2019年人教版 高中数学【选修 2-1】1.1.1课时同步练习
高中数学选修2-1同步练习题库:全称量词与存在量词(填空题:一般)
全称量词与存在量词(填空题:一般)1、若命题“,使”是假命题,则实数a的取值范围为.2、已知“∀x∈R,ax2+2ax+1>0”为真命题,则实数a的取值范围是________.3、命题“对任何,”的否定是__________.4、已知命题“,”,则__________.5、下列命题中,假命题的序号有____.(1)是“函数为偶函数”的充要条件;(2)“直线垂直平面内无数条直线”是“直线垂直平面”的充分条件;(3)若,则;(4)若则¬6、命题“”的否定是_____7、命题“”的否定是________.8、已知,,若,或,则的取值范围是__________.9、设命题,则为__________.10、已知命题,,则命题的否定为__________.11、已知函数.若命题:“,使”是真命题,则实数的取值范围是__________.12、已知命题“x∈R,sinx-2a≥0”是真命题,则a的取值范围是________.13、以下说法正确的是__________。
(填写所有正确命题的序号)①不等式与不等式解集相同;②已知命题“若,则”的否命题是“若,则” ,命题“若,则”与命题“若,则”等价,则为真命题,为假命题;③命题“”的否定是“”;④已知幂函数的图像经过点,则。
14、命题“”的否定是____________.15、下列命题中真命题为__________.(1)命题“”的否定是“”(2)在中,,则.(3)已知数列{},则“成等比数列”是“”的充要条件(4)已知函数,则函数的最小值为216、命题“ ,”的否定是________________.17、命题:,,则该命题的否定是________.18、命题“"x∈R,sin x≥-1”的否定是______.19、若“,使得成立”是假命题,则实数的取值范围为_______.20、命题“∃x R,x+1≥0”的否定为______.21、若命题“”是假命题,则的取值范围是__________.22、若命题“,”是假命题,则实数的取值范围是___________.23、已知下列命题:①的否定是:;②若,则;③若,;④在△ABC中,若A>B,则sin A>sin B.其中真命题是_______________.(将所有真命题序号都填上)24、若下列两个方程中至少有一个方程有实数根,则实数的取值范围是__________.25、命题“,”的否定是__________.26、给出如下四个命题:①已知表示两条不同的直线,表示两个不同的平面,并且,则“”是“∥”的必要不充分条件;②对于,成立;③“若,则”的逆命题为真命题;④把函数的图象向右平移个单位,可得到的图象.其中所有正确命题的序号是__________.27、命题:“”的否定为__________.28、已知命题对任意的,命题存在,若命题“且”是真命题,则实数的取值范围是_________.29、已知函数.若命题:“,使”是真命题,则实数的取值范围是__________.30、命题,,命题,其中真命题是;命题的否定是.31、下列命题:①;②;③;④;⑤;⑥.其中所有真命题的序号是.32、已知命题,命题,若命题是真命题,则实数的取值范围是__________.33、若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为.34、命题“,”的否定是.35、设命题P:,则P为.36、命题“∀x∈R+,2x+>a成立”是真命题,则a的取值范围是________.37、【原创】已知命题,.若命题是真命题,则实数的取值范围是.38、已知命题,.若命题是假命题,则实数的取值范围是.39、命题“”的否定形式是.40、已知命题p:∀x∈R,ax2+2x+3>0,如果命题¬p是真命题,那么实数a的取值范围是.41、已知:对∀x>0,a≤x+恒成立,则a的取值范围为.42、下列命题的否定为假命题的是.①∀x∈R,﹣x2+x﹣1<0;②∀x∈R,|x|>x;③∀x,y∈Z,2x﹣5y≠12;④∃x∈R,Tsin2x+sinx+1=0.43、命题“原函数与反函数的图象关于y=x对称”的否定是.44、已知命题p:∃n∈N,2n>1000,则¬p为.45、下列全称命题中是假命题的是.①2x+1是整数(x∈R);②对所有的x∈R,x>3;③对任意的x∈Z,2x2+1为奇数.46、下列存在性命题中,是真命题的是.①∃x∈R,x≤0;②至少有一个整数,它既不是合数,也不是质数;③∃x∈{x|x是无理数},x2是无理数.47、不等式x2﹣x>x﹣a对∀x∈R都成立,则a的取值范围是.48、命题“对任何x∈R,|x﹣2|+|x﹣4|>3”的否定是.49、命题“存在x∈R,使得x2+2x+5=0”的否定是.50、下列命题是全称命题并且是真命题的是.①每个二次函数的图象都开口向上;②对任意非正数c,若a≤b+c,则a≤b;③存在一条直线与两个相交平面都垂直;④存在一个实数x0使不等式x02﹣3x0+6<0成立.51、下列说法正确的是________(将所有正确的序号填在横线上).①直线l1:ax+y=3,l2:x+by-c=0,则l1∥l2的必要条件是ab=1;②方程x2+mx+1=0有两个负根的充要条件是m>0;③命题“若|a|=|b|,则a=b”为真命题;④“x<0”是“x2-3x+2>0”的充分不必要条件.52、命题,使的否定是 .53、命题,使的否定是 .54、下列说法:①“,”的否定是“,”;②函数的最小正周期是;③命题“函数在处有极值,则”的否命题是真命题;④是上的奇函数,的解析式是,则时的解析式为.其中正确的说法是__________.55、若命题“∃x∈R,使得x2+(a-1)x+1≤0”为假命题,则实数a的范围________.56、命题p:“,使”的否定¬p是57、已知函数f(x)=4|a|x-2a+1.若命题:“∃x0∈(0,1),使f(x0)=0”是真命题,则实数a的取值范围是________.58、命题“R,.”的否定是 .59、命题“R,.”的否定是 .60、由命题“”是假命题,求得实数的取值范围是,则实数的值是.61、已知命题,请写出命题的否定:_________.62、下列说法:① “,使>3”的否定是“,使3”;②函数的最小正周期是;③ “在中,若,则”的逆命题是真命题;④ “”是“直线和直线垂直”的充要条件;其中正确的说法是(只填序号).63、命题:“,x0≤1或>4”的否定是________.64、命题“”的否定是: .65、若,则下列不等式对一切满足条件的,恒成立的是(写出所有正确命题的编号)_______________。
高二数学(人教B版)选修2-1全册同步练习:3-1-1空间向量的线性运算
3.1.1空间向量的线性运算一、选择题1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,AB →=a ,AD →=b ,AA 1→=c ,则D 1B →等于( )A .a +b +cB .a +b +cC .a -b -cD .-a +b +c [答案] C[解析] D 1B →=D 1A 1→+A 1A →+AB →=-b +(-c )+a =a -b -c .故选C2.在平行六面体ABCD -A ′B ′C ′D ′中,向量AB ′→、AD ′→、BD →是( ) A .有相同起点的向量 B .是等长的向量 C .是共面向量D .是不共面向量[答案] C[解析] ∵AB 1→-AD 1→=D 1B 1→=BD →,∴共面.故选C.3.如图所示在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的共有( )(1)(AB →+BC →)+CC 1→ (2)(AA 1→+A 1D 1→)+D 1C 1→ (3)(AB →+BB 1→)+B 1C 1→ (4)(AA 1→+A 1B 1→)+B 1C 1→. A .1个 B .2个 C .3个D .4个[答案] D[解析] 代入检验知选D.4.在平行六面体ABCD -A 1B 1C 1D 1中,有以下等式,其中不正确的是( ) A.D 1B →=D 1D →+D 1A 1→+D 1C 1→ B.D 1B →=D 1C 1→+B 1B →+CB → C.D 1B →=D 1A 1→+A 1B →+A 1A →D.D 1B →=D 1C 1→+C 1D →+DB → [答案] C[解析] D 1A 1→+A 1B →+A 1A →=D 1B →+A 1A →≠D 1B →. 故选C.5.如图所示的空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A.32DB →B .3MG →C .3GM →D .2MG →[答案] B[解析] MG →-AB →+AD →=MG →+BD →=MG →+2MG →=3MG →.6.平行六面体ABCD -A 1B 1C 1D 中,O 为BD 1与AC 1的交点,下列说法正确的是( ) A.AO →=12AB →+AD →+AA 1→)B.AO →=13AC 1→C.BO →=12(BA →+BC →+BD →1)D.BO →=14AC 1→+BD 1→)[答案] A[解析] AB →+AD →+AA 1→=AC →+AA 1→=AC 1→. 故选A.7.如图所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c, 点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →等于( )A.12a -23b +12c B .-23 a +12b +12cC.12a +12 b -23cD.23a +23b -12c [答案] B[解析] MN →=ON →-OM →=12(OB →+OC →)-23OA →=12×(b +c )-23a =-23a +12b +12c .∴应选B. 8.已知G 是正方形ABCD 的中心,点P 为正方形ABCD 所在平面外一点,则PA →+PB →+PC →+PD →=( )A .4PG →B .3PG →C .2PG →D.PG →[答案] A[解析] PA →+PB →+PC →+PD →=PG →+GA →+PG →+GB →+PG →+GC →+PG →+GD →=4PG →+(GA →+GC →)+(GB →+GD →),∵ABCD 是正方形,G 是它的中心, ∴GA →+GC →=GB →+GD →=0,故原式=4PG →.9.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .空间四边形B .平行四边形C .等腰梯形D .矩形[答案] B[解析] 画图利用空间向量的运算法则首尾相接 AO →+OB →=AB →,DO →+OC →=DC →, ∴AB →=DC →.故选B.10.已知正方体ABCD -A ′B ′C ′D ′ ,点E 是A ′C ′的中点,点F 是AE 的三等分点,且AF =12,则AF →等于( )A.AA ′→+12AB →+12AD →B.12AA ′→+12AB →+12AD →C.12AA ′→+16AB →+16AD →D.13AA ′→+16AB →+16AD → [答案] D[解析] AF →=13AE →=13(AA ′→+A ′E →)=13AA ′→+13×12A ′C ′→ =13AA ′→+16(A ′B ′→+A ′D ′→) =13AA ′→+16A ′B ′→+16A ′D ′→. 故选D. 二、填空题11.设A ,B ,C ,D 为空间任意四点,则AC →-BC →+BD →=________. [答案] AD →[解析] AC →-BC →+BD →=AC →+CB →+BD →=AD →。
高中数学选修2-1练习题
常用逻辑用语一、选择题1.命题“如果x≥a 2+b 2,那么x≥2ab”的逆否命题是( ) A .如果x<a 2+b 2,那么x<2ab B .如果x≥2ab,那么x≥a 2+b 2 C .如果x<2ab,那么x<a 2+b 2 D .如果x≥a 2+b 2,那么x<2ab 2.三角形全等是三角形面积相等的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分又不必要条件 3.下列四个命题中,真命题是( ) A .2是偶数且是无理数 B .8≥10 C .有些梯形内接于圆 D .∀x ∈R,x 2-x+1≠0 4.命题“所有奇数的立方是奇数”的否定是( ) A .所有奇数的立方不是奇数 B .不存在一个奇数,它的立方是偶数 C .存在一个奇数,它的立方是偶数 D .不存在一个奇数,它的立方是奇数 二、填空题5.命题“若a=-1,则a 2=-1”的逆否命题是______________________. 6.b=0是函数f(x)=ax 2+bx+c 为偶函数的______________________.7.全称命题“∀a ∈Z,a 有一个正因数”的否定是________________________. 8.特称命题“有些三角形的三条中线相等”的否定是______________________. 9.设p :|5x -1|>4;2210231x x x x ++³-+,则非p 是非q 的______ ___条件.三、解答题10.求证:a+2b=0是直线ax+2y+3=0和直线x+by+2=0互相垂直的充要条件.11.已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数m 范围.12.给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4; q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4;q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).圆锥曲线练习题一.选择题1.若椭圆经过原点,且焦点分别为12(1,0),(3,0)F F ,则其离心率为( ) A.34 B.23 C.12 D.142.过抛物线y 2=4x 的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则|AB|等于( )A.10B.8C.6D.43.若双曲线x 24+y2k1的离心率(1,2)e ∈,则k 的取值范围是( )A.(),0-∞B.()3,0-C.()12,0-D.()60,12-- 4.与y 轴相切且和半圆x 2+y 2=4(0≤x ≤2)内切的动圆圆心的轨迹方程是( ) A.()()24101y x x =--<≤ B.()()24101y x x =-<≤C.()()24101y x x =+<≤ D.()()22101yx x =--<≤5.过点M(-2,0)的直线L 与椭圆2222x y +=交于12,P P 两点,设线段12P P 的中点为P ,若直线l 的斜率为11(0)k k ≠,直线OP 的斜率为2k ,则12k k 等于( )A.2-B.2C.12D.-126.如果方程x 2-p +y2q =1表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是( )A.2212xyq pq+=+ B.2212xyq pp+=-+ C.2212xyp qq+=+ D.2212xyp qp+=-+二.填空题7.椭圆x 212+y 23=1的焦点分别是12F ,F ,点P 在椭圆上,如果线段1P F 的中点在y 轴上,那么1PF 是2PF 的 倍.8.椭圆x 245+y 220=1的焦点分别是12F ,F ,过原点O 做直线与椭圆交于A ,B 两点,若∆ABF 2的面积是20,则直线AB 的方程是 .9.与双曲线2244x y -=有共同的渐近线,并且经过点(2的双曲线方程是10.已知直线y=kx+2与双曲线x 2-y 2=6的右支相交于不同的两点,则k 的取值范围是 .三.解答题11.抛物线y=-12x 2与过点M(0,-1)的直线L 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线L 的方程.12.已知中心在原点,一焦点为F(0,50)的椭圆被直线:32l y x =-截得的弦的中点横坐标为12,求此椭圆的方程.13.21,F F 是椭圆x 29+y27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45︒,求∆12AF F 的面积.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题11. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.12. 解:设所求的椭圆为x 2a 2+y2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题13. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.14. 解:设所求的椭圆为x 2a 2+y 2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.空间向量练习题一.选择题1.直棱柱ABC -A 1B 1C 1中,若CA →=a →,CB →=b →,CC 1→=c →,则A 1B →=( )A .a →+b →-c →B .a →-b →+c →C .-a →+b →+c →D .-a →+b →-c →2.已知A ,B ,C 三点不共线,对平面ABC 外的任意一点O ,下列条件中能确定点M 与A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → C .OM →=2OA →-OB →-OC →C .OM →=OA →+12OB →+13→D .OM →=13OA →+13OB →+13OC →3.若向量m →同时垂直向量a →和b →,向量n →=λa →+μb →(λ,μ∈R, λ,μ≠0),则( )A .m →∥n →B .m →⊥n → C.m →与n →不平行也不垂直 D .以上均有可能 4.以下四个命题中,正确的是( )A .若OP →=12OA →+13OB →,则P ,A ,B 三点共线B .若{a →,b →,c →}为空间一个基底,则{a →+b →,b →+c →,c →+a →}构成空间的另一个基底 C .|(a →⋅b →)c →|=|a →|⋅|b →|⋅|c →|D .∆ABC 为直角三角形的充要条件是AB →⋅AC →=05.已知a →=(λ+1,0,2λ),b →=(6,2μ-1,2),a →∥b →,则λ和μ的值分别为( ) A .15,12B .5,2C .-15,-12D .-5,-2二.填空题6.若a →=(2,-3,1),b →=(2,0,3),c →=(0,2,2),则a →⋅(b →+c →)=________.7.已知G 是∆ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值为_______. 8.已知|a →|=1,|b →|=2,<a →,b →>=60︒,则|a →-25(a →+2b →)|=________.三.解答题9.若向量(a →+3b →)⊥(7a →-5b →),(a →-4b →)⊥(7a →-2b →),求a →与b →的夹角.10.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试求实数λμν,,,使4123a a a a λμν=++成立.11.正三棱柱111-ABC A B C 的底面边长为a ,求1AC 与侧面11ABB A 所成的角. 12.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x ,1,2).依题意πcos 422=⇒=.2x =-∴2x =+.2AE =-∴空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x,1,2).依题意πcos 422=⇒=2x =-∴2x =+.2AE =-∴。
高中数学选修2-1各章节课时同步练习及详解
第1章1.1.1一、选择题(每小题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③大边所对的角大于小边所对的角;④2是无理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“最高气温30 ℃时我就开空调”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个角是直角,则这两个角相等”;B所给语句是命题;C的反例可以是“用边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正方形}是{x|x是平行四边形}的子集吗?④3小于2;⑤矩形的对角线相等;⑥9的平方根是3或-3;⑦2不是质数;⑧2既是自然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选一个来判断,即可得出结果,①③为真命题.故选B.答案: B二、填空题(每小题5分,共10分) 5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ; ②函数y =x 3在R 上既是奇函数又是增函数; ③函数y =f (x )的图象与直线x =a 至多有一个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 其中正确命题的序号是________.解析: ①∠A >∠B ⇒a >b ⇒sin A >sin B .②③易知正确. ④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π2的图象. 答案: ①②③6.命题“一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案: 一元二次方程ax 2+bx +c =0(a ≠0) 此方程有两个不相等的实数根 假 三、解答题(每小题10分,共20分) 7.指出下列命题的条件p 和结论q : (1)若x +y 是有理数,则x ,y 都是有理数;(2)如果一个函数的图象是一条直线,那么这个函数为一次函数. 解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数. (2)条件p :一个函数的图象是一条直线,结论q :这个函数为一次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.解析: 命题p 是真命题,则x 2-2x -2≥1, ∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4. ∴x ≥4或x ≤-1. 尖子生题库 ☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满足的条件. 方程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1<x 2<0,则a x 1>a x 2,求a 满足的条件. 解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时, 方程有解x =-1b.当a ≠0时,方程为一元二次方程,有解的条件为 Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,方程ax 2+bx +1=0有解. (2)∵命题当x 1<x 2<0时,a x 1>a x 2为假命题, ∴应有当x 1<x 2<0时,a x 1≤a x 2. 即a x 2-x 1x 1x 2≤0.∵x 1<x 2<0,∴x 2-x 1>0,x 1x 2>0, ∴a ≤0.第1章 1.2一、选择题(每小题5分,共20分) 1.“|x |=|y |”是“x =y ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析: |x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |. 故|x |=|y |是x =y 的必要不充分条件. 答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当x =2k π+π4时,tan x =1,而tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成立的充分不必要条件.故选A.答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析: ∵x ≥2且y ≥2, ∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;而x 2+y 2≥4不一定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成立,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 由题意得:故D 是A 的必要不充分条件 答案: B二、填空题(每小题5分,共10分)5.下列命题中是假命题的是________.