盖梁抱箍法施工设计计算书
盖梁抱箍法施工计算书
盖梁抱箍法施工计算书 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】目录抱箍法施工计算书1、计算依据《路桥施工计算手册》《辽宁省标准化施工指南》《辽宁中部环线高速公路铁岭至本溪段第四合同段设计图》及相关文件2、专项工程概况盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁长度为,根据模板拼缝位置按照间距布置,共需27根;横梁底部采用2根I45C工字钢作为纵梁,纵梁长度为15m;抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。
下面以体积最大的浑河大桥8#右幅盖梁为例进行抱箍相关受力计算。
浑河大桥8#墩柱直径为2m,柱中心间距,盖梁尺寸为××, C40砼,盖梁两端挡块长度为×(上口,下口)×,C40砼。
图1 抱箍法施工示意图3、横梁计算荷载计算盖梁钢筋砼自重:G1=×26KN/m3=挡块钢筋砼自重:G2=×26KN/m3=模板自重:G3=98KN施工人员:G4=2KN/m2××=施工动荷载:G5=2KN/m××=,倾倒砼时产生的冲击荷载和振捣砼时产生的荷载均按2KN/㎡考虑。
横梁自重G6=××27=横梁上跨中部分荷载:G7=G1+G2+G3+G4+G5+G6=++98+×2+=每根横梁上所受荷载:q1= G7/15=27=作用在每根横梁上的均布荷载:q2= q1/==m两端悬臂部分只承受施工人员荷载,可以忽略不计。
力学模型图2 力学模型分配梁抗弯与挠度计算由分析可知,横梁跨中弯矩最大,计算如下:Mmax=q2l2/8- q2l12/2=××2=·m图3 分配梁弯矩示意图Q235 I14工字钢参数:弹性模量E=×105Mpa,截面惯性矩I=712cm4,截面抵抗矩W=①抗弯计算σ= Mmax/W= ×103=<[σ]=170Mpa结论:强度满足施工要求。
盖梁钢抱箍计算计算书
盖梁钢抱箍计算书计算依据:1、《建筑施工模板安全技术规范》JGJ162-20082、《混凝土结构设计规范》GB50010-20103、《建筑结构荷载规范》GB 50009-20124、《钢结构设计标准》GB 50017-2017一、荷载组合S1=1.2(G 1k + G 2k + G 3k )+1.4(Q 1k + Q 2k )=1.2×(1200+50+18.4)+1.4×(20+16)=1572.48kN S2=1.35(G 1k +G 2k +G 3k )+0.7×1.4(Q1k +Q 2k )=1.35×(1200+50+18.4)+0.7×1.4×(20+16)=1747.62kN取较大值,即荷载设计值S =Max[S1,S2]=Max[1572.48,1747.62]=1747.62kN二、墩柱参数示意图三、钢带验算钢抱箍形式单抱箍钢带宽度B(mm) 800 钢带厚度t(mm) 12 两半抱箍接头间隙d(mm) 30钢带和墩柱间的摩擦系数μ0.3 钢带抗拉、压、弯强度设计值f (N/mm2) 215 钢带弹性模量E(N/mm2) 206000 螺栓个数n 20螺栓强度等级高8.8级螺栓抗拉强度设计值f t b(N/mm2) 170 螺栓直径(mm) M22 螺栓有效截面积Ae(mm2) 303.4σ1=S/(μπBD)=1747620/(0.3×3.14×800×1500)=1.546N/mm2≤[σ]=14N/mm2满足要求。
2、钢带内应力σ2=σ1D/(2t)=1.546×1500/(2×12)=96.625 N/mm2≤f=215N/mm2满足要求。
3、钢带下料长度L(半个)ΔL=πDσ2/(2E)=3.14×1500×96.625/(2×206000)=1.105mm钢带下料长度L(半个)=πD/2-ΔL-d=3.14×1500/2-1.105-30=2323.895mm4、螺栓强度验算钢带所受拉力P=Btσ2=800×12×96.625=927600N=927.6kN螺栓设计拉力N t=nA e f t b=20×303.4×170=1031560N=1031.56kNN t≥P满足要求。
盖梁抱箍计算书
