无机材料典型晶体结构PPT(41张)

合集下载

实验一 晶体结构模型分析.ppt

实验一 晶体结构模型分析.ppt

将高温炉升温至750℃,保温30分钟,然后打开炉底盖同时,
松动吊样的铜丝使样品掉在地面(或水浴中)。
在另一高温炉升高到900℃保温30分钟淬冷或750℃淬冷后,
盖好电炉底盖,温到900℃,保温30分钟,然后再将样品
(第二个)淬冷。
把淬冷后的样品冷却后,取出,放在载玻片上用镊子平研细
(压碎)盖上盖玻片,在偏光显微镜下观察物镜。
40
四、实验条件
1.药物天平
2.量筒
5.Na2CO3溶液(不同浓度)
8.承量瓶
9.蒸馏水
3.玻璃棒 4.烧杯(600ml)
6.秒表
7.试验用粘土
10.恩氏粘度计 (如图)
2019年8月18
感谢你的观看
41
五、实验步骤
1、加水量对粘土泥浆流动性的影响的测定
取3支容量为600ml的烧杯,每杯放入80g粘土(天平精确到
2019年8月18
感谢你的观看
27
实验手段
把淬冷后的样品进行偏光显微镜分析或X-射线分析, 鉴定试样中相的种类,个数以及各相之间的数量关系,由 此确定在不同温度下系统的相变情况,做出对应的相图, 例如,某一组分的样品在t1温度下被淬冷后,经显微镜分 析全是玻璃相,那说明系统在t1温度下是全部熔融的液相: 在t2温度下被淬冷后,有部分玻璃相与相当数量的晶体,那说 明系统在t2温度下部分熔融。那么液相线温度应在t1和t2之 间,缩短实验温度间隔,就可以得出比较准确的液相线温 度。
2019年8月18
感谢你的观看
26
实验方法
研究相平衡的方法很多,淬冷法是一种静态法;它适用 于粘度高结晶慢的系统。例如硅酸盐系统。
淬冷法是把试样放在高温炉中,让炉温升到所要测量的 温度,保温一定时间,直到试样达到平衡状态,然后将高温 下的试样急剧冷却(在气浴,水浴,汞浴或油浴中)使相变 来不及进行,这样就可以保持高温时的平衡状态不变,以便 在室温下进行观察。

《无机非金属材料科学基础》第3章 晶体结构

《无机非金属材料科学基础》第3章 晶体结构
碱金属元素的氧化物R2O,硫化物R2S,硒化物 R2Se,碲化物R2Te等A2X型化合物为反萤石型结构, 它们的正负离子位置刚好与萤石结构中的相反,即 碱金属离子占据F-离子的位置,O2-或其它负离子 占据Ca2+的位置。这种正负离子位置颠倒的结构, 叫做反同形体。
2. 金红石( TiO2 )型结构
AB2型结构类型与r+/r-的关系
结构类型
r+/r-
萤石(CaF2) 0.732

金 红 石 0.414~0.732 (TiO2)型
-方石英型 0.225~0.414
实例(右边数据为 r+/r-比值) BaF2 1.05 PbF2 0.99 SrF2 0.95 HgF2 0.84 ThO2 0.84 CaF2 0.80 UO2 0.79 CeO2 0.77 PrO2 0.76 CdF2 0.74 ZrO2 0.71 HfF2 0.67 ZrF2 0.67 TeO2 0.67 MnF2 0.66 PbO2 0.64 FeF2 0.62 CoF2 0.62 ZnF2 0.62 NiF2 0.59 MgF2 0.58 SnO2 0.56 NbO2 0.52 MoO2 0.52 WO2 0.52 OsO2 0.51 IrO2 0.50 RuO2 0.49 TiO2 0.48 VO2 0.46 MnO2 0.39 GeO2 0.36 SiO2 0.29 BeF2 0.27
3.3 多元无机化合物晶体的结构
NaCl和CsCl型衍生结构型式
结构可归于二元形式的多元化合物 CaF2型衍生结构型式
ZnS和FeS2型衍生结构型式
ABO3型化合物
含有三角形络合离子BO33、CO32、NO3等化合物,如文石和方解石 含有三角锥形络合离子ClO3-、BrO3-等化合物,如KBrO3

