等比数列性质及其应用知识点总结与典型例题(经典版)
等比数列概念知识点归纳总结
等比数列概念知识点归纳总结等比数列是数学中常见的一个概念,也是数列中的一种特殊类型。
在等比数列中,每一项与前一项的比值都是相等的。
本文将对等比数列的概念、性质和应用进行归纳总结。
一、等比数列的概念等比数列是指一个数列中,从第二项开始,每一项与前一项相除的商都相等。
通常用字母a表示首项,q表示等比数列的公比。
根据这个概念,我们可以得到等比数列的通项公式:an = a * q^(n-1)其中,an为等比数列的第n项。
二、等比数列的性质1. 公比的取值:公比q可以是任意实数,也可以是0,但不能是1。
当q为正数时,等比数列的项随着n的增大而增大;当q为负数时,等比数列的项随着n的增大而交替增大和减小。
2. 比值关系:等比数列中任意两项的比值都是相等的,即相邻项的比值等于公比q。
3. 对数关系:等比数列的对数数列也是等差数列。
如果取对数后的数列为Ar,则有Ar = loga + (n-1)logq,其中,loga为log以a为底的对数。
三、等比数列的应用等比数列在实际中有广泛的应用,以下是一些常见的应用场景:1. 财务领域:等比数列常用于计算复利的问题,例如存款利息计算、债券利息计算等。
2. 自然科学:许多物理、化学等自然科学问题中都可以用等比数列来描述,如放射性元素衰变问题、细胞分裂问题等。
3. 经济学:等比数列常用于描述经济增长、人口增长等问题。
4. 数学应用:等比数列常用于解决等比方程、等比不等式等数学问题。
总结:通过对等比数列的概念、性质和应用的归纳总结,我们了解到等比数列在数学以及实际生活中的重要性。
等比数列是数学中的一种基本概念,在解决实际问题时具有广泛的应用。
熟练掌握等比数列的概念和性质,能够更好地解决与等比数列相关的各种数学问题。
(完整版)等比数列知识点总结
a1 n -mn 等比数列知识梳理:1、等比数列的定义:a n= q ( q ≠ 0) (n ≥ 2,且n ∈ N * ) n -1, q 称为公比2、通项公式:a = a q n -1 = a1 q n = A ⋅ B n (a ⋅ q ≠ 0, A ⋅ B ≠ 0) n 1 q1,首项: a ;公比: q推广:a = a nmq n -m ⇔ q n -m =a⇔ q = a naamm3、等比中项:(1) 如果 a , A , b 成等比数列,那么 A 叫做a 与b 的等差中项,即: A 2 = ab 或 A = ±ab11 n n 1 n 1 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为 相反数)(2) 数列 {a }是等比数列 ⇔ a2= a - ⋅ a +4、等比数列的前 n 项和 S n 公式:(1) 当q =1时, S n = na 1(2) 当q ≠1时,a (1 - q n )S ==n1- qa - a q1n1- q= a - a1 q n = A - A ⋅ B n = A ' B n - A ' 1- q 1- q( A , B , A ', B ' 为常数)5、等比数列的判定方法:(1) 用定义:对任意的 n ,都有n +1 = qa 或 n n +1 = q (q 为常数,a a n n≠ 0) ⇔ {a } n为等比数列a a nn a na(2) 等比中项:a 2= a n +1 a n -1 (a n +1n -1 ≠ 0) ⇔ { } n为等比数列(3) 通项公式:= A ⋅ B n ( A ⋅ B ≠ 0) ⇔{a }为等比数列 6、等比数列的证明方法: 依据定义:若a n= q ( q ≠ 0) (n ≥ 2,且n ∈ N * ) n -1或a n +1 = qa n ⇔ {a n } 为等比数列7、等比数列的性质:(1) 当q ≠1时①等比数列通项公式a a nn n mt 3 a = a q n -1 = a1 q n = A ⋅ B n ( A ⋅ B ≠ 0) n 1q是关于n 的带有系数的类指数函数,底数为公比 q ;②前n 项和a (1- q n ) a - a q n a a S = 1 = 1 1 1 - 1 q n = A - A ⋅ B n = A ' B n - A ' n1- q 1- q 1- q 1- q,系数和常数项是互为相反数的类指数函数,底数为公比q 。
等比数列知识点总结与典型例题+答案
等比数列知识点总结与典型例题2、通项公式:4、等比数列的前n 项和S n 公式:(1)当 q 1 时,S n na in⑵当q 1时,5罟5、等比数列的判定方法:等比数列等比中项:a n 2a n 1a n 1 (a n 1a n 1 0){a n }为等比数列通项公式:a nA B n A B 0{a n }为等比数列1、等比数列的定义:a n 1a n 2,且n N * , q 称为公比n 1a naga iB n a i0,A B0,首项:a 1;公比:q推广:a na m qa nama n m — \ a m3、等比中项:(1)如果a, A, b 成等比数那么A 叫做a 与b 的等差中项,即: A 2 ab 或A ab注意:同号的两个数才有等比中并且它们的等比中项有两个((2)数列a n 是等比数列2 a n a n 1aq qA'B nA' ( A, B,A',B'为常数)(1) 用定义:对任意的都有a n 1qa n 或旦口 q (q 为常数,a n 0){a n }为a n6、等比数列的证明方法:依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 17、等比数列的性质:(2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。
(3) 若m n s t(m,n,s,t N*),则a. a m a s a t。
特别的,当m n 2k 时,得2a n a m a k注:3] a n a2 a n 1 a3a n 2等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列{a n}中,a1 a9 64, a3 a7 20, 求a11.思路点拨:由等比数列的通项公式,通过已知条件可列出关于a1和q的二元方程组,解出a i和q,可得an ;或注意到下标1 9 3 7,可以利用性质可求出a3、a y,再求a ii.总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1 ] {an}为等比数列,a仁3,a9=768,求a6。
