定积分的定义PPT参考课件
合集下载
定积分的概念和性质ppt课件
小区间长度记为:
ti ti ti 1 (i 1 ,2 ,3 , ,n )
n
(2)近似求和:s v(i )ti. i1
(3)取极限:
n
s
lim
0 i1
v(i
)ti
( 表示所有小区间的长度的最大者)
编辑版pppt
8
二、定积分的定义
定义 设函数f(x)在[a,b]上有界, 在[a,b]中任意插入若干个分点:
四、定积分的几何意义
若f(x)≥0,则
b
a
f (x)dx 的几何意义表示
由曲线y=f(x),直线x=a,x=b与x轴所围成
的曲边梯形的面积。
编辑版pppt
12
一般情形,ab f (x)dx 的几何意义为:它
是介于x轴,曲线y=f(x),直线x=a,x=b 之 间的各部分面积的代数和。
y
+
a
0 -
+ bx
性质 7(定积分中值如定果理函) f (数 x)在闭区
间[a,b]上连续,[则 a,b]在 上至少存在一点
,使
b af(x )d x f()b ( a )
( a b )
这个公式叫积分中值公 式。
编辑版pppt
22
证由性6, 质有
b
m (ba)af(x)d xM (ba)
即有 m 1
b
f(x)d xM
这些小区间的长度最大者)时,和式 f (i )xi 的
n
i 1
极限就是A,即
Alim
0 i1
f (i)xi
可见,曲边梯形的面积是一和式的极限
y=f(x) y
0 a x0 x1
f(ξi) x 2 ξi x i x 编1 辑版pi ppt
《定积分课件》课件
03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。
《高数定积分》课件
05
广义积分及其收敛性判别法
广义积分的概念及分类
广义积分的定义
广义积分是相对于正常积分而言的一种特殊积分,其积分区间可能包含无穷大或者无界 函数。
广义积分的分类
根据被积函数和积分区间的不同,广义积分可分为无穷限广分的收敛性判别法
比较判别法
通过比较被积函数与已知收敛或发散的函数,来判断广义积分的收敛性。
换元法求解定积分
01
换元法的基本思想
通过变量代换简化定积分的计算 。
02
常见的换元方法
03
换元法的注意事项
三角函数代换、倒代换、根式代 换等。
代换后需调整积分上下限,并验 证代换的可行性。
分部积分法求解定积分
分部积分法的基本思想
将复杂函数拆分为简单函数 进行积分。
常见的分部积分公式
幂函数与三角函数、幂函数 与指数函数、幂函数与对数 函数等。
06
定积分在经济学等领域的应用
由边际函数求原经济函数
边际函数与定积分的关系
边际函数描述的是经济量变化的瞬时速率,而定积分则可用于求取原经济函数,即总量 函数。
求原经济函数的步骤
首先确定边际函数的表达式,然后根据定积分的定义,对边际函数进行积分,得到原经 济函数的表达式。
示例
已知某产品的边际收益函数为MR(q),通过对其进行定积分,可以得到总收益函数 TR(q)。
曲线的长度、图形的面积等。
THANKS
感谢观看
原函数与不定积分概念
原函数定义
原函数是指一个函数的导数等于给定函数的函数。根据微积分基本定理,不定积分就是求原函数的过 程。
不定积分性质
不定积分具有线性性质、常数倍性质和积分区间可加性。这些性质在求解复杂函数的定积分时非常有 用。
定积分概念、性质ppt课件
上例曲边图形的面积用定积分表示
S1x2d x lin m (n 1 )2 (n 1 )1
0
n 6 n 3
3
注意:据定义有如下说明:
(1)定积分是特殊和式极限,它是一个定数;
(2)定积分的大小仅与区间[a,b]和被积函数f(x)有关;
(3)规定:
a
f(x)d x0,
b
a
f(x)d x f(x)dx
b f (x)dx
b
g ( x)dx
a
a
推2 论 :b
.
f(x)d
x
b
f( x) dx,(ab)
a
a
因f(x)f(x)f(x)
.
性质6(介值定理):设f(x)在[a,b]上可取得最大值M和最
小值m, 于是, 由性质5有
b
m (ba)af(x)d xM (ba)
几何意义也很明显
性质 7(积分中值若定函理 f(数 x)) 在[a: ,b]上连续,
S曲
lim n
n i 1
S i矩
lim
n
(n
1)( 2n 6n 2
1)
1 0.333 3
.