无机材料科学基础---第二章晶体结构

无机材料科学基础---第二章晶体结构

13.在石英的相变中,属于重建型相变的是 AC,属于位移式相变的是 BD 。(A α-石英→α-鳞石英;B α-石英→β-石英;C α-鳞石英 →α-方石英;D α方石英→β-方石英) P C I F 三、(1)a≠b≠c,α=β=γ= 90°的晶体属什么晶系?(2) 三斜 √ a≠b≠c,α≠β≠γ≠90°的晶 单斜 √ √ 体属什么晶系?(3)你能否据此 斜方 √ √ √ √ 确定这两种晶体的布拉维点阵? (1)斜方晶系(2)三斜晶系(3) 三方 √ 由左表可见,三斜晶系可以确定, 四方 √ √ 而斜方晶系不能确定 六方 √ 等轴 √ √ √
比 3:2:1 五、以NaCl 晶胞为例,说明面心立方紧密堆积中的八面体和四面体空隙的位置和 数量。 Z(Na)=1/8×8+1/2×6=4;Z(Cl)=1+1/4×12=4;Z=4
四面体数量:8 (1/4,1/4,1/4);(1/4,1/4,3/4);(1/4, 3/4,1/4);(1/4,3/4,3/4);(3/4,1/4,1/4);(3/4,1/4, 3/4);(3/4,3/4,1/4);(3/4,3/4,3/4)各有一个四面体空隙 八面体数量:4 (0,0.5,0)组成1个八面体空隙;(0.5,0,0)组成1 个八面体空隙;(0,0,0.5)组成1个八面体空隙;(0.5;0.5; 0.5)组成1个八面体空隙 六、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、致 密度。 Z=2
结构类型 [SiO4]共用O2数 形状 络阴离子 [SiO4]2[Si2O7]6[Si3O9]2[Si4O12]8[Si6O18]12[Si2O6]4[Si4O11]6[Si4O10]4[SiO2][AlSi3O8][AlSiO4]Si:O 实例
岛状 0 组群状 1 2 2 2 链状 2 3 层状 3 架状 4

晶体结构(共78张PPT)

晶体结构(共78张PPT)
多为无色透明,折 射率较高
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础




萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以

一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。

材料科学基础第三章典型晶体结构(共71张PPT)

材料科学基础第三章典型晶体结构(共71张PPT)
Zn离子的位置交叉错开。
表示方法:球体堆积法;坐标法;投影图;配位多面体连 接方式
与金刚石晶胞的比照 ,有什么不同?
同型结构的晶体β-SiC,GaAs,AlP 等
5、 -ZnS〔纤锌矿〕型结构 〔AB type〕
六方晶系,简单六方格子
配位数:
晶胞中正负离子个数
堆积及空隙情况
同型结构的晶体:BeO, ZnO, AlN等
笼外俘获其它原子或基团,形成类C60的衍生物,例如
C60F60。再如,把K、Cs、Ti等金属原子掺进C60分子 的笼内,就能使其具有超导性能。再有C60H60这些相 对分子质量很大地碳氢化合物热值极高,可做火箭的 燃料等等。
2〕碳纳米管
碳纳米管又称纳米碳管〔 Carbon nanotube,CNT〕,是 单质碳的一维结构形式。碳纳米 管按照石墨烯片的层数分类可分 为:单壁碳纳米管〔Singlewalled nanotubes, SWNTs〕和多 壁碳纳米管〔Multi-walled nanotubes, MWNTs〕。
4. -ZnS〔闪锌矿〕型结构 〔AB type〕 点群:
空间群:
配位数:
晶胞中正负离子个数Z:
堆积及间隙情况:
• 以体积较大的S2-作立方紧密堆积 • Zn2+如何填充? • 空隙如何分布?
等同点分布:
共有2套等同点。这种结构 可以看作是Zn离子处在由S离 子组成的面心立方点阵的4个
四面体间隙中,即有一半四面 体间隙被占据,上层和下层的
晶体结构的描述通常有三种方法:
1〕坐标法:给出单位晶胞中各质点的空间坐标,这种采用
数值化方式描述晶体结构是最标准化的。为了方便表示晶胞, 化学式可写为MO,其中M2+是二价金属离子,结构中M2+和O2-分别占据了NaCl中钠离子和氯离子的位置。 以由体正积 负还较离大子可的半径S以2比-作rN采立a方+/r用紧cl-密≈堆投0.积 影图,即所有的质点在某个晶面〔001〕上的投