等比数列知识点概念归纳总结
等比数列知识点概念归纳总结等比数列是数学中的重要概念,它在很多领域中都有广泛的应用。
本文将对等比数列的基本概念、性质和常见问题进行归纳总结。
一、基本概念等比数列是指一个数列中,每一项与它前一项的比值都相等的数列。
这个比值称为等比数列的公比,用字母q表示。
设等比数列的首项为a1,公比为q,则数列的通项公式可以表示为:an = a1 * q^(n-1)二、性质1. 等比数列的公比q必须为非零实数。
如果q大于1,则数列呈递增趋势;如果0<q<1,则数列呈递减趋势。
2. 等比数列的前n项和可以通过以下公式计算:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数。
3. 当q大于1时,等比数列趋于正无穷;当0<q<1时,等比数列趋于零。
4. 若一个数列既是等差数列又是等比数列,则这个数列必为常数数列,即a1 = an = a。
三、常见问题1. 如何判断一个数列是否是等比数列?若一个数列中,每一项与它前一项的比值都相等,则这个数列为等比数列。
2. 如何确定等比数列的公比?等比数列的公比可以通过任意两项的比值来确定。
选择两项,例如第n项和第n+1项,计算它们的比值,如果得到的结果对于数列中的任意两项都相等,则该结果即为等比数列的公比。
3. 如何求等比数列的第n项?可以通过数列的通项公式an = a1 * q^(n-1),将首项和公比代入公式,计算得到第n项的值。
4. 如何求等比数列的前n项和?可以利用等比数列的前n项和公式Sn = a1 * (1 - q^n) / (1 - q)计算前n项和的值。
等比数列在数学中有着广泛的应用,特别是在金融、自然科学和工程领域。
例如在金融领域,等比数列可以用来描述复利计算中的本金增长;在自然科学中,等比数列可以用来描述物种繁衍的规律;在工程领域,等比数列可以用来描述扩大或缩小的比例关系。
总结:等比数列是一种重要的数列概念,它具有一些基本概念、性质和常见问题。
等比数列知识点总结与典型例题+答案
等比数列知识点总结与典型例题1、等比数列的定义:*12,n na q q n n Na 0且,q 称为公比2、通项公式:11110,0n nnna a a qqA Ba qA B q,首项:1a ;公比:q推广:n mn mn n n mn m mma a a a q qqa a 3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2Aab或Aab注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列na 是等比数列211nnna a a 4、等比数列的前n 项和n S 公式:(1)当1q时,1n S na (2)当1q时,11111nn na q a a q S qq11''11nnna a qA A BA BA qq(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n nn nn na a qa q q a a a 或为常数,为等比数列(2)等比中项:21111(0){}nn n n nn a a a a a a 为等比数列(3)通项公式:0{}nnn a A BA Ba 为等比数列6、等比数列的证明方法:依据定义:若*12,n na q q n n Na 0且或1{}n n n a qa a 为等比数列7、等比数列的性质:(2)对任何*,m n N,在等比数列{}n a 中,有n mn m a a q。
(3)若*(,,,)m nst m n s tN ,则n ms t a a a a 。
特别的,当2m n k 时,得2n mka a a注:12132n nna a a a a a 等差和等比数列比较:经典例题透析类型一:等比数列的通项公式等差数列等比数列定义da a n n1)0(1qq a a nn 递推公式d a a nn 1;mda a nmnqa a n n1;mn m n qa a 通项公式dn a a n )1(111n n qa a (0,1q a )中项2kn kna a A(0,,*knN kn ))0(knk n knk n a a a a G (0,,*knN kn )前n 项和)(21n n a a n S dn n na S n2)1(1)2(111)1(111q qq a a qq a q na S n nn重要性质),,,,(*q pnmN q p n m a a a a qpn m ),,,,(*q p n mN q p n m a a a a qp n m例1.等比数列{}n a 中,1964a a , 3720a a ,求11a .思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a 和q 的二元方程组,解出1a 和q ,可得11a ;或注意到下标1937,可以利用性质可求出3a 、7a ,再求11a .总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{}为等比数列,a 1=3,a 9=768,求a 6。
(完整版)等比数列性质及其应用知识点总结与典型例题(经典版)
等比数列知识点总结与典型例题1、等比数列的定义:,称为公比()()*12,nn a q q n n N a -=≠≥∈0且q 2、通项公式:,首项:;公比:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠1a q 推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或,,a A b A a b 2A ab =A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列是等比数列{}n a 211n n n a a a -+⇔=⋅4、等比数列的前项和公式:n n S (1)当时,1q =1n S na =(2)当时,1q ≠()11111n n n a q a a qS q q--==--(为常数)11''11n n n a aq A A B A B A q q=-=-⋅=---,,','A B A B 5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列n 11(0){}n n n n n na a qa q qa a a ++==≠⇔或为常数,(2)等比中项:为等比数列21111(0){}n n n n n n a a a a a a +-+-=≠⇔(3)通项公式:为等比数列()0{}n n n a A B A B a =⋅⋅≠⇔6、等比数列的证明方法:依据定义:若或为等比数列()()*12,nn a q q n n N a -=≠≥∈0且1{}n n n a qa a +=⇔7、等比数列的性质:(2)对任何,在等比数列中,有。