总结:求曲边梯形面积的步骤 v
引例1——曲边梯形的面积(演示) 引例2——变速直线运动的路程
设物体的运动速度 vvt
分割区间 作和
取近似值 取极限
T1
ti-1 i ti T2 t
(1)细分区间 [ T 1 ,T 2 ] [ T 1 ,t 1 ] U [ t 1 ,t2 ] U L U [ tn 1 ,T 2 ]
曲边梯形的面积,即:
n
S曲
.
lim
n i1
第一节-定积分的概念与性质PPT课件
A
C
oa
Ex
b
它们的面积计算都由公式给定,理解也相对简单。但是, 现实中还会有另外一些图形,它们的面积计算就无法由 给定的公式给出。如右上图。这样的图形面积应该怎么 计算呢?
考虑这样一个问题:
由连续曲线y=f (x) ( f(x)0,x [a,b])、x轴与两条直线
x=a、x=b所围成的图形,这个图像成为曲边梯形(如图),
Solution: Divide the interval to four equal interval [0,1],[1,2],[2,3] and [3,4].
Left Riemann sum:
Right Riemann sum:
Midpoint Riemann sum:
Example 2: The function is continuous on the closed interval [0,10] and has values as shown in the table above. Using the intervals [0,2] [2,5] [5,8] and [8,10],what is
通常称F(x)是f(x)的一个原函数
(2) 在计算定积分时,常常用符号
来表示
F(b)−F(a),牛顿—莱布尼茨公式也可以写作
常见函数的原函数
(1)0 的原函数=__c_; (2)1 的原函数=__x_+__c___;
xα+1
(3)xα 的原函数=__α_+__1___+c(α≠-1,x>0)
(4)1x的原函数=_____ln_|x_|+__c_______(x≠0);
(5)ex 的原函数=_____ex_+__c________; (6)ax 的原函数=____l_an_xa+__c________;
定积分的概念和基本性质教学精品PPT课件
10
曲边梯形面积可取极限:
f (i )
y=f(x)
n
S
= lim 0 i=1
f (i ) xi
O a=x0 x1 x2 ... xi-1i xi ...
x
b xn1 xn=
7
引出定义的实例二:求物体作变ቤተ መጻሕፍቲ ባይዱ直线运动所经过的路程
例2.设物体沿直线作变速运动,速度为 v =v (t), 假定v (t)是 t 的连续
(2) 在第i个小区间[xi1, xi]上任取一点i ,用第i个小矩形的面积近似替代
第i个小曲边梯形的面积:Ai f ( i ) xi (i = 1, 2, , n)
(3) 将全部小矩形面积求和后作为
y
曲边梯形面积 S 的近似值。即有
n
S f(i)xi。
i =1
(4) 记=maxx1, x2, xn,为得到
分割 近似 求和 取极限
把整体的问题分成局部的问题 在局部上“以直代曲”, 求出 局部的近似值; 得到整体的一个近似值;
得到整体量的精确值;
6
一般地,求由连续曲线y=f(x)(f(x)0),直线x=a、x=b及 x轴所围成的曲边梯形的面积的方法是:
(1) 用直线 x = xi (i = 1, 2,..., n 1) 把曲边梯形分割为 n 个小曲边梯形。 每个小曲边梯形的底的宽度记为 xi = xi xi1 (i = 1, 2,..., n)。
取极限
得到整体量的精确值;
9
4.3.1 定积分的定义
定义 4.3.1:
将
区间任意分成 n 份,分点依次为
在每一个小区间[xi-1 , xi]上任取一点ci, 作乘积
f (ci )xi (xi = xi xi1) (i = 1,2,, n)
定积分的定义PPT课件
lim ln n
f 1 f 2 f n
en
n n n
lim
e e n
1 n ln n i1
f
i n
lim
n
n
ln
i 1
f
i n
n1
指数上可理解为:ln f ( x)在[0,1] 区间
上的一个积分和. 分割是将[0,1]n 等分
分点为 xi
i ,(i n
1,2,, n)
分割 求和 取极限
化整为零
求近似以直(不变)代曲(变)
积零为整
取极限
精确值——定积分
思考题
将和式极限:
lim
n
1 n
sin
n
sin
2 n
sin
(
n
1) n
表示成定积分.