盖梁抱箍计算书惠大疏港高速公路A09合同段抱箍计算书1、盖梁支撑体系设计计算及施工方法1.1、计算依据⑴惠大高速A09合同段施工图设计⑵公路桥涵施工技术规范⑶实用新编五金手册⑷装配式公路钢桥使用手册1.2、计算内容圆柱墩盖梁施工的抱箍计算2、施工方法简介圆柱墩盖梁:采用抱箍法施工,每根柱子使用两个抱箍,两抱箍之间用铁楔子固定做拆模使用。
抱箍为A3钢制作,厚度为0.02米,高度0.3米,每个抱箍由两个半环组成,每个连接处使用4根M22高强螺栓。
抱箍两侧耳上横桥向设各设1排贝雷片,贝雷片上每隔60cm 设一根长4m的18#工字钢作钢模板支承小棱。
3、设计计算原则(1)在满足结构受力情况下考虑挠度变形控制。
(2)综合考虑结构的安全性。
(3)采取比较符合实际的力学模型。
(4)尽量采用已有的构件和已经使用过的支撑方法。
4、本计算结果适用于D1.3m立柱上的盖梁施工。
5、本计算未扣除墩柱承担的盖梁砼重量。
以做安全储备。
6、抱箍加工完成实施前,必须先进行现场预压,变形满足要求后方可使用。
横梁计算采用间距0.6m的18型工字钢作横梁,横梁长4m,共布设横梁30个。
1、荷载计算=36.75m3×25kN/m3=920kN(1)盖梁砼自重:G1=100kN (根据厂家供货重量)(2)模板自重:G2=20kN(5)施工荷载与其它荷载:G3横梁上的总荷载:G H =G 1+G 2+G 3=920+100+20=1040kN q H =1040/17.27=60.22kN/m横梁采用0.6m 的18型工钢,则作用在单根横梁上的荷载:G H ’=60.22×0.6=36.13kN作用在横梁上的均布荷载为:q H ’= G H ’/l H =36.13/1.6=22.6kN/m(式中:l H 为横梁受荷段长度,为1.6m)2、力学模型如图1所示。
R A R B横梁,工16,EIq H =22.6 K N /m图1 横梁计算模型3、横梁抗弯与挠度验算横梁的弹性模量E=2.1×105MPa;惯性矩I=1669cm 4;抗弯模量Wx=185.4cm 3最大弯矩:M max = q H ’l H 2/8=22.6×1.62/8=7.232 kN ·m σ= M max /W x =7.232/(185.4×10-6)≈39MPa<[σw ]=140MPa (可)最大挠度: f max = 5 q H ’l H4/384×EI=5×22.6×1.64/(384×1.6×108×1669×10-8)=0.0007 m<[f]=l 0/400=2.1/400=0.00525 m (满足要求) 抱箍计算(一)抱箍承载力计算1、荷载计算每个盖梁按墩柱设2个抱箍体支承上部荷载,贝雷梁自重:G4=0.3×7×2=42kN (采用2排3m×1.5m贝雷片)抱箍上的总荷载:GB =G1+G2+G3+G4=920+100+20+42=1082kN支座反力RA =RB= RC=ql/3=361 kN以最大值为抱箍体需承受的竖向压力N进行计算,该值即为抱箍体需产生的摩擦力。
盖梁抱箍法施工计算书
目录1、计算依据 ................................................. 错误!未指定书签。
2、专项工程概况.............................................. 错误!未指定书签。
3、横梁计算 ................................................. 错误!未指定书签。
3.1荷载计算........................................... 错误!未指定书签。
3.2力学模型........................................... 错误!未指定书签。
3.3横梁抗弯与挠度计算................................. 错误!未指定书签。
4、纵梁计算 ................................................. 错误!未指定书签。
4.1荷载计算........................................... 错误!未指定书签。
4.2力学计算模型....................................... 错误!未指定书签。