*,m n N ∈{}n a n m n m a a q -=(3)若,则。
特别的,当时,得*(,,,)m n s t m n s t N +=+∈n m s t a a a a ⋅=⋅2m n k +=注:2n m k a a a ⋅=12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列中,, ,求.{}n a 1964a a ⋅=3720a a +=11a 思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出1a q 和,可得;或注意到下标,可以利用性质可求出、,再求.1a q 11a 1937+=+3a 7a 11a 解析:法一:设此数列公比为,则q 8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:..........(3) 241(1)20a q q +=∴.10a >由(1)得: , ∴ (4)421()64a q =418a q =(3)÷(4)得:,42120582q q +==∴,解得或422520q q -+=22q =212q =当时,,;22q =12a =1011164a a q =⋅=当时,,.21q =132a =101111a a q =⋅=定义da a n n =-+1)0(1≠=+q q a a nn 递推公式da a n n +=-1;mda a n m n +=-q a a n n 1-=;mn m n q a a -=通项公式dn a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(0,,* k n N k n ∈))0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a q p n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅法二:∵,又,193764a a a a ⋅=⋅=3720a a += ∴、为方程的两实数根,3a 7a 220640x x -+= ∴ 或⎩⎨⎧==41673a a ⎩⎨⎧==16473a a ∵, ∴或.23117a a a ⋅=271131a a a ==1164a =总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。
高中数学总结归纳 等比数列的性质及应用
等比数列的性质及应用与等差数列一样,等比数列也有根据其概念或通项得出的一些重要性质,运用其性质可以使解题更为简便.一、若项数为3n 的等比数列(1)q ≠-前n 项和与前n 项积分别为nS '与n T ',次n 项和与次n 项积分别为2n S '与2n T ',最后n 项和与最后n 项积分别为3n S '与3n T ',则n S ',2n S ',3n S '成等比数列,n T ',2n T ',3n T '亦成等比数列.例1 已知一个等比数列的前n 项和为12,前2n 项和为48,求其前3n 项和.解:由题设,可知12n S '=,2481236n S '=-=, 22233610812n n n S S S ''∴==='. 故该数列前3n 项的和为10848156+=.例2 设等比数列{}n a 的前n 项和为n S ,若10301070S S ==,,求40S . 解:Q {}n a 成等比数列,10201030204030S S S S S S S ∴---,,,也成等比数列,即22010103020()()S S S S S -=-,解得2030S =或2020S =-(不合题意,舍去).2302040302010()150S S S S S S +∴=+=-. 二、一般地,如果t k p m n r ,,,…,,,,…皆为自然数,且t k p m n r +++=+++……(两边的自然数个数相等),那么当{}n a 为等比数列时,有t kp m n r a a a a a a =···…···…. 例3 在等比数列{}n a 中,若99123992a a a a =···…·,求50a . 解:19929849515050a a a a a a a a ====Q ··…··, 999912399502a a a a a ∴==···…·,502a ∴=.三、公比为q 的等比数列,从中取出等距离的项组成一个新数列,此数列仍是等比数列,其公比为mq (m 为等距离的项数之差). 例4 在等比数列{}n a 中,若12341a a a a =···,131415168a a a a =···,求41424344a a a a ···. 解:由性质可知,依次4项的积为等比数列,设公比为q .设112341T a a a a ==···,4131415168T a a a a ==···, 34182T T q q ∴==⇒=.10101141424344121024T a a a a T q ∴====····.。
等比数列知识点归纳总结
等比数列知识点归纳总结等比数列是指一个数列中每一项与它的前一项的比值都相等的数列。
在等比数列中,我们可以通过一些重要的知识点来解决与数列相关的问题。
本文将对等比数列的概念、性质以及求和公式进行归纳总结。
一、等比数列的概念与性质1. 等比数列的概念:等比数列是指一个数列中,从第2项开始,每一项都是前一项乘以同一个常数的结果。
2. 公比的概念:在等比数列中,这个常数被称为公比,通常用字母q表示。
3. 公比的计算:公比q可以通过相邻两项的比值来计算,即等于后一项除以前一项。
公比q = 第(n+1) 项 / 第n 项4. 等比数列的性质:(1)任意项与它前一项的比值都等于公比q;(2)等比数列中,任意两项的比值都相等。
