度增加,浮选率
增大。
第二节 离子浮选分离法
一、影响无机离子浮选效率的主要因素 3. 离子强度 溶液中离子强度大小对泡沫分离影响很大。 离子强度增大,对浮选分离不利。可能是待测离子和 其它离子对表面活性剂产生竞争引起。
第二节 离子浮选分离法
一、影响无机离子浮选效率的主要因素 4. 配位剂 离子浮选法选择分离金属离子时,可利用其能否与配 位剂配位及配位能力的大小来浮选分离。
荡,分层后弃去水相;加 H2SO4 洗涤有机相,分层后弃
去水相。加丙酮溶解沉淀,移入比色器测定吸光度。
第三节 沉淀浮选分离法
一、影响沉淀浮选的主要因素 1. 捕集沉淀剂 也称载体或聚集沉淀剂,需从共沉淀和浮选两个角度 进行选择。 一般选择比气泡大得多的大分子絮凝状捕集沉淀剂,
微小气泡易进入沉淀剂空隙及附着在气-液表面,从而使

气浮法简介

气浮法简介

06
气浮法未来的发展趋势和研究方向
高效节能的气浮设备研发
02
01
03
研发更高效的气浮设备,提高气浮法的处理效率,降 低能耗和运行成本。
研究设备的材料和构造,提高设备的耐用性和稳定性 ,降低设备的维护成本。
开发新型的气浮技术,如超临界气浮、超声波气浮等 ,提高气浮法的处理能力和效果。
气浮法与其他水处理技术的联合应用
将污水引入反应罐中,加入药剂。
将反应后的污水引入气浮池中。
开启空气压缩机,向气浮池提供空气,产生微小气泡。
悬浮物和胶体物质被微小气泡吸附,聚集在气浮池底 部。 通过分离器将悬浮物和水的混合物进行分离,将悬浮 物排出气浮池。
04
气浮法的优缺点分析
气浮法的优点
高效除污
气浮法可以有效去除水中 的悬浮物、有机物、重金 属离子等污染物质,提高 水质。
气浮法的适用范围
污水处理
气浮法常用于污水处理厂的预处 理和深度处理环节,有效去除水
中的污染物质。
水质净化
气浮法可用于水质净化,如景观 水、游泳池、雨水等,提高水质
并保持水体清澈。
有机物去除
气浮法可以用于去除废水中的有 机物,提高废水处理效率。
05
气浮法在工业废水处理中的应用案例
某化工厂废水处理项目
某印染厂废水处理项目
废水来源
该项目所处理的废水主要来源于印染厂的生产过程,包括染色、印 花、洗水等环节产生的废水。
处理目的
通过气浮法对废水进行净化处理,降低废水中的污染物含量,达到 国家排放标准。
处理效果
经过气浮处理后,该印染厂的废水中的色度、悬浮物、有机物等污染 物得到了有效去除,处理后的水质明显改善。

气浮原理及CFU介绍

气浮原理及CFU介绍

气浮原理介绍1.气浮原理气浮分离原理主要是利用微气泡发生装置在污水中通入大量的、高度分散的微气泡(通常需要投加混凝剂或浮选剂),使之作为载体与悬浮在水中的颗粒(油滴)或絮状物粘附,形成整体密度小于水的浮体,依靠浮力作用一起上浮到水面,形成浮渣后去除,来达到水中固体与液体、液体与液体分离的净水方法。