思考题解答
原式
lim
n
1 n
sin
n
sin
2 n
sin
(n
1) n
sin
n n
lim 1 n sin i n n i1 n
上任取一点i,
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
曲边梯形面积的近似值为
n
A f (i )xi
i 1
当分割无限加细,即小区间的最大长度
max{x1, x2 ,xn } 趋近于零 ( 0) 时,
n
曲边梯形面积为
例1 利用定义计算定积分 1 x2dx. 0
解
将[0,1]n 等分,分点为xi
i ,(i n
1,2,, n )
定积分的概念及性质PPT
在每个小区间[ xi1, xi ]
上任取
一点
,
i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
首页
上页
下页
曲边梯形面积的近似值为
n
A f (i )xi
i 1
当分割无限加细,即小区间的最大长度
max{x1, x2 , xn }
点i 怎样的取法,只要当 0时,和S 总趋于
确定的极限I , 我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限 b a
f ( x)dx
I
lim 0
n i 1
积分和
f (i )xi
积分下限
被 积 函 数
被
积
[a,b] 积分区间
积
分
表
变
达 式
量
首页
上页
下页
注意:
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
首页
上页
下页
(1)分割 T1 t0 t1 t2 tn1 tn T2
ti ti ti1
si v( i )ti
部分路程值
某时刻的速度
i ,(i n
1,2,
,n)
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,
,n)
取i xi ,(i 1,2, , n)
n
n
n
f (i )xi i2xi xi2xi ,
高等数学 课件 PPT 第五章 定积分
[a,b]上有界并不是可积的充分条件.例如,
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],
《定积分的概念》课件
微积分基本定理是定积分计算的核心 ,它建立了定积分与不定积分之间的 联系。
详细描述
微积分基本定理指出,一个定积分可 以用被积函数的不定积分来表示。这 个定理是计算定积分的基石,因为它 提供了一种将定积分问题转化为求不 定积分问题的途径。
பைடு நூலகம்
微积分基本定理的应用
总结词
微积分基本定理的应用广泛,包括计算面积、体积、速度和加速度等。
详细描述
通过微积分基本定理,我们可以计算各种物理量,如物体的运动速度、加速度,以及平面图形的面积 等。这些应用在科学、工程和经济学等领域都有广泛的应用。
定积分的计算方法
总结词
定积分的计算方法包括直接法、换元法 和分部积分法等。
VS
详细描述
直接法是直接利用微积分基本定理计算定 积分的方法;换元法是通过换元公式将复 杂的积分转化为简单的积分;分部积分法 则是通过将两个函数的乘积进行求导,再 利用微积分基本定理计算定积分的方法。 这些方法在解决实际问题时各有优缺点, 需要根据具体情况选择合适的方法。
通过将物体的运动轨迹分割成无数小的线段,再利用定积分计算这些线
段上的速度和加速度的积分和,可以求得物体的整体速度和加速度。
定积分在经济学中的应用
计算边际成本和边际收益
在经济学中,定积分可以用于计算边际成本和边际收益,这是通过将成本或收益函数在一定的范围内进行分割,再利 用定积分计算这些分段上的成本或收益的积分和,可以求得整体的边际成本和边际收益。
预测市场需求
通过将市场需求函数在一定的范围内进行分割,再利用定积分计算这些分段上的需求函数的积分和,可以预测整体的 市场需求。
评估投资项目的风险
通过将投资项目的风险函数在一定的范围内进行分割,再利用定积分计算这些分段上的风险函数的积分 和,可以评估整体的投资项目的风险。
详细描述
微积分基本定理指出,一个定积分可 以用被积函数的不定积分来表示。这 个定理是计算定积分的基石,因为它 提供了一种将定积分问题转化为求不 定积分问题的途径。
பைடு நூலகம்
微积分基本定理的应用
总结词
微积分基本定理的应用广泛,包括计算面积、体积、速度和加速度等。
详细描述
通过微积分基本定理,我们可以计算各种物理量,如物体的运动速度、加速度,以及平面图形的面积 等。这些应用在科学、工程和经济学等领域都有广泛的应用。
定积分的计算方法
总结词
定积分的计算方法包括直接法、换元法 和分部积分法等。
