燃气冷热电三联供

合集下载

分布式燃气冷热电三联供技术

分布式燃气冷热电三联供技术

分布式燃气冷热电三联供技术分布式燃气冷热电三联供技术是一种将燃气能源进行有效利用的技术,能够同时提供冷、热和电能源。

这种技术通过灵活的设备配置和优化的能源管理,将能源利用效率最大化,同时降低能源消耗和环境污染。

在分布式燃气冷热电三联供技术中,燃气被转化为电力、热能和冷能。

具体而言,燃气通过内燃机或燃气轮机产生电力,同时也产生热能,这些热能可以用于加热建筑物或生产过程中的蒸汽。

此外,燃气中的废热可以通过吸收式制冷机等冷能设备转化为冷能,用于空调或工业过程中的冷却。

分布式燃气冷热电三联供技术具有多项优势。

首先,它能够充分利用燃气资源,提高能源利用效率。

相比于传统的电力供应方式,该技术能够更高效地将燃气能源转化为电力。

同时,废热能够被充分利用,不仅降低了能源消耗,还减少了废物排放。

其次,该技术具有很强的灵活性和可扩展性。

设备配置可根据需要进行调整,能够适应不同规模的供暖或制冷需求。

此外,该技术也能够应对电力中断的问题,起到备用电源的作用。

除了以上的优势之外,分布式燃气冷热电三联供技术还有一些挑战需要克服。

首先,设备的投资成本较高,需要进行长期的经济评估。

其次,技术的运维和管理也需要一定的专业知识和维护成本。

此外,该技术在一些地方可能受到政府政策和监管的限制。

总体而言,分布式燃气冷热电三联供技术是一种具有广泛应用前景的能源技术。

通过充分利用燃气资源,提高能源利用效率,并减少能源消耗和环境污染,该技术可以为人们提供可靠而高效的能源供应。

然而,技术的投资成本和管理问题仍然需要进一步研究和解决,以实现该技术的商业化和大规模应用。

分布式燃气冷热电三联供技术在当今的能源领域备受关注。

随着全球能源需求的不断增加和对可再生能源的追求,这项技术成为了一个具有潜力的解决方案。

这篇文章将继续探讨分布式燃气冷热电三联供技术的相关内容。

分布式燃气冷热电三联供技术的核心是利用燃气能源,通过内燃机或燃气轮机产生电能,同时产生的热能可以为建筑物供暖或生产过程提供蒸汽,而废热则可以通过吸收式制冷机等冷能设备转化为冷能,用于空调或工业过程中的冷却。

北京燃气设计院-冷热电三联供

北京燃气设计院-冷热电三联供

北京燃气设计院 - 冷热电三联供引言冷热电三联供(Combined Cooling, Heating, and Power,CCHP)是一种综合利用能源的系统,它将冷却、供暖和电力生成联合起来,通过能源的高效利用,实现能源的可持续发展。

北京燃气设计院专门研究和设计冷热电三联供系统,以满足城市和企业的能源需求。

1. 什么是冷热电三联供?冷热电三联供是一种集冷却、供暖和电力生成于一体的综合能源系统。

它主要由以下几个组成部分组成:•发电机组:负责发电,并利用废热产生热水或蒸汽供热。

•制冷机组/吸收式制冷机组:负责提供冷却能力,制冷机组通过压缩蒸发制冷循环,吸收式制冷机组则利用吸附剂实现制冷效果。

•系统集成控制系统:用于监控和控制整个系统的运行,确保各个组件协调工作,提高能源利用效率。

2. 冷热电三联供的优势2.1 能源高效利用冷热电三联供系统通过综合利用废热,将能量的利用率提高到了80%以上,相比较传统的分别供热、供冷和发电的方式,能源利用效率有了大幅度的提升。

2.2 减少环境影响冷热电三联供系统能够减少二氧化碳和其他有害气体的排放,对环境造成的影响大大减轻。

通过废热的综合利用,减少了对燃料资源的需求,减少了燃烧对环境的污染。

2.3 提高能源安全性冷热电三联供系统可以提供稳定可靠的能源供应,如果出现电力中断,系统可以切换为自供能模式,保证建筑物或企业的正常运行。

2.4 经济效益显著冷热电三联供系统有效降低了能源的成本,通过综合能源的利用,降低了企业或建筑物的能源费用。

3. 北京燃气设计院的冷热电三联供解决方案北京燃气设计院已经积累了丰富的冷热电三联供设计和实施经验,为众多企业和城市提供了可靠的解决方案。

针对不同的需求,我们提供以下服务:3.1 设计和规划我们根据客户的需求和实际情况,进行系统的设计和规划。

我们的专业团队将评估能源需求,确定系统的规模和组成部分,并制定详细的施工方案。

3.2 工程实施我们提供全方位的工程实施服务,包括设备采购、安装调试、系统集成控制系统的搭建和调试等。

燃气冷热电三联供系统浅析

燃气冷热电三联供系统浅析

燃气冷热电三联供系统浅析引言随着全球经济的快速发展与化石能源的短缺,提高能源利用率和保护自然环境问题日益突出。

目前我国建筑运行能耗在社会总能耗中约占27%。

根据近30年来能源界的研究和实践,普遍认为建筑节能是各种节能途径中潜力最大、最为直接有效的方式。

天然气三联供系统以其能源利用效率高、节能环保、供电安全等优势逐步应用于建筑供能领域,实现了能源的多次利用和阶梯式供应。

与传统集中式供能技术相比,天然气冷热电三联供系统具有诸多优势,主要为小型用户供给能源,其形式安全、可靠一、燃气冷热电三联供技术产生背景中国经济建设高速发展的今天,能源短缺及环境污染问题日益突出,开发新能源,调整能源结构,以建设资源节约型和环境友好型社会一直是政府的发展目标。

