人教版数学七年级下册第五章单元测试试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:(每小题3分,共30分)

1.若三条直线交于一点,则共有对顶角(平角除外)( ) A.6对 B.5对 C.4对 D.3对

2.如图1所示,∠1的邻补角是( )

A.∠BOC

B.∠BOE 和∠AOF

C.∠AOF

D.∠BOC 和∠AOF

3. 如图2,点E 在BC

的延长线上,在下列四个条件中,不能判定AB ∥CD 的是( ) A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°

4. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯

的角度是( )

A .第一次右拐50°,第二次左拐130°

B .第一次左拐50°,第二次右拐50°

C .第一次左拐50°,第二次左拐130°

D .第一次右拐50°,第二次右拐50° 5. 如图3,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( ) A.∠A+∠P+∠C=90° B.∠A+∠P+∠C=180°

C.∠A+∠P+∠C=360°

D.∠P+∠C=∠A

6. 一个人从点A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 等于( )

A.75°

B.105°

C.45°

D.135° 7.如图4所示,内错角共有( )

A.4对

B.6对

C.8对

D.10对

C

B

A

D

1

C

B

A

32

4

D

O F

E D

C

B

A

8.如图5所示,已知∠3=∠4,若要使∠1=∠2,则需( ) A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.AB ∥CD 9.下列说法正确的个数是( )

①同位角相等; ②过一点有且只有一条直线与已知直线垂直;

③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点; ⑤若a ∥b ,b ∥c ,则a ∥c.

图1

F E

O 1

C B

A D 图4

图5

图6

图3 D

A

P

C

B

A.1个

B.2个

C.3个

D.4个

10. 如图6,O 是正六边形ABCDEF 的中心,下列图形:△OCD ,△ODE ,△OEF ,•△OAF ,•△OAB ,其中可由△OBC 平移得到的有( )

A.1个

B.2个

C.3个

D.4个

二、填空题(每小题3分,共30分)

11.•命题“垂直于同一直线的两直线平行”的题设是•____________,•结论是__________. 12.三条直线两两相交,最少有_____个交点,最多有______个交点.

13.观察图7中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1•和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.

5

4

32

1 43

2

1A

C

D

B

图7 图8 图9

14.如图8,已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=_______.

15.如图9所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________________. 16.如图10所示,直线AB 与直线CD 相交于点O ,EO ⊥AB ,∠EOD=25°,则∠BOD=______,∠AOC=_______,∠BOC=________.

A

E

C

D

O

B

2

1

A

C

D

B

图10 图11

17.如图11所示,四边形ABCD 中,∠1=∠2,∠D=72°,则∠BCD=_______. 18.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿铁轨方向_________”. 19. 根据图12中数据求阴影部分的面积和为_______. 20. 如果一个角的两边与另一个角的两边分别平行,那 么这两个角的关系是_________.

图12

三、解答题(每小题8分,共40分)

21. 已知a 、b 、c 是同一平面内的3条直线,给出下面6个命题:a ∥b , b ∥c ,a ∥c ,a ⊥b ,b ⊥c ,a ⊥c ,请从中选取3个命题(其中2个作为题设,1个作为结论)尽可能多地去组成一个真命题,并说出是运用了数学中的哪个道理。举例如下:

因为a ∥b , b ∥c ,所以a ∥c (平行于同一条直线的两条直线平行)

22. 画图题:如图(1)画AE ⊥BC 于E ,AF ⊥DC 于F. (2)画DG ∥AC 交BC 的延长线于G.

(3)经过平移,将△ABC 的AC 边移到DG ,请作出平移后的△DGH.

D

C

B A

23. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数

24. 如图,E 在直线DF 上,B 为直线AC 上,若∠AGB=∠EHF ,∠C=∠D ,试判断∠A 与∠F 的关系,并说明理由.

25. 如图,在方格中平移三角形ABC ,使点A 移到点M ,点B ,C 应移动到什么位置?再将A 由点M 移到点N?分别画出两次平移后的三角形.如果直接把三角形ABC•平移,使A 点移到点N ,它和前面先移到M 后移到N 的位置相同吗?

相关文档
最新文档