VS
详细描述
直接法是直接利用微积分基本定理计算定 积分的方法;换元法是通过换元公式将复 杂的积分转化为简单的积分;分部积分法 则是通过将两个函数的乘积进行求导,再 利用微积分基本定理计算定积分的方法。 这些方法在解决实际问题时各有优缺点, 需要根据具体情况选择合适的方法。
通过将物体的运动轨迹分割成无数小的线段,再利用定积分计算这些线
段上的速度和加速度的积分和,可以求得物体的整体速度和加速度。
定积分在经济学中的应用
计算边际成本和边际收益
在经济学中,定积分可以用于计算边际成本和边际收益,这是通过将成本或收益函数在一定的范围内进行分割,再利 用定积分计算这些分段上的成本或收益的积分和,可以求得整体的边际成本和边际收益。
预测市场需求
通过将市场需求函数在一定的范围内进行分割,再利用定积分计算这些分段上的需求函数的积分和,可以预测整体的 市场需求。
评估投资项目的风险
通过将投资项目的风险函数在一定的范围内进行分割,再利用定积分计算这些分段上的风险函数的积分 和,可以评估整体的投资项目的风险。
大学课件 定积分概念-PPT精品文档
图 4-1 PPT课件 大学各学科
迎收藏
x
持续更新 欢 3
用矩形面积近似取代曲边梯形面积
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
大学各学科PPT课件 持续更新 欢迎收 藏 4
求解曲边梯形面积的步骤:
(1)分割:将曲边梯形分割成 n 个小曲边梯形。任取分 点 a x0 x1 xn1 xn b ,把底边 [a, b] 分成 n 个 小区间
f ( x ) dx
a
b
积分下限
被 积 函 数
被 积 [a,b] 积分区间 积 分 表 变 达 量 式 大学各学科PPT课件 持续更新 欢迎收
藏 12
有了这个定义,前面两个实际问题都可用定积分表示 为: 曲边梯形面积 A a f ( x)dx 变速直线运动的路程 S T V (t )dt
23
例4
解
2 1
1 1 x 1 2 x 1 设 f ( x) ,求 1 f ( x)dx 1 x 2 x2
因为 f ( x) 在[1,2]上分段连续 1 所以 f ( x)dx = ( x 1)dx dx x x x 1 3 = 2 2 x
1 2 1 1 2
2 1 2 1 1
练习 习 题4-2 (1)-(4)
大学各学科PPT课件 持续更新 欢迎收 藏
24
二、定积分的计算
1.定积分的换元积分法
例5 计算 sin 2 xdx
1 0
解 解法一 求 sin 2 x 的原函数。 1 1 1 sin 2 xdx= sin 2 xd 2 x u 2 x sin udu = cos u C 2 2 2
迎收藏
x
持续更新 欢 3
用矩形面积近似取代曲边梯形面积
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
大学各学科PPT课件 持续更新 欢迎收 藏 4
求解曲边梯形面积的步骤:
(1)分割:将曲边梯形分割成 n 个小曲边梯形。任取分 点 a x0 x1 xn1 xn b ,把底边 [a, b] 分成 n 个 小区间
f ( x ) dx
a
b
积分下限
被 积 函 数
被 积 [a,b] 积分区间 积 分 表 变 达 量 式 大学各学科PPT课件 持续更新 欢迎收
藏 12
有了这个定义,前面两个实际问题都可用定积分表示 为: 曲边梯形面积 A a f ( x)dx 变速直线运动的路程 S T V (t )dt
23
例4
解
2 1
1 1 x 1 2 x 1 设 f ( x) ,求 1 f ( x)dx 1 x 2 x2
因为 f ( x) 在[1,2]上分段连续 1 所以 f ( x)dx = ( x 1)dx dx x x x 1 3 = 2 2 x
1 2 1 1 2
2 1 2 1 1
练习 习 题4-2 (1)-(4)
大学各学科PPT课件 持续更新 欢迎收 藏
24
二、定积分的计算
1.定积分的换元积分法
例5 计算 sin 2 xdx
1 0
解 解法一 求 sin 2 x 的原函数。 1 1 1 sin 2 xdx= sin 2 xd 2 x u 2 x sin udu = cos u C 2 2 2
定积分的概念-PPT精选
b
s a v(t)dt;
密 度 为 ( x ) 线 状 物 体 的 质 量 为
m b(x)dx. a 前页 后页 返回
关于定积分定义,应注意以下几点:
n
注1 表 达 式 JlT im 0i1f(i)xi 不 仅 与 n和 T有
关 , 还 与 { 1 ,2 , ,n } 有 关 , 因此定积分既不是数 列极限,也不是函数极限.