(填序号) (1)x >2且y >3是x +y >5的充要条件 (2)A ∩B ≠∅是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形 解析: (1)因x >2且y >3⇒x +y >5,x +y >5⇒/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件. (2)因A ∩B ≠∅⇒/ A B, A B ⇒A ∩B ≠∅. 故A ∩B ≠∅是A B 的必要不充分条件. (3)因b 2-4ac <0⇒/ ax 2+bx +c <0的解集为R ,ax 2+bx +c <0的解集为R ⇒a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件. (4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形. 答案: (1)(2)(3) 6.设集合A =⎩⎨⎧⎭⎬⎫x |xx -1<0,B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的________条件.解析: A =⎩⎨⎧⎭⎬⎫x |xx -1<0={x |0<x <1}.m ∈A ⇒m ∈B ,m ∈B ⇒/ m ∈A .∴“m ∈A ”是“m ∈B ”的充分不必要条件. 答案: 充分不必要三、解答题(每小题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件, 则p ⇒q 但q ⇒/p .∵p :12≤x ≤1,q :a ≤x ≤a +1.∴a +1≥1且a ≤12,即0≤a ≤12.∴满足条件的a 的取值范围为⎣⎢⎡⎦⎥⎤0,12.8.求证:0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件.证明: 充分性:∵0<a <45,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0, 则ax 2-ax +1-a >0对一切实数x 都成立. 而当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对一切实数x 都成立. 必要性:∵ax 2-ax +1-a >0对一切实数x 都成立,∴a =0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a 1-a <0.解得0≤a <45.故0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件.尖子生题库 ☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析: 先化简B ,B ={x |(x -2)[x -(3a +1)]≤0}, ①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件, 所以A ⊆B ,从而有⎩⎪⎨⎪⎧a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3. 或⎩⎪⎨⎪⎧a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3一、选择题(每小题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( ) A .p 为真命题,p 且q 为假命题 B .p 为假命题,q 为假命题 C .q 为假命题,p 或q 为真命题 D .p 且q 为假命题,p 或q 为真命题解析: ∵p 为真命题,q 为假命题, ∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题; ②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题. A .①③ B .②④ C .②③D .①④解析: ∵綈p ∨綈q 是假命题 ∴綈(綈p ∨綈q )是真命题 即p ∧q 是真命题 答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析: 若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题. 若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件. 答案: A4.已知命题p 1:函数y =2x-2-x在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 4解析: ∵y =2x 在R 上为增函数,y =2-x=⎝ ⎛⎭⎪⎫12x 在R 上为减函数,∴y =-2-x=-⎝ ⎛⎭⎪⎫12x 在R 上为增函数,∴y =2x-2-x在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q 1:p 1∨p 2是真命题,因此排除B 和D ,q 2:p 1∧p 2是假命题,q 3:綈p 1是假命题,(綈p 1)∨p 2是假命题,故q 3是假命题,排除A.故选C.答案: C二、填空题(每小题5分,共10分)5.“a ≥5且b ≥3”的否定是____________; “a ≥5或b ≤3”的否定是____________. 答案: a <5或b <3 a <5且b >3 6.在下列命题中:①不等式|x +2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A A∪B.其中,真命题为________.解析:①此命题为“非p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的一个解,所以p是真命题,所以非p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q 为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“非p”的形式,其中p:A⊆A∪B.因为p为真命题,所以“非p”为假命题,故是假命题.所以填②.答案:②三、解答题(每小题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8∉{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:方程x2-x+1=0有实根;(2)p:函数y=tan x是周期函数;(3)p:∅⊆A;(4)p:不等式x2+3x+5<0的解集是∅.解析:∅ A尖子生题库 ☆☆☆9.(10分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0. 又a >0,所以a <x <3a , 当a =1时,1<x <3,即p 为真命题时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2.即2<x ≤3.所以q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ⇒綈q 且綈q ⇒/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B . 所以0<a ≤2且3a >3,即1<a ≤2. 所以实数a 的取值范围是(1,2].第1章1.4.1、2一、选择题(每小题5分,共20分) 1.下列命题中的假命题是( ) A .∃x ∈R ,lg x =0 B .∃x ∈R ,tan x =1 C .∀x ∈R ,x 2>0D .∀x ∈R,2x>0解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题.C 中当x =0时,x 2=0不大于0,是假命题. D 中∀x ∈R,2x>0是真命题. 答案: C2.下列命题中,真命题是( )A .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数 B .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数 C .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数 D .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数 解析: ∵当m =0时,f (x )=x 2(x ∈R ). ∴f (x )是偶函数又∵当m =1时,f (x )=x 2+x (x ∈R ) ∴f (x )既不是奇函数也不是偶函数. ∴A 对,B 、C 、D 错.故选A. 答案: A 3.下列4个命题:p 1:∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫13x ;p 2:∃x ∈(0,1),log 12x >log 13x ; p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >log 12x ; p 4:∀x ∈⎝⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x .其中的真命题是( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析: 对于命题p 1,当x ∈(0,+∞)时,总有⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x成立.所以p 1是假命题,排除A 、B ;对于命题p 3,在平面直角坐标系中作出函数y =⎝ ⎛⎭⎪⎫12x与函数y =log 12x 的图象,可知在(0,+∞)上,函数y =⎝ ⎛⎭⎪⎫12x 的图象并不是始终在函数y =log 12x图象的上方,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :∀x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( ) A .a ≤-3或a >2 B .a ≥2 C .a >-2D .-2<a <2解析: 依题意:ax 2+4x +a ≥-2x 2+1恒成立, 即(a +2)x 2+4x +a -1≥0恒成立,所以有:⎩⎪⎨⎪⎧a +2>0,16-4 a +2 a -1 ≤0⇔⎩⎪⎨⎪⎧a >-2,a 2+a -6≥0⇔a ≥2.答案: B二、填空题(每小题5分,共10分)5.命题“有些负数满足不等式(1+x )(1-9x )>0”用“∃”或“∀”可表述为________. 答案: ∃x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :∃x 0∈R ,tan x 0=3;命题q :∀x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析: 当x 0=π3时,tan x 0=3,∴命题p 为真命题;x 2-x +1=⎝⎛⎭⎪⎫x -122+34>0恒成立,∴命题q 为真命题, ∴“p 且q ”为真命题. 答案: 真三、解答题(每小题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假: (1)若a >0,且a ≠1,则对任意实数x ,a x>0. (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2. (3)∃T 0∈R ,使|sin(x +T 0)|=|sin x |. (4)∃x 0∈R ,使x 20+1<0.解析: (1)(2)是全称命题,(3)(4)是特称命题. (1)∵a x>0(a >0且a ≠1)恒成立,∴命题(1)是真命题. (2)存在x 1=0,x 2=π,x 1<x 2,但tan 0=tan π,∴命题(2)是假命题.(3)y =|sin x |是周期函数,π就是它的一个周期, ∴命题(3)是真命题. (4)对任意x 0∈R ,x 20+1>0.∴命题(4)是假命题.8.选择合适的量词(∀、∃),加在p(x)的前面,使其成为一个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是无理数,则x2是无理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表示)解析:(1)∃x∈R,x>2.(2)∀x∈R,x2≥0;∃x∈R,x2≥0都是真命题.(3)∃x∈Z,x是偶数.(4)存在实数x,若x是无理数,则x2是无理数.(如42)(5)∃a,b,c∈R,有a2+b2=c2.尖子生题库 ☆☆☆9.(10分)若∀x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,二次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成立,即4m2+4am+1≥0恒成立.又4m2+4am+1≥0是一个关于m的二次不等式,恒成立的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章1.4.3一、选择题(每小题5分,共20分)1.命题:对任意x∈R,x3-x2+1≤0的否定是( )A.不存在x0∈R,x30-x20+1≤0B.存在x0∈R,x30-x20+1≥0C.存在x0∈R,x30-x20+1>0 D.对任意x∈R,x3-x2+1>0解析:由全称命题的否定可知,命题的否定为“存在x0∈R,x30-x20+1>0”.故选C.答案: C2.命题p:∃m0∈R,使方程x2+m0x+1=0有实数根,则“綈p”形式的命题是( )A .∃m 0∈R ,使得方程x 2+m 0x +1=0无实根 B .对∀m ∈R ,方程x 2+mx +1=0无实根 C .对∀m ∈R ,方程x 2+mx +1=0有实根D .至多有一个实数m ,使得方程x 2+mx +1=0有实根解析: 由特称命题的否定可知,命题的否定为“对∀m ∈R ,方程x 2+mx +1=0无实根”.故选B.答案: B3.“∃x 0∉M ,p (x 0)”的否定是( ) A .∀x ∈M ,綈p (x ) B .∀x ∉M ,p (x ) C .∀x ∉M ,綈p (x ) D .∀x ∈M ,p (x )答案: C4.已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论:①命题“p ∧q ”是真命题;②命题“p ∧¬q ”是假命题;③命题“¬p ∨q ”是真命题;④命题“¬p ∨¬q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析: 当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1<x <2,∴命题q 为真命题. ∴p ∧q 为真,p ∧¬q 为假,¬p ∨q 为真,¬p ∨¬q 为假. 答案: D二、填空题(每小题5分,共10分)5.命题p :∃x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析: ∵x 2+2x +5=(x +1)2+4≥0恒成立,所以命题p 是假命题. 答案: 特称命题 假 ∀x ∈R ,x 2+2x +5≥0 真6.(1)命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是________. (2)命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________. 答案: (1)∃x 0∈R ,|x 0-2|+|x 0-4|≤3 (2)∀x ∈R ,x 2+2x +5≠0 三、解答题(每小题10分)7.写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)∀α,β∈R ,sin(α+β)≠sin α+sin β;(3)∃θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正方形不是矩形,假命题.(2)命题的否定:∃α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:∀θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在一个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,并说明理由.(2)若存在一个实数x0,使不等式m-f(x0)>0成立,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖子生题库 ☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)∀a,b∈R,若a=b,则a2=ab;(2)若a²c=b²c,则a=b;(3)若b2=ac,则a,b,c是等比数列.解析:(1)否命题:∀a,b∈R,若a≠b,则a2≠ab,假;命题的否定:∃a,b∈R,若a=b,则a2≠ab,假;(2)否命题:若a²c≠b²c,则a≠b.真;命题的否定:∃a,b,c,若a²c=b²c,则a≠b,真;(3)否命题:若b2≠ac,则a,b,c不是等比数列,真.命题的否定:∃a,b,c∈R,若b2=ac,则a,b,c不是等比数列,真.1章整合(考试时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列语句:①二次函数是偶函数吗?②2>2;③sin π2=1;④x 2-4x +4=0.其中是命题的有( )A .1个B .2个C .3个D .4个解析: 只有②和③是命题,语句①是疑问句,语句④含有变量x ,不能判断真假. 答案: B2.与命题:“若a ∈P ,则b ∉P ”等价的命题是( ) A .若a ∉P ,则b ∉P B .若b ∉P ,则a ∈P C .若a ∉P ,则b ∈P D .若b ∈P ,则a ∉P答案: D3.对命题p :1∈{1},命题q :1∉∅,下列说法正确的是( ) A .p 且q 为假命题 B .p 或q 为假命题 C .非p 为真命题D .非q 为假命题 解析: ∵p 、q 都是真命题,∴綈q 为假命题. 答案: D4.下列四个命题中真命题的个数为( )①若x =1,则x -1=0;②“若ab =0,则b =0”的逆否命题;③“等边三角形的三边相等”的逆命题;④“全等三角形的面积相等”的逆否命题.A .1B .2C .3D .4解析: ①是真命题;②逆否命题为“若b ≠0,则ab ≠0”,是假命题;③“等边三角形的三边相等”改为“若p ,则q ”的形式为“若一个三角形为等边三角形,则这个三角形的三边相等”,其逆命题为“若一个三角形的三边相等,则这个三角形为等边三角形”,是真命题;④“全等三角形的面积相等”改为“若p ,则q ”的形式为“若两个三角形为全等三角形,则这两个三角形的面积相等”,其逆否命题为“若两个三角形的面积不相等,则这两个三角形不是全等三角形”,是真命题.答案: C5.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析: 命题①是假命题,其逆命题为1a <1b,则a >b ,是假命题.故A 、C 错误.命题②是真命题,其逆命题为假命题,逆否命题为真命题.故选D.答案: D6.已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)解析: 函数f (x )=ax 2+bx +c =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a >0),∵2ax 0+b =0,∴x 0=-b2a .当x =x 0时,函数f (x )取得最小值. ∴∀x ∈R ,f (x )≥f (x 0),故选C. 答案: C7.“x <-1”是“x 2-1>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析: x 2-1>0⇒x >1或x <-1,故x <-1⇒x 2-1>0,但x 2-1>0⇒/ x <-1, ∴“x <-1”是“x 2-1>0”的充分而不必要条件. 答案: A8.已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析: 由a >0且b >0可得a +b >0,ab >0,由a +b >0有a ,b 至少一个为正,ab >0可得a 、b 同号, 两者同时成立,则必有a >0,b >0.故选C. 答案: C9.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( ) A .不存在x 0∈R ,x 30-x 20+1≤0 B .存在x 0∈R ,使x 30-x 20+1>0 C .存在x 0∈R ,使x 30-x 20+1≤0D .对任意的x ∈R ,x 3-x 2+1>0解析: 由于已知命题是全称命题,其否定应为特称命题,并且对原命题的结论进行否定,由此可知B 正确.答案: B10.对∀x ∈R ,kx 2-kx -1<0是真命题,则k 的取值范围是( ) A .-4≤k ≤0 B .-4≤k <0 C .-4<k ≤0D .-4<k <0解析: 依题意,有k =0或⎩⎪⎨⎪⎧k <0,k 2+4k <0.解得-4<k ≤0.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.“若x 2=y 2,则x =-y ”的逆命题是________命题,否命题是________命题.(填“真”或“假”)解析: 若x 2=y 2,则x =-y 的逆命题为:若x =-y ,则x 2=y 2,是真命题;否命题为:若x 2≠y 2,则x ≠-y ,是真命题.答案: 真 真12.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.解析: 由a +b =0得a =-b ,即a ∥b ,但a ∥b 不一定有a =-b ,所以“a +b =0”是“a ∥b ”的充分不必要条件.答案: 充分不必要 13.下列命题:①∀x ∈R ,不等式x 2+2x >4x -3成立; ②若log 2x +log x 2≥2,则x >1;③命题“若a >b >0且c <0,则c a >c b”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1.命题q :∃x 0∈R ,x 20-2x 0-1≤0,则命题p ∧綈q 是真命题.其中真命题有________.(填序号)解析: ①中不等式x 2+2x >4x -3⇔x 2-2x +3>0⇔x ∈R . ∴对∀x ∈R ,x 2+2x >4x -3成立.①是真命题.②中log 2x +log x 2≥2⇔ log 22x -2log 2x +1log 2x ≥0⇔log 2x >0或log 2x =1⇔x >1.∴②是真命题.③中⎭⎪⎬⎪⎫a >b >0⇒1a <1b c <0⇒c a >c b ,原命题为真命题,逆否命题为真命题,∴③是真命题. ④中p 为真命题,q 为真命题,命题p ∧綈q 是假命题.答案: ①②③14.令p (x ):ax 2+2x +1>0,若对∀x ∈R ,p (x )是真命题,则实数a 的取值范围是________. 解析: 对∀x ∈R ,p (x )是真命题,就是不等式ax 2+2x +1>0对一切x ∈R 恒成立. (1)若a =0,不等式化为2x +1>0,不能恒成立;(2)若⎩⎪⎨⎪⎧a >0,Δ=4-4a <0,解得a >1;(3)若a <0,不等式显然不能恒成立. 综上所述,实数a 的取值范围是a >1. 答案: a >1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)写出下列命题的“若p ,则q ”形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假.(1)全等三角形的对应边相等; (2)四条边相等的四边形是正方形.解析: (1)“若p ,则q ”的形式:若两个三角形全等,则这两个三角形的对应边相等;是真命题.逆命题:若两个三角形的对应边相等,则这两个三角形全等;是真命题. 否命题:若两个三角形不全等,则这两个三角形的对应边不全相等;是真命题. 逆否命题:若两个三角形的对应边不全相等,则这两个三角形不全等;是真命题. (2)“若p ,则q ”的形式:若一个四边形的四条边相等,则它是正方形;是假命题. 逆命题:若一个四边形是正方形,则它的四条边相等;是真命题. 否命题:若一个四边形的四条边不全相等,则它不是正方形;是真命题. 逆否命题:若一个四边形不是正方形,则它的四条边不全相等;是假命题.16.(本小题满分12分)写出由下列各组命题构成的“p 或q ”“p 且q ”以及“非p ”形式的命题,并判断它们的真假:(1)p :3是质数,q :3是偶数;(2)p :x =-2是方程x 2+x -2=0的解,q :x =1是方程x 2+x -2=0的解. 解析: (1)p 或q :3是质数或3是偶数;p 且q :3是质数且3是偶数;非p :3不是质数.因为p 真,q 假,所以“p 或q ”为真命题,“p 且q ”为假命题,“非p ”为假命题. (2)p 或q :x =-2是方程x 2+x -2=0的解或x =1是方程x 2+x -2=0的解;p 且q :x =-2是方程x 2+x -2=0的解且x =1是方程x 2+x -2=0的解;非p :x =-2不是方程x 2+x -2=0的解.因为p 真,q 真,所以“p 或q ”为真命题,“p 且q ”为真命题,“非p ”为假命题. 17.