新能源的开发利用需要全面的考虑其经济性、社会性以及生态性,在这种大的形势下,节能减排的分布式能源系统成为我国在能源方面发展的主要对象。

国际上应对气候变化和治理空气污染一直呼声不断,近年美国页岩气的开发利用极大的增加了国际市场天然气的供应,我国自俄罗斯进口来的天然气及自身天然气的发展,使整个能源机构发生了变化,中国计划到2030年非石化资源占一次能源的比重提高到20%左右,燃气热电冷联供技术恰逢其时。

天然气分布式能源,又称燃气热电冷联供系统,是一种建立在能源梯级利用概念基础上,将供热(采暖和供热水)、制冷及发电过程一体化的能源综合利用系统,其综合能源利用效率在70%以上,受到许多发达国家的重视并被称为“第二代能源系统”。

二、燃气冷热电联供的优势及应用燃气冷热电联供作为一种高效清洁的能源利用方式,具有节能、减排、经济、安全、削峰填谷、促进循环经济发展等多种不可替代的优势。

1)提高能源综合利用效率:运用能量梯级利用原理,先發电,再利用余热,体现了由能量的高品位到低品位的科学用能,且使一次能源综合利用效率和效益大幅度提高。

2)降低排放,保护环境:由于采用清洁燃料,大量减少了烟气中温室气体和其它有害成分,一次能源综合利用率的提高和当地的各种可再生能源的利用进一步起到减排效果。

燃气冷热电三联供工程技术规程

燃气冷热电三联供工程技术规程

燃气冷热电三联供工程技术规程6 电力系统6.1 冷热电三联供电站与电网系统的连接燃气冷热电三联供是“以热定电”为设计原则,采用“联网不上网”的并网方式。

冷热电三联供电站发电量仅占规划电负荷容量的1/3 ~1/2为宜,供电负荷容量不足部分由外网供给。

因此,电站的系统联络线采取“逆功率保护”措施和分别计量电量的方式,确保联供电站只受电,不向系统送电的原则。

三联供电站选择在10KV电压系统接入电网,在10KV电网上实现电力平衡,损耗最小,运行最经济。

发电机10KV母线或直配线可直供<1/2总规划电负荷的容量,其余负荷全部由系统供给。

如果规划负荷容量>15000千瓦,假设地区10KV供电系统满足不了规划供电负荷需求,则三联供电站需建设110KV/10KV或35KV/10KV降压变电站,发电机仍在10KV系统实现电力平衡。

实际工程中的二个接线实例:图1 某CHP站电气主接线图图2 某CHP站电气主接线图由于中、小型热电厂属于分布式电源等级的区网容量,当电厂联网运行后,发电机组将”跟随”区网系统运行,即其电压、频率等主要参数均取决于电力系统,除按区网调度和调峰需要外,不必随时进行调整,从而提高了运行的稳定性。

在联网运行的同时,必须考虑“解列”措施,以保证电力系统或发电机组发生故障时,能将故障限制在最小的范围内。

为此,电业部门往往要求把发电机出口断路器或进线断路器作为解列点,以便使电厂不会影响到系统;而用户为了提高规划区域的供电可靠性,往往根据不同的外供电系统考虑适当的联网点〔即解列点〕。

当发电机电压母线上的容量最大的一台发电机停机,或因供热负荷变动限制发电机组出力时,外网容量能满足发电机电压母线上的最大负荷需求。

当CHP站含联网变电站时,电压等级、容量、调节方式需经区网所在地的供电部门认定。

接线方案的选择。

1〕拟定2~3个可行的接线方案,并列出各方案中的主要电气设备进行经济比较,并从供电的可靠性、供电的质量、运行和维护的方便性以及建设速度等方面,进行充分的技术比较,最后确定一个最合理的方案。

燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析1. 引言1.1 燃气冷热电三联供制冷系统节能分析燃气冷热电三联供制冷系统是一种利用燃气发电系统产生的余热和冷凝水,结合燃气制冷机组和吸收式制冷机组共同供热供冷的系统。

通过优化能源利用、提高系统效率和节能降耗的技术手段,可以实现对传统空调供热供冷系统的节能改造和提升。

通过对燃气冷热电三联供制冷系统的节能分析,可以为推动燃气冷热电技术在供热供冷领域的广泛应用提供指导和借鉴,促进能源利用效率的提高,推动我国节能减排目标的实现。

2. 正文2.1 燃气冷热电系统简介燃气冷热电系统是一种集热电、空调、供暖等功能于一体的多能源综合利用系统。

其核心是利用燃气发电机组在发电的同时产生的废热进行供暖或制冷,从而实现能源的高效利用与综合利用。

燃气冷热电系统主要由燃气发电机组、吸收式制冷机组、燃气锅炉、换热器、冷热水泵及控制系统等组成。

燃气冷热电系统具有能量利用高效、环境污染少、运行稳定等特点。

燃气发电机组通过发电产生的废热可被充分利用,实现能量的高效利用;吸收式制冷机组和燃气锅炉能够根据实际需要进行灵活调节,提高系统的灵活性和适应性;系统的运行稳定性高,具有较长的使用寿命和低维护成本等优点。