气浮分离包括三个过程,气泡产生、气泡与悬浮物(颗粒或油滴)附着、气泡带着悬浮物(颗粒或油滴)上升到液面聚结后去除。

(一)气浮分离分为三个过程气泡产生;气泡与悬浮物(颗粒或油滴)附着;气泡带着悬浮物(颗粒或油滴)上升到液面,聚结通过撇油器去除。

气泡产生方法:a溶气法:气泡直径小(约20~100μm),可认为控制气泡与水接触时间,可通过加压溶气或多相流泵等产生。

b布气(分散气体)法:气泡直径较大(约100~10000μm)。

喷射器、微孔布气和叶轮搅拌产生。

c电解法:气泡直径小(约10~60μm),但耗电量大,电板易结垢,操作困难。

d静电喷涂气体法。

(二)气泡与悬浮物附着微气泡对疏水性悬浮物和油滴有天然吸附作用,粘附后界面能减小。

接触角:气、液、固三相间互相接触时,在气-液界面张力线和固-液界面张力线之间的夹角(对着液相的),用θ表示。

亲水性:容易被水润湿的物质, θ<90。

疏水性:不容易被水润湿的物质θ>90。

在三相接触点上,三界面的张力处于平衡状态:σLS=σLG COS(180°−θ)+σGS(1)附着前,单位界面面积上的界面能之和为:E1=σLS+σLG附着后,单位附着面积上的界面能为:E2=σGS界面能降低值为:∆E=E1−E2=σLS+σLG−σGS(2)将式(1)代入式(2),整理得:∆E=σLG(1−cosθ)(3)(三)气泡与悬浮物分离过程气泡粘附着悬浮物(油滴)逐步形成浮渣,上升到污水气液表面,气泡破碎析出,污染物聚集后聚结成团后经排污排出。

2.CFU工作原理紧凑旋流气浮分离器(CFU)是我公司在吸收国际先进技术的基础上,将旋流离心分离技术与气浮分离技术有机结合,并通过大量CFD(计算流体动力学分析)优化,开发出来的具有国际先进水平的高效气浮油水分离器。

气浮分离法

气浮分离法
气浮分离法
黄粲 03088013
方法及原理:
采用某种方式,向水中通入大量微小 气泡,在一定条件下,使呈表面活性 的待分离物质吸附或粘附于上升的气 泡表面而浮升到液面,从而使某组分 得以分离的方法。
加入表面活性物质后,非极性端向着气相, 而其极性端与水相中待分离的离子或极性 分子通过物理或化学作用结合在一起。当 通入气泡时,表面活性剂就将这些物质连 在一起定向排列在气-液界面,被气泡带到 液面上形成泡沫层,达到分离。
同济大学的研究表明,气浮在给水净化方面 适合于处理低浊水,具有色,臭以及有机杂 质的受污水体。
BECKY
❖气体通常用氮气、空气等。
气浮分离的应用:
❖ 离子气浮和溶剂气浮分离法目前在分析化学 上已有不少应用,如用于环境监测中富集痕 量组分,贵金属的分离富集等。
❖气浮分离法分离富集速度快,比沉淀或共 沉淀分离快得多,富集倍数大,操作方便。 因此近十年来已广泛用于环境治理,给水净 化和工业规模的废水处理等。
气浮分离法的分类:
离子气浮法
沉淀气浮法
溶剂气浮法
离子气浮法:
加入和待分离离子带相反电荷的某种表面活 性剂,使之形成疏水性物质.(有效气浮必须 使吸附颗粒处于低电荷或电中性状态,并具 有疏水性)通入气泡流,表面活性剂就在气液界面定向排列.同时表面活性剂极性的一端 与待分离的离子连接在一起而被气泡带至液 面.
河水中的Cr(ⅵ)以CrO4-形式存在,加入阳 离子表面活性剂,如氯化十六烷三甲基铵,即含有待分离离子的溶液中,加入一种沉淀 剂使之产生沉淀,使表面活性剂与沉淀一起 被气泡带至液面。
溶剂气浮法
在水溶液上覆盖一层与水不相混溶的有机 溶剂.
❖ 溶入有机相或悬浮于两相界面形成第三相,从 而达到分离溶液中某种组分的目的.