二、等比数列的求和公式在解决与等比数列相关的问题时,求和是一个重要的方面。
通过求和公式,我们能够快速计算等比数列的前n项的总和。
以下是等比数列的求和公式:Sn = a1*(1-q^n)/(1-q)其中,Sn表示前n项的和,a1表示第一项,q表示公比。
三、等比数列的常见问题解答1. 已知等比数列的首项a1和公比q,求出该数列的通项公式:通项公式可以通过逐项相除来得到。
假设通项公式为an,那么有:a2/a1 = a3/a2 = a4/a3 = ... = q根据这个比值相等的关系,可以得到通项公式:an = a1*(q^(n-1))2. 已知等比数列的部分项求和:有时候我们需要计算等比数列中从第m项到第n项的和,可以利用通项公式将问题转化为前n项和减去前m-1项和的差值。
S(m,n) = Sn - S(m-1)其中,S(m,n)表示从第m项到第n项的和。
3. 已知等比数列的前n项和Sn,求出该数列的通项公式:在这种情况下,可以通过求和公式逆推得到通项公式。
首先将求和公式改写为关于q的方程,然后解方程求得q的值,最后代入通项公式中即可得到结果。
以上是关于等比数列的概念、性质、求和公式以及常见问题的解答。
等比数列知识点归纳总结中职数学
等比数列知识点归纳总结中职数学在中职数学学习中,等比数列是一个重要的知识点。
本文旨在对等比数列的相关概念、性质及其应用进行归纳总结,以帮助读者更好地理解和掌握等比数列的知识。
一、等比数列的定义与基本性质等比数列是指一个数列中,从第二项起,每一项与前一项的比值都相等的数列。
具体地说,如果一个数列的通项公式为an=a1*q^(n-1),其中a1为首项,q为公比,则该数列就是一个等比数列。
1. 公比的概念:等比数列中相邻两项的比值称为公比,用q表示。
公比q是等比数列的重要参数,它决定了数列的增减趋势。
2. 首项与通项:等比数列中的第一项称为首项,用a1表示;数列中第n项的通项公式为an=a1*q^(n-1)。
3. 公比的取值范围:当公比q>1时,数列是递增的;当0<q<1时,数列是递减的;当q=1时,等比数列退化为等差数列。
4. 等比数列的性质:等比数列有许多重要性质,包括等差数列没有的特点。
比如,等比数列不存在有限项的和公式,但存在无穷项和的条件。
二、等比数列的常见问题及解答1. 如何判断一个数列是否是等比数列?要判断一个数列是否是等比数列,可以从两个方向入手。
一是计算相邻两项的比值,若得到的比值相等,则数列是等比数列;二是观察数列的通项公式,若满足an=a1*q^(n-1),则数列是等比数列。
2. 如何确定等比数列的公比和首项?已知一个数列是等比数列,若给出了数列的任意两项,可以通过求相邻两项的比值来确定公比q。
公比确定后,再利用已知的某一项和对应的索引值,可以求解首项a1。
3. 如何求等比数列的前n项和?与等差数列不同,等比数列没有固定的有限项和公式。
但当公比q 满足|q|<1时,等比数列存在无穷项和的条件,即S∞=a1/(1-q)。
其中,S∞表示等比数列的无穷项和。
4. 如何判断等比数列的性质和特点?通过观察数列的增减趋势和公比的取值范围,可以判断等比数列的性质和特点。
等比数列知识点总结及练习(含答案)
等比数列1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q 推广:n mn m n n n m n m m ma a a a q q q a a ---=⇔=⇔= 3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A ab =± 注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==--11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}nn n a A B A B a =⋅⋅≠⇔为等比数列6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n mn m a a q-=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
等比数列的性质与应用
等比数列的性质与应用等比数列(geometric progression)是指数列中任意两个相邻项的比等于同一个常数的数列。
在数学中,等比数列具有一些独特的性质和应用,本文将介绍这些性质以及如何应用等比数列解决一些实际问题。
一、等比数列的定义等比数列是指数列中的每一项与它前一项的比例都相等。
具体而言,如果一个数列满足对于任意的正整数 n,都有 an/an-1 = r (r ≠ 0),其中an 表示数列的第 n 项,an-1 表示数列的前一项,r 表示公比,则该数列可以被称为等比数列。
二、等比数列的性质1. 公比的性质等比数列的公比 r 是决定数列特征的重要因素。
当 r 大于 1 时,数列呈现递增的趋势;当 0 < r < 1 时,数列呈现递减的趋势;当 r 等于 1 时,数列的各项相等;当 r 小于 0 时,数列的各项交替变号。
2. 通项公式对于等比数列的通项公式,即 an = a1 * r^(n-1),其中 a1 表示数列的首项,an 表示数列的第 n 项。
3. 等比数列的和等比数列的前 n 项和 Sn 可以通过公式 Sn = a1 * (1 - r^n) / (1 - r) 求得。
三、等比数列的应用等比数列在实际中有广泛的应用,特别是在金融、工程、物理等领域中。
以下将介绍一些等比数列的典型应用。
1. 财务投资在财务投资中,利率往往以等比数列的形式递增或递减。
通过计算等比数列的前 n 项和,可以帮助投资者评估不同时间段内的资金增长情况,从而做出更明智的决策。
2. 网络传输等比数列在网络传输中的应用非常广泛。
例如,下载文件时,下载速度可能以等比数列递增或递减;发送数据包时,包的大小可能以等比数列的形式递增或递减。
3. 器械运动许多器械运动(如弹簧)的行为都可以通过等比数列来描述。
器械的某些性质随着使用次数的增加而发生变化,这种变化往往符合等比数列的规律。
4. 科学实验在科学实验中,等比数列被广泛用于模拟实验数据。
等比数列的性质及应用
等比数列的性质及应用等比数列是指一个数列中,从第二项起,每一项与前一项的比值均相等的数列。
在数学中,等比数列有许多重要的性质和应用。