5、抱箍计算 ................................................. 错误!未指定书签。
5.1荷载计算........................................... 错误!未指定书签。
5.2抱箍所受正压分布力Q计算 ........................... 错误!未指定书签。
5.3两抱箍片连接力P计算............................... 错误!未指定书签。
5.4抱箍螺栓数目的确定................................. 错误!未指定书签。
盖梁抱箍法施工计算书
目录1、计算依据12、专项工程简况13、横梁计算1 3.1荷载计算13.2力学模型23.3横梁抗弯与挠度计算24、纵梁计算3 4.1荷载计算34.2力学计算模型35、抱箍计算4 5.1荷载计算45.2抱箍所受正压分布力Q计算45.3两抱箍片连接力P计算55.4抱箍螺栓数目的确定65.5紧螺栓的扳手力P B计算65.6抱箍钢板的厚度7抱箍法施工计算书1、计算依据《路桥施工计算手册》《辽宁省标准化施工指南》《辽宁中部环线高速公路铁岭至本溪段第四合同段设计图》及相关文件2、专项工程简况盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度2.5m;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁长度为4.5m,根据模板拼缝位置按照间距0.25m布置,共需27根;横梁底部采用2根I45C工字钢作为纵梁,纵梁长度为15m;抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。
下面以体积最大的浑河大桥8#右幅盖梁为例进行抱箍相关受力计算。
浑河大桥8#墩柱直径为2m,柱中心间距6.7m,盖梁尺寸为12.298×2.2×2.1m,C40砼54.58m³,盖梁两端挡块长度为2.2×(上口0.3m,下口0.4m)×0.6m,C40砼1.06m³。
I14工字钢横梁10cm厚底模间距0.5mI45C工字钢纵梁千斤顶抱箍图1 抱箍法施工示意图3、横梁计算3.1荷载计算盖梁钢筋砼自重:G1=54.48×26KN/m³=1416.5KN挡块钢筋砼自重:G2=1.06×26KN/m³=27.6KN模板自重:G3=98KN施工人员:G4=2KN/m2×12.298m×2.2m=54.1KN施工动荷载:G5=2KN/m×12.298m×2.2m=54.1KN,倾倒砼时产生的冲击荷载和振捣砼时产生的荷载均按2KN/㎡考虑。
盖梁抱箍法施工设计受力计算(正式16mm钢带) (2)
盖梁抱箍法施工受力计算书第一部分盖梁抱箍法施工设计图一、施工设计说明1、概况武胜嘉陵江特大桥引桥长488m,共有16个桥墩,除16#交界墩为空心薄壁墩外均为为双柱式(单幅),墩柱上方为盖梁,中间设置系梁。
盖梁为长14.55m,宽2.0m,高1.8m的钢筋砼结构,如图1。
图1 盖梁正面图(单位:cm)2、设计依据(1)汪国荣、朱国梁编著施工计算手册(2)路桥施工计算手册人民交通出版社(3)盖梁模板提供厂家提供的模板有关数据。
(4)规范和标准。
二、盖梁抱箍法结构设计1、支架设置支架支撑设计为抱箍,采用两块半圆弧型钢板(板厚t=12mm)制成, M24的高强螺栓连接,抱箍高50cm,采用30颗8.8级M24高强螺栓连接。
抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。
为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层8mm厚的高强橡胶垫,纵梁与抱箍之间采用U型螺栓连接。
抱箍上放置I56b主梁,主梁上设置间距50cm 2[14槽钢做分配梁,其上放置底模。
2、模板及支撑模板采用“墙包底”模式,模板为特制大钢模,面模厚度为δ6mm,小楞采用间距30cm的[10槽钢,肋板高为10cm。
侧模高190.6cm,在肋板外设2组2[16水平背枋,背枋中距125cm,上背枋距模板顶中距40cm,下背枋距模板底中距25.6cm。