气浮及综合实验

气浮及综合实验
城市供水 使用城市供水设施 使用杂用水设施 单元 (小区 )污水 处理装置 排放
中水处理装置
降水
• 对部分回流式压力溶气气浮工艺而言,其气固比可表示为:
Aa 1.2Cs ( fP 1)Qr 1.2Cs ( fP 1) R S QS0 S0
式中:
A S
—气固比(g释放的空气/g悬浮固体)
Si—入流中的悬浮固体浓度(mg/L) Qr—加压水回流量(L/d) Q—污水流量(L/d) R — 回流比 Cs—某一温度时的空气溶解度 p —溶气罐内绝对压力,MPa; f —比值因素,溶气罐内压力为P=(0.2~0.4) MPa,温度为20℃时,f=0.5。 ra—1ml 空气容重, 当20℃ ,1个 atm时,(mg) ra=1164mg/L;
• 系统中调整回流比R,也即调节了气固比。
三、实验内容与步骤 (一) 压力溶气气浮工艺的运行演示 1、竖流式、平流式溶气气浮工艺运行演示。 (二)回流比(气固比)测定 ⑴开启气浮装置进行加压溶气形成合格的溶气水(溶气罐操作 压力控制在0.3MPa左右); ⑵取6个反应杯,各加入500ml纸浆废水(可加适量的混凝剂缓 慢搅拌); ⑶分别按回流比0.2、0.4、0.6、0.8、1.0、1.2加入溶气水并 搅拌0.5min; ⑷静止分离10 min,观测清液和浮渣的体积,并测定悬浮物浓 度。
表7-1 气固比实验数据记录
编号 回流比 浮渣体积 清液体积 现象说明 备注
• 废水接触室中水流上升流速应控制
在10~20mm/s,在室内停留时间应 溶气水量 大于60s。 原水量
AC
Q Q p VC
上升流速
Ac-接触室表面积
• 废水在分离室的停留时间为
10~20min,水流下向流速一般取 1.5~3.0mm/s,保证分离室表面负 荷约为6~8m3/m2.h,最大不超过 10m3/m2.h。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沫而不断减少,待目标物
质分离完成后,残液从塔 底排出。
连续式泡沫分离过程
6.4 影响气浮分离效率的主要因素
1.溶液的酸度

2.表面活性剂浓度 3.离子强度 4.形成络合物或沉淀的性质 5.其他因素
1.溶液的酸度:
对分离效果影响最为显著的因素。分离过程中 选择适当的PH,以保证好的分离效果。
应用
泡沫分离技术的工业应用领域很广。 20世纪初,最早用于金属矿石颗粒的分离回收。 在环保工程中,可处理原子能工业中含放射性元素如 锶的废水;染料、制革、石油化工等工业污水中,可降低 化学耗氧量(COD)、色素、有机化合物等;在其他工业 废水中,也可富集各种金属离子包括铜、锌、铁、汞、银 等;还可富集在海水中所含铜、锌、钼和铀。 在医药和生物工程中,可用于分离蛋白质、酶以及活 体中的金属含量的检验以及病毒的浓缩分离如脚气病和口 腔病病毒等。 在分析上作为痕量元素的分离富集方法, 特别适用于大 量的极稀溶液(10-7~10-15 mol/ L)的分离富集。
浮选机理

向含有待分离离子或分子的水溶液中加入表面活性 剂,通气鼓泡,一般认为在气-液界面上存在定向
排列的表面活性剂,表面活性剂非极性端向着气体
,极性端向着水相。极性端通过物理(如静电引力 )或化学作用(如络合作用)与溶液中被分离的离 子形成络离子或沉淀,然后被气泡带到液面,形成 泡沫层,进而分离。
泡沫层
有机溶剂 (可溶解浮 选物)
析出第 三相
光度测定
选择另一溶 剂溶解后光 度测定
溶剂浮选与吸光光度法直接结合,即溶剂浮选光度 法,具有分离量大、选择性及灵敏度高的独特优点。
饮用水中痕量铜的测定
水样用酒石酸和EDTA隐蔽,控制pH6-6.4,加NaDDTC(砷试剂,二乙基二硫代氨基甲酸钠)浮选,
Γ— 吸附溶质的表面过剩量,即单位面积上吸附溶质 的摩尔数与主体溶液浓度之差, mol/cm2。
lnc < CMC 时, dσ/dlnc < 0, Γ > 0,正吸附作 用,即在表面上浓聚; lnc ≥ CMC 时, dσ/dlnc = 0, Γ = 0,表面张力 不再降低。 CMC一般为0.01~0.02mol/L,分离最好在低于CMC下进行。
吉布斯方程适用于脂肪酸或长链醇等非离子型表面
活性剂的稀溶液。 若溶液中含离子型表面活性剂,应进行修正:
n为与离子型表面活性剂的类型有关的常数。 完全电离的电解质类型 n=2; 当在电解质溶液中还添加过量无机盐时 n=1。
气浮情况涉及:气、水、固三相介质,每两
相之间都存在界面张力。