本文将详细介绍等比数列的性质,并探讨其在实际问题中的应用。
一、等比数列的基本性质1. 公比在等比数列中,公比表示相邻两项之间的比值。
如果一个等比数列的首项是a,公比是r,那么第n项可以表示为an=a×r^(n-1)。
公比r的绝对值决定了数列的增长或者减小趋势。
2. 通项公式对于一个等比数列,通项公式可以通过首项和公比来表示。
在上述的an=a×r^(n-1)公式中,an表示第n项,a表示首项,r表示公比。
3. 前n项和等比数列的前n项和可以通过以下公式计算:Sn=a×(1-r^n)/(1-r)。
其中,Sn表示前n项的和,a表示首项,r表示公比。
二、等比数列的应用举例等比数列在各个领域都有着广泛的应用。
下面将介绍一些典型的应用。
1. 财务领域在财务领域,等比数列的应用极为常见。
例如,复利是指一笔资金在每个计息期内的增长情况,而复利的计算正好是一个等比数列的求和问题。
另外,企业盈利的增长也可以用等比数列进行建模和预测。
2. 科学研究在科学研究中,等比数列经常被用来描述和解决问题。
例如,放射性衰变的过程可以用等比数列描述,其中公比为衰变常数。
此外,生物群落中物种数量的变化、病毒感染的传播速度等现象也可以用等比数列进行建模。
3. 工程技术工程技术领域也广泛应用了等比数列。
例如,电路中的电阻、电容和电感等元器件的数值序列通常是按等比数列排列的。
此外,工程建设中材料的使用量、工作人员数量的调配等问题也可以通过等比数列来计算和规划。
4. 数学教育等比数列是数学教育中不可或缺的一部分。
通过学习等比数列的性质和应用,可以帮助学生提高数学思维能力和问题解决能力。
等比数列也经常被用作基础数学题目和竞赛数学题目的考察内容。
总结:通过上述的介绍,我们可以看出等比数列具有重要的性质和广泛的应用。
等比数列知识点总结
等比数列知识点总结等比数列是数学中常见的一种数列形式,它在数学和实际生活中都有着重要的应用。
了解等比数列的知识点,对于学生来说是非常重要的。
本文将对等比数列的定义、性质、通项公式、前n项和以及应用进行总结,希望能够帮助读者更好地理解和掌握等比数列的相关知识。
1. 定义。
等比数列是指一个数列中,从第二项起,每一项与它的前一项的比等于同一个非零常数的数列。
这个非零常数被称为等比数列的公比,通常用字母q表示。
2. 性质。
(1)等比数列中任意两项的比相等。
(2)等比数列中任意一项与它的前一项的比都等于公比q。
(3)等比数列中,若首项为a,公比为q,任意一项为an,则第n项可以表示为an=aq^(n-1)。
(4)等比数列中,若首项为a,公比为q,通项公式为an=aq^(n-1)。
3. 通项公式。
对于等比数列,通项公式是非常重要的,它可以用来表示等比数列中的任意一项。
通项公式的一般形式为an=aq^(n-1),其中an表示第n项,a表示首项,q表示公比,n表示项数。
4. 前n项和。
对于等比数列的前n项和也是一个重要的概念。
等比数列的前n项和可以通过通项公式进行推导,最终的结果为Sn=a(q^n-1)/(q-1),其中Sn表示前n项和,a表示首项,q表示公比,n表示项数。
5. 应用。
等比数列在实际生活中有着广泛的应用,比如金融领域中的利息计算、人口增长模型、生物种群的增长等。
在数学中,等比数列也常常出现在数列求和、数列推导等问题中,掌握等比数列的知识对于解决这些问题是非常有帮助的。
总结。
通过本文的介绍,我们对等比数列的定义、性质、通项公式、前n项和以及应用有了更深入的了解。
等比数列作为数学中的重要概念,对于学生来说是必须要掌握的知识点。
希望本文能够帮助读者更好地理解和掌握等比数列的相关知识,为日后的学习和工作打下坚实的基础。
高中数学选择性必修二 4 3 1 2等比数列的性质及应用(知识梳理+例题+变式+练习)(含答案)
4.3.1.2等比数列的性质及应用要点一 等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(m ,n ∈N *)(2)若p +q =s +t (p 、q 、s 、t ∈N *),则a p ·a q =s t a a 【重点总结】(1)在已知等比数列{a n }中任一项a m 及公比q 的前提下,可以利用a n =a m q n-m求等比数列中任意项a n ;(2)已知等比数列{a n }中的a m 和a n 两项,就可以使用a n a m =q n -m 求公比,其中m 可大于n ,也可小于n.要点二 等比数列的单调性已知等比数列{a n }的首项为a 1,公比为q ,则(1)当⎩⎪⎨⎪⎧ a 1>0q >1或⎩⎪⎨⎪⎧a 1<00<q <1时,等比数列{a n }为递增数列; (2)当⎩⎪⎨⎪⎧ a 1>00<q <1或⎩⎪⎨⎪⎧a 1<0q >1时,等比数列{a n }为递减数列; (3)当q=1时,等比数列{a n }为常数列(这个常数列中各项均不等于0); (4)当1<1时,等比数列{a n }为摆动数列. 【重点总结】由等比数列的通项公式可知,公比影响数列各项的符号:一般地,q>0时,等比数列各项的符号相同;q<0时,等比数列各项的符号正负交替.要点三 等比数列的其它性质 若{a n }是公比为q 的等比数列,则(1)若m ,p ,n (m ,n ,p ∈N *)成等差数列,则a m ,a p ,a n 成等比数列;(2)数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q ,q 2. (3)若{b n }是公比为p 的等比数列,则{a n b n }与⎩⎨⎧⎭⎬⎫a n b n 也都是等比数列,公比分别为pq 和qp .(4)在数列{a n }中,每隔k (k ∈N *)项取出一项,按原来的顺序排列,所得数列仍为等比数列,且公比为q k +1. (5)在数列{a n }中,连续相邻k 项的和(或积)构成公比为q k (或qk 2)的等比数列. 【重点总结】若数列{a n }是各项都为正数的等比数列,则数列{lg a n }是公差为lg q 的等差数列; 若数列{b n }是等差数列,公差为d ,则数列{cb n }是以c d (c>0且c ≠1)为公比的等比数列. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( )(3)当q =1时,{a n }为常数列.( )(4)若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( ) 【答案】(1)√(2)×(3)√(4)×2.