水平背枋外侧设置间距150cm2[16组合槽钢背楞,其上下端设置φ25mm精轧螺纹钢拉杆,上下拉杆间距200cm。
为确保模板的稳固,在模板竖带外设φ48的钢管斜撑,支撑在底板分配梁上。
底模与墩柱相交部位采用特制型钢支架。
5、防护栏杆与与工作平台工作平台采用在地面用L75×5mm角钢、架管及钢丝网(侧面防护)、钢板网(底部)加工成的L型骨架平台,分节段吊装至盖梁分配梁上拼装而成。
型加工成型宽80cm、高120设在分配梁悬出端。
平台截面图下图:(标准阶段长6m)图2 盖梁施工平台断面图第二部分盖梁抱箍法施工受力计算一、设计检算说明1、设计计算原则(1)在满足结构受力情况下考虑挠度变形控制。
盖梁抱箍计算书
盖梁抱箍计算书1.1抱箍材料采用两块半圆弧型钢板(板厚t=10mm)制成,M24的高强螺栓连接,抱箍高50cm,采用16个高强螺栓连接。
抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。
为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层0.5cm厚的橡胶皮。
1.2荷载计算每个盖梁按墩柱设三个抱箍体支承上部荷载,取28#右幅最大方量(64.5m3)的盖梁验算。
盖梁砼自重:G1=64.5×26=1677kN盖梁模板自重:G2=72KN钢管外撑自重:G3=2.77×4.65*12=0.154kN横梁工字钢:双40b,长度26米,G4=21kN施工荷载与其它荷载:G5=20kN横梁上的总荷载:GH=G1+G2+G3+G4+G5=1790.15kN支座反力R A=R B=1790.15/3=596.71kN以最大值为抱箍体需承受的竖向压力N进行计算,该值即为抱箍体需产生的摩擦力。
1.3抱箍受力计算1.3.1螺栓数目计算抱箍体需承受的竖向压力N=596.71kN抱箍所受的竖向压力由M24的高强螺栓的抗剪力产生,查《路桥施工计算手册》第426页:M24螺栓的允许承载力:[NL]=Pμn/K式中:P---高强螺栓的预拉力,取200kN;μ---摩擦系数,取0.35;n---传力接触面数目,取1;K---安全系数,取1.7。
则:[NL]= 200×0.35×1/1.7=41.18kN螺栓数目m计算:m=N’/[NL]=596.71/41.18=14.5≈15个,取计算截面上的螺栓数目m=16个。
则每条高强螺栓提供的抗剪力:P′=N/8=596.71/16=37.3KN<[NL]=41.18kN故能承担所要求的荷载。
1.3.2螺栓轴向受拉计算砼与钢之间设一层橡胶皮,查摩擦系数表:按橡胶皮与砼之间的摩擦系数取μ=0.6,橡胶皮与钢的的摩擦系数取μ=0.6,综合摩阻系数按0.45计算。
盖梁抱箍法施工计算书
盖梁抱箍法施工计算书Last revision on 21 December 2020目录抱箍法施工计算书1、计算依据《路桥施工计算手册》《辽宁省标准化施工指南》《辽宁中部环线高速公路铁岭至本溪段第四合同段设计图》及相关文件2、专项工程概况盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁长度为,根据模板拼缝位置按照间距布置,共需27根;横梁底部采用2根I45C工字钢作为纵梁,纵梁长度为15m;抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。
下面以体积最大的浑河大桥8#右幅盖梁为例进行抱箍相关受力计算。
浑河大桥8#墩柱直径为2m,柱中心间距,盖梁尺寸为××, C40砼,盖梁两端挡块长度为×(上口,下口)×,C40砼。
图1 抱箍法施工示意图3、横梁计算荷载计算盖梁钢筋砼自重:G1=×26KN/m3=挡块钢筋砼自重:G2=×26KN/m3=模板自重:G3=98KN施工人员:G4=2KN/m2××=施工动荷载:G5=2KN/m××=,倾倒砼时产生的冲击荷载和振捣砼时产生的荷载均按2KN/㎡考虑。
横梁自重G6=××27=横梁上跨中部分荷载:G7=G1+G2+G3+G4+G5+G6=++98+×2+=每根横梁上所受荷载:q1= G7/15=27=作用在每根横梁上的均布荷载:q2= q1/==m两端悬臂部分只承受施工人员荷载,可以忽略不计。