2.2 燃气冷热电三联供系统能源利用特点分析燃气冷热电三联供系统是一种集制冷、供热和发电于一体的综合能源系统,具有独特的能源利用特点。

燃气冷热电系统采用燃气发电技术,通过燃烧燃气产生电力,同时利用废热进行供热,实现了能源的多重利用。

这种一体化设计有效提高了能源利用效率,减少了能源的浪费。

燃气冷热电系统具有较高的灵活性和可调性,能够根据实际需求对能源进行灵活配置,有效平衡制冷、供热和发电之间的关系,提高系统整体运行效率。

燃气冷热电系统还具有分布式能源特点,可以实现多能源互补、灵活调度,降低能源输送损耗,提高能源利用效率。

燃气冷热电三联供系统在能源利用方面具有高效、灵活、可靠等特点,是一种节能环保的能源利用方式,有着广阔的应用前景。

三联供系统简介

三联供系统简介

燃气三联供系统简介燃气冷热电三联供系统(Combined Cooling Heating and Power,简称CCHP)是分布式能源的一种主要形式。

以天然气为主要燃料,带动燃气发电机组运行,产生的电力满足用户的电负荷,系统排出的废热通过余热利用设备向用户供热、供冷。

燃气冷热电三联供系统的特点:(1)能源综合利用率提高大型天然气发电厂的发电效率一般为35%~55%,如果扣除厂用电和线损率,终端的发电效率只能达到30~47%,而三联供系统的燃气利用效率最高可达到90%左右。

(2)能源供应安全性高三联供系统一般采取并网方式设计,大电网与三联供发电机组互为备用,因此相当于用户增加了一路常用供电系统,提高了用户供电的可靠性。

常规的冷热空调系统一般由电制冷机组加燃气锅炉组成,采用三联供系统后可以使用发电机的余热供热,对用户来说相当增加了一套空调冷热源系统;对于使用电空调的用户相当于将原来的单一用电空调制冷变为可以同时用电和燃气,因此提高了用户的冷热供应可靠性。

(3)有良好的经济性由于电力供应日趋紧张,各地纷纷把实行峰谷电价政策作为电力需求侧管理的有效手段。

以北京为例,北京目前实行的商业峰谷电价政策,平段电价为0.70元/kwh,高峰时间为1.32元/kwh,低谷电价为0.32元/kwh,因此采用传统电制冷除了增加大电网的负担以外,还使用户必须承担高额的运行费用。

而采用三联供系统利用发电后余热来供热供冷,整个系统能源效率提高,能源供应成本下降,在能源价格不断增长的形势下更具有良好的经济效益。

另外因为免除了电力远距离输配电损失,电力使用效率也增大。

(4)有良好的环保效益天然气是清洁能源,在其完全燃烧及采取一定的治理措施后,烟气中NOX等有害成分远低于相关环保指标要求,具有较好的环保效益。

(5)电力和燃气双重削峰填谷随着天然气在能源结构中利用的比例逐步上升。

城市天然气基本用于采暖,冬夏城市的峰谷日差已经高达4~12倍。

燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析1. 引言1.1 燃气冷热电三联供制冷系统概述燃气冷热电三联供制冷系统是一种将燃气动力、供热系统与制冷系统相结合的综合能源系统,通过燃气内燃机发电产生的热量和电能来实现供热和制冷的双重功能。

这种系统利用了能源的多重利用,有效提高了能源利用效率,减少了对传统能源的依赖,具有节能环保的特点。

燃气冷热电三联供制冷系统包括燃气内燃机、余热锅炉、吸收式制冷机组等核心设备,通过燃烧燃气产生电能和热能,再利用余热进行供热,最后利用吸收式制冷机组将余热转化为制冷能力,实现了热电冷三联供的综合利用。

通过智能控制系统实现系统运行的优化调度,进一步提高了能源利用效率。

燃气冷热电三联供制冷系统在节能减排方面具有显著优势,能够有效降低能耗、减少环境负荷,是未来绿色能源系统发展的重要方向。

通过对其工作原理、节能特点、节能效果、节能措施以及节能案例的分析,可以更深入地了解和掌握这种先进的节能技术,为未来的能源转型和可持续发展提供重要参考。

2. 正文2.1 燃气冷热电三联供制冷系统工作原理燃气冷热电三联供制冷系统工作原理是通过综合利用燃气、蒸汽等能源,利用吸收式制冷技术,实现供暖、制冷和热水供应的一体化系统。

该系统由锅炉、制冷机组、换热器、输电线路等组成,通过协同工作,实现能源的高效利用。

燃气锅炉燃烧燃气产生热量,通过换热器将热量传递给水,将冷却水加热成蒸汽。

蒸汽经过蒸汽轮机驱动发电机产生电力,同时也供暖热水。

然后,蒸汽通过蒸发器将冷却水蒸发,吸收制冷剂。

制冷剂经过蒸发、压缩、冷凝、膨胀等过程实现制冷效果,将冷却水降温。

冷却水供暖循环系统,实现建筑物的供暖需求。

通过这样的工作原理,燃气冷热电三联供制冷系统实现了能源的高效利用,减少了能源的浪费,降低了能源消耗,实现了节能环保的目的。

2.2 燃气冷热电三联供制冷系统节能特点燃气冷热电三联供制冷系统具有高效能耗比。

通过优化系统设计和运行控制,系统可实现能源的最大化利用,降低能耗,提高能源利用效率,在传统供冷系统中,供热与供电是分开的,而三联供制冷系统则能够有效利用废热或废气发电,充分发挥能源的综合效益。

