人教版八年级数学上册集体备课
八年级上册数学人教版 集体备课 14.1.4整式的乘法(2)单项式乘多项式
初中数学集体备课活页纸
第二步:互助探究环节1:师友探究
为了扩大绿地的面积,要把街心花园的一块长p 米,宽b米的长方形绿地,向两边分别加宽a 米和c米,你能用几种方法表示扩大后的绿地的面积?
环节2:教师讲解
如果把它看成一个大长方形,那么它的宽为__________,面积可表示为_________.
如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.
根据面积相等,你可以列出一个等式:
单项式乘以多项式的法则:。
第三步:分层提高环节1 师友训练
例1.(-4x)·(2x2+3x-1)
2
21
2(2).
32
ab ab ab
-⋅
()
环节2 教师提升
思考:单项式乘以多项式实际上是如何转化的?
第四步:
总结归纳
环节1:师友归纳
•1.通过本节课的学习,学到了什么?
•这节课我想对师傅(学友)说……。
八级上册数学教案人教版(全册)
八级上册数学教案人教版(第一部分)一、教学目标1. 知识与技能:使学生掌握本册数学的基本概念、性质、定理和公式,提高学生的数学思维能力和解决问题的能力。
2. 过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学学习兴趣,提高学生的数学素养。
3. 情感态度与价值观:让学生体验到数学在实际生活中的运用,认识到数学的重要性,培养学生的责任感和使命感。
二、教学内容1. 第一章:实数与函数(1) 实数的概念、性质和运算;(2) 函数的定义、性质和图像;(3) 一次函数、二次函数、反比例函数的解析式、图像和性质。
2. 第二章:几何基础(1) 点、线、面的基本概念和性质;(2) 直线方程、圆方程;(3) 三角形、四边形的性质和判定;(4) 坐标系的应用。
三、教学重点与难点1. 教学重点:实数的运算、函数的性质、几何图形的判定与性质。
2. 教学难点:函数的图像、几何图形的复杂计算和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究数学问题;2. 运用案例分析法,让学生通过实际例子理解数学概念;3. 利用数形结合法,培养学生直观的数学思维;4. 实施分组合作学习,培养学生的团队协作能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的准确性、书写规范性,评估学生的学习效果。
3. 考试成绩:定期进行数学考试,对学生的知识掌握程度进行评估。
4. 学生自评:鼓励学生自我评价,反思自己的学习过程,提出改进措施。
八级上册数学教案人教版(第二部分)六、教学安排1. 课时分配:本部分共安排课时,具体分配如下:第一章:实数与函数:课时第二章:几何基础:课时第十五章:课时2. 教学计划:根据课时分配,合理安排每个章节的教学内容,确保教学目标的达成。
七、教学资源1. 教材:使用人教版八级上册数学教材。
2. 教辅资料:提供相应的教辅资料,辅助教学。
集体备课记录(八年级)
初二数学(上)集体备课记录初二数学第二周集体备课活动记录初二数学第四周集体备课初二数学第五周集体备课本周完成15.1—15.2 5个教案及课件上交和讲解2、讨论15.3—15.4的教学思路,完成这5个教案。
下周二上交到F TP自己的文件夹里。
(1)对重点、难点进行分析,对部分例题进行拓展。
(2)根据学生情况,分层布置作业。
(3)补充一些简单习题。
3、集体备课其它内容的记录。
(1)分析本周授课中存在的问题,讨论解决的办法。
(2)预测新授课中可能遇到的问题,研讨解决的办法。
(3)以新带旧,训练画图能力是突破口。
(4)对学生易错点、易混点,进行强调和强化训练。
4、下次集体备课分工情况:石秀坤15.3函数图像的画法赵桂英 15.4一次函数和它的解析式周五上午集体备课的时候按照分工主讲自己的章节大家讨论。
回去形成自己的教案。
第2周集体备课记录集体备课活动记录活动日期:2009年2月27日周次:2参加人:苏为民焦丽英赵桂英石秀坤缺勤:无集体备课内容:本周完成15.3—15.4 5个教案及课件上交和讲解2、讨论15.5—15.6的教学思路,完成这5个教案。
下周二上交到F TP自己的文件夹里。
(1)对重点、难点进行分析,对部分例题进行拓展。
(2)根据学生情况,分层布置作业。
(3)补充一些简单习题。
3、集体备课其它内容的记录。
(1)分析本周授课中存在的问题,讨论解决的办法。
(2)预测新授课中可能遇到的问题,研讨解决的办法。
(3)以新带旧,训练画图能力是突破口。
(4)对学生易错点、易混点,进行强调和强化训练。
4、下次集体备课分工情况:苏卫民15.5一次函数图像焦丽英 15.6一次函数性质周五上午集体备课的时候按照分工主讲自己的章节大家讨论。
回去形成自己的教案。
第3周集体备课记录集体备课活动记录活动日期:2009年3月6日周次:3参加人:苏为民焦丽英赵桂英石秀坤缺勤:无集体备课内容:本周完成15.5—15.6 5个教案及课件上交和讲解2、讨论15.7、本章复习的教学思路,完成这5个教案。
八年级数学上册 11 三角形集体备课教案 (新版)新人教版
3、了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余。掌握 有两个角互余的三角形是直角三角形。
4、了解多边形的定 义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。
四、教学重点难点
应对措施和思路
教学重点
理解三角形及其内角、外角、中线、 高线、角平分线等概念,探索并证明三角形的内角和定理。掌握它的推论:三角形的外角 等于与它不相邻的两个内角的和。
