发动机原理(第二章进气道)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

楔板角2=1239
结尾正激波
1.12
0.8965
0.947
0.9982
F15 超音速进气道
2、基本类型
轴对称 二元(矩形)
3、工作原理
Ma>1Ma<1
收敛—扩张 三种类型
dA dV 2 ( M a 1) A V
外压式 内压式
混压式
内压式超音进气道
超音亚音:全部在口内完成; 理想状况:总压损失小 因起动问题,较少实用。
4、超音速进气道特性
5、调节
轴对称
移动中心锥体
二元
调节楔角板角度 外罩角度 放气门 辅助进气门
二、亚音进气道
1、结构形式 皮托管式 2、流动模型
K
* p0 A0 q (0 )
T
* 0
K
* p01 A01q (01 )
T
* 01
A0 q (01 ) A01 q (0 )
流量系数 大小决定于飞行M数 和发动机工作状态
0 <<
为适应 的变化,减少分离,具有钝圆形唇口。
4、超音速进气道特性
(1)斜波系角度变化 交点不再位于唇口 低超音速飞行,激 波交点前移,超音 溢流阻力加大。 高超音速飞行,激 波交点后移,激波 损失加大。
4、超音速进气道特性
(2)结尾正激波位于 喉道(临界状态) (3)结尾正激波被吸向 后移(超临界状态) 总压损失加大 嗡鸣 (4)结尾正激波被推出 口外(亚临界状态) 亚音溢流阻力加大 喘振
V0
三、 超音速进气道
激波
产生:超音速气流受到压缩产生的强压
缩波 内凹壁面 楔形物和锥形物 流向高压区 分类:正激波、斜激波、弓形波
激波的性质
共性 强压缩波:经激波后静参数突变,总压下降 波前M数越高,激波越强,参数变化越剧烈 个性 经正激波,波后M<1;经斜激波,波后一般仍为M>1。 对相同超音速来流,经正激波的总压损失大于斜激波 来流M1=1.5 正激波:s=0.92 M2=0.7 斜激波: (楔形物=108’,=57), s=0.986,M2=1.107 对于斜激波,越大, 越大,激波越强,损失越大 经正激波,气流方向不变;经斜激波气流向波面转折 相交与反射

外压式超音进气道
超音气流经过2道斜 激波后,气流速度减 小,压力提高,再经 过一道位于进口处的 正激波降为亚音流, 在口内的扩张通道内 进一步减速增压; 超音亚音:全部在 口外完成; 外阻较大。

混压式超音进气道
源自文库音亚音:介乎于
前两者之间; 外罩平直,外阻小; 结尾正激波可自动调 节,工作稳定; 起动较容易。
第四节 进气道
一、功能、设计要求
1、功能 引入空气 高亚音或超音速飞行时 减速 2、设计要求 损失小(内流、外阻) 工作稳定性好 高流通能力 出口流场尽量均匀 温度畸变 压力畸变 3、位置 亚音飞机:短舱、尾部等 超音飞机:头部、机身两侧 、翼根、腹部等。
4、分类 亚音 超音
三、超音速进气道
1、气动设计原理 利用激波的性质,设计为多波系结构, 即先利用损失小的斜激波,逐步将高超 音流滞止为低超音流,再利用一道弱的 正激波将超音流滞止为亚音流。 减小因激波引起的总压损失 波系结构
来流M数=2.0
激波波系 正激波 一道斜激波 正激波 二道斜激波 正激波 楔板角1=2044 正激波 楔板角1=1036 波后M数 0.577 1.16 0.868 1.617 0.72 0.87 0.996 0.98 0.72 0.866 0.926
相关文档
最新文档