燃气冷热电三联供系统发电装置

燃气冷热电三联供系统发电装置
楼宇型(宾馆、医院、办公楼)
燃气轮机+烟气型溴冷机
第二部分
『燃气发电装置 的分类及 性能』
2 燃气发电装置的分类及性能
内燃机
标题数字等都可以通过点击 和重新输入进行更改。
燃气轮机
标题数字等都可以通过点击 和重新输入进行更改。
微型燃气轮机
目前,以燃气内燃机发电装置和燃气 轮机发电装置为动力的热电联产系统 应用相对较多, 综合效率也较高, 技 术比较成熟, 运行比较稳定, 其中燃 气内燃机发电装置的额定功率通常在 50 ~ 5 000 kW, 而燃气轮机发电装置 的额定功率一般在800 kW 以上。
➢ 电制冷机,COP约4-5; ➢ 直燃机,直接利用燃气燃烧制冷,COP约1.4。
3.5 热交换器
汽水换热器
余热锅炉产生的蒸汽或汽机抽汽可 以通过汽水换热器制热水供热 用户使用;
热水换热器
内燃机的缸套冷却水也可以通过热 水换热器制热水供用户使用;
烟气换热器
烟气也可以通过烟气-热水换热器直 接制热水供用户使用。
2.2 燃气轮机发电装置
1、压气机
• 压气机由转子和气缸构成,17-18级叶片镶嵌在轮 毂型转子上,大容量的燃气轮机压气机转子18级, 小容量的燃气轮机压气机转子17级。气缸分为上 气缸和下气缸。
• 从空气的流向可以把压气机分为进气缸、压气缸和 排气缸,进气缸和进气过滤装置连接(大气端), 排气缸和燃烧室相连(透平端),为燃气的燃烧提 供充足的空气量。
火焰探测器
2.2 燃气轮机发电装置
3、透平
透平是将压气机和燃烧器产生的高温高压燃气热能转变为机械能的设备。透平由转子 和气缸组成。透平转子一般是3-5级,容量越大的机组转子的级数越多。气缸分为上气缸和 下气缸,气缸的内部圆周上安装静止叶片,气缸上的静叶片组分别和转子的动叶组构成一 级。

天然气冷、热、电三联供系统简介

天然气冷、热、电三联供系统简介

天然气冷、热、电三联供系统简介1、背景天然气是洁净能源,在其完全燃烧后及采取一定的治理措施,烟气中NOx等有害成分远低于相关指标要求,具有良好的环保性能。

美国有关专家预测如果将现有建筑实施冷、热、电三联供(Combined cooling heating and power,简称CCHP)的比例从4%提高到8%,到2020年CO2的排放量将减少30%。

2、概念与优势燃气冷、热、电三联供简单地说即为:天然气发电、余热供热、余热制冷。

相比于常规供能燃煤发电、燃气供热、电制冷,具有能源梯级利用,综合能源利用率高;清洁环保,减少排放CO2,SO2;与大型电网互相支撑,供能安全性高的优势及对燃气和电力有双重削峰填谷作用。

以天然气为燃料的动力装置,例如燃气轮机、燃气内燃机、斯特林发动机、燃料电池等,在发电的同时,其排放的余热被回收,用于供热或驱动空调制冷装置,如吸收式制冷机或除湿装置等,这种以天然气为燃料,同时具备发电、供热和供冷功能的能源转换和供应系统,就是天然气冷、热、电联供系统。

相比传统的集中式供能,天然气冷、热、电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。

3、天然气冷、热、电三联供分类天然气冷、热、电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。

楼宇型冷、热、电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。

单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。

因此,楼宇型冷、热、电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。

区域型分布式冷、热、电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。

燃气冷热电三联供工程技术规程

燃气冷热电三联供工程技术规程

燃气冷热电三联供工程技术规程燃气冷热电三联供工程技术规程是指燃气、冷热电三者协调运行,由一种设备实现节能、环保以及经济率最高的系统形式。

燃气冷热电三联供系统主要由燃气热源、冷源、电源三部分组成。

适宜的组织燃气热源、冷源、电源的使用,在完全满足用户的热源、冷源、电源的要求的前提下,使能源的使用效率按照一定的比例得到有效的协调和配置。

下面就燃气冷热电三联供工程技术规程进行简要的介绍:一、燃气冷热电三联供节能原理:燃气冷热电三联供主要是采用把多种设备作为热源,将热源、冷源、电源三者有机联合,共同协助利用能源,协调统一用能合理规划,以实现节能、环保以及能源综合利用的系统。

二、冷热电三联供系统的结构:燃气冷热电三联供系统由冷却水系统、暖气供暖系统、发电系统组成,其中冷却水系统包括冷却机组、冷却塔、空调设备等,暖气供暖系统包括水熔炉、水热耦合器、热水发生装置等,发电系统主要有汽轮机发电组织、燃气发电机组织等。

三、冷热电三联供系统的特点:(1)系统有效利用多个能源,可提高企业能源利用效率,以节约能源,有利于环保。

(2)系统结构灵活多变,系统的扩建或维护需要较少的精力,经济性较好。

(3)安装使用简单,运行可靠,不容易出现故障,维护方便。

(4)热效率较高,能够利用温差,热散失小,可以达到更高的能源节约和利用率。

四、燃气冷热电三联供的设备配置要求:(1)燃气冷热电三联供系统的各设备型号应与厂家提供的技术标准相符,并按照厂家的设计参数及安装要求设计施工。

(2)设备的功率大小,应与该系统的供能需求和各类设备的容量要求进行折中确定。

(3)设备安装应按照厂家的技术要求进行,可以根据实际情况进行调整,以达到最佳的设备运行状态。

(4)热源、冷源、电源之间的能量换热器和热交换器应根据系统压力,输出能源量和保温要求进行设置,并要采用低温换热器及蓄热箱等设备,以保证系统稳定运行。

五、系统的控制原则:(1)系统的运行控制,应按照能源的使用效率与节能化要求进行综合协调,实行联动控制,降低能源的损耗。

冷热电三联供简介及其优化措施

冷热电三联供简介及其优化措施

冷热电三联供简介及其优化措施一、冷热电三联供的概念分布式能源系统(Distributed Energy System)是指将冷热电系统以小规模。

小容量(几千瓦至50MW、模块化、分散式的方式布置在用户附近,可独立的输出冷、热、电能的系统,减少了能源输送系统的投资和能量损失。

分布式能源的先进技术包括太阳能利用、风能利用、燃料电池和燃气冷热电三联供等多种形式。

冷热电三联供,即CCHP (Combined Cooling, Heating and Power) 是指以天然气为主要燃料带动燃气轮机或内燃机发电机等燃气发电设备运行,产生的电力用于满足用户的电力需求,系统所排出的废热通过余热回收利用设备(余热锅炉或者余热直燃机等)向用户进行供热、供冷经过对能源的梯级利用使能源的利用效率从常规发电系统的40%左右提高到80%左右,能源梯级利用效率达到60%〜80%,大量节约一次能源。