力学模型图2 力学模型分配梁抗弯与挠度计算由分析可知,横梁跨中弯矩最大,计算如下:Mmax=q2l2/8- q2l12/2=××2=·m图3 分配梁弯矩示意图Q235 I14工字钢参数:弹性模量E=×105Mpa,截面惯性矩I=712cm4,截面抵抗矩W=①抗弯计算σ= Mmax/W= ×103=<[σ]=170Mpa结论:强度满足施工要求。
盖梁抱箍法施工计算书
目录1、计算依据 (1)2、专项工程概况 (1)3、横梁计算 (1)3.1荷载计算 (1)3.2力学模型 (2)3.3横梁抗弯与挠度计算 (2)4、纵梁计算 (3)4.1荷载计算 (3)4.2力学计算模型 (3)5、抱箍计算 (4)5.1荷载计算 (4)5.2抱箍所受正压分布力Q计算 (4)5.3两抱箍片连接力P计算 (5)5.4抱箍螺栓数目的确定 (6)5.5紧螺栓的扳手力P B计算 (7)5.6抱箍钢板的厚度 (7)抱箍法施工计算书1、计算依据《路桥施工计算手册》《省标准化施工指南》《中部环线高速公路至段第四合同段设计图》及相关文件2、专项工程概况盖梁施工采用抱箍法,抱箍采用2块半圆弧形钢板制作,使用M24的高强螺栓连接,底模厚度10cm,每块长度2.5m;充分利用现场已有材料,下部采用I14工字钢作为横梁,横梁长度为4.5m,根据模板拼缝位置按照间距0.25m布置,共需27根;横梁底部采用2根I45C工字钢作为纵梁,纵梁长度为15m;抱箍与墩柱接触部位夹垫2~3mm橡胶垫,防止夹伤墩柱砼;纵横梁梁两端绑扎钢管,安装防落网。
下面以体积最大的浑河大桥8#右幅盖梁为例进行抱箍相关受力计算。
浑河大桥8#墩柱直径为2m,柱中心间距6.7m,盖梁尺寸为12.298×2.2×2.1m,C40砼54.58m³,盖梁两端挡块长度为2.2×(上口0.3m,下口0.4m)×0.6m,C40砼1.06m³。
I14工字钢横梁10cm厚底模间距0.5mI45C工字钢纵梁千斤顶抱箍图1 抱箍法施工示意图3、横梁计算3.1荷载计算盖梁钢筋砼自重:G1=54.48×26KN/m³=1416.5KN挡块钢筋砼自重:G2=1.06×26KN/m³=27.6KN模板自重:G3=98KN施工人员:G4=2KN/m2×12.298m×2.2m=54.1KN施工动荷载:G5=2KN/m×12.298m×2.2m=54.1KN,倾倒砼时产生的冲击荷载和振捣砼时产生的荷载均按2KN/㎡考虑。
盖梁抱箍法施工计算书
盖梁抱箍法施工设计及计算第一部分盖梁抱箍法施工设计一、施工设计说明1、工程概况本工程主要分部分项工程包括桩基础、承台(系梁)、立柱、墩盖梁(台帽)、预制小箱梁安装、整体化层及附属工程等。
桥墩采用双柱式及三柱式墩。
本次计算只选择下安立交PY6桥墩盖梁,其为本桥跨度最大的盖梁,墩柱中心距离为8.1595m,盖梁长度22.219m,宽1.8m,高1.6m ,悬臂长度2.95m,墩柱直径1.3m,砼浇筑方量为62.9m3。
2、设计依据(1)交通部行业标准,公路桥涵钢结构及木结构设计规范(JTJ025-86)(2)汪国荣、朱国梁编著施工计算手册(3)公路施工手册,桥涵(上、下册)(4)路桥施工计算手册人民交通出版社(5)盖梁模板提供厂家提供的模板有关数据。
(6)施工图设计文件。
(7)我单位的桥梁施工经验。
二、盖梁抱箍法结构设计1、侧模与端模支撑侧模为特制大钢模,面模厚度为δ6mm,肋板高为8cm,在肋板外设[14背带。
在侧模外侧采用间距0.75m的[14作竖带,竖带高2m;在竖带上下各设一条φ18的栓杆作拉杆,上下拉杆间间距1.8m。
2、底模支撑底模为特制大钢模,面模厚度为δ6mm,肋板高为8cm。
在底模下部采用间距0.3m[8型钢作横梁,横梁长1.8m。
盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。
横梁底下设纵梁。
横梁上设钢垫块以调整盖梁底的横向坡度与安装误差。
与墩柱相交部位采用特制型钢支架作支撑。
3、纵梁在横梁底部采用两根贝雷片连接形成纵梁,长24m,纵梁在墩柱外侧采用[10型槽钢使纵梁形成整体,增加稳定性。
贝雷片之间采用销连接。
纵、横梁以及纵梁与联接梁之间采用U型螺栓连接;纵梁下为抱箍和千斤顶。
4、千斤顶和抱箍为方便施工,抱箍与纵梁之间采用6个50T的螺旋千斤顶。