水气
气粒

分类
氢氧化物共沉淀浮选法
常以Fe(Ⅲ)、Al(Ⅲ)、In(Ⅲ)氢氧化物作沉淀载 体,形成共沉淀后进行浮选。
例如,用Fe(OH) 3作载体,油酸钠作气泡剂,于 pH 为5.5~9.0下富集水中铊。水样为300mL, 加入Fe 3 + 10~15mg,油酸钠20mg以上,10~ 60ng/mL铊,通气浮选2分钟。用阳极溶出法测 定,浮选分离富集率可达 96% 。
实现离子浮选方式
① 欲富集离子直接被浮选--无机络阴离子或酸根离子;
② 欲富集离子先与适当的络合剂作用形成络合物或离子 缔合物,然后通过浮选此种络合物而达到浮选目的-有机试剂螯合离子。 河水中的Cr(Ⅵ)以 CrO42- 形式存在,加入阳离子表
面活性剂,如氯化十六烷三甲基铵,即可将其气浮富集 到液面上。
水中痕量Cu、Ni、Pb的AAS测定
取250m水样于烧杯,加10mg/ml AlCl3 3ml, 加1mg/ml油酸钠,搅拌,再用1mol/LNH 4 OH调pH9.5, 形成Al(OH)3共沉淀, 继续搅拌15min。另取一浮选槽, 加入少量H2O, 调好气流,观察气泡大小合适,倒入上 述沉淀液 ,用25ml 0.1mol/L NH4OH洗涤烧杯并转入 浮选槽。调整气流40~60ml/min浮选5min,让上层形 成稳定的泡沫层。关气,抽滤除去下层母液,往泡沫 层加20 ml EtOH消泡,再用50ml 0.1mol/L NH 4 OH洗 涤沉淀,分别抽滤除尽乙醇和氨水。沉淀加4ml 2mol/ L HNO 3 片刻,溶解后收集于10ml容量瓶,用 4ml 2 mol/L HNO3洗涤小烧杯,再2mol/L HNO3定容, AAS测定。
(1) θ 0, COSθ 1, △W= 0 不能气浮
θ < 90, COSθ< 1, △W<σ水气 颗粒附着不牢--亲水性
θ > 90, △W> σ水气 易气浮―疏水性
θ 180, △W = 2σ水气 最易被气浮
(2) 同时, COS θ =(σ气粒-σ水粒)/σ水气
水中颗粒 θ 与表面张力 σ水气 有关。
第六章
气浮分离法
Flotation separation
教学内容
6.1 气浮分离原理
6.2 气浮分离法类型
6.3 气浮分离装置与操作
6.4 影响气浮分离效率的主要因素
6.5 气浮分离特点及应用
.1 气浮分离原理

气浮分离:以气泡作分离介质来富集和分离表面 活性物质的一种新型分离技术。根据表面吸附的 原理,利用通气鼓泡在液相中形成的气泡为载体, 对液相中的溶质或颗粒进行分离,因此又称泡沫 吸附分离或泡沫分离。 过程:通入空气→产生微细气泡→SS附着在气泡 上→上浮
以氢氧化铁的沉淀气浮法为例。其胶状沉淀在不同 pH下带不同的电荷,pH<9.5时带正电荷,pH>9.5时 带负电荷。 pH<9.5时进行气浮分离应该用阴离子表面活性剂, 如油酸纳; pH>9.5时则用阳离子表面活性剂,如长碳链的季铵 盐等。
2.表面活性剂浓度
在浮选过程中,表面活性剂可改变被浮选物的表 面性质和稳定气泡,它直接影响着浮选分离的成败。 但表面活性剂的用量不宜超过临界胶束浓度(CMC)
螯合物溶于浮选槽上层的异戊醇,直接光度法测定。
6.3 泡沫分离的设备
泡沫吸附分离技术主要包括分离对象的吸附 分离和收集两个基本过程。与之相对应,实验设 备主要包括泡沫塔和破沫器两个部分。 泡沫分离的基本流程有间歇式和连续式两种。
间歇式泡沫分离过程
样品溶液置于塔的底
部,从塔底连续鼓入空气,
在塔顶连续排出泡沫液。 根据表面活性剂的消耗情 况,间歇地从塔底补充表 面活性剂。料液因形成泡
σ水气增加,θ增大, 有利于气浮
气 泡 气泡-颗粒吸 与 附 颗 粒 的 气泡顶托 粘 附 形 式
气泡裹夹
6.2 气浮分离法类型
依据分离的对象和分离手段来划分: 离子气浮分离法 沉淀气浮分离法 溶剂气浮分离法