(本小题满分12分)是否存在实数p ,使4x +p <0是x 2-x -2>0的充分条件?如果存在,求出p 的取值范围;否则,说明理由.解析: 由x 2-x -2>0,解得x >2或x <-1, 令A ={x |x >2或x <-1},由4x +p <0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-p4, 当B ⊆A 时,即-p4≤-1,即p ≥4,此时x <-p4≤-1⇒x 2-x -2>0,∴当p ≥4时,4x +p <0是x 2-x -2>0的充分条件.18.(本小题满分14分)已知命题p :函数y =x 2+2(a 2-a )x +a 4-2a 3在[-2,+∞)上单调递增.q :关于x 的不等式ax 2-ax +1>0解集为R .若p ∧q 假,p ∨q 真,求实数a 的取值范围.解析: ∵函数y =x 2+2(a 2-a )x +a 4-2a 3=[x +(a 2-a )]2-a 2,在[-2,+∞)上单调递增, ∴-(a 2-a )≤-2,即a 2-a -2≥0,解得a ≤-1或a ≥2. 即p :a ≤-1或a ≥2由不等式ax 2-ax +1>0的解集为R 得⎩⎪⎨⎪⎧a ≥0Δ<0,即⎩⎪⎨⎪⎧a ≥0-a 2-4a <0解得0≤a <4 ∴q :0≤a <4. ∵p ∧q 假,p ∨q 真. ∴p 与q 一真一假. ∴p 真q 假或p 假q 真, 即⎩⎪⎨⎪⎧a ≤-1或a ≥2a <0或a ≥4或⎩⎪⎨⎪⎧-1≤a <2,0≤a <4.∴a ≤-1或a ≥4或0≤a <2.所以实数a 的取值范围是(-∞,-1]∪[0,2)∪[4,+∞).第2章2.1.1一、选择题(每小题5分,共20分)1.曲线C 的方程为y =x (1≤x ≤5),则下列四点中在曲线C 上的是( ) A .(0,0) B.⎝ ⎛⎭⎪⎫15,15 C .(1,5)D .(4,4)解析: 代入每个点逐一验证,D 正确. 答案: D2.已知坐标满足方程f (x ,y )=0的点都在曲线C 上,那么( ) A .曲线C 上的点的坐标都适合方程f (x ,y )=0 B .凡坐标不适合f (x ,y )=0的点都不在C 上 C .不在C 上的点的坐标必不适合f (x ,y )=0D .不在C 上的点的坐标有些适合f (x ,y )=0,有些不适合f (x ,y )=0 答案: C3.方程(3x -4y -12)[log 2(x +2y )-3]=0的图象经过点A (0,-3),B (0,4),C (4,0),D ⎝ ⎛⎭⎪⎫53,-74中的( )A .0个B .1个C .2个D .3个解析: 由方程x +2y >0,可知A ,D 两点不符合题意;对于点B (0,4),x +2y =8=23,则有log 2(x +2y )-3=0;对于点C (4,0),3x -4y -12=0.故选C.答案: C4.方程y =|x |x2表示的曲线为图中的( )解析: y =|x |x2,x ≠0,为偶函数,图象关于y 轴对称,故排除A ,B.又因为当x >0时,y =1x>0;当x <0时,y =-1x>0,所以排除D.答案: C二、填空题(每小题5分,共10分)5.已知0≤α<2π,点P (cos α,sin α)在曲线(x -2)2+y 2=3上,则α的值为________. 解析: 由(cos α-2)2+sin 2α=3,得cos α=12.又因为0≤α<2π, 所以α=π3或α=53π.答案:π3或5π36.曲线y =-1-x 2与曲线y +|ax |=0(a ∈R)的交点有______个. 解析: 利用数形结合的思想方法,如图所示:答案: 2三、解答题(每小题10分,共20分) 7.判断下列命题是否正确.(1)过点P (0,3)的直线l 与x 轴平行,则直线l 的方程为|y |=3. (2)以坐标原点为圆心,半径为r 的圆的方程是y =r 2-x 2. (3)方程(x +y -1)²x 2+y 2-4=0表示的曲线是圆或直线.(4)点A (-4,3),B (-32,-4),C (5,25)都在方程x 2+y 2=25(x ≤0)所表示的曲线上.解析: (1)不对,过点P (0,3)的直线l 与x 轴平行,则直线l 的方程为y =3,而不是|y |=3.(2)不对.设(x 0,y 0)是方程y =r 2-x 2的解, 则y 0=r 2-x 20,即x 20+y 20=r 2. 两边开平方取算术根,得x 20+y 20=r .即点(x 0,y 0)到原点的距离等于r ,点(x 0,y 0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r 的圆上的一点如点⎝ ⎛⎭⎪⎫r2,-32r 在圆上,却不是y =r 2-x 2的解,这就不满足曲线上的点的坐标都是方程的解.所以,以原点为圆心,半径为r 的圆的方程不是y =r 2-x 2,而应是y =±r 2-x 2. (3)不对.由(x +y -1)²x 2+y 2-4=0得⎩⎪⎨⎪⎧x +y -1=0或x 2+y 2-4=0x 2+y 2-4≥0所以表示的是圆和两条射线. (4)不对.把点A (-4,3)的坐标代入方程x 2+y 2=25,满足方程,且A 点的横坐标满足x ≤0, 则点A 在方程x 2+y 2=25(x ≤0)所表示的曲线上. 把点B (-32,-4)的坐标代入方程x 2+y 2=25, ∵(-32)2+(-4)2=34≠25,∴点B 不在方程所表示的曲线上.尽管C 点坐标满足方程,但 ∵横坐标5不满足小于或等于0的条件, ∴点C 不在曲线x 2+y 2=25(x ≤0)上.8.已知曲线C 的方程为x =9-y 2,说明曲线C 是什么样的曲线,并求该曲线与y 轴围成的图形的面积.解析: 由x =9-y 2,得x 2+y 2=9.又x ≥0,∴方程x =9-y 2表示的曲线是以原点为圆心,3为半径的右半圆,从而该曲线C 与y 轴围成的图形是半圆,其面积S =12π²9=92π.所以所求图形的面积为92π.尖子生题库 ☆☆☆9.(10分)已知方程(x +1)2+ny 2=1的曲线经过点A (-1,1),B (m ,-1).求m ,n 的值. 解析: ∵方程(x +1)2+ny 2=1的曲线经过点A (-1,1),B (m ,-1),∴⎩⎪⎨⎪⎧-1+1 2+n =1, m +1 2+n =1,解得⎩⎪⎨⎪⎧n =1,m =-1.∴m =-1,n =1为所求.第2章2.1.2一、选择题(每小题5分,共20分)1.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A .x 2+y 2=3 B .x 2+2xy =1(x ≠±1) C .y =1-x 2D .x 2+y 2=9(x ≠0)解析: 设P (x ,y ),∵k PA +k PB =-1, ∴y -0x - -1 +y -0x -1=-1,整理得x 2+2xy =1(x ≠±1).答案: B2.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|M N →|²|M P →|+M N →²N P →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8x B .y 2=8x C .y 2=4xD .y 2=-4x解析: 由|M N →|²|M P →|+M N →²N P →,得4³[x - -2 ]2+ y -0 2+(4,0)²(x -2,y -0)=0, ∴y 2=-8x . 答案: A3.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π解析: 设P (x ,y ),由|PA |=2|PB |得 x +2 2+y 2=2 x -1 2+y 2, 整理得x 2-4x +y 2=0 即(x -2)2+y 2=4.所以点P 的轨迹是以(2,0)为圆心,以2为半径的圆, 故S =4π. 答案: B4.已知A (-1,0),B (1,0),且MA →²M B →=0,则动点M 的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=2C .x 2+y 2=1(x ≠±1)D .x 2+y 2=2(x ≠±2)解析: 设动点M (x ,y ),则MA →=(-1-x ,-y ),M B →=(1-x ,-y ).由MA →²M B →=0,得(-1-x )(1-x )+(-y )2=0, 即x 2+y 2=1.故选A. 答案: A二、填空题(每小题5分,共10分)5.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________.解析: 设点B (x 0,y 0),则y 0=2x 20+1.①设线段AB 中点为M (x ,y ),则x =x 02,y =y 0-12,即x 0=2x ,y 0=2y +1,代入①式,得 2y +1=2²(2x )2+1.即y =4x 2为线段AB 中点的轨迹方程. 答案: y =4x 26.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.解析: 设P (x ,y ),动圆P 在直线x =1的左侧, 其半径等于1-x ,则|PC |=1-x +1, 即 x +2 2+y 2=2-x , 整理得y 2=-8x . 答案: y 2=-8x三、解答题(每小题10分,共20分)7.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若B P →=2P A →,且O Q →²A B →=1.求P 点的轨迹方程.解析: 由B P →=2P A →,P (x ,y )可得B (0,3y ),A ⎝ ⎛⎭⎪⎫32x ,0,∴A B →=⎝ ⎛⎭⎪⎫-32x ,3y .∵Q 与P 关于y 轴对称, ∴Q (-x ,y ),且OQ →=(-x ,y ).由O Q →²A B →=1得32x 2+3y 2=1(x >0,y >0).8.过点P 1(1,5)作一条直线交x 轴于点A ,过点P 2(2,7)作直线P 1A 的垂线,交y 轴于点B ,点M 在线段AB 上,且BM ∶MA =1∶2,求动点M 的轨迹方程.解析: 如图所示,设过P 2的直线方程为y -7=k (x -2)(k ≠0),则过P 1的直线方程为y -5=-1k(x -1),所以A (5k +1,0),B (0,-2k +7).① 设M (x ,y ),则由BM ∶MA =1∶2, 得⎩⎪⎨⎪⎧x =5k +13,y =-4k +143,②消去k ,整理得12x +15y -74=0. 故点M 的轨迹方程为12x +15y -74=0.③尖子生题库 ☆☆☆9.(10分)已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.(分别用直接法、定义法、代入法求解)解析: 方法一(直接法):如图,因为Q 是OP 的中点, 所以∠OQC =90°.设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2, 即x 2+y 2+[x 2+(y -3)2]=9,所以x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).方法二(定义法):如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC 为直径的圆上,故Q 点的轨迹方程为x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).方法三(代入法):设P (x 1,y 1),Q (x ,y ),由题意,得⎩⎪⎨⎪⎧x =x 12y =y12,即⎩⎪⎨⎪⎧x 1=2x y 1=2y,又因为x 21+(y 1-3)2=9,所以4x 2+4⎝ ⎛⎭⎪⎫y -322=9,即x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).第2章2.2.1一、选择题(每小题5分,共20分)1.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A .-9<m <25B .8<m <25C .16<m <25D .m >8解析: 依题意有⎩⎪⎨⎪⎧25-m >0m +9>0m +9>25-m,解得8<m <25,即实数m 的取值范围是8<m <25,故选B. 答案:B2.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( ) A.x 24+y 23=1 B.x 24+y 2=1 C.y 24+x 23=1 D.y 24+x 2=1 解析: c =1,a =2,∴b 2=a 2-c 2=3. ∴椭圆的方程为x 24+y 23=1.答案: A3.已知(0,-4)是椭圆3kx 2+ky 2=1的一个焦点,则实数k 的值是( ) A .6 B.16 C .24D.124解析: ∵3kx 2+ky 2=1, ∴x 213k +y 21k=1. 又∵(0,-4)是椭圆的一个焦点,∴a 2=1k ,b 2=13k ,c 2=a 2-b 2=1k -13k =23k =16,∴k =124.答案: D4.椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1→²PF 2→=0,则△F 1PF 2的面积为( )A .12B .10C .9D .8解析: ∵PF 1→²PF 2→=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2且|PF 1|+|PF 2|=2a . 又a =5,b =3,∴c =4,∴⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=64 ①|PF 1|+|PF 2|=10 ②②2-①,得2|PF 1|²|PF 2|=102-64, ∴|PF 1|²|PF 2|=18, ∴△F 1PF 2的面积为9. 答案: C二、填空题(每小题5分,共10分)5.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________;∠F 1PF 2的大小为________.解析: 由椭圆标准方程得a =3,b =2, 则c =a 2-b 2=7,|F 1F 2|=2c =27. 由椭圆的定义得|PF 2|=2a -|PF 1|=2. 在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|²|PF 2|=42+22- 27 22³4³2=-12,所以∠F 1PF 2=120°. 答案: 2 120°6.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →²FP→的最大值为________.解析: 椭圆的左焦点F 为(-1,0),设P (x ,y ), 则x 24+y 23=1, OP →²FP →=(x ,y )²(x +1,y )=x (x +1)+y 2 =14x 2+x +3 =14(x +2)2+2 ∵-2≤x ≤2,∴当x =2时,OP →²FP →有最大值6. 答案: 6三、解答题(每小题10分,共20分) 7.求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为x 2a +y 2b=1(a >b >0),。
高中数学选修2-1同步练习题库:椭圆(选择题:较难)
椭圆(选择题:较难)1、点是椭圆上一点,是椭圆的两个焦点,且的内切圆半径为1,当在第一象限时,点的纵坐标为()A. B.3 C.2 D.2、已知分别是椭圆的左、右焦点,为椭圆上一点,且(为坐标原点),若,则椭圆的离心率为()A. B. C. D.3、点P是双曲线上的点,是其焦点,双曲线的离心率是,且,若的面积是18,则的值等于()A.7 B.9 C. D.4、设椭圆的两个焦点是、,过的直线与椭圆交于、,若,且,则椭圆的离心率为()A. B. C. D.5、已知椭圆:()的右焦点为,短轴的一个端点为,直线:交椭圆于,两点,若,点到直线的距离等于,则椭圆的焦距长为()A. B. C. D.6、已知椭圆的左、右焦点分别为、,离心率为,过的直线交椭圆于、两点,若的周长为,则椭圆的方程为()A. B. C. D.7、在中,,若一个椭圆通过两点,它的一个焦点为点,另一个焦点在线段上,则这个椭圆的离心率为( )A. B. C. D.8、设椭圆的左、右焦点分别为,其焦距为,点在椭圆的外部,点是椭圆上的动点,且恒成立,则椭圆离心率的取值范围是()A. B. C. D.9、如图,椭圆的中心在坐标原点,焦点在轴上,为椭圆的顶点,为右焦点,延长与交于点,若为钝角,则该椭圆的离心率的取值范围是()A. B.C. D.10、已知F1,F2是椭圆的左、右焦点,点P在椭圆上,且,线段PF1与y 轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1: 2,则该椭圆的离心率等于 ( )A. B. C. D.11、已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是()A. B. C.2 D.312、已知椭圆,点为长轴的两个端点,若在椭圆上存在点,使,则离心率的取值范围为A. B.C. D.13、已知分别为椭圆()的左、右顶点,是椭圆上的不同两点且关于轴对称,设直线的斜率分别为,若点到直线的距离为1,则该椭圆的离心率为()A. B. C. D.14、已知椭圆的左、右焦点分别为过作一条直线(不与轴垂直)与椭圆交于两点,如果恰好为等腰直角三角形,该直线的斜率为A. B. C. D.15、已知椭圆,若直线经过,与椭圆交于两点,且,则直线的方程为A. B. C. D.16、设椭圆的左右焦点分别为,,点在椭圆上,且满足,则的值为()A.8 B.10 C.12 D.1517、曲线与直线交于两点,为中点,则()A B C D18、如图,为椭圆的长轴的左、右端点,为坐标原点,为椭圆上不同于的三点,直线,围成一个平行四边形,则()A.5 B. C.9 D.1419、已知两定点和,动点在直线上移动,椭圆以为焦点且经过点,记椭圆的离心率为,则函数的大致图像是()A. B.C. D.20、设椭圆的方程为右焦点为,方程的两实根分别为,则的取值范围是()A. B. C. D.21、已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点重合,是C的准线与E的两个交点,则 ( )A. B. C. D.22、如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A.0个 B.1个 C.2个 D.3个23、已知椭圆的右焦点为为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B. C. D.24、已知是椭圆的左焦点,设动点在椭圆上,若直线的斜率大于,则直线(为原点)的斜率的取值范围是()A. B. C. D.25、已知在椭圆方程中,参数都通过随机程序在区间上随机选取,其中,则椭圆的离心率在之内的概率为()A. B. C. D.26、中心为原点的椭圆焦点在轴上,为该椭圆右顶点,为椭圆上一点,,则该椭圆的离心率的取值范围是()A. B. C. D.27、已知椭圆:()的一个焦点为,离心率为,过点的动直线交于,两点,若轴上的点使得总成立(为坐标原点),则()A. B.2 C. D.28、如图,两个椭圆的方程分别为和(,),从大椭圆两个顶点分别向小椭圆引切线、,若、的斜率之积恒为,则椭圆的离心率为()A. B. C. D.29、如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为,过圆柱的轴的平面截该几何体所得的四边形为矩形,若沿将其侧面剪开,其侧面展开图形状大致为()A. B.C. D.30、已知椭圆的左、右焦点分别为过作一条直线(不与轴垂直)与椭圆交于两点,如果恰好为等腰直角三角形,该直线的斜率为A. B. C. D.31、一光源在桌面的正上方,半径为的球与桌面相切,且与球相切,小球在光源的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是,其中,则该椭圆的短轴长为()A. B. C. D.32、(理科)在平面直角坐标系中,是椭圆上的一个动点,点,则的最大值为()A.5 B.4 C.3 D.233、已知椭圆的左右焦点分别为,,过的直线与椭圆交于A,B两点,若是以A为直角顶点的等腰直角三角形,则椭圆的离心率为()A. B. C. D.34、椭圆的焦点为,椭圆上的点满足,则的面积是()A. B. C. D.35、设分别是椭圆的左、右焦点,过点的直线交椭圆于两点,若,且,则椭圆的离心率是()A. B. C. D.36、若是过椭圆中心的弦,为椭圆的焦点,则面积的最大值是()A. B. C. D.37、椭圆的左、右焦点分别为,过作x轴的垂线交椭圆于点P,过P与原点o的直线交椭圆于另一点Q,则△的周长为()A.4 B.8 C. D.38、已知,分别是椭圆的左,右焦点, 椭圆上存在点使为钝角,则椭圆的离心率的取值范围是A. B. C. D.39、已知是圆(为圆心)上一动点,线段的垂直平分线交于,则动点的轨迹方程为()A. B. C. D.40、设,分别为椭圆:与双曲线:的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的值为()A. B. C. D.41、已知为坐标原点,是椭圆的左焦点,分别为的左,右顶点.为上一点,且轴过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为()A. B.C. D.42、已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,若,则等于()A.8 B.6C.4 D.243、过椭圆:的左顶点且斜率为的直线交椭圆于另一点,且点在轴上的射影恰好为右焦点,若,则椭圆的离心率的取值范围是()A. B.C. D.44、已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为,.这两条曲线在第一象限的交点为,是以为底边的等腰三角形.若,记椭圆与双曲线的离心率分别为、,则的取值范围是()A. B.C. D.45、已知,椭圆的方程为,双曲线的方程为与离心率之积为,则的渐近线方程为()A. B.C. D.46、设为椭圆上一点,点关于原点的对称点为为椭圆的右焦点,且,若,则该椭圆离心率的取值范围为()A. B.C. D.47、已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,抛物线y2= (a+c)x与椭圆交于B,C两点,若四边形ABFC是菱形,则椭圆的离心率等于( )A. B. C. D.48、设椭圆的方程为+=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )A.必在圆x2+y2=2内B.必在圆x2+y2=2外C.必在圆x2+y2=1外D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间49、已知抛物线C的顶点是椭圆+=1的中心,焦点与该椭圆的右焦点F2重合,若抛物线C与该椭圆在第一象限的交点为P,椭圆的左焦点为F1,则|PF1|=( )A. B. C. D.250、已知椭圆C1:+y2=1,双曲线C2:-=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则双曲线C2的离心率为( )A.4 B.C. D.51、已知双曲线+=1,以右顶点为圆心,实半轴长为半径的圆被双曲线的一条渐近线分为弧长为12的两部分,则双曲线的离心率为( )A. B.C. D.52、设分别为椭圆的左右顶点,若在椭圆上存在点P,使得,则该椭圆的离心率的取值范围是()A. B. C. D.53、已知点,椭圆与直线交于点,则的周长为( ) A.4 B.8 C.12 D.1654、椭圆上存在个不同的点,椭圆的右焦点为。
高二数学(人教B版)选修2-1全册同步练习:2章末