采用两块半圆弧型钢板(板厚t=16mm)制成, M24的高强螺栓连接,抱箍高60cm,采用20根高强螺栓连接。
抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。
盖梁抱箍法计算书
附件6 抱箍法计算书二道窝铺大桥最大的盖梁为C30钢筋砼,总方量为36.03m³,砼容重取25KN/m³。
采用两根50a工字钢作为纵梁,间距1.6~2m,纵梁长12m,纵梁上布置14工字钢作为横梁,横梁长4m,间距为40cm,共31根。
抱箍采用两块半圆形钢板制作,钢板厚12mm,高66cm,抱箍牛腿钢板厚20mm,宽35cm,采用30根M24的高强螺栓连接,为提高墩柱与抱箍之间的摩擦力,保护墩柱混凝土面,墩柱与抱箍之间设置3mm厚的橡胶垫。
布置结构如图所示:1、荷载大小⑴施工人员、机具、材料荷载取值:P1=2.5KN/㎡⑵混凝土冲击及振捣混凝土时产生的荷载取值:P2=2.5KN/㎡⑶盖梁钢筋混凝土自重荷载:①变截面处:P31=30.625KN/㎡②均截面处:P32=40KN/㎡⑷模板支架自重荷载取值:P4=1.5KN/㎡2、I14工字钢受力检算14工字钢的弹性模量E=2.1×105MPa,惯性矩I=712cm4,截面系数W=102 cm3,理论重量m=16.89kg/m,Q235钢的抗剪强度f v取85 MPa,抗弯强度f m取145MPa,则以单根横梁为例进行验算。
⑴荷载计算①施工人员、机具、材料荷载:q1=P1l=2.5×0.4=1KN/m②混凝土冲击及振捣混凝土时产生的荷载:q2=P2l=2.5×0.4=1KN/m③盖梁钢筋混凝土自重荷载:q31=P31l=30.626×0.4=12.25KN/m;q32=P32l=40×0.4=16KN/m④模板、支架及横梁自重荷载q4=P4l+ g k=1.5×0.4+0.17=0.77KN/m考虑分项系数,其中①②项为1.4,③④项为1.2,则均截面处的荷载为:(1+1)×1.4+(16+0.77)×1.2=22.924 KN/m变截面处的荷载为:(1+1)×1.4+(12.25+0.77)×1.2=18.424KN/m横梁的受力模型为简支结构,则根据弯矩计算公式:M max= ql2/8=22.924×2²/8=11.462KN.m,抗弯强度验算:应力σ= M max /W=11.462 KN.m /(102cm3)=114 MPa<f m=145 MPa,符合要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盖梁抱箍法施工设计计算书一、设计检算说明1、计算原则(1)在满足结构受力情况下考虑挠度变形控制。
(2)综合考虑结构的安全性。
(3)采取比较符合实际的力学模型。
(4)尽量采用已有的构件和已经使用过的支撑方法。
2、贝雷架无相关数据,根据计算得出,无资料可附。
3、对部分结构的不均布,不对称性采用较大的均布荷载。
4、本计算未扣除墩柱承担的盖梁砼重量。
以做安全储备。
5、抱箍加工完成实施前,必须先进行压力试验,变形满足要求后方可使用。
二、侧模支撑计算1、荷载计算(按最大盖梁)砼浇筑时的侧压力:P m =K 丫h式中:K---外加剂影响系数,取 1.2 ;Y--砼容重,取26kN/m 3; h--- 有效压头高度。
砼浇筑速度v按0.3m/h,入模温度按20 C考虑。
则:v/T=0.3/20=0.015<0.035 h=0.22+24.9v/T=0.22+24.9 X 0.015=0.6m P m= K yh=1.2 X 26 X 0.6=19kPa 砼振捣对模板产生的侧压力按4kPa 考虑。
则:P m=19+4=23kPa 盖梁长度每延米上产生的侧压力按最不利情况考虑(即砼浇筑至盖梁顶时)P=P m X(H-h)+P m X h/2=23 X 2+23 X 0.6/2=53.9kN2 、拉杆拉力验算拉杆(0 20圆钢)间距1.2m , 1.2m范围砼浇筑时的侧压力由上、下两根拉杆承受。
则有:(y= (T1+T2)/A=1.2P/2 n2=1.2 X 53.9/ (2 nXO.01 2)=102993kPa=103MPa<[ c]=160MPa(可)3 、竖带抗弯与挠度计算设竖带两端的拉杆为竖带支点,竖带为简支梁,梁长l0=2.2m ,砼侧压力按均布荷载q0 考虑。