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 【答案】D【解析】∵q <0,a 1>0,∴所有奇数项为正、偶数项为负,故成摆动数列,选D. 3.(多选题)若数列{a n }为等比数列,则下列式子一定成立的是( ) A .a 2+a 5=a 1+a 6 B .a 1a 9=a 25 C .a 1a 9=a 3a 7 D .a 1a 2a 7=a 4a 6 【答案】BC【解析】根据等比数列的性质知BC 正确.4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为________. 【答案】25【解析】∵a 7a 12=a 8a 11=a 9a 10=5,∴a 8a 9a 10a 11=25.题型一 等比数列性质的应用 【例1】已知{a n }为等比数列.(1)等比数列{a n }满足a 2a 4=12,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.【解析】(1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=12,所以a 1a 23a 5=14. (2)由等比中项,化简条件得a 23+2a 3a 5+a 25=25,即(a 3+a 5)2=25,∵a n >0,∴a 3+a 5=5.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10. 【方法归纳】有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项“下标”的指导作用.【跟踪训练1】(1)已知数列{a n }为等比数列,a 3=3,a 11=27,求a 7. (2)已知{a n }为等比数列,a 2·a 8=36,a 3+a 7=15,求公比q .【解析】(1)法一:⎩⎪⎨⎪⎧a 1q 2=3,a 1q 10=27相除得q 8=9.所以q 4=3,所以a 7=a 3·q 4=9.法二:因为a 27=a 3a 11=81,所以a 7=±9, 又a 7=a 3q 4=3q 4>0,所以a 7=9.(2)因为a 2·a 8=36=a 3·a 7,而a 3+a 7=15, 所以a 3=3,a 7=12或a 3=12,a 7=3. 所以q 4=a 7a 3=4或14,所以q =±2或q =±22.题型二 灵活设项求解等比数列【例2】已知4个数成等比数列,其乘积为1,第2项与第3项之和为-32,则此4个数为________________.【解析】设此4个数为a ,aq ,aq 2,aq 3.则a 4q 6=1,aq (1+q )=-32,① 所以a 2q 3=±1,当a 2q 3=1时,q >0,代入①式化简可得q 2-14q +1=0,此方程无解;当a 2q 3=-1时,q <0,代入①式化简可得q 2+174q +1=0,解得q =-4或q =-14.当q =-4时,a =-18;当q =-14时,a =8.所以这4个数为8,-2,12,-18或-18,12,-2,8.【变式探究】本例中的条件换为“前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积是-80”,则这4个数为__________________.【答案】1,-2,4,10或-45,-2,-5,-8【解析】由题意设此四个数为bq ,b ,bq ,a ,则有⎩⎪⎨⎪⎧b 3=-8,2bq =a +b ,ab 2q =-80,解得⎩⎪⎨⎪⎧a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧a =-8,b =-2,q =52.所以这四个数为1,-2,4,10或-45,-2,-5,-8.【方法归纳】巧设等差数列、等比数列的方法(1)若三数成等差数列,常设成a -d ,a ,a +d .若三数成等比数列,常设成aq ,a ,aq 或a ,aq ,aq 2.(2)若四个数成等比数列,可设为a q ,a ,aq ,aq 2.若四个正数成等比数列,可设为a q 3,aq ,aq ,aq 3.题型三 等比数列与等差数列的综合应用【例3】在公差为d (d ≠0)的等差数列{a n }和公比为q 的等比数列{b n }中,已知a 1=b 1=1,a 2=b 2,a 8=b 3. (1)求d ,q 的值;(2)是否存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由.【解析】(1)由a 2=b 2,a 8=b 3,得⎩⎪⎨⎪⎧ a 1+d =b 1q ,a 1+7d =b 1q 2,即⎩⎪⎨⎪⎧1+d =q ,1+7d =q 2, 解得⎩⎪⎨⎪⎧ d =5,q =6,或⎩⎪⎨⎪⎧d =0,q =1,(舍去).(2)由(1)知a n =1+(n -1)·5=5n -4, b n =b 1q n -1=6n -1.假设存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立,则5n -4=log a 6n -1+b , 即5n -4=n log a 6+b -log a 6.比较系数,得⎩⎪⎨⎪⎧log a 6=5,b -log a 6=-4,所以⎩⎪⎨⎪⎧a =615,b =1.故存在a =615,b =1,使得对任意n ∈N *,都有a n =log a b n +b 成立.【解题关键】 (1)联立方程组可求.(2)假设存在,由(1)得出方程,注意比较系数可求a ,b. 【方法归纳】求解等差、等比数列综合问题的技巧(1)理清各数列的基本特征量,明确两个数列间各量的关系.(2)发挥两个数列的基本量a 1,d 或b 1,q 的作用,并用好方程这一工具. (3)结合题设条件对求出的量进行必要的检验.【跟踪训练2】已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n, 若a 1,a k ,S k +2成等比数列,求正整数k 的值。
等比数列知识点及题型归纳
等比数列知识点及题型归纳一、等比数列简介等比数列是数学中常见的一种数列。
如果一个数列中,从第二项开始,每一项与前一项的比都相等,则这个数列被称为等比数列。