2章末一、选择题 1.一动圆与两圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( )A .双曲线B .双曲线一支C .圆D .椭圆 [答案] B[解析] 动点到两定点距离之差为1.故选B.2.若双曲线C 以椭圆x 23+y 24=1的焦点为顶点,以椭圆长轴的端点为焦点,则C 的方程是( )A.x 23-y 2=1 B .-x 23y 2=1 C.x 23-y 24=1 D.y 23-x 24=1 [答案] B[解析] ∵F (0,±1),长轴端点(0,±2)∴双曲线中a =1,c =2,∴b 2=3,又焦点在y 轴上,故选B.3.已知AB 为经过椭圆x 2a 2+y 2b 2=1(a >b >0)的中心的弦,F (c,0)为椭圆的右焦点,则△AFB 的面积的最大值为( )A .b 2B .abC .acD .bc [答案] D[解析] 设AB 方程为ky =x ,代入椭圆方程得(b 2k 2+a 2)y 2=a 2b 2∴y 1=ab a 2+b 2k 2,y 2=-ab a 2+b 2k 2. ∴S =12|OF ||y 1-y 2|=abc a 2+b 2k2 ∴面积最大值为bc (k =0).4.(2008·四川)已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32[答案] B [解析] 抛物线C :y 2=8x 的焦点为F (2,0),且准线为x =-2,∴K (-2,0),设A (x 0,y 0),如图,过点A 向准线作垂线,垂足为B ,则B (-2,y 0)∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2,∴由|BK |2=|AK |2-|AB |2得y 20=(x 0+2)2,即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=18. 二、填空题5.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为________.[答案] 3[解析] 如图所示,设双曲线焦点在x 轴,顶点A 、焦点F 到渐近线的距离分别是AA ′,FF ′,则AA ′∥FF ′,∴△OAA ′∽△OFF ′,∴OA OF =AA ′FF ′ 即a c =26,则e =c a=3. 6.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1)、B (x 2,y 2)两点,则y 21+y 22的最小值是________.[答案] 32[解析] (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y -16k =0,由题意知k ≠0,则y 1+y 2=4k,y 1y 2=-16. ∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32. 综合(1)(2)知(y 21+y 22)min =32. 三、解答题7.如右图所示,直线y =12x 与抛物线y =18x 2-4交于A ,B 两点,线段AB 的垂直平分线与直线y =-5交于点Q .(1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A ,B )的动点时,求△OPQ 面积的最大值.[解析] (1)解方程组⎩⎨⎧ y =12x ,y =18x 2-4,得⎩⎪⎨⎪⎧ x 1=-4,y 1=-2,⎩⎪⎨⎪⎧x 2=8,y 2=4, 即A (-4,-2),B (8,4),从而AB 的中点为M (2,1).由k AB =12,得线段AB 的垂直平分线方程为y -1=-2(x -2). 令y =-5,得x =5,∴Q (5,-5).(2)直线OQ 的方程为x +y =0,设P (x ,18x 2-4), ∵点P 到直线OQ 的距离d =|x +18x 2-4|2=182|x 2+8x -32|,|OQ |=5 2. S △OPQ =12|OQ |d =516|x 2+8x -32|, ∵P 为抛物线上位于线段AB 下方的点,且P 不在直线OQ 上, ∴-4≤x <43-4或43-4<x ≤8.∵函数y =x 2+8x -32在区间[-4,8]上单调递增,∴当x =8时,△OPQ 的面积取到最大值516×96=30.。
高二数学(人教B版)选修2-1全册同步练习:3-2-3直线与平面的夹角
3.2.3直线与平面的夹角一、选择题1.已知平面α内的角∠APB =60°,射线PC 与PA 、PB 所成角均为135°,则PC 与平面α所成角的余弦值是( )A .-63B.63C.33D .-33[答案] B[解析] 由三余弦公式知cos45°=cos α·cos30°, ∴cos α=63. 2.三棱锥P —ABC 的底面是以AC 为斜边的直角三角形,顶点P 在底面的射影恰好是△ABC 的外心,P A =AB =1,BC =2,则PB 与底面ABC 所成角为( )A .60°B .30°C .45°D .90°[答案] B[解析] 由AB =1,BC =2,知AC =3,∴OA =32, 又∵PA =1,PQ ⊥AC ,∴PO =12,∵OB =OA =32,∴tan θ=33.∴应选B. 3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的正弦值是( ) A.24 B.23 C.63D.32[答案] C[解析] 由计算得sin θ=23.故选C. 4.在三棱锥P —ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216B.833 C.21060D.21030[答案] D[解析] 以O 为原点,射线OA 、OB 、OP 为x 、y 、z 轴建立空间直角坐标系,如图,设AB =a ,则OP =72a ,OD →=(-24a,0,144a ),可求得平面PBC 的法向量为n =(-1,-1,17), ∴cos(OD →,n )=OD →·n |OD →||n |=21030,设OD →与面PBC 的角为θ,则sin θ=21030,故选D.5.若直线l 与平面α所成角为π3,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成角的取值范围是( )A.⎣⎡⎦⎤0,2π3 B.⎣⎡⎦⎤π3,2π3 C.⎣⎡π2,2π3D.⎣⎡π3,π2[答案] D6.如果平面的一条斜线段长是它在这个平面上的射影长的3倍,那么斜线段与平面所成角的余弦值为( )A.13B.223C.22D.23[答案] A7.如图,正方体AC 1中,BC 1与对角面BB 1D 1D 所成的角是( ) A .∠C 1BB 1 B .∠C 1BD C .∠C 1BD 1 D .∠C 1BO [答案] D[解析] 由三垂线定理得,OB 为BC 1在平面BB 1D 1D 上的射影.故选D.8.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 为CC 1的中点,则直线A 1B 与平面BDE 所成的角为( )A.π6B.π3C.π2D.56π [答案] B[解析] 以D 为原点建立空间直角坐标系,平面BDE 的法向量n =(1,-1,2), 而BA 1→=(0,-1,1),∴cos θ=1+223=32,∴θ=30°.∴直线A 1B 与平面BDE 成60°角.9.正方形纸片ABCD ,沿对角线AC 折起,使点D 在面ABCD 外 ,这时DB 与平面ABC 所成角一定不等于( )A .30°B .45°C .60°D .90°[答案] D[解析] 当沿对角线AC 折起时,BD 在面ABC 上的射影始终在原对角线上,若BD ⊥面ABC ,则此时B 、D 重合为一点,这是不成立的,故选D.10.已知等腰直角△ABC 的一条直角边BC 平行于平面α,点A ∈α,斜边AB =2,AB 与平面α所成的角为30°,则AC 与平面α所成的角为( )A .30°B .45°C .60°D .90°[答案] B[解析] 过B 、C 作BB ′⊥α于B ′,CC ′⊥α于C ′, 则BB ′=CC ′=1,∴sin θ=22,∴θ=45°.故选B. 二、填空题11.正三棱柱ABC —A 1B 1C 1的所有棱长都相等,则AC 1与平面BB 1C 1C 的夹角的余弦值为________.[答案]104[解析] 设三棱柱的棱长为1,以B 为原点,建立坐标系如图,则C 1(0,1,1),A ⎝⎛⎭⎫32,12,0,AC 1→=⎝⎛⎭⎫-32,12,1,又平面BB 1C 1C 的一个法向量n =(1,0,0), 设AC 1与平面BB 1C 1C 的夹角为θ. sin θ=|cos 〈n ,AC 1→〉|=|AC 1→·n ||AC 1→||n |=64,∴cos θ=1-sin 2θ=104. 12.正四棱锥S —ABCD 中,O 为顶点S 在底面内的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成的角是________.[答案] 30°13.AB ∥α,AA ′⊥α, A ′是垂足,BB ′是α的一条斜线段,B ′为斜足,若AA ′=9,BB ′=63,则直线BB ′与平面α所成角的大小为________.[答案] 60°14.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AA 1、A 1D 1的中点,则EF 与面A 1C 1所成的角为________.[答案] 45° 三、解答题15.如图所示,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12SC 与平面ABCD 所成的角.[解析] 解法1:如图所示,设n 是平面α的法向量,AB 是平面α的一条斜线,A ∈α,则AB 与平面α所成的角为π2-arccos |AB →·n ||AB →|·n ;AS →是平面ABCD 的法向量,设CS →与AS →的夹角为φ. ∵CS →=CB →+BA →+AS →,∴AS →·CS →=AS →·(CB →+BA →+AS →)=AS →·AS →=1. |AS →|=1,|CS →|=(CB ―→+BA ―→+AS ―→)2 =|CB ―→|2+|BA ―→|2+|AS ―→|2=3, ∴cos φ=AS →·CS →|AS →|·|CS →|=33.∴φ=arccos33. 从而CS 与平面ABCD 所成的角为π2-arccos 33.解法2:连结AC ,显然∠SCA 即为SC 与平面ABCD 所成的角.计算得:AC =2,∴tan ∠SCA =22,故SC 与平面ABCD 所成角为arctan22. 16.如图,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OB =3,∠AOB =90°.D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点.若OP ⊥BD ,试求:(1)OP 与底面AOB 所成的角的大小; (2)BD 与侧面AOO ′A ′所成的角的大小.[解析] 如图,以O 为原点建立空间直角坐标系,由题意,有B (3,0,0),D ⎝⎛⎭⎫32,2,4,设P (3,0,z ),则BD →=⎝⎛⎭⎫-32,2,4,OP →=(3,0,z ).∵BD ⊥OP ,∴BD →·OP →=-92+4z =0,z =98.∴P ⎝⎛⎭⎫3,0,98.(1)∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. ∵tan ∠POB =983=38,∴∠POB =arctan 38.故OP 与底面AOB 所成角的大小是arctan 38.(2)∵OB →=(3,0,0),且OB →⊥平面AOO ′A ′, ∴平面AOO ′A ′的法向量为OB →=(3,0,0). 又DB →=(3,0,0)-⎝⎛⎭⎫32,2,4=⎝⎛⎭⎫32,-2,-4, ∴OB →·DB { =3×32+(-2)×0+(-4)×0=92.又|OB →|=3, |DB →|=⎝⎛⎭⎫322+(-2)2+(-4)2=892, ∴cos 〈OB →,DB →〉=OB →·DB →|OB →|·|DB →|=923×892=389 .∴BD 与侧面AOO ′A ′所成的角的大小为π2-〈OB →,DB →〉=π2-arccos 389(或写成arcsin389).17.如图,正方体ABCD -A 1B 1C 1D 1中,E 是CC 1的中点,求BE 与平面B 1BD 所成角的正弦值.[解析] 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).设平面B 1BD 的法向量为n =(x ,y ,z ), ∵n ⊥BD ,n ⊥BB 1∴⎩⎪⎨⎪⎧n ·BD →=-2x -2y =0n ·BB 1→=2z =0,∴⎩⎪⎨⎪⎧x =-y z =0, 令y =1时,则n =(-1,1,0), cos<n ,BE →>=n ·BE →|n ||BE →|=105.即BE 与平面B 1BD 所成的角的正弦值为105.18.(2009·北京)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC ;(2)当D 为PB 的中点时,求AD 与平面P AC 所成的角的大小; [解析] 考查线面垂直,直线与平面所成角,以及二面角等内容,可以用直接法实现,也可用向量法.解法一:(1)∵PA ⊥底面ABC ,∴PA ⊥BC . 又∠BCA =90°,∴AC ⊥BC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴DE =12BC .又由(1)知,BC ⊥平面P AC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA =AB ,∴△ABP 为等腰直角三角形, ∴AD =12AB .在Rt △ABC 中,∠ABC =60°,∴BC =12.∴在Rt △ADE 中,sin ∠DAE =DE AD =BC 2AD =24.∴AD 与平面PAC 所成的角的大小为arcsin24. 解法二:(1)如图,以A 为原点建立空间直角坐标系A -xyz .设PA =a ,由已知可得A (0,0,0),B ⎝⎛⎭⎫-12a ,32a ,0,C ⎝⎛⎭⎫0,32a ,0,P (0,0,a ). (1)∵AP →=(0,0,a ),BC →=⎝⎛⎭⎫12a ,0,0,∴BC →·AP →=0, ∴BC ⊥AP .又∵∠BCA =90°, ∴BC ⊥AC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴D ⎝⎛⎭⎫-14a ,34a ,12,E ⎝⎛⎭⎫0,34a ,12a .又由(1)知,BC ⊥平面P AC . ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵AD →=⎝⎛⎭⎫-14a ,34a ,12a ,AE →=⎝⎛⎭⎫0,34a ,12a ,∴cos ∠DAE =AD →·AE →|AD →||AE →|=144.∴AD 与平面PAC 所成的角的大小为arccos144.。
高二数学(人教B版)选修2-1全册同步练习:1章末
第一章一、选择题1.(2010·北京理,6)a 、b 为非零向量.“a ⊥b ”是“函数f (x )=(x a +b )·(x b -a )为一次函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 [答案] B[解析] f (x )=(x a +b )·(x b -a )=(a·b )x 2+(|b |2-|a |2)x -a·b ,如a ⊥b ,则有a·b =0,如果同时有|b |=|a |,则函数恒为0,不是一次函数,因此不充分,而如果f (x )为一次函数,则a·b =0,因此可得a ⊥b ,故该条件必要.2.(2008·安徽,7)a <0是方程ax 2+2x +1=0至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件[答案] B[解析] 当a <0时,x 1·x 2=1a<0, ∴方程ax 2+2x +1=0有一个负根;当a =0时,方程ax 2+2x +1=0的根为x =-12. ∴a <0是方程ax 2+2x +1=0有一个负数根的充分不必要条件,故选B.3.对下列命题的否定说法错误的是( )A .p :∀x ∈R ,x >0;¬p :∃x ∈R ,x ≤0B .p :∃x ∈R ,x 2≤-1;¬p :∀x ∈R ,x 2>-1C .p :如果x <2,那么x <1;¬p :如果x <2,那么x ≥1D.p :∀x ∈R ,使x 2+1≠0;¬p :∃x ∈R ,x 2+1=0[答案] C[解析] 利用全称命题和存在性命题的否定形式进行判断,C 中实际上是一个“对全称命题”的否定,应为“∃x ∈R ,当x <2时,使x ≥1”.二、填空题4.如果命题“p 且q ”与“¬p ”都是假命题,则命题q 是________(真、假)命题.[答案] 假[解析] “p 且q ”假,说明p 、q 至少有一为假;“¬p ”假,说明p 真,故知q 为假.5.(2009·山东日照3月考)设p :⎩⎪⎨⎪⎧ 4x +3y -12>0,3-x ≥0,x +3y ≤12,(x 、y ∈R ),q :x 2+y 2>r 2(x ,y ∈R ,r >0),若綈q 是綈p 的充分不必要条件,则r 的取值范围是________________.[答案] ⎝⎛⎦⎤0,125[解析] 由已知綈q ⇒綈p ,∴p ⇒q ,由线性规划知,p 表示如下阴影部分:由p ⇒q 的几何意义,阴影在以原点为圆心,半径为r 的圆外.∴r ∈⎝⎛⎦⎤0,125. 三、解答题6.若M 、A 、B 三点不共线,且存在实数λ1,λ2,使MC →=λ1MA →+λ2MB →,求证:A 、B 、C 三点共线的充要条件是λ1+λ2=1.[解析] 必要性:若A 、B 、C 三点共线,则存在实数λ,使得AC →=λAB →.AC →=MC →-MA →=λ1MA →+λ2MB →-MA →=(λ1-1)MA →+λ2MB →,而AB →=MB →-MA →,∴(λ1-1)MA →+λ2MB →=λMB →-λMA →,即⎩⎪⎨⎪⎧ λ1-1=λλ2=-λ所以λ1+λ2=1.充分性:若λ1+λ2=1,则AC →=MC →-MA →=λ1MA →+λ2MB →-MA →=(λ1-1)MA →+λ2MB →=-λ2MA →+λ2MB →=λ2AB →,∵AC →与AB →共线,即A 、B 、C 三点共线,综上所述,结论成立.。
人教版A版高中数学选修2-1课后习题解答
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
人教版高中数学选修2-1课时跟踪检测(九) 直线与椭圆的位置关系 含解析
课时跟踪检测(九) 直线与椭圆的位置关系 层级一 学业水平达标1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相切B .相交C .相离D .不确定解析:选B 直线y =kx -k +1可变形为y -1=k(x -1),故直线恒过定点(1,1),而该点在椭圆x 29+y 24=1内部,所以直线y =kx -k +1与椭圆x 29+y 24=1相交,故选B .2.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则mn的值是( )A .22B .233C .922 D .2327解析:选A 由⎩⎪⎨⎪⎧mx 2+ny 2=1,y =1-x 消去y 得,(m +n)x 2-2nx +n -1=0.设M(x 1,y 1),N(x 2,y 2),MN 中点为(x 0,y 0),则x 1+x 2=2n m +n,∴x 0=n m +n,代入y =1-x 得y 0=m m +n.由题意y 0x 0=22,∴m n =22,选A .3.已知F 1,F 2是椭圆的两个焦点,满足MF 1·MF 2=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .0,12C .0,22D .22,1解析:选C ∵MF 1⊥MF 2,∴点M 在以F 1F 2为直径的圆上,又点M 在椭圆内部,∴c<b ,∴c 2<b 2=a 2-c 2,即2c 2<a 2,∴c 2a 2<12,即c a <22.又e>0,∴0<e<22.4.已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF交椭圆C 于点B ,若FA =3FB ,则|AF |=( )A . 2B .2C .3D .3解析:选A 设点A(2,n),B(x 0,y 0). 由椭圆C :x 22+y 2=1知a 2=2,b 2=1,∴c 2=1,即c =1.∴右焦点F(1,0). 由FA =3FB 得(1,n)=3(x 0-1,y 0). ∴1=3(x 0-1)且n =3y 0.∴x 0=43,y 0=13n .将x 0,y 0代入x 22+y 2=1,得12×⎝ ⎛⎭⎪⎪⎫432+⎝ ⎛⎭⎪⎪⎫13n 2=1. 解得n 2=1, ∴|AF |=(2-1)2+n 2=1+1=2.5.(全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的右焦点为F(3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .x 245+y 236=1 B .x 236+y 227=1 C .x 227+y 218=1D .x 218+y 29=1解析:选D 因为直线AB 过点F(3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎪⎫a 24+b 2=1,即a 2=2b 2,。
高二数学(人教B版)选修2-1全册同步练习:1-1-1命题
1.1.1命题一、选择题1.下列语句中是命题的是( )A .|x +a |B .0∈NC .集合与简易逻辑D .真子集[答案] B[解析] 由命题定义知选B.2.已知命题:①若ac >bc ,则a >b ;②若a >b ,则1a <1b;③若x +2=0,则x +2≤0;④若p ≥0,则p 2≥p .其中真命题的个数是( )A .1个B .2个C .3个D .4个[答案] A[解析] ①当c ≤0时,不一定有a >b 恒成立,是假命题;②当a >0时,b <0,不等式1a <1b不成立,是假命题;③是真命题;④当0<p <1时,不等式p 2>p 不成立,是假命题,故选A.3.设a 、b 、c 是任意的非零平面向量,且相互不共线,则①(a·b )c =(c·a )b ;②|a|-|b|<|a -b|;③(b·c )a -(c·a )b 不与c 垂直;④(3a +2b )·(3a -2b )=9|a|2-4|b|2中,是真命题的是( )A .①②B .②③C .③④D .②④[答案] D[解析] 由于向量c 与b 不共线,故①错,[(b·c )a -(c·a )b ]·c =0,故③错.4.已知a 、b 为两条不同的直线,α、β为两个不同的平面,且a ⊥α,b ⊥β,则下列命题中,假命题是( )A .若a ∥b ,则α∥βB .若α⊥β,则a ⊥bC .若a 、b 相交,则α、β相交D .若α、β相交,则a 、b 相交[答案] D[解析] 如图所示,因为α、β为两个不同的平面,所以若α∩β为=c ,但平面α、β不会重合.因为a ⊥α,b ⊥β,所以a 与b 不一定相交.故“α、β相交,则a 、b 相交”是假命题.5.关于直线m 、n 与平面α、β有下列四个命题:①若m∥α,n∥β且α∥β,则m∥n;②若m⊥α,n⊥β且α⊥β,则m⊥n;③若m⊥α,n∥β且α∥β,则m⊥n;④若m∥α,n⊥β且α⊥β,则m∥n.其中真命题的序号是()A.①②B.③④C.①④D.②③[答案] D[解析]m∥α,n∥β,且α∥β,则m与n可能相交或异面,故①不成立,排除A、C;若m⊥α,n⊥β,m⊥n成立,故②正确,排除B.6.下列说法正确的是()A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“当a>1时,方程x2-4x+a=0有实根”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题[答案] D[解析]由△=16-4a≥0,知a≤4,故D正确.7.给出下列四个命题:①垂直于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.其中假命题的个数是()A.1个B.2个C.3个D.4个[答案] D[解析]命题①忽视两条直线可以相交,命题②两平面可以相交、平行,命题③l1,l2可以异面或相交,命题④中与l1,l2都相交的两直线可以相交,故选D.8.有下列命题:①mx2+2x-1=0是一元二次方程;②抛物线y=ax2+2x-1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何非空集合的真子集.真命题的个数为()A.1B.2C.3D.4[答案] B9.给定下列命题:①“若k>0,则方程x2+2x-k=0”有实数根;②若a>b,则a+c>b+c;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中真命题的序号是( )A .①②③B .①②④C .①③④D .②③④ [答案] B[解析] ①中Δ=4-4(-k )=4+4k >0,故为真命题;②显然为真命题;③如等腰梯形对角线相等,不是矩形;④为真命题.10.设α、β、γ为两两不重合的平面,c 、m 、n 为两两不重合的直线,给出下列四个命题:①如果α⊥γ,β⊥γ,则α∥β;②如果α∥β,c ⊂α,则c ∥β;③如果α∩β=c ,β∩γ=m ,γ∩α=n ,c ∥γ,则m ∥n .其中真命题个数是( )A .1个B .2个C .3个D .0个[答案] B[解析] ①α⊥γ,β⊥γ,则α与β可相交,如两个平面在第三个平面上(一本书立在课桌上).②正确.③正确.二、填空题11.有下列四个命题:①如果x +y =0,则x 、y 互为相反数;②全等三角形面积相等;③如果q ≤1,则x 2+2x +q =0有实数解;④2是合数.其中真命题是________.(填上正确命题的所有序号)[答案] ①②③12.设有两个命题:①关于x 的不等式mx 2+1>0的解集是R ;②函数f (x )=log m x 是减函数,如果这两个命题中有且只有一个真命题,则实数m 的取值范围是________.[答案] m ≥1或m =0[解析] ①为真时,m ≥0;②为真时,0<m <1.∴①真②假时⎩⎪⎨⎪⎧m ≥0m ≥1或m ≤0∴m ≥1或m =0; ∴②真①假时⎩⎨⎧ 0<m <1m <0∴m ∈∅.∴m ≥1或m =0.13.把下面不完整的命题补充完整,并使之成为真命题.若函数f (x )=3+log 2x 的图象与g(x)的图象关于________对称,则函数g(x)=________.