竖带[14b的弹性模量E=2.1 x 105MPa;惯性矩lx=609.4cm 4;抗弯模量Wx=87.1cmq o=23 x 1.2=27.6kN/m最大弯矩:M max = q o l o2/8=27.6 x 2.72/8=25kN • m-6(T= M max /2W x=25/(2 x 87.1 x 1o-6) =143513 ~ 144MPa<[ b w]=160MPa(可)挠度:f max= 5q o l o4/384 x2x Elx=5x27.6x2.74/(384 x2x2.1x1o8x 6o9.4x 10-8)=0.0075m ~[f]=l °/400=2.0/400=0.005m4、关于竖带挠度的说明在进行盖梁模板设计时已考虑砼浇时侧向压力的影响,侧模支撑对盖梁砼施工起稳定与加强作用。
为了确保在浇筑砼时变形控制在允许范围,同时考虑一定的安全储备,在竖带外设钢管斜撑。
钢管斜撑两端支撑在模板中上部与横梁上。
因此,竖带的计算挠度虽略大于允许值,但实际上由于上述原因和措施,竖带的实际挠度能满足要求。
三、横梁计算采用间距0.4m工16型钢作横梁,横梁长 4.6m。
在墩柱部位横梁设计为特制钢支架,该支架由工16 型钢制作,每个墩柱 1 个,每个支架由两个小支架栓接而成。
故共布设横梁124 个,特制钢支架 6 个(每个钢支架用工16 型钢18m )。
盖梁悬出端底模下设特制三角支架,每个重约8kN 。
1 、荷载计算( 1 )盖梁砼自重:G1=216.7m 3x 26kN/m 3=5634.2kN(2)模板自重:G2=520kN (根据模板设计资料)(3)侧模支撑自重:G3=96x 0.168 x2.9+10=57kN(4)三角支架自重:G4=8x2=16kN(4)施工荷载与其它荷载:G 5=20kN横梁上的总荷载:G H=G 1+G 2+G 3+G 4+G5=5634.2+520+57+16+20=6237.2kNq H=4431/26.4=126.8kN/m横梁采用0.4m 的工字钢,则作用在单根横梁上的荷载G H'=126.8 x 0.4=50.7kN作用在横梁上的均布荷载为:qf = G H ' /l H=50.7/2.2=23kN/m(式中:I H为横梁受荷段长度,为2.4m)2 、横梁抗弯与挠度验算横梁的弹性模量E=2.1 x 105MPa; 惯性矩l=1127cm 4;抗弯模量Wx=140.9cm 3 最大弯矩:M max = q H'I H2/8=28 x 2.42/8=20kN • m0= M max /^V x =20/(140.9 x 10-6)=141945 〜142MPa<[ o w]=160MPa (可)最大挠度:f max= 5 q H' l H 4/384 x El=5x 28x 2.44/(384 x 2.1 x 108x 1127 x 10-8)=0.0051m<[f]=l 0/400=2.2/400=0.006m (可)四、纵梁计算纵梁采用单层四排,上、下加强型贝雷片(标准贝雷片规格:强弦3000cm x 1500cm ,加杆高度10cm )连接形成纵梁,长30m 。
1 、荷载计算(1)横梁自重:G 6=4.6 X 0.205 X 56+3 X 18 X 0.205=64kN(2)贝雷梁自重:G7= ( 2.7+0.8 X 2+1+2 X 3 X 0.205 )X 40=237kN纵梁上的总荷载:G Z=G I+G 2+G 3+G 4+G 5+G 6+G 7=5634.2+520+57+16+20+64+237=6538kN纵梁所承受的荷载假定为均布荷载q :q= G z/L=6538/49.26=133kN/m2、结构力学计算结构体系为一次超静定结构,采用位移法计算。