因此说,燃气冷热电三联供系统是分布式能源的先进技术之一,也是最具实用性和发展活力的系统。

典型的燃气冷热电三联产系统一般包括动力系统和发电机、余热回收装置、制冷或供热系统等组成部分,主要用到的发电设备有小型和微型燃气轮机、燃气内燃机、燃料电池等;空调设备有余热锅炉、余热吸收式制冷机以及以蒸汽为动力的压缩式制冷机等。

针对不同的用户需求,冷热电联产系统可以有多种多样的组织方式,方案的可选择范围较大。

二、冷热电三联供的优点①提高能源綜合利用率传统火电的综合能源利用效率低,燃气冷热电三联供供能系统的综合能源利用效率可达到60%-80%.燃气锅炉直接供热的效率虽然能达到90%,但是它的最终产出能量形式为低品位的热能,而燃气冷热电三联供供能系统中有45%左右的高品位电能产出.因此燃气冷热电三联供供能系统的能源综合利用效率比传统的大电网供电和燃气锅炉直接供热的传统供能方式有大幅度提高。

②电力燃气消耗双重削峰填谷、改善城市能源结构在传统的能源结构中,夏季大量电空调的使用和冬季大量燃气锅炉采暖的使用造成了夏季用电量远高于冬季、冬季用气量远高于夏季的情况,这种不合理的能源结构导致了相关市政设施的低投资效率,造成了资源浪费。

天然气冷、热、电三联供系统简介

天然气冷、热、电三联供系统简介

天然气冷、热、电三联供系统简介1、背景天然气是洁净能源,在其完全燃烧后及采取一定的治理措施,烟气中NOx等有害成分远低于相关指标要求,具有良好的环保性能。

美国有关专家预测如果将现有建筑实施冷、热、电三联供(Combined cooling heating and power,简称CCHP)的比例从4%提高到8%,到2020年CO2的排放量将减少30%。

2、概念与优势燃气冷、热、电三联供简单地说即为:天然气发电、余热供热、余热制冷。

相比于常规供能燃煤发电、燃气供热、电制冷,具有能源梯级利用,综合能源利用率高;清洁环保,减少排放CO2,SO2;与大型电网互相支撑,供能安全性高的优势及对燃气和电力有双重削峰填谷作用。

以天然气为燃料的动力装置,例如燃气轮机、燃气内燃机、斯特林发动机、燃料电池等,在发电的同时,其排放的余热被回收,用于供热或驱动空调制冷装置,如吸收式制冷机或除湿装置等,这种以天然气为燃料,同时具备发电、供热和供冷功能的能源转换和供应系统,就是天然气冷、热、电联供系统。

相比传统的集中式供能,天然气冷、热、电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。

3、天然气冷、热、电三联供分类天然气冷、热、电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。

楼宇型冷、热、电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。

单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。

因此,楼宇型冷、热、电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。

区域型分布式冷、热、电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。

燃气冷热电三联供

燃气冷热电三联供

4.6燃气冷热电三联供燃气冷热电三联供系统通常以天然气作为一次能源,以小型燃气轮机或燃气内燃机为原动机驱动发电机进行发电,系统发电后排出的高温尾气通过余热回收设备进行再利用,向用户供热、供冷,满足用户同时对冷、热、电的需求。

与冷、热、电独立供应系统相比,燃气冷热电三联供系统可提高一次能源利用效率,实现了能源的梯级利用。

冷热电三联供是分布式能源的一种,具有节约能源、改善环境,增加电力供应等综合效益,是国家政策法规鼓励推广应用的一种综合供能方式。

燃气发电冷热电联三供系统中术语4.6.1采用冷热电联供的意义1. 实现能量综合梯级利用,提高能源利用效率具有发电、供热、制冷、能量梯级利用等优势,年平均能量的综合利用率高达80~90%图4.6-2 燃气热能的梯级综合利用流程关系示意图2.集成供能技术,系统运行灵活可靠三联供系统是供冷、供热、供电的技术集成,设备优化配置,集成优化运行,实现既按需供应,又可靠运行。

3.用电用气峰谷负荷互补,利于电网、气网移峰填谷对于电网、气网,负荷峰谷差越小,越有利于系统稳定、安全、节能运行。

4.6.2 冷热电联供的使用条件天然气近似为一种清洁能源,燃气冷热电三联供系统为主要的应用形式。

1.应具备的能源供应条件(1)保证天然气供应量,并且供气参数比较稳定;(2)燃气发出的电量,既可自发自用,亦可并入市电网运行,燃气发电停止运行时又可实现市电网供电;(3)市电网供电施行峰谷分时电价;(4)电网供电难以实施时,用户供电、供冷、供热负荷使用规律相似,用电负荷较稳定,发电机可采用孤网运行方式。

孤网运行的联供系统,发电机组应自动跟踪用户用电负荷;并网运行的联供系统,发电机组应与公共电网自动同步。

2. 应具备的联供负荷条件(1)燃气轮发动机的总容量≤15MW;(2)用户全年有冷、热负荷需求,且电力负荷与冷、热负荷使用规律相似;(3)联供系统运行时间不宜小于3500h。