(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形)[答案]x轴-3-log2x[解析]f(x)=3+log2x,关于x轴对称的曲线为-g(x)=3+log2x即g(x)=-3-log2x.14.(2009·江苏)设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行;(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.上面命题中,真命题...的序号________(写出所有真命题的序号).[答案](1)(2)[解析]本题主要考查平面间的位置关系.考查学生对知识的掌握程度.(1)若α内的两条相交直线分别平行于β内的两条直线,则α∥β是正确的;(2)由线面平行判定定理知(2)正确;(3)由α和β相交于直线l,若α内有一条直线垂直于l,不能推出α和β垂直;(3)不正确;(4)直线l与α垂直能够推出l与α内的两条直线垂直,而l与α内的两条直线垂直不能推出直线l与α垂直,∴(4)不正确.三、解答题15.判断下列语句是否是命题,并说明理由.①2是无限循环小数;②x2-3x+2=0;③一条直线l,不是与平面α平行就是相交;④x2+2x-3<0;⑤二次函数的抛物线太美了!⑥4是集合{1,2,3}的元素.[解析]①是命题,且是假命题.②不是命题,因为语句中含有变量x,有没给变量x赋值前,我们无法判断语句的真假(这种语句叫“开语句”).③直线l与平面α的位置有三种:平行、相交和在平面内,为假命题.④在x未赋值之前,不能判断其真假,不是命题.⑤感叹句,不是命题.⑥由于4∉{1,2,3},所以“4是集合{1,2,3}的元素”为假命题.16.已知“x 1<x 2<0,则a x 1>a x 2”是假命题,求a 满足的条件. [解析] 由x 1<x 2<0可得x 1x 1x 2<x 2x 1x 2即1x 2<1x 1,要使a x 1>a x 2是假命题,则a ≤0.故a 满足的条件是a ≤0.17.判断下列语句是不是命题,如果是命题,指出是真命题还是假命题.(1)任何负数都大于零;(2)△ABC 与△A 1B 1C 1是全等三角形;(3)x 2+x >0;(4)∅ A ;(5)6是方程(x -2)(x -6)=0的解;(6)方程x 2-2x +5=0有实数解.[解析] (1)能构成命题,且是假命题.(2)两个三角形为全等三角形是有条件的,本小题无法确定,故不是命题.(3)因为x 是未知数,无法判断x 2+x 是否大于零,所以不是命题.(4)空集是任何非空集合的真子集,集合A 是否非空集合无法判断,故不是命题.(5)6确实是所给方程的解,所以这一语句是命题,且是真命题.(6)由于给定方程的判别式Δ=4-4=-16<0,知方程x 2-2x +5=0无实根,故这是命题,但为假命题.18.判断下列命题的真假.①函数y =sin 4x -cos 4x 的最小正周期是π.②终边在y 轴上的角的集合是{α|α=k π2,k ∈Z }. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点.④把函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π6,得到y =3sin2x 的图象. ⑤函数y =sin ⎝⎛⎭⎫x -π2在[0,π]上是减函数.[解析] 命题①中y =sin 4x -cos 4x =sin 2x -cos 2x =-cos2x ,显然其最小正周期为π,∴①是真命题.②当k =2m (m ∈Z )时,则α=m π,其角的终边在x 轴上,∴②是假命题.③在同一坐标系中,作出y =sin x 与y =x 的图象观察知图象只在原点处有一个交点,∴③是假命题.命题④中,向右平移π6 y =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=3sin2x ,命题为真命题.π2=-cos x在[0,π]上为增函数,命题为假命题.命题⑤中y=sin⎝⎛⎭⎫x-。
人教版高中数学理科选修2-1同步练习题、期中、期末复习资料、补习资料:34【基础】空间向量的直角坐标运算
空间向量的直角坐标运算【学习目标】1.理解空间向量的基本定理,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的坐标运算、夹角公式、距离公式。
3.能通过坐标运算判断向量的共线与垂直. 【要点梳理】要点一、空间向量的基本定理 1. 空间向量的基本定理: 如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组x 、y 、z ,使p=xa+yb+zc .2.基底、基向量概念:由空间向量的基本定理知,若三个向量a 、b 、c 不共面,那么所有空间向量所组成的集合就是{p|p=xa+yb+zc ,x 、y 、z ∈R},这个集合可看做是由向量a 、b 、c 生成的,所以我们把{a 、b 、c}称为空间的一个基底.a 、b 、c 叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底. 要点诠释:(1)空间任意三个不共面的向量都可以作为空间向量的一个基底;(2)由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0;(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.要点二、空间向量的坐标表示 (1)单位正交基底若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,常用表示; (2)空间直角坐标系在空间选定一点和一个单位正交基底,以点为原点,分别以的方向为正方向建立三条数轴:轴、轴、轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系,点叫原点,向量都叫坐标向量。
通过每两个坐标轴的平面叫坐标平面,分别称为平面,平面,平面;(3)空间直角坐标系中的坐标给定一个空间直角坐标系和向量a ,其坐标向量为i ,j ,k ,若a=a 1i+a 2j+a 3k ,则有序数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,上式可简记作a=(a 1,a 2,a 3). 在空间直角坐标系Oxyz 中,对于空间任一点A ,对应一个向量,若,则有序数1{,,}i j k O {,,}i j k O ,,i j k x y z O xyz -O ,,i j k xOy yOz zOx OA OA xi yj zk =++xyzOk ji组(x ,y ,z )叫点A 在此空间直角坐标系中的坐标,记为A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫点A 的纵坐标,z 叫点A 的竖坐标.写点的坐标时,三个坐标之间的顺序不可颠倒.要点诠释:(1)空间任一点P 的坐标的确定. 过P 作面xOy 的垂线,垂足为P ',在面xOy 中,过P '分别作x 轴、y 轴的垂线,垂足分别为A 、C ,则x=|P 'C|,y=|AP '|,z=|PP '|.如图. (2)空间相等向量的坐标是唯一的;另外,零向量记作。
高中数学选修2-1同步练习题库:空间向量及其运算(选择题:较易)
空间向量及其运算(选择题:较易)1、在空间直角坐标系中,点M的坐标是,则点M关于y轴的对称点坐标为()A. B.C. D.2、已知空间上的两点,,以为体对角线构造一个正方体,则该正方体的体积为()A. B. C. D.3、在空间直角坐标系中,点关于面对称的点的坐标是()A. B. C. D.4、若,,且,则的值是()A.0 B.1 C.-2 D.25、已知,,若,则()A., B., C., D.,6、设向量 =(﹣1,﹣1,1),=(﹣1,0,1),则cos<,>=()A. B. C. D.7、设,向量且,则()A. B. C.3 D.48、已知,,且,则x的值是()A.6 B.5 C.4 D.39、已知分别是四面体的棱的中点,点在线段上,且,,则=()A. B. C. D.10、已知向量,,且与互相垂直,则的值是()A.1 B. C. D.11、点A(2,0,3)在空间直角坐标系中的()A.y轴上 B.xoy平面上 C.xoz平面上 D.yoz平面上12、已知分别是平面的法向量则平面,的位置关系式()A.平行 B.垂直 C.所成的二面角为锐角 D.所成的二面角为钝角13、在四面体中,分别是的中点,若,则()A. B. C.1 D.214、已知向量且,则的值为A. B. C. D.15、如图,在三棱锥中,分别是的中点,若,且向量与的夹角为,则棱与棱的关系是()A. B. C. D.无法确定16、在三棱柱中,是的中点,是的中点,且,则( )A. B. C. D.17、如图,空间四边形中,,点在上,且是的中点,则()A. B.C. D.18、如图,空间四边形中,点分别在上,,,则()A. B.C. D.19、空间直角坐标系中,点关于平面对称的点的坐标为()A. B. C. D.20、如图,空间四边形中,,点在上,且是的中点,则()A. B.C. D.21、空间直角坐标系中,点关于平面对称的点的坐标为()A. B. C. D.22、已知空间向量,若与垂直,则等于()A. B. C. D.23、已知,若向量共面,则()A. B. C. D.24、如图,空间四边形中,,,,点在线段上,且,点为的中点,则()A. B.C. D.25、在空间直角坐标系中,点M的坐标是,则点M关于y轴的对称点坐标为()A. B.C. D.26、设平面的一个法向量为,平面的一个法向量为,若,则A. B.C. D.27、设一球的球心为空间直角坐标系的原点,球面上有两个点,其坐标分别为,,则A.18 B.12C. D.28、如图,空间四边形中,,点在上,且是的中点,则()A. B.C. D.29、在四棱锥中,底面是平行四边形,设,则可表示为()A. B.C. D.30、若平面的一个法向量为,则点到平面的距离为()A.1 B.2C. D.31、设向量,则向量的夹角的余弦值为()A. B.C. D.32、如图所示,在空间直角坐标系中,有一棱长为的正方体,的中点与的中点的距离为()A. B.C. D.33、已知,,则直线与平面交点的坐标是()A. B.C. D.34、已知,若与为共线向量,则()A. B.C. D.35、向量,若,则的值为()A. B.C. D.36、如图所示,已知,,三点不共线,为平面内一定点,为平面外任一点,则下列能表示向量的为().A. B. C. D.37、若向量、、的起点与终点、、、互不重合且无三点共线,且满足下列关系(是空间任一点),则能使向量、、成为空间一组基底的关系是()A. B.C. D.38、已知向量是空间的一个基底,向量是空间的另一个基底,一向量在基底下的坐标为,则向量在基底下的坐标为()A. B.C. D.39、若是空间的一个基底,则下列各组中不能构成空间一个基底的是()A. B.C. D.40、在以下三个命题中,真命题的个数是()①三个非零向量、、不能构成空间的一个基底,则、、共面;②若两个非零向量、与任何一个向量都不能构成空间的一个基底,则、共线;③若、是两个不共线的向量,且,则构成空间的一个基底.A. B. C. D.41、在空间直角坐标系中,在轴上的点的坐标可记为()A. B.C. D.42、下列各组向量中不平行的是()A. B.C. D.43、已知均为单位向量,它们的夹角为,那么等于()A. B. C. D.44、已知,且与垂直,则与的夹角为()A. B. C. D.45、已知空间四面体的每条棱长都等于,点分别是的中点,则等于()A. B. C. D.46、已知是正六边形外一点,为正六边形的中心,则等于()A. B. C. D.47、在直三棱柱中,若,,,则()A. B. C. D.48、如图,在正方体中,若,则的值为()A. B. C. D.49、如图,在底面为平行四边形的四棱柱中,是与的交点,若,,,则下列向量中与相等的向量是()A. B.C. D.50、已知A(2,3,-1),B(2,6,2),C(1,4,-1),则向量与的夹角为()A.45° B.90° C.30° D.60°51、若,如果与为共线向量,则()A. B.C. D.52、在空间直角坐标系中,点M(-1,2,-3)关于yoz面的对称点是()A.(-1,2,3) B.(1,2,-3) C.(1,2,3) D.(-1,-2,3)53、已知向量,,且与互相垂直,则=()A. B. C. D.54、以下四组向量中,互相平行的是.()(1),;(2),;(3),;(4),.A.(1)(2) B.(2)(3) C.(2)(4) D.(1)(3)55、=(1-t,1-t,t),=(2,t,t),则|-|的最小值是()A. B. C. D.56、已知向量a=(0,2,1),b=(-1,1,-2),则a与b的夹角为()A.0° B.45° C.90° D.180°57、已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则与的夹角为()A.30° B.45° C.60° D.90°58、设A(1,-1,1),B(3,1,5),则AB中点在空间直角坐标系中的位置是()A.y轴上 B.xOy面内 C.xOz面内 D.yOz面内59、已知则的值分别为()A. B.5,2 C. D.60、已知向量,且与互相垂直,则的值为()A.1 B. C. D.61、若已知A(1,1,1),B(-3,-3,-3),则线段AB的长为()A.4 B.2 C.4 D.362、设一地球仪的球心为空间直角坐标系的原点﹐球面上有两个点,的坐标分别为,,则()A. B. C. D.63、已知点,且,则实数的值是()A.或4 B.或2 C.3或 D.6或64、在空间直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.65、如图,空间四边形中,,,,点在上,且,点为中点,则等于()A. B.C. D.66、已知空间中点,则点关于平面对称的点的坐标是()A. B. C. D.67、已知空间中两点A(1,2,3),B(4,2,a),且,则a=()A.1或2 B.1或4 C.0或2 D.2或468、已知点,则点关于轴对称的点的坐标为()A. B. C. D.69、点A(1,2,3)关于xOy平面对称的点B坐标是()A.(-1,2,3) B.(1,-2,3) C.(1,2,-3) D.(-1,-2,3)70、已知平面的法向量为,点不在内,则直线与平面的位置关系为A.B.C.与相交不垂直D.参考答案1、B2、D3、C4、C5、A6、D7、D8、A9、C10、D11、C12、B13、C14、D15、A16、B17、B18、B19、C20、B21、C22、D23、B24、B25、B26、D27、C28、B29、A30、C31、D32、B33、D34、D35、D36、D37、C38、B39、C40、C41、C42、D43、C44、D45、A46、C47、D48、B49、A50、D51、D52、B53、B54、B55、C56、C57、C58、C59、A60、D61、C62、D63、D64、B65、B66、A67、D68、B69、C70、D【解析】1、试题分析:∵在空间直角坐标系中,点关于轴的对称点的坐标为:,∴点关于轴的对称点的坐标为:.考点:空间点的坐标.2、∵,∴设正方体的棱长为,由题意可得,解得∴正方体的体积为,故选D3、关于面对称的点为4、,,.若,则.即,解得.故选C.5、,,若,则有,即.解得,.故选A.6、选D7、,,,,故选C.8、,易得x=6,故选A9、如图所示:本题选择C选项.10、 =(3,1,6),=(2k−1,k,4k−2),∵与互相垂直,∴3(2k−1)+k+6(4k−2)=0,解得k=,本题选择D选项.11、纵坐标为0,则点A(2,0,3)在空间直角坐标系中的xoz平面上.本题选择C选项.12、由,可得,所以,而,分别是平面的法向量,所以,故选B.13、如图所示,连接,∵、分别是、的中点,∴,∴,又,∴,故选C.14、由空间向量垂直的充要条件可知:.本题选择D选项.15、如图为所在边的中点, ,故选A.16、根据向量加法的多边形法则以及已知可得:∴,故选B.17、试题解析:根据向量的减法可知,因为点在上,且是的中点,所以,,所以,故选B.考点:向量的线性运算.【方法点睛】本题主要考查了向量的线性运算,考查了共线向量定理与平面向量基本定理及向量加法、减法的三角形法则和平行四边形法则,属于中档题.题目给出了空间的一个基底,要求用基向量表示向量,先根据向量减法的三角形法则表示为,再根据共线向量定理和三角形的中线向量表达式表示出,最后用基向量表示出式中各向量即可.18、 ,故选B .19、点关于平面对称的点横坐标和纵坐标不变,竖坐标变为原来的相反数,即,故选C.20、试题解析:根据向量的减法可知,因为点在上,且是的中点,所以,,所以,故选B.考点:向量的线性运算.【方法点睛】本题主要考查了向量的线性运算,考查了共线向量定理与平面向量基本定理及向量加法、减法的三角形法则和平行四边形法则,属于中档题.题目给出了空间的一个基底,要求用基向量表示向量,先根据向量减法的三角形法则表示为,再根据共线向量定理和三角形的中线向量表达式表示出,最后用基向量表示出式中各向量即可.21、点关于平面对称的点横坐标和纵坐标不变,竖坐标变为原来的相反数,即,故选C.22、由题意可得,又因为与垂直,所以,即,所以得,所以,即,故本题正确答案为D。
高中数学选修2-1同步练习题库:双曲线(简答题:困难)
双曲线(简答题:困难)1、已知双曲线,分别是它的左、右焦点,是其左顶点,且双曲线的离心率为.设过右焦点的直线与双曲线C的右支交于两点,其中点位于第一象限内.(1)求双曲线的方程;(2)若直线分别与直线交于两点,求证:;(3)是否存在常数,使得恒成立?若存在,求出的值,若不存在,请说明理由。
2、已知双曲线的焦点是椭圆:()的顶点,且椭圆与双曲线的离心率互为倒数.(Ⅰ)求椭圆的方程;(Ⅱ)设动点,在椭圆上,且,记直线在轴上的截距为,求的最大值.3、已知双曲线的中心在坐标原点,焦点在轴上,离心率,虚轴长为.(1)求双曲线的标准方程;(2)若直线与曲线相交于两点(均异于左、右顶点),且以为直径的圆过双曲线的左顶点,求证:直线过定点,并求出定点的坐标.4、如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点,(1)若,求曲线的方程;(2)如图,作直线平行于曲线的渐近线,交曲线于点A、B,求证:弦AB的中点M必在曲线的另一条渐近线上;(3)对于(1)中的曲线,若直线过点交曲线于点C、D,求△CDF1 面积的最大值.5、已知点在双曲线(,)上,且双曲线的一条渐近线的方程是.(1)求双曲线的方程;(2)若过点且斜率为的直线与双曲线有两个不同交点,求实数的取值范围;(3)设(2)中直线与双曲线交于、两个不同点,若以线段为直径的圆经过坐标原点,求实数的值.6、(本小题满分13分)已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于.(1)求顶点的轨迹的方程,并判断轨迹为何种曲线;(2)当时,点为曲线 C上点, 且点为第一象限点,过点作两条直线与曲线C交于两点,直线斜率互为相反数,则直线EF斜率是否为定值,若是,求出定值,若不是,请说明理由.7、(本小题满分12分)已知双曲线, 若双曲线的渐近线过点, 且双曲线过点(1)求双曲线的方程;(2)若双曲线的左、右顶点分别为,点在上且直线的斜率的取值范围是,求直线斜率的取值范围.8、已知点、为双曲线:的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.(1)求双曲线的方程;(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值;(3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:.9、(本小题满分14分)已知直线l:与双曲线C:()相交于B、D 两点,且BD的中点为M(1,3).(1)求双曲线C的离心率;(2)设双曲线C的右顶点为A,右焦点为F,,试判断△ABD是否为直角三角形,并说明理由.10、(本小题满分14分)已知直线l:与双曲线C:()相交于B、D 两点,且BD的中点为M(1,3).(1)求双曲线C的离心率;(2)设双曲线C的右顶点为A,右焦点为F,,试判断△ABD是否为直角三角形,并说明理由.11、如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.(1)若,求曲线的方程;(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;(3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.12、如图,已知双曲线=1(a>0,b>0),定点(c是双曲线的半焦距),双曲线虚轴的下端点为B.过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足(O为原点),且三点共线.(1)求双曲线的离心率;(2)若a=2,过点B的直线l交双曲线的左、右支于M、N两点,且△OMN的面积S△OMN=2,求l 的方程.13、已知,,动点满足,其中分别表示直线的斜率,为常数,当时,点的轨迹为;当时,点的轨迹为.(1)求的方程;(2)过点的直线与曲线顺次交于四点,且,,是否存在这样的直线,使得成等差数列?若存在,求出直线的方程;若不存在,请说明理由.14、已知双曲线:的焦距为,以原点为圆心,实半轴长为半径的圆和直线相切.(1)求双曲线的方程;(2)设点为双曲线的左焦点,试问在轴上是否存在一定点,过点任意作一直线与双曲线交于,两点,使得为定值?若存在,求出此定值及点的坐标;若不存在,请说明理由.15、设圆C与两圆(x+)2+y2=4,(x-)2+y2=4中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程;(2)已知点M(,),F(,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.16、无论为任何实数,直线与双曲线恒有公共点.(1)求双曲线的离心率的取值范围;(2)若直线过双曲线的右焦点,与双曲线交于两点,并且满足,求双曲线的方程.17、(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系中,对于直线:和点记若<0,则称点被直线分隔.若曲线C与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C的一条分隔线.⑴求证:点被直线分隔;⑵若直线是曲线的分隔线,求实数的取值范围;⑶动点M到点的距离与到轴的距离之积为1,设点M的轨迹为E,求的方程,并证明轴为曲线的分割线.18、如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.(1)求的方程;(2)过点作的不垂直于轴的弦,为的中点,当直线与交于两点时,求四边形面积的最小值.19、(2014·武汉模拟)已知点P是圆M:x2+(y+m)2=8(m>0,m≠)上一动点,点N(0,m)是圆M所在平面内一定点,线段NP的垂直平分线l与直线MP相交于点Q.(1)当P在圆M上运动时,记动点Q的轨迹为曲线Г,判断曲线Г为何种曲线,并求出它的标准方程.(2)过原点斜率为k的直线交曲线Г于A,B两点,其中A在第一象限,且它在x轴上的射影为点C,直线BC交曲线Г于另一点D,记直线AD的斜率为k′,是否存在m,使得对任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,请说明理由.20、已知双曲线-=1(b∈N*)的左、右两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1||PF2|=|F1F2|2,|PF2|<4.(1)求b的值;(2)抛物线y2=2px(p>0)的焦点与该双曲线的右顶点重合,斜率为1的直线经过右顶点,与该抛物线交于A、B 两点,求弦长|AB|.21、已知常数,向量,经过定点以为方向向量的直线与经过定点以为方向向量的直线相交于,其中,(1)求点的轨迹的方程;(2)若,过的直线交曲线于两点,求的取值范围。
高二数学(人教B版)选修2-1全册同步练习:2-2-3椭圆习题课