区 间 [xi1, xi]的长度不趋于 0 . 要 保 证 每 个 区 间 [ x i 1 , x i ] 的 长 度 趋 于 0 , 需 引 入 分 割 T 的 细 度 ( 模 ) :
T m a x x i i 1 ,2 , ,n .
则 当T0时 ,就能保证分割越来越细.
n
当v(t)v0为 匀 速 运 动 时 , s v 0 ( b a ) ; 当质量是
均 匀 分 布 时 , 即 x 为 常 数 时 , m(ba).
这就是说,在“常值”、“均匀”、“不变”的情况下
前页 后页 返回
可以用简单的乘法进行计算. 而现在遇到的问题 是“非常值” 、“不均匀”、“有变化”的情形, 如来何解决这些问题呢? 以下我们以求曲边梯形的面积为例,把这类问题 合理地归为一类特殊的和式的极限. 中心思想: 把曲边梯形看作许许多多小的曲边梯形之和,每 个小曲边梯形面积,可近似地用矩形的面积来替
与S的差距就会越来越小.
i 1
问题是:
(1 )如 何 刻 划 分 割 越 来 越细?
n
(2 )如 何 刻 划 f(i)x i越 来 越 逼 近 于 S ? i 1
下面依次讨论这两个问题.
前页 后页 返回
( 1 ) 对 于 一 般 的 T : a 0 x 0 x 1 x n b , 不 能 用n来表示分割 T 越来越细,因为可能某些
s a v(t)dt;
密 度 为 ( x ) 线 状 物 体 的 质 量 为
m b(x)dx. a 前页 后页 返回
关于定积分定义,应注意以下几点:
n
注1 表 达 式 JlT im 0i1f(i)xi 不 仅 与 n和 T有
关 , 还 与 { 1 ,2 , ,n } 有 关 , 因此定积分既不是数 列极限,也不是函数极限.
区 间 [xi1, xi]的长度不趋于 0 . 要 保 证 每 个 区 间 [ x i 1 , x i ] 的 长 度 趋 于 0 , 需 引 入 分 割 T 的 细 度 ( 模 ) :
T m a x x i i 1 ,2 , ,n .
则 当T0时 ,就能保证分割越来越细.
n
当v(t)v0为 匀 速 运 动 时 , s v 0 ( b a ) ; 当质量是
均 匀 分 布 时 , 即 x 为 常 数 时 , m(ba).
这就是说,在“常值”、“均匀”、“不变”的情况下
前页 后页 返回
可以用简单的乘法进行计算. 而现在遇到的问题 是“非常值” 、“不均匀”、“有变化”的情形, 如来何解决这些问题呢? 以下我们以求曲边梯形的面积为例,把这类问题 合理地归为一类特殊的和式的极限. 中心思想: 把曲边梯形看作许许多多小的曲边梯形之和,每 个小曲边梯形面积,可近似地用矩形的面积来替
与S的差距就会越来越小.
i 1
问题是:
(1 )如 何 刻 划 分 割 越 来 越细?
n
(2 )如 何 刻 划 f(i)x i越 来 越 逼 近 于 S ? i 1
下面依次讨论这两个问题.
前页 后页 返回
( 1 ) 对 于 一 般 的 T : a 0 x 0 x 1 x n b , 不 能 用n来表示分割 T 越来越细,因为可能某些
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分下限
被 积 函 数
被
积
[a,b] 积分区间
积
分
表
变
达 式
量
10
注意:
(1) 积分值仅与被积函数及积分区间有关,
而与积分变量的字母无关.
b
a
f
( x)dx
b
a
f
(t )dt
b
a
f
(u)du
(2)定义中区间的分法和i 的取法是任意的.