无机材料科学基础第二章-晶体结构-第6节(3)

无机材料科学基础第二章-晶体结构-第6节(3)
S Mg
CaO静电键强度与MgO相同,但晶体结构疏松,不稳定,易水 化。因为Ca2+离子半径大,使O2-离子的立方密堆积紧密程度变 松。 CaO 的晶格能为3469KJ/mol ,熔点2560 ℃。
6
2、CsCl型
r+/r- = 0.93(大于0.732)
CsCl晶体为Pm3m空间群(立方原始格子); a0=0.411nm; Cl-按简立方形式堆积,位于立方体的8个角顶上;Cs+填充在立方体 中心。 Cl-、Cs+的配位数均为8;单位晶胞中的分子数Z=1;
r+/r- = 0.102/0.181=0.56 (0.414~0.732)
3
②球体紧密堆积方法:Cl-按面心立方紧密堆积,Na+填入 全部八面体空隙(Na︰Cl=1︰1); ③配位多面体及其连接方式:[NaCl6]八面体以共棱方式 连接,该描述方法适宜于复杂晶体结构。
NaCl中的正八面体结构
4
属于NaCl型结构的晶体很多,表2-7所示。
按离子堆积分析, O2-按变 形的六方密堆积, Ti4+只填 充了O2-所形成的八面体空隙 的一半(Ti︰O=1 ︰2)。
16
晶胞中质点的坐标为:Ti4+(000),(1/2 1/2 1/2);
O2-(uu0),((1-u) (1-u) 0),((1/2+u)(1/2-u)1/2),
1号点 2号点 4号点 3号点
单位晶胞中质点的坐标如图所示。 属于CsCl结构的晶体有CsBr、CsI、NH4Cl 等。
7
3、闪锌矿(立方ZnS)型结构(共价晶体)
闪锌矿为Fm3m 空间群, a0=0.540nm。面心立方格子,S=按立方 紧密堆积,Zn2+交错处于八分之一小立方体中心,占据四面体空 隙的一半; 质点坐标及投影图如图所示。

无机材料科学基础-之-硅酸盐的晶体结构

无机材料科学基础-之-硅酸盐的晶体结构
硅酸盐晶体结构
Crystal Structure of Silicates
1
第一节 硅酸盐结构的一般特点及分类 第二节 硅酸盐晶体结构
● 2.1 岛状结构 ● 2.2 组群状结构 ● 2.3 链状结构 ● 2.4 层状结构 ● 2.5 架状结构
2
第一节 硅酸盐结构的一般特点及分类
一、硅酸盐结构的特点
22
硅氧四面体组群状结构包括:双四面 体、三节环、四节环和六节环,如下:
23
2)绿宝石(绿 柱石)
绿宝石的化
学式是
Be3A12(Si6018)。 其晶体结构属于 六方晶系;空间 群为P6∕mcc
ao=0.921nm co=0.917nm Z=2。
(001)面投影图
115
35
100
50
85 65
50
4
(4)[SiO4]中O—Si—O的结合键不是一条直线, 而是一折线( ≈145° )。
(5)在硅酸盐晶体中,除了硅和氧以外,组成 中还含有其他阳离子多达50多种,因此其结构十 分复杂。常发生同晶取代。
145°
5
(6)在硅酸盐晶体 中,对于每个硅氧 四面体之中的氧, 又可分为桥氧和非 桥氧。
16
硅氧四面体是孤
立的,硅氧四面体 之间是由镁离子按 镁氧八面体的方式 相连的。每一个O2离子和三个Mg2+离 子以及一个Si4+离 子相连,电价是平 衡的。
(001)面投影图
17
按照晶体结构的局部电中性要求, L.C.鲍林提出以下五项规则:
第一规则 在每一正离子周取决于半径和, 正离子的配位数取决于正、负离子的半径比。
当[SiO4]之间完全相互直接连接形成架状结 构时,O/Si=2。