2.2.3椭圆习题课一、选择题1.已知椭圆的焦点是F 1,F 2是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .双曲线的一支D .抛物线[答案] A[解析] ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.故选A.2.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .(0,1][答案] A[解析] 椭圆方程化为x 22+y 22k=1. 焦点在y 轴上,则2k>2,即k <1.又k >0,∴0<k <1. 3.P 是椭圆x 2100+y 264=1上的一点,F 1、F 2是焦点,若∠F 1PF 2=60°,则△PF 1F 2的面积是( ) A.6433 B .64(2+3) C .64(2-3) D .64[答案] A[解析] 在△PF 1F 2中,设|PF 1|=r 1,|PF 2|=r 2,则由椭圆定义知r 1+r 2=20 ①由余弦定理知cos60°=r 21+r 22-|F 1F 2|22r 1·r 2=r 21+r 22-1222r 2·r 2=12,即r 21+r 22-r 1r 2=144 ② ①2-②得r 1r 2=2563.∴S △PF 1F 2=12r 1·r 2sin60°=6433. 4.已知F 是椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的一个焦点,PQ 是过其中心的一条弦,且c =a 2-b 2,则△PQF 面积的最大值是( )A.12ab B .ab C .acD .bc [答案] D[解析] 设它的另一个焦点为F ′,则|F ′O |=|FO |,|PO |=|QO |,FPF ′Q 为平行四边形.S △PQF =12S PF ′QF =S △PFF ′,则当P 为椭圆短轴端点时,P 到FF ′距离最大,此时S △PFF ′最大为bc .即(S △PQF )max =bc .5.椭圆x 212+y 23=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )A .7倍B .5倍C .4倍D .3倍 [答案] A[解析] 不妨设F 1(-3,0),F 2(3,0),由条件知P (3,±32),即|PF 2|=32,由椭圆定义知|PF 1|+|PF 2|=2a =43,|PF 1|=732,|PF 2|=32,即|PF 1|=7|PF 2|. 6.设0≤α<2π,若方程x 2sin α-y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是( )A.⎝⎛⎭⎫0,34π∪⎝⎛⎭⎫7π4,2π B.⎣⎡π2,3π4 C.⎝⎛π2,3π4D.⎝⎛3π4,3π2[答案] C[解析] 将方程变形为:x 21sin α+y 2-1cos α=1.∴⎩⎪⎨⎪⎧ 1sin α>01-cos α>01sin α<1-cos α,∴sin α>-cos α>0.∴α在第二象限且|sin α|>|cos α|.7.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B .3 C.977D.94[答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7.∵△PF 1F 2为直角三角形.∴P 是横坐标为±7的椭圆上的点.(点P 不可能为直角顶点)设P (±7,|y |),把x =±7 代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94. 8.(2009·江西)过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13[答案] B [解析] 考查椭圆的性质及三角形中的边角关系运算.把x =-c 代入椭圆方程可得y c =±b 2a, ∴|PF 1|=b 2a∴|PF 2|=2b 2a, 故|PF 1|+|PF 2|=3b 2a=2a ,即3b 2=2a 2 又∵a 2=b 2+c 2,∴3(a 2-c 2)=2a 2,∴(c a )2=13,即e =33. 9.(2009·山东威海)椭圆x 24+y 33=1上有n 个不同的点P 1、P 2、…、P n ,椭圆的右焦点为F ,数列{|P n F |}是公差大于11 000的等差数列,则n 的最大值是( ) A .2 000B .2 006C .2 007D .2 008[答案] A[解析] ∵椭圆x 24+y 23=1上距离右焦点F (1,0)最近的点为右端点(2,0),距离右焦点F (1,0)最远的点为左端点(-2,0),数列{|P n F |}的公差d 大于11 000,不妨|P 1F |=1,|P n F |=3,3=1+(n -1)·d ,∴d =2n -1>11 000,n -1<2 000, 即n <2 001.∴故选A.10.已知点(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( ) A .x -2y =0B .x +2y -4=0C .2x +3y -4=0D .x +2y -8=0[答案] D[解析] 设截得的线段为AB ,A (x 1,y 1),B (x 2,y 2), 中点坐标为(x 0,y 0),利用“差分法”得y 21-y 22x 21-x 22=-936,即y 1-y 2x 1-x 2·y 0x 0=-936, ∴k =y 1-y 2x 1-x 2=-12,∴直线l 的方程为y -2=-12(x -4),即x +2y -8=0. 二、填空题11.已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则椭圆的方程是________________.[答案] y 24+x 23=1 [解析] 由题意设椭圆方程为y 2a 2+x 2b2=1(a >b >0). ∵|PF 1|+|PF 2|=2|F 1F 2|,∴2a =4.∴a =2,又c =1,∴b 2=3,∴方程为y 24+x 23=1.12.设F 1、F 2是椭圆x 23+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|-|PF 2|=1,则cos ∠F 1PF 2=____________.[答案] 35[解析] ∵|PF 1|+|PF 2|=4,又|PF 1|-|PF 2|=1,∴|PF 1|=52|PF 2|=32|F 1F 2|=2, ∴cos ∠F 1PF 2=⎝⎛522+⎝⎛⎭⎫322-222×52×32=35. 13.已知椭圆的短半轴长为1,离心率e 满足0<e ≤32,则长轴的取值范围为________. [答案] (2,4][解析] 由e 2=c 2a 2=a 2-b 2a 2=1-1a 2 得0<1-1a 2≤34. 从而-1<-1a 2≤-14, ∴14≤1a2<1,故1<a 2≤4, ∴1<a ≤2,即2<2a ≤4.14.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右两个焦点,若椭圆C 上的点A (1,32)到F 1,F 2两点的距离之和为4,则椭圆C 的方程是________,焦点坐标是________. [答案] x 24+y 23=1 (±1,0) [解析] 由|AF 1|+|AF 2|=2a =4得a =2.∴原方程化为:x 24+y 2b 2=1,将A (1,32)代入方程得b 2=3. ∴椭圆方程为:x 24+y 23=1,焦点坐标为(±1,0). 三、解答题15.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1、F 2,斜率为k 的直线l 过左焦点F 1且与椭圆的交点为A 、B ,与y 轴交点为C ,又B 为线段CF 1的中点,若|k |≤142求椭圆离心率e 的取值范围.[解析] 设l :y =k (x +c )则C (0,kc ),B (-c 2,kc 2). ∵B 在椭圆上,∴c 24a 2+k 2c 24b 2=1. 即c 24a 2+k 2c 24(a 2-c 2)=1⇒e 2+ke 21-e 2=4. ∴k 2=(4-e 2)(1-e 2)e 2≤72⇒2e 4-17e 2-8≤0⇒ 12≤e 2<1⇒22≤e <1. 16.已知椭圆E :x 28+y 24=1. (1)直线l :y =x +m 与椭圆E 有两个公共点,求实数m 的取值范围.(2)以椭圆E 的焦点F 1、F 2为焦点,经过直线l ′:x +y =9上一点P 作椭圆C ,当C 的长轴最短时,求C 的方程.[解析] (1)直线l 与椭圆E 有两个公共点的条件是:方程组⎩⎪⎨⎪⎧ x 28+y 24=1y =x +m 有两组不同解,消去y ,得3x 2+4mx +2m 2-8=0.∴Δ=16m 2-12(2m 2-8)>0,-23<m <2 3.∴实数m 的取值范围是(-23,23).(2)依题意,F 1(-2,0)、F 2(2,0).作点F 1(-2,0)关于l ′的对称点F 1′(9,11).设P 是l ′与椭圆的公共点,则2a =|PF 1|+|PF 2|=|PF ′1|+|PF 2|≥|F ′1F 2|=72+112=170.∴(2a )min =170,此时,a 2=1704=852b 2=a 2-c 2=772. ∴长轴最短的椭圆方程是x 2852+y 2772=1. 17.如图所示,某隧道设计为双向四车通,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.I若最大拱高h 为6米,则隧道设计的拱宽l 是多少? [解析] 如图所示,建立直角坐标系,则点P (11,4.5),椭圆方程为x 2a 2+y 2b 2=1. 将b =h =6与点P 坐标代入椭圆方程,得a =4477,此时l =2a =8877≈33.3 因此隧道的拱宽约为33.3米.18.椭圆中心是坐标原点O ,焦点在x 轴上,e =32,过椭圆左焦点F 的直线交椭圆于P ,Q 两点,|PQ |=209,且OP ⊥OQ ,求此椭圆的方程. [解析] 设椭圆方程为x 2a 2+y 2b2=1(a >b >0), 当PQ ⊥x 轴时,F (-c,0),|FP |=b 2a. 又∵|FQ |=|FP |,且OP ⊥OQ ,∴|OF |=|FP |,即c =b 2a, ∴ac =a 2-c 2,e 2+e -1=0.∴e =5-12.与题设e =32不符,所以PQ 不垂直于x 轴,设PQ 所在直线方程为y =k (x +c ),P (x 1,y 1),Q (x 2,y 2),∵e =32,∴a 2=43c 2,b 2=13c 2. ∴椭圆方程可化为3x 2+12y 2-4c 2=0.将PQ 所在直线方程代入,得(3+12k 2)x 2+24k 2cx +12k 2c 2-4c 2=0.由韦达定理,得x 1+x 2=-24k 2c 3+12k 2,x 1x 2=12k 2c 2-4c 23+12k 2. 由|PQ |=209,得1+k 2.(-24k 2c 3+12k 2)2-4(12k 2c 2-4c 2)3+12k 2=209.① ∵OP ⊥OQ ,∴y 1x 1·y 2x 2=-1, 即x 1x 2+y 1y 2=0, ∴(1+k 2)x 1x 2+k 2c (x 1+x 2)+c 2k 2=0,②联立①②解得c 2=3,k 2=411. ∴a 2=4,b 2=1.故椭圆方程为x 24+y 2=1.。
高中数学选修2-1 各章节同步练习及答案解析
第一章 1.1第1课时一、选择题1.下列语句中命题的个数为()①{0}∈N;②他长得很高;③地球上的四大洋;④5的平方是20.A.0B.1C.2D.3[答案]C[解析]①④是命题,②③不是命题.地球上的四大洋是不完整的句子.2.若a>1,则函数f(x)=a x是增函数()A.不是命题B.是真命题C.是假命题D.是命题,但真假与x的取值有关[答案]B[解析]当a>1时,指数函数f(x)=a x是增函数,故“若a>1,则函数f(x)=a x是增函数”是真命题.3.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是() A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.n∥m,n⊥α⇒m⊥α[答案]D[解析]验证排除法:A选项中缺少条件m与n相交;B选项中两平行平面内的两条直线m与n关系不能确定;C选项中缺少条件n⊄α.4.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中是真命题的是()A.①②③B.①②④C.①③④D.②③④[答案]B[解析]①中Δ=4-4(-k)=4+4k>0,所以①为真命题;②由不等式的乘法性质知命题正确,所以②为真命题;③如等腰梯形对角线相等,不是矩形,所以③是假命题;④由等式性质知命题正确,所以④是真命题,故选B.5.对于向量a、b、c和实数λ,下列命题中的真命题是()A. a·b=0,则a=0或b=0B.若λa=0,则λ=0或a=0C.若a2=b2,则a=b或a=-bD.若a·b=a·c,则b=c[答案]B[解析]A选项中可能有a⊥b;C选项中a2=b2说明|a|=|b|,a与b并不一定共线,D 选项中a·b=a·c说明a·(b-c)=0,则a⊥(b-c)6.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是()A.这个四边形的对角线互相平分B.这个四边形的对角线互相垂直C.这个四边形的对角线既互相平分,也互相垂直D.这个四边形是平行四边形[答案]C[解析]该命题的条件是“一个四边形是平行四边形”,结论是“这个四边形的对角线既互相平分,也互相垂直”.二、填空题7.下面是关于四棱柱的四个命题:①如果有两个侧面垂直于底面,则该四棱柱为直四棱柱;②如果两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③如果四个侧面两两全等,则该四棱柱为直四棱柱;④如果四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是__________________(写出所有真命题的编号).[答案]②④[解析]②中由过相对侧棱截面的交线垂直于底面并与侧棱平行,可知命题成立,④中由题意,可知对角面均为长方形,即可证命题成立.①、③错误,反例如有一对侧面与底面垂直的斜四棱柱.8.设a、b、c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是__________________.[答案]0[解析]∵垂直于同一直线的两条直线不一定平行,∴命题①不正确;∵与同一直线均异面的两条直线的位置关系可以共面,也可以异面,∴命题②不正确;∵与同一直线均相交的两条直线在空间中可以相交,也可以平行或异面,∴命题③不正确;∵当两平面的相交直线为直线b时,两平面内分别可以作出直线a与c,即直线a与c 不一定共面,∴命题④不正确.综上所述,真命题的个数为0.三、解答题9.判断下列语句中哪些是命题,是命题的,请判断真假.(1)末位是0的整数能被5整除;(2)△ABC中,若∠A=∠B,则sin A=sin B;(3)余弦函数是周期函数吗?(4)求证:当x∈R时,方程x2+x+2=0无实根.[解析](1)是命题,真命题.(2)是命题,真命题.(3)、(4)不是命题.10.把下列命题改写成“若p,则q”的形式,并判断真假.(1)对角线相等的四棱柱是长方体;(2)整数的平方是非负整数;(3)能被10整除的数既能被2整除,也能被5整除.[解析](1)可写为:“若四棱柱的对角线相等,则它是长方体”,这个命题是假命题,如底面是等腰梯形的直四棱柱.(2)可写为:“若一个数是整数,则它的平方是非负整数”,真命题.(3)可写为:“若一个数能被10整除,则它既能被2整除,也能被5整除”,真命题.一、选择题1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这四句诗中,在当时条件下,可以作为命题的是()A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思[答案]A[解析]“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题,故选A.2.设α、β、γ为两两不重合的平面,c 、m 、n 为两两不重合的直线,给出下列四个命题:①如果α⊥γ,β⊥γ,则α∥β;②如果α∥β,c ⊂α,则c ∥β;③如果α∩β=c ,β∩γ=m ,γ∩α=n ,c ∥γ,则m ∥n .其中真命题个数是( )A .0个B .1个C .2个D .3个[答案] C[解析] ①α⊥γ,β⊥γ,则α与β可相交,①错误;②中∵α∥β,∴α与β无公共点,又c ⊂α,∴c 与β无公共点,∴c ∥β,故②正确;由c ∥γ,c ⊂β,β∩γ=m 得c ∥m ,同理可得c ∥n ,∴m ∥n ,故③正确.3.下面的命题中是真命题的是( )A .y =sin 2x 的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则c a>0 C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB →·BC →>0,则△ABC 为锐角三角形[答案] B[解析] y =sin 2x =1-cos2x 2,T =2π2=π,故A 为假命题; 当M ⊆N 时,M ∪N =N ,故C 为假命题;当AB →·BC →>0时,向量AB →与BC →的夹角为锐角,B 为钝角,故D 为假命题.4.设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定向量b 和正数μ,总存在单位向量c ,使a =λb +μc .④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b 、c 和a 在同一平面内,且两两不共线,则真命题的个数是( )A .1B .2C .3D .4 [答案] C[解析] 对于①,由向量的三角形加法法则可知其正确;由平面向量基本定理知②正确;对③,可设e 与b 是不共线单位向量,则存在实数λ,y 使a =λb +y e ,若y >0,则取μ=y ,c =e ,若y <0,则取μ=-y ,c =-e ,故③正确;④显然错误,给定正数λ和μ,不一定满足“以|a |,|λb |,|μc |为三边长可以构成一个三角形”,这里单位向量b 和c 就不存在.可举反例:λ=μ=1,b 与c 垂直,此时必须a 的模为2才成立.二、填空题5.给出下列四个命题:①若a >b >0,则1a >1b; ②若a >b >0,则a -1a >b -1b; ③若a >b >0,则2a +b a +2b >a b; ④若a >0,b >0,且2a +b =1,则2a +1b的最小值为9. 其中正确命题的序号是__________________.(把你认为正确命题的序号都填上)[答案] ②④[解析] ①在a >b >0两端同乘以1ab 可得1b >1a,故①错; ②由于⎝⎛⎭⎫a -1a -⎝⎛⎭⎫b -1b =(a -b )⎝⎛⎭⎫1+1ab >0, 故②正确;③由于2a +b a +2b -a b =b 2-a 2(a +2b )b <0,即2a +b a +2b <a b, 故③错;④由2a +1b =⎝⎛⎭⎫2a +1b ·(2a +b )=5+2b a +2a b≥5+22b a ·2a b =9,当且仅当2b a =2a b,即a =b =13时取得等号,故④正确. 6.已知函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题:①若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数;②若a 2-b >0,则f (x )在区间[a ,+∞)上是增函数;③当x =a 时,f (x )有最小值b -a 2;④当a 2-b ≤0时,f (x )有最小值b -a 2.其中正确命题的序号是__________________.[答案] ①④[解析] 由题意知f (x )=|x 2-2ax +b |=|(x -a )2+b -a 2|.若a 2-b ≤0,则f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2,可知f (x )在区间[a ,+∞)上是增函数,所以①正确,②错误;只有在a 2-b ≤0的条件下,才可能在x =a 时,f (x )取最小值b -a 2,所以③错误,④正确.三、解答题7.把下列命题改写成“若p ,则q ”的形式.(1)ac >bc ⇒a >b ;(2)当m >14时,mx 2-x +1=0无实根; (3)方程x 2-2x -3=0的解为x =3或x =-1.[解析] (1)若ac >bc ,则a >b .(2)若m >14,则mx 2-x +1=0无实根. (3)若x 2-2x -3=0,则x =3或x =-1.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.[解析] 由lg(x 2-2x -2)≥0,得x 2-2x -2≥1,即x 2-2x -3≥0.解得x ≤-1或x ≥3.故命题p :x ≤-1或x ≥3.又命题q :0<x <4,且命题p 为真,命题q 为假,则⎩⎪⎨⎪⎧x ≤-1或x ≥3x ≤0或x ≥4, 所以x ≤-1或x ≥4.所以,满足条件的实数x 的取值范围为(-∞,-1]∪[4,+∞).第一章 1.1 第2课时一、选择题1.给出命题:若函数y =f (x )是幂函数,则它的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .0[答案] C[解析] 原命题是真命题,因为幂函数的图象不过第四象限,反过来,图象不过第四象限的函数不一定是幂函数,所以逆命题为假命题,根据等价命题的真假性相同可知,否命题为假命题,逆否命题为真命题,故选C.2.“若x 2=1,则x =1”的否命题为( )A.若x2≠1,则x=1B.若x2=1,则x≠1C.若x2≠1,则x≠1D.若x≠1,则x2≠1[答案]C[解析]“若p则q”的否命题形式为“若¬p则¬q”.3.命题“如果a、b都是奇数,则ab必为奇数”的逆否命题是()A.如果ab是奇数,则a、b都是奇数B.如果ab不是奇数,则a、b不都是奇数C.如果a、b都是奇数,则ab不是奇数D.如果a、b不都是奇数,则ab不是奇数[答案]B[解析]命题“如果a、b都是奇数,则ab必为奇数”的逆否命题是“如果ab不是奇数,则a、b不都是奇数”.4.“a2+b2≠0”的含义是()A.a、b不全为0B.a、b全不为0C.a、b至少有一个为0D.a不为0且b为0,或b不为0且a为0[答案]A[解析]若a2+b2≠0,则a≠0且b≠0,或a=0且b≠0,或a≠0且b=0,即a、b不全为0,故选A.5.原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是()A.原命题是真命题B.逆命题是假命题C.否命题是真命题D.逆否命题是真命题[答案]C[解析]否命题是“非圆内接四边形不是等腰梯形”,为真命题.6.设a、b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.若a≠-b,则|a|≠|b|B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-bD.若|a|=|b|,则a=-b[答案]D[解析]命题“若a=-b,则|a|=|b|”的逆命题是“若|a|=|b|,则a=-b”,故选D.二、填空题7.(2015·福建八县一中高二期末测试)命题“若∠C=90°,则△ABC是直角三角形”的否命题的真假性为__________________.[答案]假[解析]原命题的否命题是“若∠C≠90°,则△ABC不是直角三角形”,是假命题.8.“若a∈A,则a∈B”的逆否命题为__________________.[答案]若a∉B,则a∉A[解析]一个命题的逆否命题是结论的否定作条件,条件的否定作结论,故原命题的逆否命题为“若a∉B,则a∉A”.三、解答题9.设原命题为“已知a、b是实数,若a+b是无理数,则a、b都是无理数”.写出它的逆命题、否命题和逆否命题,并分别说明他们的真假.[解析]逆命题:已知a、b为实数,若a、b都是无理数,则a+b是无理数.如a=2,b=-2,a+b=0为有理数,故为假命题.否命题:已知a、b是实数,若a+b不是无理数,则a、b不都是无理数.由逆命题为假知,否命题为假.逆否命题:已知a、b是实数,若a、b不都是无理数,则a+b不是无理数.如a=2,b=2,则a+b=2+2是无理数,故逆否命题为假.10.判断命题“已知a、x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.[解析]逆否命题:已知a,x为实数,如果a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,真命题.判断如下:抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.∵a<1,∴4a-7<0,即抛物线y=x2+(2a+1)x+a2+2与x轴无交点,∴关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真.第三章综合素质检测时间120分钟,满分150分。
高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案