3.能源站站址条件(1)宜靠近供电区域主配电室,供冷、供热半径不宜太大;(2)便于与市政燃气管道连接,入站燃气管道压力符合相关规定;(3)燃气发电机设置在地下层或首层时,单台容量≤3MW; 设置在屋顶时,单台容量≤2MW.(4)应符合环保、防爆、防火等要求。

CCHP_冷热电三联供技术

CCHP_冷热电三联供技术
对目前世界能源产业面临亟待解决的四大问题:合理调整能源结构、进一步提
高能源利用效率、改善能源产业的安全性、解决环境污染,单一的大电网集中供电 解决 上述问题存在困难,而分布式供电系统恰好可以在提高能源利用率、改善安
全性与解决环境污染方面做出突出的贡献。因此,大电网与分散的小型分布式供电 方式的合理结合,被全球能源、电力专家认为是投资省、能耗低、可靠性高的灵活 能源系统,成为二十一世纪电力工业的发展方向。
目前市电平均价格,单独发电是不经济的。对于热负荷变化较大的建筑物或者负
荷率很低的场所,能源综合利用效率一般很难达到期望的效果,并且发电机的使
用寿命也会受到影响。
2.系统成本的经济性受政府行为干预的影响大。
CCHP成本中燃料占67%~78%,其经济效益受市场燃料与用电价格(电价、
气价、热价)的影响(希望的大趋势是电价上涨、气价下跌),这些与政府定价
分布式燃气冷热电三联供技术
Mr.Z
2015-10-6
2021/5/27
1
0 前言
分布式燃气冷热电联供系统(DES/CCHP)是一种建立在能量梯 级利用概念基础上,以天然气为一次能源,同时产生电能和可用热 (冷)能的分布式供能系统。
作为能源集成系统(Integrated Energy Systems),冷热电联供 系统按照功能可分成三个子系统:动力系统(发电)、供热系统(供 暖、热水、通风等)和制冷系统(制冷、除湿等)。目前多采用燃气 轮机或燃气内燃机作为原动机,利用高品位的热能发电,低品位的热 能供热和制冷,从而大幅度提高系统的总能效率,降低了燃气供应冷 热电的成本。联供技术的具体应用取决于许多因素,包括:电负荷大 小,负荷的变化情况、空间的要求、冷热需求的种类及数量、对排放 的要求、采用的燃料、经济性和并网情况等。

燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析
燃气冷热电三联供制冷系统是一种高效节能的制冷技术,其能够同时利用自然气和电力资源进行制冷,同时可以回收废热,通过三联供方式向建筑供热、供冷和供电,整体节约了能源消耗和二氧化碳排放,受到越来越多的青睐。

该系统的节能原理在于,通过利用燃气发电机产生的废热来提供制冷,这可以替代传统的机械制冷方式,降低了能源的消耗。

同时,该系统还可以将发电的过程中产生的废气在燃气锅炉中进行燃烧处理,减少了废气对环境的污染。

在实际运行中,燃气冷热电三联供制冷系统可以在冷气机组制冷的同时,将废热通过吸收式制冷机进行回收,用于建筑物的暖通空调系统,从而实现“废热变冷”、“废气变热”的技术创新。

该系统的优点不仅在于节省能源和降低二氧化碳排放,还在于其稳定性和可靠性。

燃气发电机可以在建筑物内部运行,避免了输电线路的损耗和稳定性问题;同时,由于三联供方式是整合了建筑物内部的供冷、供热和供电系统,其依赖外部输电和供水的情况会更少,继而也降低了整个系统停机的概率。

总之,燃气冷热电三联供制冷系统是一种在可持续发展方向上具有重要意义的节能技术。

通过其应用,我们可以同时达到面对垂直城市化和节能减排的目标,实现城市的可持续发展。

冷热电三联供基础知识

冷热电三联供基础知识

二、主要设备
目前国内主要余热锅炉厂家有: 703研究所(广州大学城); 杭州锅炉厂; 四川锅炉厂; 广州大学城采用中国船舶重工集团公司第七○三研
究所生产的两台中压和低压蒸汽带自除氧、尾部制热 水、卧式自然循环、无补燃型、露天布置的余热锅炉
二、主要设备
3、溴化锂制冷机组
二、主要设备
二、主要设备
自然循环方式的余热锅炉
1- 膨胀节;2-进口烟道;3-内部保温材料;4-锅筒;5-烟囱;6-出口烟道; 7-膨胀节;8-省煤器段;9-下降管;10-蒸发器;11-过热器段;12-人孔; 13-整体结构钢;14-上升管
二、主要设备
强制循环方式的余热锅炉
1-蒸发器和过热器; 2-省煤器 ; 3-上部过渡段; 4-烟囱 ; 5-锅筒 ; 6-钢架 ; 7-弯烟道(侧向进口); 8-进口段 ;
冷热电三联供基础知识
一、概述
燃气冷热电三联供系统(Gas-fired Combined Cooling, Heating and Power System ),简称CCHP 系统,是指布置在用户附近,以燃气为一次能源用于 发电,并利用发电余热制冷、供热,同时向用户输出 电能、热(冷)的分布式能源供应系统。实现一次能 源的梯级利用,系统的综合能源利用效率高达80%以上。
目前溴化锂技术成熟,口碑较好的厂家主要是: 江苏双良制冷设备厂; 远大制冷设备厂。
谢谢观赏!
2020/11/5
17
一 概述
燃气冷热电三联供实现了对天然气的梯级利用
二、主要设备
1、燃气发电机组 燃气发电机组主要类型有:燃气轮机、燃气内燃
气、燃气微燃机。
燃气内燃机
二、主要设备
燃气轮机内部构造
二、主要设备

燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析

燃气冷热电三联供制冷系统节能分析1. 引言1.1 燃气冷热电三联供制冷系统概述燃气冷热电三联供制冷系统是一种集供热、供冷、供电为一体的新型节能系统,能够有效整合多种能源资源,减少能源消耗,提高能源利用效率。