无机非金属材料的分类和晶体结构

无机非金属材料的分类和晶体结构

25 0 ,1 0 0
75 50
C
0 ,1 0 0
图3-1 金刚石的晶胞图和投影图
结构与性能的关系
性能:最切割材料
磨料及钻井用钻头
集成电路中散热片
高温半导体材料
同类型结构的物质有: • 硅、锗、灰锡(-Sn) • 立方氮化硼(c-BN):
硬度仅次于金刚石,但热稳定性远高于 金刚石,对铁系金属元素有较大的化学稳 定性。用以制造的磨具,适于加工既硬又 韧的材料,如高速钢、工具钢、模具钢、 轴承钢、镍和钴基合金、冷硬铸铁等。
1.金刚石结构
IV族元素,立方晶系, Fd3m空间群,a=0.356nm; 面心立方结构:C原子分布于八个角顶和六
个面心,四个C原子交叉地位于4条体对角 线的1/4、3/4处。每个C原子周围都有四个 碳,共价键连接,配位数为4。
0 ,1 0 0
50
0 ,1 0 0
A
75 50
25
B
0 ,1 0 0 50
图3-2 石墨晶体结构(虚线范围为单位晶胞)
结构与性能的关系
石墨: 润滑性 (中低温固体润滑剂 ) 良好的导电性 (高温发热体 ) 硬度低,易加工 在惰性气氛中熔点很高(高温坩埚 )
六方氮化硼 (h-BN):
h-BN与石墨是等电子体,有白色石墨之称。 有良好的润滑性,电绝缘性导热性和耐化学腐蚀 性,具有中子吸收能力。化学性质稳定,对所有 熔融金属化学呈惰性,成型制品便于机械加工, 有很高的耐湿性。
硅酸盐晶体中,一个[SiO4] 顶点的O2-还可以 和另一个[SiO4] 相连接(2个配位多面体共用一 个顶点),或者和另外3个[MgO6] 相连接(4个配 位多面体共用一个顶点),即可使O2-电价饱和。

材料晶态结构及有序化

材料晶态结构及有序化

编辑课件ppt
19
材料科学基础
3. NaCl 型结构
编辑课件ppt
20
材料科学基础
以氯化钠作为这类结构的代表
化学式NaCl
立方晶系
基本格子为立方面心格子
Fm3m空间群
ao = 0.563 nm
编辑课件ppt
21
材料科学基础
• 以体积较大的Cl-作立方紧密堆积 • Na 如何填充? • 孔隙如何分布?
Cl
编辑课件ppt
Na
25
材料科学基础
4. CsCl型结构
编辑课件ppt
26
材料科学基础
• 氯化铯(CsCl) • 立方晶系
• Pm3m空间群 • 简单(原始)立方格子
• ao = 0.411nm
编辑课件ppt
C s+
Cl
27
材料科学基础
5. -ZnS(闪锌矿)型结构
编辑课件ppt
28
材料科学基础
编辑课件ppt
9
材料科学基础
同类型结构的物质有: •硅 •锗 • 灰锡(-Sn) • 人工合成立方氮化硼(c-BN)
编辑课件ppt
10
材料科学基础
制造方法
编辑课件ppt
11
材料科学基础
2. 石墨结构
编辑课件ppt
12
材料科学基础
化学式C 六方晶系 六方原始格子 P63/mmc空间群 ao=0.246nm co=0.670nm
• 立方晶系 • 面心立方格子 • 空间群
• z=4
编辑课件ppt
29
材料科学基础
0 ,1 0 0
50
0 ,1 0 0
75 50

无机化学 晶体结构

无机化学 晶体结构
1
第三章 晶体结构
Crystal structure
2
钻石恒久远 一颗永流传
祖母绿
钠长石 Na[AlSi3O8] 绿柱石 Be3Al2(Si O3)6
3
4
5
教学大纲要求
晶格的概念,晶体的类型,离子晶体,晶格
能的概念与计算,离子极化的概念,离子极
化对物质结构和性质的影响。
分子晶体,原子晶体,金属晶体,金属键理 论,混合晶体。
a
正离子 负离子
b
c
34
半径比规则(3)