第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________.9.下列语句是命题的是________.①求证3是无理数;②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x ∈R ,则x 2+4x +7>0.三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ;(2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根;(4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1; ③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析第一章 常用逻辑用语§1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假2.条件 结论作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.8.若一个函数是奇函数 这个函数的图象关于原点对称9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根.(4)假命题.因为不共线的三点确定一个圆. 11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题. 12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1;若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2. 故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1,∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.] 14.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
人教A版高中数学选修2-1第1章1.1.1同步练习习题(含解析)
高中数学人教A版选2-1 同步练习1.下列语句是命题的是()A.是一个大数B.若两直线平行,则这两条直线没有公共点C.对数函数是增函数吗D.a≤15解析:选B.A、D不能判断真假,不是命题;B能够判断真假而且是陈述句,是命题;C是疑问句,不是命题.2.下列命题中的真命题是()A.互余的两个角不相等B.相等的两个角是同位角C.若a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角解析:选C.由平面几何知识可知A、B、D三项都是错误的.3.命题“函数y=2x+1是增函数”的条件是__________,结论是__________.答案:函数为y=2x+1该函数是增函数4.( ·临沂质检)下列命题:①y=x2+3为偶函数;②0不是自然数;③{x∈N|0<x<12}是无限集;④如果a·b=0,那么a=0,或b=0. 其中是真命题的是__________(写出所有真命题的序号).解析:①为真命题;②③④为假命题.答案:①[A级基础达标]1.下列语句不是命题的有()①2<1;②x<1;③若x<2,则x<1;④函数f(x)=x2是R上的偶函数.A.0个B.1个C.2个D.3个解析:选C.①④可以判断真假,是命题;②③不能判断真假,所以不是命题.2.下列命题是真命题的是()A.{∅}是空集x∈N||x-1|<3是无限集B.{}C.π是有理数D .x 2-5x =0的根是自然数解析:选D.x 2-5x =0的根为x 1=0,x 2=5,均为自然数.3.下列命题中真命题的个数为( )①面积相等的两个三角形是全等三角形;②若xy =0,则|x |+|y |=0;③若a >b ,则a +c >b +c ;④矩形的对角线互相垂直.A .1B .2C .3D .4解析:选A.①错;②错,若xy =0,则x ,y 至少有一个为0,而未必|x |+|y |=0;③对,不等式两边同时加上同一个常数,不等号开口方向不变;④错.4.( ·莱芜调研)命题“末位数字是0或5的整数,能被5整除”,条件p :__________;结论q :__________;是__________命题.(填“真”或“假”)解析:“末位数字是0或5的整数,能被5整除”改写成“若p ,则q ”的形式为:若一个整数的末位数是0或5,则这个数能被5整除,为真命题.答案:末位数字是0或5的整数 能被5整除 真5.命题“偶函数的图象关于y 轴对称”写成“若p ,则q ”形式为__________.答案:若一个函数是偶函数,则这个函数的图象关于y 轴对称6.判断下列命题的真假.(1)二次函数y =ax 2+bx +c (a ≠0)有最大值;(2)正项等差数列的公差大于零;(3)函数y =1x的图象关于原点对称. 解:(1)假命题.当a >0时,抛物线开口向上,有最小值.(2)假命题.反例:若此数列为递减数列,如数列20,17,14,11,8,5,2,它的公差是-3.(3)真命题.y =1x是奇函数,所以其图象关于(0,0)对称. [B 级 能力提升]7.下列命题,是真命题的是( )A .若ab =0,则a 2+b 2=0B .若a >b ,则ac >bcC .若M ∩N =M ,则N ⊆MD .若M ⊆N ,则M ∩N =M解析:选D.A 中,a =0,b ≠0时,a 2+b 2=0不成立;B 中,c ≤0时不成立;C 中,M ∩N =M 说明M ⊆N .故A 、B 、C 皆错误.8.(2011·高考四川卷)l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( )A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面解析:选B.在空间中,垂直于同一直线的两条直线不一定平行,故A 错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B 正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C 错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D 错.9.给定下列命题:①“若k >0,则方程x 2+2x -k =0”有实数根;②若a >b ,则a -c >b -c ;③对角线相等的四边形是矩形.其中真命题的序号是__________.解析:①中Δ=4-4(-k )=4+4k >0,故为真命题;②显然为真命题;③也可能是等腰梯形.答案:①②10.把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)当ac >bc 时,a >b ;(2)当m >14时,mx 2-x +1=0无实根; (3)当ab =0时,a =0或b =0.解:(1)若ac >bc ,则a >b .∵ac >bc ,c <0时,a <b ,∴是假命题.(2)若m >14, 则mx 2-x +1=0无实根.∵Δ=1-4m <0,∴是真命题.(3)若ab =0,则a =0或b =0,真命题.11.(创新题)已知A :5x -1>a ,B :x >1,请选择适当的实数a ,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解:若视A 为p ,则命题“若p ,则q ”为“若x >1+a 5,则x >1”,由命题为真命题可知1+a 5≥1,解得a ≥4; 若视B 为p ,则命题“若p ,则q ”为“若x >1,则x >1+a 5”,由命题为真命题可知1+a 5≤1,解得a ≤4. 故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x >1,则x >25”.。
人教版高中数学选修2-1第三章-空间向量与立体几何练习题及答案
第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( ) ①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 及不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 及b 所在直线平行。
A .1 B .2 C .3 D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 及1CD 所形成角的余弦值为( )A .1010 B . 15C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ;_C_D_A_P_ N_B_M(2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a=-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( )A .可构成直角三角形B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25]4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1及侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1及平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;D 1C 1B 1A 1DABCC 1 B 1 A 1B A(2)求1C 到平面1A AB 的距离;(3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,1AC AA ==(1)证明:1ABA C ⊥; (2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面PAC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-. 连结AC ,则§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ; (2)1,2,CD x CD CC ==1设则 2CC =x, 设1,,A A a AD b DCc ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-,令24260xx +-=,则2320x x --=,解得1x =,或23x =-(舍去),_C_D _A_P_ N _B _M _EA 1§3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示 1.A 2.D 3.B 4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1则有所以,MC 1⊥平面ABB 1A 1.因此,AC 1及AM 所成的角就是AC 1及侧面ABB 1A 1所成的角.∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°. ∴AC 1及侧面ABB 1A 1所成的角为30°. 3.2立体几何中的向量方法 新 课 标 第 一网1.A2.C3. (1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥,所以DEAC ⊥,又1A D ⊥平面ABC ,以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得t =.设平面1A AB 的法向量为(),,n x y z =,(1AA =,()2,2,0AB =,所以10220n AA y n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,n =-,所以点1C 到平面1A AB 的距离1AC n d n⋅==7. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,CA =-,()2,0,0CB =,所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =,故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向,可知二面角1A A B C --的余弦值大小为77. 4.(1)三棱柱111ABC A B C -为直三棱柱,由正弦定理030ACB∠=.如右图,建立空间直角坐标系, 则1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量,设平面1A BC 的法向量为(,,)n l m n =,则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 不妨取1,(3,1,1)mn ==则,1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DSa =,平面DAC 的一个法向量600aOS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°._C_A_S_F_BO(3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且),(0,)DS CS ==.设,CEtCS = 则((1)BE BC CE BC tCS t =+=+=-,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面. 作 者 于华东 责任编辑 庞保军。
(人教B版)数学高中选修2-1课时同步练习+单元检测卷 (全书完整版)
(人教B版)高中数学选修2-1(全册)课时同步练习+单元检测卷汇总1.1命题与量词课时过关·能力提升1.下列语句不是命题的是()A.一个正数不是质数就是合数B.大角所对的边较大,小角所对的边较小C.请把门关上∈R,则x2+x+2>0答案:C2.下列语句是命题的是()A.|x+a|大于0吗?B.{0}∈NC.判断元素与集合的关系D.求一个集合的真子集答案:B3.命题“存在实数x,使x+1<0”可写成()A.若x是实数,则x+1<0B.∃x∈R,x+1<0C.∀x∈R,x+1<0D.以上都不正确解析:由存在性命题的表示形式可知选项B正确.答案:B4.对命题“一次函数f(x)=ax+b是单调函数”改写错误的是()A.所有的一次函数f(x)=ax+b都是单调函数B.任意一个一次函数f(x)=ax+b都是单调函数C.任意一次函数f(x)=ax+b是单调函数D.有的一次函数f(x)不是单调函数解析:由全称命题的表示形式可知选项D错误.答案:D5.下列命题中的假命题是()A.∃x∈R,lg x=0B.∃x∈R,tan x=1C.∀x∈R,x3>0D.∀x∈R,2x>0解析:对于选项A,当x=1时,lg x=0,为真命题;对于选项B,当x,tan x=1,为真命题;对于选项C,当x<0时,x3<0,为假命题;对于选项D,由指数函数性质知,∀x∈R,2x>0,为真命题,故选C.答案:C6.下列语句是命题的是.(填序号)①地球上有四大洋;②-2∈N;③π∈R;④垂直于同一条直线的两个平面平行.解析:所给语句均能判断真假,故都是命题.答案:①②③④7.有下列命题:①奇函数的图象关于原点对称;②有些三角形是等腰三角形;③∀x∈R,2x+1是奇数;④至少有一个整数,它既不是合数也不是质数;⑤实数的平方大于零.其中是全称命题的为(填序号).解析:根据全称命题的定义知,①③⑤是全称命题.答案:①③⑤★8.下列命题是真命题的是(填序号).①5能整除15;②不存在实数x,使得x2-x+2<0;③对任意实数x,均有x-1<x;④方程x2+3x+3=0有两个不相等的实数根;⑤不等解析:对于①,由整数的整除性知该命题是真命题;对于②,因为Δ<0,所以x2-x+2<0无解,故该命题是真命题;对于③,因为任意一个数减去一个正数后都小于原数,所以该命题是真命题;对于④,因为Δ<0,所以方程x2+3x+3=0无解,所以该命题是假命题;对于⑤,因为分子恒为正,分母大于0,所以商不可能小于0,即解集为空集,故该命题是真命题.答案:①②③⑤9.判断下列命题的真假:(1)∀a∈R,函数y=log a x是单调函数;(2)∃a∈{向量},对任意向量b,有a·b=0.解:(1)由于1∈R,当a=1时,y=log a x无意义,因此命题“∀a∈R,函数y=log a x是单调函数”是假命题.(2)由于0∈{向量},当a=0时,能使a·b=0,因此命题“∃a∈{向量},对任意向量b,有a·b=0”是真命题.★10.求使命题p(x)≥0为真命题的x的取值范围.分析:要使命题p(x)≥0为真命题,就是要使x的取值满≥0,只需解不等≥0即可.解:≥0得x(2x+1)≥0,且2x+1≠0,解得x≥0或x<故x的取值范围1.2.1“且”与“或”课时过关·能力提升1.下列命题中不是“p∧q”形式的命题的是()A.函数y=a x(a>0,且a≠1)的图象一定过(0,1)点B.3和-3是方程x2-9=0的实数根C.1不是质数且不是合数答案:A2.下列命题中是“p∧q”形式的命题的是()A.28是5的倍数或是7的倍数B.2是方程x2-4=0的根又是方程x-2=0的根C.函数y=a x(a>1)是增函数y=ln x是减函数A是由“或”联结构成的新命题,是“p∨q”形式的命题;选项B可写成“2是方程x2-4=0的根且是方程x-2=0的根”,是由逻辑联结词“且”联结构成的新命题,故选项B是“p∧q”形式的命题;选项C,D不是由逻辑联结词联结形成的新命题,故不是“p∧q”形式的命题.3.下列说法与x2+y2=0含义相同的是()A.x=0,且y=0B.x=0或y=0且y≠0 D.x≠0或y≠00,故每个加数都为0,即x2=0,且y2=0,所以x=0,且y=0.4.以下判断正确的是()A.命题“p∨q”是真命题时,命题p一定是真命题B.命题p是假命题时,命题“p∧q”不一定是假命题C.命题“p∧q”是假命题时,命题p一定是假命题p是真命题时,命题“p∨q”一定是真命题Ⅰ、表Ⅱ进行判断可知选项D正确.★5.如果命题“p∨q”是真命题,命题“p∧q”是假命题,那么()A.命题p,q都是假命题B.命题p,q都是真命题C.命题p,q有且只有一个是真命题“p∨q”是真命题,所以p,q中至少有一个是真命题.因为命题“p∧q”是假命题,所以p,q中至少有一个假命题,故p,q中有且只有一个是真命题.“∀n∈R,n≤n”的构成形式是,该命题是命题(填“真”或“假”).∨q真7.命题“所有正多边形都有一个内切圆和一个外接圆”的构成形式是,组成该命题的两个命题分别是“”,∧q所有正多边形都有一个内切圆所有正多边形都有一个外接圆8.命题p:等腰三角形有两条边相等;q:等腰三角形有两个角相等.命题p,q构成的“且”命题是“”,该命题是命题(填“真”或真9.已知c>0,且c≠1,设命题p:函数y=x2+cx+1的图象与x轴有两个交点;q:当x>1时,函数x>0恒成立.如果p∨q为假,求c的取值范围.p,q为真,分别求出c的范围;再由p∨q为假知p,q都假;然后列出关于c的不等式组来解决.p为真,则Δ=c2-4>0(c>0,且c≠1),所以c>2.若q为真,则c>1.因为p∨q为假,所以p,q都为假.当p为假时,0<c≤2,且c≠1,当q为假时,0<c<1,所以当p,q都为假时,0<c<1,即c的取值范围为(0,1).★10.已知命题p:函数y=x2+mx+1在区间(-1,+∞)内是增函数;q:函数y=4x2+4(m-2)+1的函数值恒大于零.若p∧q为假,p∨q为真,求m的取值范围.分析:先由p,q为真,分别求出m的范围;再由p∧q为假,p∨q为真知,命题p,q一真一假;然后分“p真q假”和“p假q真”两种情况列出关于m的不等式组来解决.解:若p为真,≤-1,所以m≥2;若q为真,则Δ=16(m-2)2-16<0,解得1<m<3.因为p∧q为假,p∨q为真,所以p,q一真一假.当p真q假时,得解得m≥3;当p假q真时,得解得1<m<2.综上,m的取值范围是{m|m≥3或1<m<2}.1.2.2“非”(否定)课时过关·能力提升1.命题“2不是质数”的构成形式是()A.p∧qB.p∨qD.以上答案都不正确答案:C2.若命题“p”与“p∧q”都是假命题,则()A.命题p,q都是真命题B.命题p,q都是假命题C.命题p是真命题,命题q是假命题q是真命题,命题p是假命题答案:C3.a,b不全为0是指()A.a,b全不为0B.a,b中至多有一个为0C.a,b中只有一个不为0D.a,b中至少有一个为0答案:B★4.命题“∃x∈∁R Q,x3∈Q”的否定是()A.∃x∉∁R Q,x3∈QB.∃x∈∁R Q,x3∉QC.∀x∉∁R Q,x3∈QD.∀x∈∁R Q,x3∉Q答案:D5.命题“菱形的对角线互相垂直”的否定是.答案:有些菱形的对角线不互相垂直6.命题“所有人都晨练”的否定是.答案:有的人不晨练7.已知命题p“∃x∈R,x命题q是命题(填“真”或“假”).解析:利用存在性命题的否定形式写出p为:∀x∈R,x≤x>1时,x p为假命题.答案:∀x∈R,x≤8.已知命题p:0不是自然数,命题q∧q”;②“p∨q”;③“p”;④“q”中,真命题的序号是,假命题的序号是.解析:先判断命题p,q的真假,可知p假q真;再利用含有逻辑联结词的命题的真假判断方法进行判断,其中②③为真,①④为假.答案:②③①④9.写出下列命题的否定,并判断其真假:(1)集合A是集合A∪B的子集;(2)∀T=2kπ(k∈Z),sin(x+T)=sin x.分析:(1)利用命题的否定形式写出其否定,根据集合A∪B的定义可判断其真假;(2)利用全称命题的否定形式写出其否定,再利用正弦函数的周期判断其真假.解:它们的否定及真假如下:(1)集合A不是集合A∪B的子集;(假)(2)∃T=2kπ (k∈Z),sin(x+T)≠sin x.(假)★10.指出下列命题的结构形式以及构成它们的简单命题,并判断它们的真假:(1)q:1-x2≤1;y=x2的图象不关于y轴对称.分析:可依据命题的几种结构形式(“p∨q”“p∧q”“p”)直接写出它们的结构形式以及构成它们的简单命题;然后根据表Ⅰ、表Ⅱ、表Ⅲ判断其真假.解:它们的结构形式依次为:(1)p∨q,(2)p.构成它们的简单命题依次为:(1)“1-x2<1”和“1-x2=1”.(2)函数y=x2的图象关于y轴对称.其真假依次为:(1)真;(2)假.1.3.1推出与充分条件、必要条件课时过关·能力提升1.若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的()A.充分不必要条件B.必要不充分条件C.充要条件⇒乙⇒丙⇔丁,故命题丁是命题甲的必要不充分条件.2.命题“∀x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是()B.a≤4C.a≥5D.a≤53.已知直线l1,l2的斜率分别为k1,k2,则“k1=k2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件k1=k2时,直线l1,l2可能平行也可能重合;当l1∥l2时,k1,k2一定相等.故选B.4.“两三角形全等”是“两三角形对应角相等”的()A.充分不必要条件B.既不充分也不必要条件C.必要不充分条件5.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件m为平面α内的一条直线,m⊥β,得α⊥β,必要性成立;由m为平面α内的一条直线,α⊥β,不能推出m⊥β,充分性不成立.故“α⊥β”是“m⊥β”的必要不充分条件.★6.设{a n}是首项大于零的等比数列,则“a1<a2”是“数列{a n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件{a n}是首项大于零的等比数列,a1<a2⇒数列{a n}是递增数列,数列{a n}是递增数列<a2,所以“a1<a2”是“数列{a n}是递增数列”的充要条件.1答案:CA为数集,则“A∩{0,1}={0}”是“A={0}”的条件.答案:必要不充分b,c为实数,“a>0,c<0”是“函数f(x)=ax2+bx+c有两个零点”的条件.解析:a>0,c<0⇒b2-4ac>0⇒函数f(x)有两个零点;函数f(x)有两个零点⇒b2-4ac>0a>0,c<0,故0”是“函数f(x)=ax2+bx+c有两个零点”的充分不必要条件.答案:充分不必要p:A={x|x2+4x+3>0},q:B={x||x|<a},若p是q的必要不充分条件,求a的取值范围.分析:先化简集合,然后把“p是q的必要不充分条件”转化为“B⫋A”,得关于a的不等式解决问题.解:p:A={x|x2+4x+3>0}={x|x>-1或x<-3},q:B={x||x|<a},因为p是q的必要不充分条件,所以B⫋A.当a≤0时,B=⌀,满足B⫋A;当a>0时,B={x|-a<x<a},要使B⫋A,只需-a≥-1,此时0<a≤1.综上,a的取值范围为(-∞,1].★10.已知m∈Z,关于x的一元二次方程x2-2x+m=0, ①x2+2mx+m2-m-1=0, ②求方程①和②的根都是整数的充要条件.分析:方程①和②的根都是整数,即方程①和②有实数根且为整数,因此先求出方程①和②有实数根的充要条件,得到m的取值范围,由m∈Z,再逐一验证.解:方程①有实根⇔Δ=4-4m≥0,即m≤1;方程②有实根⇔Δ=(2m)2-4(m2-m-1)=4m+4≥0,即m≥-1,所以方程①和②同时有实数根⇔-1≤m≤1.因为m∈Z,所以m=-1,0,1.当m=-1时,方程①无整数根;当m=0时,方程①和②都有整数根;当m=1时,方程②无整数根.综上所述,方程①和②的根都是整数的充要条件是m=0.1.3.2命题的四种形式课时过关·能力提升1.命题“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题是()A.在△ABC中,若∠C≠90°,则∠A,∠B都不是锐角B.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角C.在△ABC中,若∠C≠90°,则∠A,∠B必有一钝角ABC中,若∠A,∠B都是锐角,则∠C=90°答案:B2.命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是()A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2D.如果x≥a2+b2,那么x<2ab答案:C3.下列说法正确的是()A.一个命题的否命题为真,则它的逆命题为假B.