(1)计算支座反力R C :第一步:解除C点约束,计算悬臂端均布荷载与中间段均布荷载情况下的弯矩与挠度C点应量优「兽T第二步:计算 C 点支座反力R C 作用下的弯矩与挠度第三步:由C 点位移为零的条件计算支座反力 RC由假定支座条件知:刀f c =0q/c = - &⑵尸个48SZ1 —_ + ■ a48 贞仙廿”2十叱上沁i .金F二呵界来奪G 谊4/(2)计算支座反力R A、R B由静力平衡方程解得2(J+w)^8 3l(3)弯矩图根据叠加原理,绘制均布荷载弯矩图:-—毛82 Q(4 )纵梁端最大位移6K4 3X4 2+4x9,8«93=-648q/EI ( J )4、纵梁结构强度验算加3*7X42X S X932ASI~(1)根据以上力学计算得知,最大弯矩出现在A、B 支座,代入q 后M B=8.82q=8.82 X 133=1173kN • m( 2 )贝雷片的允许弯矩计算查《公路施工手册桥涵》第923页,单排单层贝雷桁片的允许弯矩[M o]为975kN -m。
则四排单层的允许弯矩[M]=4 X 975 X 0.9=3510 kN • m(上下加强型的贝雷梁的允许变矩应大于此计算值)故:M B=1173kN • m v [M]=3510 kN • m 满足强度要求5、纵梁挠度验算(1)贝雷片刚度参数弹性模量:E=2.1 X 105MPa惯性矩:I=Ah X h/2=(25.48 X 2X 4)X 150X 150/2=2293200cm 4(因无相关资料可查,进行推算得出)(2)最大挠度发生在盖梁最大横向跨中部位f max =648q/EI=648 X133/(2.1 X 108X2293200 X10-8)=0.018m[f]=L/2/400=20.82/2/400=0.026m由于f max <[f] ,计算挠度能满足要求。
五、抱箍计算(一)抱箍承载力计算1 、荷载计算每个盖梁按墩柱设三个抱箍体支承上部荷载,由上面的计算可知:支座反力R A=R B=[2(l+a)-8.31]q/2=[2(9+4.5)-8.31] X 133/2=1672kNR C=8.31q=8.31 X 133=1105kN以最大值为抱箍体需承受的竖向压力N 进行计算,该值即为抱箍体需产生的摩擦力。
2 、抱箍受力计算(1)螺栓数目计算抱箍体需承受的竖向压力N=1242kN抱箍所受的竖向压力由M24 的高强螺栓的抗剪力产生,查《路桥施工计算手册》第426 页:M24 螺栓的允许承载力:[N L]=P剛K式中:P--- 高强螺栓的预拉力,取225kN;片--摩擦系数,取0.3 ;n--- 传力接触面数目,取1;K---安全系数,取1.7 。
贝U: [N L]= 225 X 0.3 X 1/1.7=39.7kN螺栓数目m 计算:m=N ' /[N L]=1242/39.7=31.3〜32个,取计算截面上的螺栓数目m=32个。
贝每条高强螺栓提供的抗剪力:P ' =N/44=1242/32=38.8KN ~ [N L】=38.7kN故能承担所要求的荷载。
(2)螺栓轴向受拉计算砼与钢之间设一层橡胶,按橡胶与钢之间的摩擦系数取卩=0.3计算抱箍产生的压力P b= N/ u=1242kN/0.3=4140kN 由高强螺栓承担。
贝: N' =P b=4140kN抱箍的压力由32 条M24 的高强螺栓的拉力产生。
即每条螺栓拉力为N1=P b/44=4140kN /42=130kN<[S]=225kNwN ” /A= N '(1-0.4m i/m )/A式中:N '---轴心力A--- 高强螺栓截面积,A=4.52cm(y=N ” /A= P b (1-0.4m i/m ) /A=5573 X (1-0.4 X 66/42)/66 X 4.52 X 10-4 =117692kPa=118MPa v [可=140MPa故高强螺栓满足强度要求。
( 3)求螺栓需要的力矩M1) 由螺帽压力产生的反力矩M 1=u 1N1X L1u1=0.15 钢与钢之间的摩擦系数L1=0.015 力臂M1=0.15X133X0.015=0.299KN.m2) M 2为螺栓爬升角产生的反力矩,升角为10°M2=gX N ' cos10 ° X L2+N ' sin10 ° X L2[式中L2=0.011 (L2为力臂)]=0.15 X133X cos10 °X 0.011+133 X sin10°X 0.011=0.470(KN • m)M=M 1+M 2=0.299+0.470=0.769(KN • m)=76.9(kg • m)所以要求螺栓的扭紧力矩M > 77(kg • m)二)抱箍体的应力计算:1 、抱箍壁为受拉产生拉应力拉力P1=21N 1=21 X 133=2793 (KN)抱箍壁采用面板3 16mm的钢板,抱箍高度为 1.734m。