当r+/r- 0.414时,负离子接触,正、负离子 彼此不接触。体系的排斥力大于吸引力,该 构型不稳定,趋向于形成配位数少的构型。

当r+/r- 0.414时,负离子彼此不接触,正、
负离子之间接触,此时,吸引力大于排斥力, 该构型可以稳定存在。
r+/r-<0.414
CsCl型 NaCl型 ZnS型
8 6 4
1 4 4
(2)离子型晶体的特点
①离子型晶体中,正、负离子通过离子键结合,离 子的电荷越高,半径越小(核间距越小),正、负 离子间的静电作用力越强,其熔、沸点也就越高; 离子型晶体一般具有较高的熔、沸点和硬度; 化合物 NaCl KCl CaO MgO
Na+ 95 K+ 133 Ca2+ 99 Mg2+ 65 半径pm Cl- 181 Cl- 181 O2- 140 O2- 140 熔点K 沸点K 1074 1686 1041 1690 2845 3123 3073 3873
(1)几种简单的离子型晶体
NaCl 型
面心立方晶格,每个离子被 6 个相反电荷的离子包围着,配 位数为6。LiF、CsF、NaI等 属于NaCl型。

无机材料 PPT

无机材料 PPT

2 精细陶瓷
• ①高温结构陶瓷 :陶瓷发动机的材料选用 氮化硅,它的机械强度高、硬度高、热 膨胀系数低、导热性好、化学稳定性高, 是很好的高温陶瓷材料。氮化硅可用多 种方法合成,工业上普遍采用高纯硅与 纯氮在1 300 C反应后获得
3S i+2N 21 3 0 0o CS i3 N 4
• 还有碳化硅、二氧化锆、氧化铝等。
• 旧石器时代可追溯到公元前10万年左右。公元 前6000年,人类发明了火,掌握了钻木取火的 技术。有了火,不仅可以熟食、取暖、照明和 驱兽,还可以烧制陶器。陶瓷材料的发明和应 用,创造了新石器时代的仰韶文化,后来在制 陶技术的基础上又发明了瓷器。
• 人们在大量地烧制陶瓷的实践中,熟练 地掌握了高温加工技术,利用这种技术 来烧炼矿石,逐渐冶炼出铜及其合金青 铜。可以说这是人类社会最早出现的金 属材料,它使人类社会从新石器时代转 入到青铜器时代。
3 纳米陶瓷
• 精细陶瓷粉体的颗粒较大,属微米级(106 m),有人用新的制备方法把陶瓷粉体 的颗粒加工到纳米级(10-9 m),用这种所 谓超细微粉体粒子来制造陶瓷材料,得 到新一代纳米陶瓷,这是陶瓷材料的第 三次飞跃。纳米陶瓷具有延性,有的甚 至出现超塑性。如室温下合成的TiO2陶 瓷,它可以弯曲,其塑性变形高达100 %,韧性极好。
材料可按不同的方法分类。
• 若按用途分类,可将材料分为结构材料 和功能材料两大类。结构材料主要是利 用材料的力学和理、化性质,广泛应用 于机械制造、工程建设、交通运输和能 源等各个工业部门。功能材料则利用材 料的热、光、电、磁等性能,用于电子、 激光、通讯、能源和生物工程等许多高 新技术领域。功能材料的最新发展是智 能材料,它具有环境判断功能、自我修 复功能和时间轴功能,人们称智能材料 是21世纪的材料。

第二章 晶体结构

第二章   晶体结构

第二章晶体结构内容提要大多数无机材料为晶态材料,其质点的排列具有周期性和规则性。

不同的晶体,其质点间结合力的本质不同,质点在三维空间的排列方式不同,使得晶体的微观结构各异,反映在宏观性质上,不同晶体具有截然不同的性质。

1912年以后,由于X射线晶体衍射实验的成功,不仅使晶体微观结构的测定成为现实,而且在晶体结构与晶体性质之间相互关系的研究领域中,取得了巨大的进展。

许多科学家,如鲍林(Pauling)、哥希密特(Goldschmidt)、查哈里阿生(Zachariason)等在这一领域作出了巨大的贡献,本章所述内容很多是他们研究的结晶。