等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r表示公比,n表示项数。
二、等比数列的性质:1. 常比:等比数列中,公比r始终是一个常数。
2. 正比和负比:如果公比r>1,则称等比数列为正比数列;如果0<r<1,则称等比数列为负比数列。
3. 倒数和倒数的倒数:对于等比数列,如果公比r不等于1,则相邻两项的倒数也是一个等比数列,并且它们的公比是1/r。
4. 等比中项:对于等比数列,存在一个项x,称为等比中项,它满足x²=a1*a(n+1),其中a1表示第一项,an表示最后一项。
5. 等比数列的和:等比数列的前n项和可以表示为Sn = a1 * (1-r^n) / (1-r),其中a1表示第一项,r表示公比。
三、等比数列的常见题型:1. 求第n项:已知等比数列的首项和公比,求第n项的值。
2. 求前n项和:已知等比数列的首项和公比,求前n项和的值。
3. 求公比:已知等比数列的首项和第n项,求公比的值。
4. 求等比中项:已知等比数列的首项和最后一项,求等比中项的值。
5. 求满足条件的项数:已知等比数列的首项和公比,求满足条件的项数。
6. 判断数列性质:已知数列的前几项,判断数列是等比数列还是等差数列。
7. 求等差数列对应项:已知等差数列和等比数列的相同位置上的项相等,求该等差数列的对应项。
四、等比数列的应用:等比数列在实际生活和工作中有着广泛的应用。
以下是一些等比数列的典型应用场景:1. 财务计算:等比数列可以用来计算贷款或投资的复利。
2. 科学研究:等比数列的合理运用可以帮助科学家研究自然界中的各种现象。
3. 经济分析:等比数列可以用来分析经济增长和衰退的趋势。
4. 工程计划:等比数列可以用来计算任务的进度和耗时。
等比数列知识点总结和归纳
等比数列知识点总结和归纳数列在数学中占据着重要的地位,它们是数学研究的基础。
其中,等比数列作为一种特殊的数列,具有独特的性质和规律。
本文将对等比数列的基本概念、性质、公式和应用进行总结和归纳,以帮助读者更好地理解和应用等比数列。
一、等比数列的基本概念等比数列是指具有公比不为零的数列。
公比是指数列中任意两个相邻项的比值,通常用字母q表示。
根据定义,等比数列中的每一项与它的前一项的比值都是相等的。
二、等比数列的性质1. 公比的性质:等比数列的公比q决定了数列的性质。
当q>1时,数列为递增的;当0<q<1时,数列为递减的;当q=1时,数列为等差数列。
2. 通项公式:等比数列的通项公式是数列中任意一项与首项的比值的幂次方关系。
若首项为a,公比为q,第n项为an,则通项公式为an = a * q^(n-1)。
3. 前n项和公式:等比数列的前n项和公式是数列中前n项的和。
该公式可通过分两种情况讨论得出,即当q≠1时和当q=1时。
当q≠1时,前n项和公式为Sn = a * (q^n - 1) / (q - 1)。
当q=1时,前n项和公式为Sn = n * a。
4. 附加性质:等比数列还具有一些特殊的性质,比如任意三项成比例、倒数等比数列等。
这些特殊性质在问题求解中常常发挥重要作用。
三、等比数列的应用1. 复利计算:等比数列的应用广泛存在于复利计算中。
例如,一个年利率为r的账户,每年利滚利进行复利计算,那么每年的本金就构成了一个等比数列,利息也构成了一个等比数列。
2. 几何图形构造:等比数列的特性可以应用于几何图形的构造中。
例如,通过不断加减边长比值为q的等边三角形,可以构造出一种叫做“谢尔宾斯基三角形”的几何图形。
3. 自然界中的等比数列:等比数列的规律也在自然界中普遍存在,例如菜花的花瓣数、树枝的分支、蜂巢的结构等都呈现出等比数列的性质。
综上所述,等比数列作为一种重要的数列形式,其基本概念、性质、公式和应用都具有重要的研究意义和实际应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列知识点总结与典型例题1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法: 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
特别的,当2m n k +=时,得2n m k a a a ⋅= 注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列{}n a 中,1964a a ⋅=, 3720a a +=,求11a .思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a 和q 的二元方程组,解出1a 和q ,可得11a ;或注意到下标1937+=+,可以利用性质可求出3a 、7a ,再求11a . 解析:法一:设此数列公比为q ,则8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:241(1)20a q q +=..........(3) ∴10a >.由(1)得:421()64a q = , ∴418a q = (4)(3)÷(4)得:42120582q q +==, ∴422520q q -+=,解得22q =或212q =当22q =时,12a =,1011164a a q =⋅=; 当212q =时,132a =,101111a a q =⋅=. 法二:∵193764a a a a ⋅=⋅=,又3720a a +=,∴3a 、7a 为方程220640x x -+=的两实数根,∴⎩⎨⎧==41673a a 或⎩⎨⎧==16473a a ∵23117a a a ⋅=, ∴271131a a a ==或1164a =.总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零). 举一反三:【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。
【答案】±96法一:设公比为q ,则768=a 1q 8,q 8=256,∴q=±2,∴a 6=±96; 法二:a 52=a 1a 9⇒a 5=±48⇒q=±2,∴a 6=±96。
【变式2】{a n }为等比数列,a n >0,且a 1a 89=16,求a 44a 45a 46的值。
【答案】64;∵21894516a a a ==,又a n >0,∴a 45=4 ∴34445464564a a a a ==。