该系统采用燃气作为主要能源,通过热电联产技术同时生产热水、制冷和电力,实现多能联供。

燃气冷热电三联供制冷系统具有节能、环保、高效等优势,适用于各类建筑物,如酒店、办公楼、医院等。

通过综合利用余热和余电,减少能源浪费,降低对外部能源的依赖,有助于节约能源、减少温室气体排放。

该系统还能提高建筑物的能源利用效率,降低运行成本,并且在应对气候变化、缓解能源紧张等方面具有重要意义。

随着低碳经济的发展,燃气冷热电三联供制冷系统将成为未来建筑能源系统的主流选择,为可持续发展作出贡献。

2. 正文2.1 燃气冷热电三联供制冷系统原理燃气冷热电三联供制冷系统是一种综合利用能源的高效制冷系统,主要由燃气锅炉、吸收式制冷机组、燃气发电机组和余热回收系统组成。

燃气锅炉会燃烧天然气或其他燃气,产生热水或蒸汽。

这些热水或蒸汽会通过管道输送到吸收式制冷机组中。

吸收式制冷机组是制冷系统的核心部分,其工作原理是利用燃气锅炉产生的热水或蒸汽,通过吸收剂和溶剂之间的化学反应来实现制冷。

当燃气锅炉供应热水或蒸汽时,吸收剂吸收溶剂并蒸发,吸收式制冷机组产生低温冷却剂,用于制冷。

燃气发电机组也会利用燃气锅炉产生的热水或蒸汽来产生电力。

这样一来,系统不仅实现了供冷的功能,还实现了供暖和发电的功能,达到了能源的最大利用。

在制冷过程中,余热回收系统会将吸收式制冷机组产生的热量再次回收利用,提高能源利用率,进一步提升系统的节能效果。

通过这种原理,燃气冷热电三联供制冷系统实现了能源的多重利用,大大提高了能源利用效率,实现了节能减排的目标。

2.2 燃气冷热电三联供制冷系统节能优势1. 综合利用能源:燃气冷热电三联供制冷系统通过整合燃气、热能和电能,最大限度地利用各种能源,实现能源的高效利用。

燃气冷热电三联供系统的原理

燃气冷热电三联供系统的原理

燃气冷热电三联供系统的原理燃气冷热电三联供系统的原理1. 介绍燃气冷热电三联供系统是一种高效利用能源、实现能源综合利用的系统。

它通过联合供热、供冷和发电,使能源得以最大程度地利用,提高能源的利用效率。

下面将从燃气供热、供冷和发电三个方面详细介绍其工作原理。

2. 燃气供热燃气供热是燃气冷热电三联供系统中的一个重要方面,它能够以燃气为能源,通过燃气锅炉或燃气热泵等设备,将燃气转化为热能。

燃气在燃烧过程中产生的高温烟气通过换热器与供水进行换热,将热能传递给供水,在保证供水的温度的同时,有效地利用了燃气能源。

3. 燃气供冷燃气供冷是燃气冷热电三联供系统中的另一重要方面,它能够通过热泵或吸收式制冷机等设备,利用燃气提供冷却效果。

燃气供冷的原理是利用燃气热能驱动制冷机组,通过循环工作介质进行制冷。

这样,燃气不仅能够提供热能,还能够提供制冷能力,实现了能源的综合利用。

4. 燃气发电燃气发电是燃气冷热电三联供系统中的第三个重要方面,它能够利用燃气发电机组将燃气转化为电能。

燃气在燃烧过程中产生高温烟气,通过烟气余热锅炉或废热锅炉回收其中的热能,并供给蒸汽或热水,再通过蒸汽轮机或燃气轮机驱动发电机,将热能转化为电能。

这样,燃气既能够提供热能,又能够转化为电能,实现了能源的多元利用。

5. 系统优势燃气冷热电三联供系统具有多个优势。

首先,它能够高效利用能源,减少能源消耗,提高能源利用效率。

其次,燃气冷热电系统能够灵活调节供热、供冷和发电的比例,适应不同季节和不同负荷条件下的能源需求。

另外,系统运行稳定可靠,节约空间和投资成本,降低了能源的使用成本。

因此,燃气冷热电三联供系统在工业、商业和居民领域都有广泛的应用前景。

6. 结论燃气冷热电三联供系统通过燃气供热、供冷和发电等过程将能源综合利用,提高了能源的利用效率。

它是一种可持续发展的能源利用方式,将为能源节约和环境保护做出贡献。

以上是对燃气冷热电三联供系统原理的简要介绍,希望能够对读者在了解和应用该系统时提供一定的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配电站
降压站
微燃机
配电站
微燃机
配电站
燃料电池
微燃机
商业
燃机 工业
储能系统 商业
能源设施:从大到小、从远到近
大型电厂发电效率40~50% 50%的能源以废热形式排放——冷热 传输受距离限制无法充分利用
技术进步的结果、中小型发电设备的成熟、环保和节能
小型分布式能源分散在用户附近, 在获得40%的发电效率后,可将50% 的废热就近用于供冷供热,能源效 率提高50%
对天然气和电力具有双重 “移峰填谷”作用
采用燃气冷热电三联供技术, 可以有效地缓解天然气冬夏 季峰谷差,提高燃气设施的 利用效率,同时减少电力设 备的峰值装机容量,具有很 好的社会和经济效益
月耗天然气量(亿Nm3) 电力负荷(万kWh)
16.00
1600
14.00
1400
12.00
1200
10.00
1000
8.00
800
6.00
600
4.00
400
2.00
200
0.00
0
1 2 3 4 5 6 7 8 9 10 11 12
月耗天然气量
月份
电力负荷