要描述晶体的微观结构,需要具备结晶学和晶体化学方面的基本知识。

本章从微观层次出发,介绍结晶学的基本知识和晶体化学基本原理,以奠定描述晶体中质点空间排列的理论基础;通过讨论有代表性的无机单质、化合物和硅酸盐晶体结构,以掌握与无机材料有关的各种典型晶体结构类型,建立理想无机晶体中质点空间排列的立体图像,进一步理解晶体的组成-结构-性质之间的相互关系及其制约规律,为认识和了解实际材料结构以及材料设计、开发和应用提供必要的科学基础。

2.1 晶体化学基本原理由于天然的硅酸盐矿物和人工制备的无机材料制品及其所用的原料大多数是离子晶体,所以在这一节主要讨论离子晶体的晶体化学原理。

一、晶体中键的性质(键性的判别)过去的教学中,以电子云的重要情况讨论键型。

Na-Cl认为是典型的离子键。

硅酸盐晶体中比较典型的结合键方式:Si-O Al-O M e-O (M代表许多碱、碱土金属)Me-O、Al—O键通常认为是比较典型的离子键,而Si-O键中Si-O键离子键、共价键成分相当。

为了方便,通常也认为是离子键。

那么键的成分是如何确定的?即通常如何判断键的类型呢?Pauling通过大量的研究发现,可以根据各元素的电负性差别判断键的类型(由于电负性反映元素粒子得失电子的能力)。

元素电子的电负性x=元素电子的电离能力I+元素原子的电子亲和能E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 面心立方点阵构成的晶体结构 (1) 岩盐(NaCl)型 (AB 型)
Cl-作面心立方紧密积, (2)Na+填满所有的4个八
面体空隙 (r+ / r- = 0.54); 正、负离子配位数比 为6∶6。
属于NaCl型结构的化合物有: (i)离子键型的碱金属卤化物、碱土金属氧化物和硫化物; (ii)过渡键型的金属氧化物、硫化物及间隙型的碳化物和
第二章 无机材料的晶体结构与缺陷
2.1 晶态与非晶态 2.2 化学键和晶体的类型 2.3 等径球体密堆积 2.4 鲍林(Pauling)规则 2.5 无机材料典型晶体结构 2.6 间隙相和间隙化合物 2.7 晶体结构的缺陷
2.4 鲍林(Pauling)规则
鲍林规则概括总结了离子晶体中围绕正离子堆积 的负离子配位多面体的性质和相互连接规律。
(4)尖晶石(MgAl2O4)型 (AB2O4型)
尖晶石:MgAl2O4 O2-离子面心立方紧积, Mg2+占据1/8四面体隙, Al3+占据1/2八面体隙。
每一个尖晶石晶胞含 32个O2-, 8个Mg2+和 16个Al3+ ,即一个晶 胞中相当于含有8个 [MgAl2O4]“分子”。
尖晶石晶胞图
举例:Ⅲ-Ⅴ和Ⅱ-Ⅵ族及Ⅳ-Ⅳ族化合物
如:立方-BN 、AIP、GaAS、InSb、 β- ZnS 、 β- SiC, 组成这些化合物的原子的平均价电子数 目与单质C相同,应具有金刚石形结构(与立方 ZnS型相同, 碳原子占据锌离子和硫离子的位 置)。
(3) 萤石(CaF2)型 (AB2 型)
Ca2+作面心立方紧密
示意图
2
线性
0~0.155
3
三角形 0.155~0.255
4
四面体 0.255~0.414
6
八面体 0.414~0.732
8
立方体 0.732~1.000
褐色圆 球表示 处于空 隙位置 的正离 子
第二规则(电价规则)
在一个稳定的离子晶体结构中,每个负离子的
电价Z—等于或接近等于相邻各正离子至该负离子的 静电强度S的总和。
静电键强度:
s z n
负离子的电价数:
此式对与一个负离子键 连的所有正离求和。
该规则指明了一个负离子与点的规则。
例1:NaCl晶体 r+ / r- = 0.54
Na+的配位数为6,配位多面 体构型为八面体。
Na+--Cl-静电键强度 s=1/6, 6个Na+至Cl-的诸键强之和正 好等于 Cl-的电价数(-1)。
S2-作面心立方紧密堆 积,Zn2+离子相间占据 其中1/2的四面体空隙 ( r+ / r- =0.40 )。 正、负离子配位数比 4∶4。
(AB 型)
属于立方ZnS型结构的化合物有: β- ZnS 、β- SiC、AIP、GaAS、InSb、立方-BN等。
固体化学中的等电子规则: 价电子相同的化合物具有类似的结构。
尖晶石结构可分为正型和反型两类:
正型尖晶石:A2+都填充在四面体空隙中(8个), B3+ 都填充在八面体空隙中(16个) ,
记作 [A2+]t[B3+B3+]oO4
反型尖晶石:A2+ 占据在八面体空隙中(8个), B3+ 占据在八面体空隙中(8个), 占据在四面体空隙中(8个)。
记作 [B3+]t[A2+B3+]oO4
例2:CaF2晶体
r+ / r- = 0.79 ,
Ca2+离子的配位数为8, 配位体构型为立方体。
Ca2+至F-的静电键强度: S= 2/8=1/4
F-离子的电价数为 -1,要求 有4个Ca2+与F-配位, 即F-是4个配位立方体的顶点。
例3:硅酸盐离子晶体中, r+ / r- = 0.29 ,
举例:
正型尖晶石: Mn3O4,可表示为 [Mn2+]t[Mn3+Mn3+]oO4。 及 FeAl2O4、ZnAl2O4、MnAl2O4等。
反型尖晶石: Fe3O4 ,可表示为 [Fe3+]t[Fe2+Fe3+]oO4。 及MgFe2O4 等。
i
si