【变式3】已知等比数列{}n a ,若1237a a a ++=,1238a a a =,求n a 。
【答案】12n n a -=或32n n a -=;法一:∵2132a a a =,∴312328a a a a ==,∴22a = 从而13135,4a a a a +=⎧⎨=⎩解之得11a =,34a =或14a =,31a = 当11a =时,2q =;当14a =时,12q =。
故12n n a -=或32n n a -=。
法二:由等比数列的定义知21a a q =,231a a q =代入已知得2111211178a a q a q a a q a q ⎧++=⎪⎨⋅⋅=⎪⎩ 21331(1)7,8a q q a q ⎧++=⎪⇒⎨=⎪⎩211(1)7,(1)2(2)a q q a q ⎧++=⇒⎨=⎩将12a q=代入(1)得22520q q -+=, 解得2q =或12q =由(2)得112a q =⎧⎨=⎩或1412a q =⎧⎪⎨=⎪⎩ ,以下同方法一。
类型二:等比数列的前n 项和公式例2.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q. 解析:若q=1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1.因a 1≠0,得S 3+S 6≠2S 9,显然q=1与题设矛盾,故q≠1.由3692S S S +=得,369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得q 3(2q 6-q 3-1)=0,由q≠0,得2q 6-q 3-1=0,从而(2q 3+1)(q 3-1)=0,因q 3≠1,故312q =-,所以2q =-。
举一反三:【变式1】求等比数列111,,,39的前6项和。
【答案】364243; ∵11a =,13q =,6n =∴666111331364112324313S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-。
【变式2】已知:{a n }为等比数列,a 1a 2a 3=27,S 3=13,求S 5. 【答案】1211219或; ∵322273a a =⇒=,31(1)113313a q q q q -=⇒==-或,则a 1=1或a 1=9 ∴5555191131213121S 113913S ⎛⎫⨯ ⎪-⎝⎭==--或==-.【变式3】在等比数列{}n a 中,166n a a +=,21128n a a -⋅=,126n S =,求n 和q 。
【答案】12q =或2,6n =; ∵211n n a a a a -⋅=⋅,∴1128n a a =解方程组1112866n n a a a a =⎧⎨+=⎩,得1642n a a =⎧⎨=⎩ 或1264n a a =⎧⎨=⎩①将1642n a a =⎧⎨=⎩代入11n n a a q S q -=-,得12q =,由11n n a a q -=,解得6n =;②将1264n a a =⎧⎨=⎩代入11n n a a qS q -=-,得2q =,由11n n a a q -=,解得6n =。
∴12q =或2,6n =。
类型三:等比数列的性质例3. 等比数列{}n a 中,若569a a ⋅=,求3132310log log ...log a a a +++. 解析:∵{}n a 是等比数列,∴110293847569a a a a a a a a a a ⋅=⋅=⋅=⋅=⋅= ∴1032313log log log a a a +++ 553123103563log ()log ()log 910a a a a a a =⋅⋅=⋅==举一反三:【变式1】正项等比数列{}n a 中,若a 1·a 100=100; 则lga 1+lga 2+……+lga 100=_____________. 【答案】100;∵lga 1+lga 2+lga 3+……+lga 100=lg(a 1·a 2·a 3·……·a 100) 而a 1·a 100=a 2·a 99=a 3·a 98=……=a 50·a 51∴原式=lg(a 1·a 100)50=50lg(a 1·a 100)=50×lg100=100。
【变式2】在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________。
【答案】216;法一:设这个等比数列为{}n a ,其公比为q ,∵183a =,445127823a a q q ===⋅,∴48116q =,294q =∴23362341111a a a a q a q a q a q ⋅⋅=⋅⋅=⋅33389621634⎛⎫⎛⎫=⋅== ⎪⎪⎝⎭⎝⎭。
法二:设这个等比数列为{}n a ,公比为q ,则183a =,5272a =,加入的三项分别为2a ,3a ,4a ,由题意1a ,3a ,5a 也成等比数列,∴238273632a =⨯=,故36a =,∴23234333216a a a a a a ⋅⋅=⋅==。
类型四:等比数列前n 项和公式的性质例4.在等比数列{}n a 中,已知48n S =,260n S =,求3n S 。
思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k 项和,第2个k 项和,第3个k 项和,……,第n 个k 项和仍然成等比数列。
解析:法一:令b 1=S n =48, b 2=S 2n -S n =60-48=12,b 3=S 3n -S 2n 观察b 1=a 1+a 2+……+a n ,b 2=a n+1+a n+2+……+a 2n =q n (a 1+a 2+……+a n ), b 3=a 2n+1+a 2n+2+……+a 3n =q 2n (a 1+a 2+……+a n )易知b 1,b 2,b 3成等比数列,∴2223112348b b b ===,∴S 3n =b 3+S 2n =3+60=63. 法二:∵22n n S S ≠,∴1q ≠,由已知得121(1)481(1)601n na q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩①② ②÷①得514n q +=,即14n q = ③ ③代入①得1641a q=-, ∴3133(1)164(1)6314n n a q S q -==-=-。