2.发展燃气冷热电三联供系统的意义
年单位平均耗气量(Nm3/m2)
总耗气量 发电机组耗气量
一 燃气冷热电三联供简介
3.燃气冷热电三联供系统的组成
3.燃气冷热电三联供系统的组成
LOGO
燃气冷热电三联供
燃气冷热电三联供
燃气冷热电三联供简介 小型分布式发电站管理办法 燃气冷热电三联供技术规程 燃气冷热电三联供系统的可研与评估 燃气冷热电三联供系统的方案设计与优化 燃气冷热电三联供系统的施工与验收 燃气冷热电三联供系统的运行与管理 燃气冷热电三联供系统的应用分析
燃气冷热电三联供系统属于分布式能源。 分布式能源是相对于传统的集中式供电方式而言的,是指将发电系统
以小规模、小容量(数千瓦至15MW)、模块化、分散式的方式布置在用 户附近,可独立地输出电、热和冷能的系统。
大型电网和分布式能源——相互支撑、互惠互利
主力发电厂
升压变压器
微燃机
光电 储能系统 燃料电池 住宅
燃气冷热电三联供
一 燃气冷热电三联供简介
一 燃气冷热电三联供简介
1.燃气冷热电三联供系统的定义 2.发展燃气冷热电三联供系统的意义 3.燃气冷热电三联供系统的组成 4.国内三联供系统的发展状况 5.国外三联供系统的发展状况
一 燃气冷热电三联供简介
1.燃气冷热电三联供系统的定义
1 燃气冷热电三联供系统的定义
小型燃气轮机 500~25000
内燃机 2~10000
发电效率(%)
20~38
余热回收形态
400~650℃烟气
所需燃气压力 (MPa)
NOx排放水平(ppm) (含氧量15%)
1.0~2.2
65~300(无控制时) 8~25(低氮燃烧)
25~45
400~600℃烟气; 80~110℃缸套水; 40~65℃润滑油冷却水
≤0.2
250~500(无控制时)
微燃机 28~300 12~32
250~650℃烟气
0.4~0.8 8~25
安全供电、减少对 集中供能依赖
安全
节能 减排
与常规能效相比节 能40%,减排60%
技术先进 管理方便 削峰填谷
能源平衡利用
削峰 填谷
经济
节约运行成本20%
高效
增加防灾能力
实现能源梯级利用, 能效提高30%
燃气冷热电三联供已被欧美等发达国家广泛利用,尤其适用于办公楼、 商务区、医院等建筑
2.发展燃气冷热电三联供系统的意义
三联供:天然气发电、余热供热、余热制冷 常规供能:燃煤发电、燃气供热、电制冷
0.4 GJ 电 1 GJ 天然气 0.2 GJ 热/0.3 GJ 冷
损失
1.65 GJ 煤发电 气供热/
制冷
节能率39%
2.发展燃气冷热电三联供系统的意义
三联供:天然气发电、余热供热、余热制冷 常规供能:燃煤发电、燃气供热、电制冷
3.燃气冷热电三联供系统的组成
三联供系统常用设备
燃气轮机
发电设备
燃气内燃机
燃气微燃机
北京恩耐特分布能源技术有限公司
SUCCESS
THANK YOU
2019/6/12
3.燃气冷热电三联供系统的组成
三联供系统常用设备
余热锅炉 余热利用设备
余热直燃机
3.燃气冷热电三联供系统的组成W)
冷热电三联供系统典型示意图
天 然 气
燃烧室
光伏
空气
压气机 燃气轮机
涡轮
发电机
余热烟气
补燃天然气
余热回收装置
电力负荷 排气
热水负荷 制冷负荷 采暖负荷
3.燃气冷热电三联供系统的组成
冷热电三联供系统典型示意图
燃气内燃机



内燃机
发电机
缸套水
排气
余热烟气 空气
补燃天然气
余热回收装置
电力负荷
热水负荷 制冷负荷 采暖负荷
2.发展燃气冷热电三联供系统的意义
系统靠近用户端,减少冷热电的输送损失及管网不平衡损失 提高用能的利用效率,一般7~10年左右即可回收投资 系统自发电,节省电费 充分利用余热制冷热,节省冷热费用 系统节能减排,节约能源和减排费用 专业能源服务公司管理,节约运行成本
2.发展燃气冷热电三联供系统的意义
还有燃料来源于工业废气或垃圾填埋场的沼气
30%发电 100% 天然气 52%余热利用
18%废热排放
能源效率:燃气冷热电>燃气锅炉 燃气锅炉效率:90%为低品位能源(热能) 燃气冷热电联供系统效率:30%~40%高品
位能源(电能) + 50%低品位能源(热能) 能量的做功能力:电能=4~5倍热能
世界发电设施装机规模的发展趋势
1000 MW
从小到大 从近到远
从大到小 从远到近
起源于 分布式
回归于 分布式
1900
2000
历史的辩证法、二十一世纪能源的发展方向
1 燃气冷热电三联供系统的定义
1、冷热电三联供技术
天然气冷热电三联供技术是一项先进的供能技术,它首先利用天 然气燃烧做功产生高品位电能,再将发电设备排放的低品位热能充分 用于供热和制冷,实现了能量梯级利用,因而是一种高效的城市能源 利用系统,是城市中公共建筑冷热电供应的一种新途径。
三联供系统基本原理-----能源的梯级利用
燃料
等级
高温段1000OC以上 中温段300~500OC
低温段200OC以下 环

电能
驱动热泵 驱动吸收式制冷机
除湿 供热 生活热水 排放
一 燃气冷热电三联供简介
2.发展燃气冷热电三联供系统的意义
2.发展燃气冷热电三联供系统的意义
安全、可靠 节能、环保 节约成本
相关文档
最新文档