(3)当函数 f ( x)在区间[a,b]上的定积分存在时,
1
一、问题的提出
实例1 (求曲边梯形的面积)
y
曲边梯形由连续曲线
y f (x)
y f ( x)( f ( x) 0)、
x轴与两条直线x a 、
x b所围成.
A?
oa
bx
2
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
9
怎样的分法, 也不论在小区间[ xi1 , xi ]上
点i 怎样的取法,只要当 0时,和S 总趋于
确定的极限I , 我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限 b a
f ( x)dx
I
lim 0
n i 1
积分和
f (i )xi
max{x1, x2 , xn }
趋近于零 ( 0) 时,
n
曲边梯形面积为
A lim 0 i1
f (i )xi
6
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t )是 时 间 间 隔[T1 ,T2 ] 上t 的 一 个 连 续 函 数 , 且 v(t) 0,求物体在这段时间内所经过的路程.
f ( x) 0, f ( x) 0,
b
a f ( x)dx A
曲边梯形的面积
b
a f ( x)dx
A
曲边梯形的面积 的负值
A1 A2
A3 A4
b
a f ( x)dx
A1 A2
A3
A4
13
几何意义:
它是介于 x 轴、函数 f (x)的图形及两条 直线 x a, x b 之间的各部分面积的代数和. 在 x 轴上方的面积取正号;在 x 轴下方的面 积取负号.
在每个小区间[ xi1, xi ]
上任取
一点
,
i
o a x1
b xi 1 i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
5
曲边梯形面积的近似值为
n
A f (i )xi
i 1
当分割无限加细,即小区间的最大长度
0
1
2
n1
n
把区间[a, b]分成n 个小区间,各小区间的长度依次为
xi xi xi1,(i 1,2, ),在各小区间上任取
一点i (i xi ),作乘积 f (i )xi (i 1,2, )
n
并作和S f (i )xi ,
i 1
记 max{ x1 , x2 , , xn },如果不论对[a, b]
部分路程值
某时刻的速度
n
(2)求和 s v( i )ti
i 1
(3)取极限 max{t1,t2 , ,tn }
n
路程的精确值
s
lim
0
i 1
v(
i
)ti
8
二、定积分的定义
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
称 f ( x)在区间[a, b]上可积.
11
三、存在定理
定理1 当函数 f ( x)在区间[a, b]上连续时, 称 f ( x)在区间[a, b]上可积.
定理2 设函数 f ( x)在区间[a, b]上有界, 且只有有限个间断点,则 f ( x)在 区间[a, b]上可积.
12
四、定积分的几何意义
14
例1 利用定义计算定积分 1 x2dx. 0
解
将[0,1]n 等分,分点为xi
i ,(i n
1,2,
,n)
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,
,n)
取i xi ,(i 1,2, , n)
n
n
n
f (i )xi i2xi xi2xi ,
16
例2
利用定义计算定积分
2
1
1dx x
.
解 在[1,2]中插入分点 q, q2 , , qn1 ,
典型小区间为[qi1 , qi ],(i 1,2, , n)
小区间的长度xi qi qi1 qi1(q 1),
取i qi1,(i 1,2, , n)
i 1
i 1
i 1
15
n
i 1
i n
2
1 n
1 n3
n
i 1
i2
1 n3
n(n
1)(2n 6
1)
1 6
1
1 n
2
1 n
,
0 n
1 x2dx
0
n
lim 0 i1
i 2xi
lim 1 1 1 2 1 1 . n 6 n n 3
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
7
(1)分割 T1 t0 t1 t2 tn1 tn T2
ti ti ti1
si v( i )ti
3
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放 4
曲边梯形如图所示, 在区间[a,b]内插入若干
个分点,a x0 x1 x2 xn1 xn b, 把区间[a,b] 分成 n y
个小区间[ xi1, xi ], 长度为 xi xi xi1;
n
i 1
f (i )xi
i
n 1
1
i
xi
n i 1
q1i1q
i
1
(q
1)
17
n
1
(q 1) n(q 1) 取qn 2 即q 2n
i 1
n
1
f (i )xi n(2n 1),
i 1
1
lim
Hale Waihona Puke x1x(2x
1)
lim