为了突出重点,突破难点,本节课以设置问题、创设情境为主线,通过师生互相交流和协商的方式展开教学,而在拓展延伸部分以学生的主动探究为主
二、学情分析
学生已有的知识基础:学生在小学已经初步认识了三角形,了解了“三角形两边之和大于第三边”。七年级上册学习了基本事实“两点之间线段最短”。已有的生活经验:学生在生活中已经积累了很多关于三角形三边关系的感性认识。
三、教学目标
(结合课标)
1、ቤተ መጻሕፍቲ ባይዱ解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性及四边形的不稳定性。
第十一章三角形
一、教 材分析
三 角形是一种基本的几何图形.本章在线段与角、相交线与平行线的基础上介绍三角形的概念与性质,进而研究多边形的概念与性质.在本章,学生进一步学习通过推理得出数学结论的方法,提高推理能力.本章的有关内容有广泛的实际应用,也是学习各种特殊三角形(如等腰三角形、直角三角形)和平行四边形等图形知识的基础。教材力求创设现实、有趣的问题情境,使学生经历从现实世界中抽象几何模型和运用所学习的内容解决实际问题的过程,在内容的安排和呈现上,教材提供了多种情景,给学生充分的实践和探索空间,目的是使学生通过自己的探索和与同伴的交流发现三角形的有关结论,解决一些实际问题,为空间观念的发展、数学活动经验的积累、个性的发展打下坚实的基础。本单元在直观操作的基础上,将直观与简单相结合,并更多的注重学生推理意识的建构以及对推理过程的理解。本单元以内角和为主题,先讲三角形内角和,再拓广到多边形的内角和。这种设计迎合了学生的认知特点,又能够激发学生的兴趣。
人教版八年级数学上册教案册5篇
人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。
2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。
依据教学大纲安排,重点讲解第一种状况问题的解决。
安排一个课时讲授。
教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。
2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。
(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。
3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。
三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。
教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。
由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。
四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。
3、课后给学生布置同类型任务,加强练习。
五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。
教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。
人教版八年级上册数学 第十二章集体备课教案 教学反思
第十二章全等三角形12.1 全等三角形【知识与技能】1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.【过程与方法】在图形变换以及操作的过程中发展学生的空间观念,培养学生的几何直觉.【情感态度】使学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验,在探索和运用全等三角形性质的过程中感受到数学的乐趣.【教学重点】探究全等三角形的性质.【教学难点】掌握两个全等形的对应边\,对应角.一、情境导入,初步认识问题1 观察下列图形,指出其中形状与大小相同的图形.问题2 从上面的图形中你有什么感受?在实际生活中,你能找到形状、大小相同的图形的应用的例子么?二、思考探究,获取新知让学生交流问题1,问题2的答案,并带着问题“这些图形有什么共同特征?”自学课本内容.【教学说明】变化的图形易引起学生的注意,使它们很快地投入到学习的情境中,并通过观察发现其中的共同特点,形成猜想.再结合自学课本,从而认识全等形、全等三角形的定义及记法.教师讲课前,先让学生完成“自主预习”.思考1 把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?思考2 全等三角形的对应边、对应角有什么关系?为什么?【教学说明】让两个学生在黑板上引导全体学生操作并画图,从中找到答案.这个过程利用三角形的平移、旋转、翻折的不变性,让学生通过具体操作直观感知全等三角形的概念,然后让学生通过操作和观察,猜测并验证全等三角形的性质.利用基本三角形变换出各种图形,然后观察对应边、角的变化,利于提高学生的识图能力.思考1 得到的基本图案如图:【归纳结论】1.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.“全等”用“≌”表示,读作“全等于”.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫对应角.2.全等三角形的对应边相等,对应角相等.三、运用新知,深化理解【教学说明】出示下列问题,让学生通过交流\,思考寻找问题的答案,并共同讨论:全等三角形的对应顶点\,对应边之间有什么关联.1.