一个命题的逆命题为真,则它的否命题为真C.一个命题的否命题为真,则它的逆否命题为真D.一个命题的逆否命题为真,则它的逆命题为真解析:由四种命题的关系可知,一个命题的否命题与它的逆命题是互为逆否关系,根据互为逆否命题的两个命题是等价的,可得选项B正确.答案:B4.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数答案:B5.下列命题中,是真命题的为()A.“若关于x的一元二次方程ax2+bx+c=0有实根,则b2-4ac>0”的逆否命题B.“正方形的四条边相等”的逆命题C.“若x2-4=0,则x=2”的否命题D.“对顶角相等”的逆命题解析:对于A项,原命题是假命题,故其逆否命题也为假命题;对于B项,逆命题为“四条边相等的四边形是正方形”,是假命题;对于C项,否命题为“若x2-4≠0,则x≠2”,为真命题;对于D项,逆命题为“相等的角是对顶角”,为假命题.答案:C6.命题“到一个角的两边距离相等的点在该角的平分线上”的否命题是“”.答案:到一个角的两边距离不相等的点不在该角的平分线上7.命题“若x,y是偶数,则x+y是偶数(x∈Z,y∈Z)”的逆否命题是“”,它是命题(填“真”或“假”).答案:若x+y不是偶数,则x,y不都是偶数(x∈Z,y∈Z)真8.有下列四个命题:①如果xy=1,则lg x+lg y=0;②“如果sin α+cos α③“如果b≤0,则关于x的方程x2-2bx+b=0有实数根”的逆否命题;④“如果A∪B=B,则A⊆B”的逆命题.其中是真命题的有(填序号).解析:命题①显然错误,例如,x=-1,y=-1时,lg x+lg y无意义.对于②,其否命题为“如果sin α+cos α≠α不是第一象限角”,因为当α=60°时,sinα+cos α,故其否命题为假命题.对于命题③,因为当b≤0时,Δ=4b2-4b≥0恒成立,故关于x的方程x2-2bx+b=0有实数根,由原命题与其逆否命题等价,知命题③是真命题.对于④,其逆命题为“若A⊆B,则A∪B=B”,显然为真命题.答案:③④9.写出下列命题的逆命题、否命题、逆否命题,并分别判断其真假:(1)末尾数字是0或5的整数,能被5整除;2,则函数y=a x是增函数.分析:依据四种命题的定义分别写出原命题的逆命题、否命题、逆否命题.“0或5”的否定是“不是0且不是5”,“是”的否定词是“不是”,“等于”的否定词是“不等于”.解:(1)逆命题:能被5整除的整数,末尾数字是0或5;(真)否命题:末尾数字不是0且不是5的整数,不能被5整除;(真)逆否命题:不能被5整除的整数,末尾数字不是0且不是5.(真)(2)逆命题:若函数y=a x是增函数,则a=2;(假)否命题:若a≠2,则函数y=a x不是增函数;(假)逆否命题:若函数y=a x不是增函数,则a≠2.(真)2.1曲线与方程课时过关·能力提升1.已知动点A在圆x2+y2=1上移动,则点A与定点B(3,0)连线的中点的轨迹方程是()A.(x+3)2+y2=1B.(x-3)2+y2=1C.(2x-3)2+4y2=13)2+4y2=1解析:设A,B连线的中点的坐标为(x,y),则动点A为(2x-3,2y),因为动点A在圆x2+y2=1上,所以(2x-3)2+(2y)2=1,即(2x-3)2+4y2=1.答案:C2.“点M在曲线y2=8x上”是“点M的坐标满足方程y=-A.充分不必要条件B.必要不充分条件C.充要条件答案:B3.已知曲线y=x2-x+2和y=x+m有两个不同的交点,则()A.m∈RB.m∈(-∞,1)D.m∈(1,+∞)解析:已知条件可转化为联立后的方程组有两个不同的解.答案:D4.下列方程中表示相同曲线的一对方程是()A.xB.y=xC.yD.y=x与x2-y2=0答案:C5.平面内与定点(-1,2)和直线3x+4y-5=0的距离相等的点的轨迹是.解析:因为(-1,2)在直线3x+4y-5=0上,所以满足条件的点的轨迹是过定点(-1,2)且垂直于3x+4y-5=0的直线.答案:直线6.方程(x+y-1解析:由方程(x+y-1x+y-1=0(x≥1)或x=1.答案:直线x=1或直线x+y-1=0(x≥1)7.(1)方程(x-1)2(2)方程(x-1)解析:(1)∵(x-1)2(1,0).(2)∵(x-1)∴x-1=0或x2+y2-1=0,即方程表示的图形是直线x-1=0或圆x2+y2-1=0.答案:(1)点(1,0)(2)直线x-1=0或圆x2+y2-1=0★8.已知动点P在曲线2x2-y=0上移动,求点A(0,-1)与点P连线中点的轨迹方程.解:设AP的中点坐标为(x,y),则P(2x, 2y+1)在2x2-y=0上,即2(2x) 2-(2y+1)=0,整理,得2y=8x2-1.9.点A(3,0)为圆x2+y2=1外一点,P为圆上任意一点,若AP的中点为M,当P在圆上运动时,求点M的轨迹方程.分析:设点M的坐标为(x,y),点P的坐标为(x0,y0),由题意可所.解:由题意设点M(x,y),P(x0,y0),所又因为点P(x0,y0)在圆x2+y2=1上,所以(2x-3)2+4y2=1,所故点M的轨迹方程★10.若直线x+y-m=0被曲线y=x2所截得的线段长为分析:直线与曲线交于两点,可设出这两点的坐标,然后灵活应用根与系数的关系求解.解:设直线x+y-m=0与曲线y=x2相交于A(x1,y1),B(x2,y2)两点,联立直线与曲线方程,将②代入①,得x2+x-m=0,所所以|AB|·|x1-x2|所m的值为2.2.2.1椭圆的标准方程课时过关·能力提升1.椭A.(±5,0)B.( 0,±5)C.(0,±12)D.(±12,0)解析:易知焦点在y轴上,a2=169,b2=144.则c答案:B2.已知椭B.5C.7D.8解析:因为焦点在y轴上,所⇒6<m<10.又焦距为4,所以m-2-10+m m=8.答案:D3.若F1,F2是椭△PF1F2的周长为()A.10B.12C.16D.不确定答案:B4.已知椭圆的焦距为ABCD解析:因为2c=c因为2a=8,所以a=4.所以b2=a2-c2=9.又因为焦点不知在哪个坐标轴上,所以标准方程有两个,故选D.答案:D★5.若椭A.2B.4C.8 D解析:设椭圆的右焦点为F2,则由|MF1|+|MF2|=10,知|MF2|=10-2=8.又因为点O为F1F2的中点,点N为MF1的中点,所以|ON|B.答案:B6.已知M是椭答案:67.已知椭圆的焦距|F1F2|=6,AB是过焦点F1的弦,且△ABF2的周长为20,则该椭圆的标准方程为.答案:8.已知椭圆C解:因为点P(x0,y0)满足0所以点P在椭圆内且不过原点,所以|F1F2|≤|PF1|+|PF2|<2a.又因为a2=2,b2=1,所以c2=a2-b2=1,即c=1.所以2≤|PF1|+|PF2|<9.已知圆A:(x+3)2+y2=1及圆B:(x-3)2+y2=81,动圆P与圆A外切,与圆B内切,求动圆圆心P 的轨迹方程.分析:利用椭圆定义先判断动圆圆心P的轨迹是椭圆,再求其方程.解:设动圆P的半径为r,由所给圆的方程知:A(-3,0),B(3,0).由题意可得,|P A|=r+1,|PB|=9-r,则|P A|+|PB|=10>|AB|=6.由椭圆定义知动点P的轨迹是椭圆.其中2a=10,2c=6,即a=5,c=3,所以b2=16,故动圆圆心P的轨迹方程★10.已知椭∠F1PF2=θ,求△F1PF2的面积.分析:计算三角形的面积有多种公式可供选择,其中与已知条件联系最密切的应·|PF2|·sin θ,所以应围绕|PF1|·|PF2|进行计算.解:如图,由椭圆定义知,|PF1|+|PF2|=2a,而在△F1PF2中,由余弦定理得|PF1|2+|PF2|2-2|PF1|·|PF2|cos θ=|F1F2|2=4c2,∴(|PF1|+|PF2|)2-2|PF1|·|PF2|-2|PF1|·|PF2|cos θ=4c2,即4(a2-c2)=2|PF1|·|PF2|(1+cos θ).∴|PF1||PF2|·|PF2|sin θ2.2.2椭圆的几何性质课时过关·能力提升1.如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为()AC答案:B2.已知焦点在x轴上的椭圆的离心率AC解析:由x2+y2-2x-15=0,知圆的半径为4,故2a=4,即a=2.又e c=1.故b2=a2-c2=4-1=3.故选A.答案:A3.已知过椭∠F1PF2=60°,则椭圆的离心率为()AC解析:在Rt△PF1F2中,设|PF1|=m(m>0),由已知得|F1F2|e答案:C4.若方A.a<0B.-1<a<0C.a<1D.a>1解析:因为方y轴上的椭圆,所⇒-1<a<0.答案:B★5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()AC解析:设椭圆的长半轴长为a,短半轴长为b,焦距为2c,离心率为e.依题意有2×2b=2a+2c,即2b=a+c,∴4b2=a2+2ac+c2.∵b2=a2-c2,∴4a2-4c2=a2+2ac+c2,∴3a2-2ac-5c2=0.两边同除以a2,即有5e2+2e-3=0,解得e e=-1(舍去).故选B.答案:B6.若椭解析:当椭圆的焦点在x轴上,即k>1时,b=3,a∴ck=4.符合k>1,∴k=4;当椭圆的焦点在y轴上,即-8<k<1时,a=3,b∴ck=-8<k<1,∴k=k=4答案:4或7.椭△F AB的周长最大时,△F AB的面积是.解析:设椭圆的右焦点为F1,则|AF|=2a-|AF1|=4-|AF1|,所以△AFB的周长为2|AF|+2|AH|=2(4-|AF1|+|AH|).因为△AF1H为直角三角形,所以|AF1|>|AH|,仅当F1与H重合时,|AF1|=|AH|,所以当m=1时,△AFB的周长最大,此时S△F AB答案:38.已知直线x+2y-2=0经过椭解析:由题意知椭圆的焦点在x轴上,又直线x+2y-2=0与x轴、y轴的交点分别为(2,0),(0,1),它们分别是椭圆的焦点和顶点,所以b=1,c=2,从而a e答案:9.已知椭分析:由椭圆的离心率可得a,c的关系,从而知道b,c的关系,再由点在椭圆上,代入方程即可求得椭圆的标准方程.解:由题意知,椭圆的离心率e所a=2c,所以b2=a2-c2=3c2,所以椭圆的方程又因为,所所以c2=1,所以椭圆的方程★10.已知椭分析:由离心率e a2=b2+c2,可得a=2b.由菱形面积为4,可得ab=2.两式联立可求得a,b,从而得到椭圆的方程.解:由e3a2=4c2.再由c2=a2-b2,解得a=2b.由题意可ab=2.解方程所以椭圆的方程2.3.1双曲线的标准方程课时过关·能力提升1.若双曲线的方程A.(±2,0)B.(±4,0)C.(0,±2)D.(0,±4)解析:因为c2=a2+b2=10+6=16,焦点在x轴上,所以焦点坐标为(4,0),(-4,0).答案:B2.若方A.-1<k<1B.k>0C.k≤0D.k>1或k<-1解析:因为方,所以有(1+k)(1-k)>0,解得-1<k<1.答案:A3.若椭A. 1B.1或3C.1或3或-2D.3解析:由题意可知m>0,于是焦点都在x轴上,故m=1.答案:A4.已知方程ax2-ay2=b,且ab<0,则它表示的曲线是()A.焦点在x轴上的双曲线B.圆C.焦点在y轴上的双曲线D.椭圆解析:原方程可变形y轴上的双曲线.答案:C★5.与双曲AC.解析:由题意知,c2=16+4=20,设所求的双曲线方程a2+b2=20,a2=12,b2=8.所以双曲线的标准方程答案:D6.已知圆C:x2+y2-6x-4y+8=0,以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.解析:令x=0,得y2-4y+8=0,方程无解,即该圆与y轴无交点.令y=0,得x2-6x+8=0,解得x=2或x=4,所以a=2,c=4,b2=c2-a2=16-4=12,且焦点在x轴上.故双曲线的标准方程答案:7.已知F是双曲解析:设右焦点为F1,依题意,有|PF|=|PF1|+4,∴|PF|+|P A|=|PF1|+4+|P A|=|PF1|+|P A|+4≥|AF1|+4=5+4=9,当A,P,F1三点共线时取等号.答案:9★8.已知双曲∠F1PF2△F1PF2的面积是.解析:不妨设P为双曲线左支上的点,F1为左焦点,|PF1|=r1,|PF2|=r2,②-①2,得r1r2=2.所答案:19.已知双曲线的焦点为F1(0,-6),F2(0,6),且经过点(2,-5),求该双曲线的标准方程.分析:由焦点坐标可知,焦点在y轴上,可设方程c=6,再把点代入即可求得.解:设所求的双曲线方程故所求的双曲线的标准方程,且双曲线经过M(1,1),N(-2,5)两点,求双曲线的标准方程.分析:此题由于不知道焦点在哪个坐标轴上,所以应先分两种情况来讨论,再把两点代入.此题还可以先设双曲线的方程为Ax2+By2=1(AB<0),再把两点代入求解.解法一当焦点在x轴上时,设所求的双曲线的标准方程M(1,1),N(-2,5)两点在双曲线上,所解得当焦点在y轴上时,设双曲线的标准方程同理,解得.故所求的双曲线的标准方程解法二设所求的双曲线的标准方程为Ax2+By2=1(AB<0).因为M(1,1),N(-2,5)两点在双曲线上,代入上述方程解得故所求的双曲线的标准方程2.3.2双曲线的几何性质课时过关·能力提升1.如果双曲线的实轴长、虚轴长、焦距成等差数列,那么它的离心率为()AC.2D.3解析:因为双曲线的实轴长、虚轴长、焦距成等差数列,所以4b=2a+2c,即a+c=2b,再由a2+b2=c2即可求得离心率e答案:B2.已知双曲线的实轴长与虚轴长之和等于其焦距AC解析:由方程得a=2,b=2.因为双曲线的焦点在y轴上,所以双曲线的标准方程答案:B3.过点(2,-2)且A.C.解析:由题意可设双曲线方程∈R,且k≠0),又双曲线过点(2,-2),代入即可求得k,从而求出双曲线方程答案:A4.已知F1,F2是双曲线C的两个焦点,P是双曲线右支上一点,且△F1PF2是等腰直角三角形,则双曲线C的离心率为()A.1C.3解析:因为△F1PF2为等腰直角三角形,又|PF1|≠|PF2|,故必有|F1F2|=|PF2|,即2c c2-2ac-a2=0,即e2-2e-1=0,解:之,得e=1∵e>1,∴e=1答案:A★5.已知双曲线9y2-m2x2=1(m>0)的一个顶点到它的一条渐近线的距离A.1B.2C.3D.4解析:双曲线9y2-m2x2=1(m>0),一个顶点3y-mx=0.由题意m=4.答案:D6.双曲解析:利用公式y=y=答案:y=7.已知双曲解析:因为椭(±4,0),所以双曲线的焦点坐标为(±4,0),即c=4.所以a=2,b2=12,所以双曲线方程所以渐近线方程为y=答案:(±4,0)8.若双曲解析:利用双曲线的定义及离心率公式,可求得k=-31.答案:-319.根据以下条件,分别求出双曲线的标准方程:(1)过点P(3,(2)焦点在x轴上,F1,F2是双曲线的左、右焦点,P是双曲线上的一点,∠F1PF2=60°解:(1)若双曲线的焦点在x轴上,.由e由点P(3,,又a2+b2=c2, ③由①②③,得a2=1,b2所求双曲线方程为x2若双曲线的焦点在y轴上,.同理解之,得b2=).故所求双曲线的标准方程为x2(2)设双曲线的标准方程为因为|F1F2|=2c,而e由双曲线的定义,得||PF1|-|PF2||=2a=c.由余弦定理,得(2c)2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos∠F1PF2=(|PF1|-|PF2|)2+2|PF1|·|PF2|·(1-cos 60°),所以4c2=c2+|PF1|·|PF2|.又因·|PF2|·sin 60°=1所以|PF1|·|PF2|=48.所以3c2=48,即c2=16,由此得a2=4,b2=12.故所求双曲线的标准方程★10.如图所示,已知F1,F2为双曲∠PF1F2=30°.求双曲线的渐近线方程.分析:由于双曲y=,可以通过已知解Rt△F1F2P求得.解法一设F2(c,0)(c>0),把P(c,y0)代入方程得y0=∴|PF2|Rt△F1F2P中,∠PF1F2=30°,∴|F1F2|2c∵c2=a2+b2,∴b2=2a2.y=解法二∵在Rt△PF1F2中,∠PF1F2=30°,∴|PF1|=2|PF2|.由双曲线的定义知|PF1|-|PF2|=2a,∴|PF2|=2a.∴|F1F2|∴2c=c2=3a2=a2+b2.∴2a2=b2.故所求双曲线的渐近线方程为y=2.4.1抛物线的标准方程课时过关·能力提升1.抛物线y2=12x的焦点坐标是()A.(12,0)B.(6,0)C.(3,0)D.(0,3)答案:C2.经过点(2,-3)且焦点在x轴正半轴上的抛物线的标准方程是()A.y2C.y2=答案:B3.抛物线y2A.xC.x=答案:D4.已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且该圆与直线3x+4y+2=0相切,则该圆的方程为()A.(x-1)2+y2B.x2+(y-1)2C.(x-1)2+y2=12y-1)2=1答案:C★5.已知点P是抛物线y2=16x上的点,它到焦点的距离h=10,则它到y轴的距离d等于() A.3 B.6C.9D. 12解析:设点P到抛物线y2=16x的准线的距离为l.由抛物线y2=16x由抛物线定义知l=h,又l=d d=l答案:B6.抛物线x=2y2的焦点坐标是.答案:7.动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为.答案:y2=8x8.抛物线x-4y2=0的准线方程是.答案:x=9.若抛物线y2=2px(p>0)上有一点M,其横坐标为9,它到焦点的距离为10,求抛物线方程和点M 的坐标.解:由抛物线定义知,焦点x=由题意,设点M到准线的距离为d,则d=|MF|=10,即9p=2.故抛物线方程为y2=4x.将M(9,y)代入y2=4x,解得y=±6,则点M的坐标为(9,6)或(9,-6).★10.已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A,B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过定点Q(6,0),求抛物线的方程.解:设抛物线的方程为y2=2px(p>0),则其准线为x=设A(x1,y1),B(x2,y2),因为|AF|+|BF|=8,所以x1x1+x2=8-p.因为Q(6,0)在线段AB的垂直平分线上,所以|QA|=|QB|,因所以(x1-x2)(x1+x2-12+2p)=0.因为AB与x轴不垂直,所以x1≠x2,则x1+x2-12+2p=8-p-12+2p=0,即p=4.故抛物线方程为y2=8x.2.4.2抛物线的几何性质课时过关·能力提升1.抛物线y=4x2的准线方程为()A.y=C.y解析:由题意知x2p y=答案:D2.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()A.C.4D.解析:由抛物线的定义,p=2,即抛物线方程为y2=4x.因为点M(2,y0)在抛物线上,所以y0=±|OM|答案:B3.如果点M (5,3)到抛物线y=ax2(a≠0)的准线的距离为6,那么抛物线的方程是()A.y=12x2B.y=-36x2C.y=12x2或y=-36x2D.y解析:分a>0,a<0两种情况,可得y y=答案:D★4.已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为()A解析:圆x2+y2-6x-7=0的圆心坐标为(3,0),半径为4.y2=2px(p>0)的准线方程为x=∴3∴p=2.故选C.答案:C5.焦点在x轴的负半轴上,并且过点(-4,2)的抛物线的标准方程为.解析:设所求抛物线的标准方程为y2=-2px(p>0).因为抛物线过点(-4,2),所以22=-2p×(-4),即p故所求抛物线的标准方程为y2=-x.答案:y2=-x6.若抛物线y2=4x上一点到焦点的距离为5,则这点的坐标为.答案:(4,4)或(4,-4)7.设抛物线y2=2px(p>0)的焦点为F,已知点A(0,2).若线段F A的中点B在抛物线上,则点B到该抛物线准线的距离为.解析:由已知,∴2p p∴因此点B到该抛物线的准线的距离答案:8.已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点F的距离等于5,求抛物线的方程和m的值.分析:由题意可先设抛物线方程为y2=-2px(p>0),再求解.解:设抛物线方程为y2=-2px(p>0),则焦由题意可解得故所求的抛物线方程为y2=-8x,m的值为±★9.已知点A(2,1)和抛物线y2=x,F为抛物线的焦点,P是抛物线上任意一点.求:(1(2)点P到直线x+2y+4=0的距离的最小值.分析:利用抛物线的定义及平面几何知识求解.解: (1)设点P到准线x=d,则|AP|+|PF|=|AP|+d,当P A垂直于准线时,|P A|+d最小,最小值(2)设点P的坐标为(t2,t),则点P到直线x+2y+4=0的距离故当t=-1时,点P到直线x+2y+4=0的距离最小,最小值2.5直线与圆锥曲线课时过关·能力提升1.若椭A.2B.-2 C解析:设弦两端点A(x1,y1),B(x2,y2),则x1+x2=8,y1+y2=4,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年编·人教版高中数学
第1章 1.1.1
一、选择题(每小题5分,共20分)
1.下列语句中命题的个数是( )
①-5∈Z;②π不是实数;③大边所对的角大于小边所对的角;④2是无理数.
A.1 B.2
C.3 D.4
解析:①②③④都是命题.
答案: D
2.下列说法正确的是( )
A.命题“直角相等”的条件和结论分别是“直角”和“相等”
B.语句“最高气温30 ℃时我就开空调”不是命题
C.命题“对角线互相垂直的四边形是菱形”是真命题
D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题
解析:对于A,改写成“若p,则q”的形式应为“若有两个角是直角,则这两个角相等”;B所给语句是命题;C的反例可以是“用边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形不是菱形”来说明.故选D.
答案: D
3.下列语句中假命题的个数是( )
①3是15的约数;②15能被5整除吗?③{x|x是正方形}是{x|x是平行四边形}的子集吗?④3小于2;⑤矩形的对角线相等;⑥9的平方根是3或-3;⑦2不是质数;⑧2既是自然数,也是偶数.
A.2 B.3
C.4 D.5
解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.
答案: A
4.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.
其中为真命题的是( )
A.①②B.①③
C .③④
D .②④
解析: 显然①是正确的,结论选项可以排除C ,D ,然后在剩余的②③中选一个来判断,即可得出结果,①③为真命题.故选B.
答案: B
二、填空题(每小题5分,共10分)
5.给出下列命题:
①在△ABC 中,若∠A >∠B ,则sin A >sin B ;
②函数y =x 3
在R 上既是奇函数又是增函数;
③函数y =f (x )的图象与直线x =a 至多有一个交点;
④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ⎝
⎛⎭⎪⎫2x +π4的图象. 其中正确命题的序号是________.
解析: ①∠A >∠B ⇒a >b ⇒sin A >sin B .②③易知正确.
④将函数y =sin 2x 的图象向左平移π4
个单位, 得到函数y =sin ⎝
⎛⎭⎪⎫2x +π2的图象. 答案: ①②③
6.命题“一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.
答案: 一元二次方程ax 2+bx +c =0(a ≠0) 此方程有两个不相等的实数根 假
三、解答题(每小题10分,共20分)
7.指出下列命题的条件p 和结论q :
(1)若x +y 是有理数,则x ,y 都是有理数;
(2)如果一个函数的图象是一条直线,那么这个函数为一次函数.
解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.
(2)条件p :一个函数的图象是一条直线,结论q :这个函数为一次函数.
8.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.
解析: 命题p 是真命题,则x 2-2x -2≥1,
∴x ≥3或x ≤-1,
命题q 是假命题,则x ≤0或x ≥4.
∴x ≥4或x ≤-1. 尖子生题库☆☆☆
9.(10分)(1)已知下列命题是真命题,求a 、b 满足的条件.
方程ax 2+bx +1=0有解.
(2)已知下列命题是假命题,若x 1<x 2<0,则a x 1>a x 2,求a 满足的条件. 解析: (1)∵ax 2+bx +1=0有解.
∴当a =0时,bx +1=0有解,只有b ≠0时,
方程有解x =-1b
. 当a ≠0时,方程为一元二次方程,有解的条件为
Δ=b 2-4a ≥0.
综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,方程ax 2+bx +1=0有解.
(2)∵命题当x 1<x 2<0时,a x 1>a x 2为假命题,
∴应有当x 1<x 2<0时,a x 1≤a x 2.
即a x 2-x 1x 1x 2
≤0. ∵x 1<x 2<0,
∴x 2-x 1>0,x 1x 2>0,
∴a ≤0.。