6
1 6
1
即每个Cl-是6个 [NaCI6] 配位
八面体的公共顶点。













Na+ Cl-
氮化物。 如:NaCl、NaI、MgO、SrO、BaO、CdO、MnO、
CoO、NiO、TiN、ScN、LaN、ZrN、CrN、TiC 这一结构的化合物,多数具有熔点高、稳定性好等特 点,如MgO的熔点为2852℃,CaO的熔点为2600℃, TiC的熔点为3140℃。
(2) 闪锌矿(立方或β- ZnS)型
堆积,F-占据所有的四
面体空隙。Ca2+与F-的
配位数比8 ∶4。
CaF2的结构也可看 成是F-简单立方堆积,
Ca2+填入1/2的立方体
空隙中。
(r+ / r- =0.79 )。
Ca2+
F-

属于CaF2型结构的化合物有:CaF2,CeO2, UO2,ZrO2,HfO2,BaF2,PbF2等。
每个尖晶石晶胞含8个小立方体,每一小立方体含 4个O2- ,共32个O2- 。32个O2-堆积形成64个四面 体空隙和32个八面体空隙(1∶2∶1)。
AB2O4型中: A和B的总电价为8。 A为二价金属,如:Mg2+、Mn2+、Fe2+、Co2+、Zn2+、Ni2+等; B为三价金属,如:Al3+、Cr3+、Ga3+、Fe3+、Co3+等
Si4+处于O2-负离子的正四面体空隙中,配位数为4。
Si4+-O2-的静电键 强度为 4/4 = 1, O2-电价为 -2价, 每个O2-要与2个Si4+ 离子键连。 因此,在硅酸盐晶 体中,硅氧四面体 [SiO4]是共顶连接的, 每个顶点O2-为两个 四面体所共有。
2.5 无机材料典型晶体结构
第一规则(负离子配位多面体规则) 在离子晶体中,正离子的周围形成一个负离子配位多 面体,正负离子间的平衡距离取决于离子半径之和,正离 子的配位数取决于正负离子的半径比。
此规则指明了围绕着正离子的负子配位多面体的性质。
离子半径比R+/R-与配位数的关系
正离子 配位数
空隙(配位多 面体)构型
半径比 R+/R-
相关文档
最新文档