离子气浮分离法
在含有待分离离子(包括络离子)的试样溶液 中.在适宜条件下,加入适量带相反电荷的表面 活性剂,使之形成电中性离子缔合物。通入适量 气流形成气泡,它们被吸附在气泡表面继而上浮 至液面形成泡沫被分离。
6.4
气浮分离法特点及应用
优点:样品处理量大,0.5-2L;富集倍数大,100-10000 ;
回收率高,90%以上;易于联用,成为超高灵敏度光度法
局限性:A. 对高浓度的溶液分离效率较低;
B. 当用于回收非表面活性剂时,需加入高分子的表面活性剂, 消耗量大,同时伴随着二次回收的问题; C. 在实际操作中,塔内的返混现象经常发生,影响分离效果; D. 对泡沫本身的结构研究少,它是一个非稳定体系,无法直 接测量,许多泡沫的性质还不清楚。

气浮分离应具备两个必要条件:
A. 所需分离溶质应为表面活性物质,或能与表面活性剂相结 合(静电作用、疏水性吸附等)的物质,它们都可吸附在气 液界面上。 B. 富集质在分离过程中借泡沫与原料液分离并在塔顶富集。
分离作用主要取决于组分在气-液界面上吸附的
选择性和程度,其本质是各种物质在溶液中表面活 性的差异。
●有机试剂共沉淀浮选法
试液(M+)+有机试剂/极性溶剂(丙酮、乙醇)
→ 有机共沉淀 → 浮选 特点 ①可在酸性溶液中捕集微量元素, 减少基体干扰。 ②不必加表面活性剂 ③干扰测定的有机试剂可灰化除去 ④应先搅拌, 待形成絮状沉淀再浮选 应用 ① 高纯铅、锌中的Ag和Cu的分离和测定 ② 海水中微量银的富集测定
捕集剂/收集剂作用:若待分离离子是亲水的,它们 很难吸附在气泡上而被浮选分离。加入捕集剂覆盖 在离子表面上,使它们由亲水性变成疏水性,便可 附在气泡上分离出来。 表面活性剂作用——在气泡表面定向排列
●表面活性剂非极性端向着气泡,极性端向着水相 ●极性端可以吸附水中的离子和极性分子
泡沫层
从底部通入 大量气泡
附着后: W2=σ气粒
界面能的减少△W=σ水气+σ水粒-σ气粒 三力之间关系: σ水粒 = σ气粒 + σ水气 COS(180-θ)
σ
l-g
△W = σ水气 (1-COSθ)
θ
σ
s-g
悬浮物与气泡附着的条件:
△W>0 ,△W越大,推动
力越大,越易气浮。
σ
s-l
△W = σ水气 (1-COSθ)
溶剂气浮分离法
在含有待分离离子的试样溶液表面上覆盖一层 与水不相混溶的有机溶剂,当采取某种方式使水中 产生大量微小气泡后,已显表面活性的待分离组分 就会被吸附和粘附在这些正在上升的气泡表面。溶 入有机相或悬浮于两相界面形成第三相.从而达到 分离溶液中某种组分的目的。 溶剂浮选与萃取法的区别在于浮选物与浮 选溶剂不起溶剂化作用,不涉及萃取的分配问题。
溶质吸附在 气泡上并随 之上升
问题:1 为什么溶质会选择性地吸附在气泡上? 2 如何最大限度达到富集效果?
浮渣或泡沫层
样品液 气泡
烧结板
空气
浮选装置与操作
相关文档
最新文档