下列每对三角形分别全等,看看它们是怎样变化而成的,并指出对应边、对应角.2.两个全等的三角形按如下位置摆放,指出它们的对应顶点,对应角,对应边.3.如图,将△ABC沿直线BC平移,得到△DEF.(1)线段AB,DE是对应线段,有什么关系?线段AC和DF呢?(2)线段BE和CF有什么关系?为什么?(3)若∠A=70°,∠B=40°,你知道其他各角的度数吗?为什么?4.如图,将△ABC沿直线BC平移,得到△DEF,说出你得到的结论,并说明理由.5.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,∠A=40°,∠B=30°,求∠ADC的大小.【教学说明】题3题4中要通过观察发现,EC是线段BC与EF的公共部分,从而有BC-EC=EF-EC即BE=CF的结论;可以挖掘更深层次的结论,提升分析问题的能力,如AB∥DE,AC∥DF,BE=CF,S四边形ABEG=S四边形FDGC等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.图(1)是△EDC由△ABC绕过C点且垂直于BD的直线翻折而成,AB的对应边ED,AC的对应边EC,BC的对应边DC,∠A的对应角∠E,∠B的对应角∠D,∠ACB的对应角为∠ECD.图(2)是△ABC延BC边平移BE长的距离得到△DEB,AC的对应边DB,AB 的对应边为DE,CB的对应边为BE,∠A的对应角为∠D,∠C的对应角为∠DBE,∠ABC的对应角为∠E.图(3)是△ABD绕BD的中点旋转180°得△CDB,AB的对应边为CD,BD对应边为DB、AD的对应边为CB,∠A的对应角∠C,∠ABD的对应角为∠CDB,∠ADB的对应角为∠CBD.2.略4.AB=DE AC=DF BC=E F∠A=∠D ∠B=∠DEF ∠ACB=∠F理由:全等三角形对应边相等,对应角相等.5.∠ADC=110°四、师生互动,课堂小结1.引导学生回忆全等三角形定义\,记法与性质.2.归纳寻找对应边\,对应角的规律:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边的夹角是对应角.(2)公共边一般是对应边;有对顶角的,对顶角一般是对应角;公共角一般是对应角等.1.布置作业:从教材“习题12.1”中选取.2.完成练习册中本课时的练习.本课时通过学生在做模型、画图、动手操作等活动中的体验,完成对三角形全等的认识,重点在对“三角形全等”“对应”等含义的理解.对“全等三角形”的认识,可让学生采用复写纸、手撕、剪纸、扎针眼等方式获取,并鼓励学生间互相交流动手过程中的体验.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.12.2 三角形全等的判定第1课时边边边【知识与技能】掌握三角形全等的“边边边”条件,了解三角形的稳定性.【过程与方法】经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.【情感态度】通过对问题的共同探讨,培养学生的协作精神.【教学重点】掌握三角形全等的“边边边”条件.【教学难点】三角形全等条件的探索过程.一、情境导入,初步认识1.复习全等三角形的性质,归纳得出:三条边对应相等,三个角对应相等的两个三角形全等.2.提出问题:两个三角形全等,一定需要六个条件吗?如果只满足其中部分条件的两个三角形,是否也能全等呢?指导学生探究下列两个问题:探究1 先任意画出一个△ABC.再画一个△A′B′C′,使△ABC与△A′B′C′满足六个条件中的一个(一边或一角分别相等)或两个(两边、一边一角或两角分别相等).你画出的△A′B′C′与△ABC一定全等吗?通过画图可以发现,满足六个条件中的一个或两个,△ABC与△A′B′C′不一定全等.探究2 先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?在充分的观察、讨论、交流后,引导学生总结出:三边对应相等的两个三角形全等,即“边边边”公理,或写成“SSS”.【教学说明】利用提出的问题激发学生的探究发现兴趣,教师应根据学生观察发现的结论,无论对与错,多给予肯定与鼓励,并引导学生最终得出正确的结果.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知教师操作演示:由三根木条钉成的一个三角形的框架,大小和形状固定不变,由此归纳出:(1)三边对应相等的两个三角形全等;(2)三角形具有稳定性.例1 如图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证:△ABD≌△ACD.(由学生思考后表述思路,教师指导并展示证题过程.)证明:∵D是BC中点,∴BD=CD.在△ABD和△ACD中,∴△ABD≌△ACD(SSS).例2如图,已知AC=FE,BC=DE,点A\,D,B\,F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE外,还应有什么条件?怎样才能得到这个条件?答:还需要AB=FD,这个条件可由AD=FB得到.证明:∵AD=FB,∴AD+BD=BD+FB,即AB=FD.在△ABC和△FDE中,∴△ABC≌△FDE(SSS)【教学说明】由以上两例,应让学生掌握:1.证明题的基本格式,做到每一步推理有根有据,并正确用几何语言表述出来.2.积累分析问题的经验,逐步学会怎样探寻未知条件,为证题提供足够的依据.三、运用新知,深化理解1.如图,E是AC上一点,AB=AD,BE=DE,可应用“SSS”证明三角形全等的是()A.△ABC≌△ADCB.△ABE≌△ADEC.△CBE≌△CDED.以上选项都对2.如图,△ABC中,AD=DE,AB=BE,∠A=100°,则∠DEC= 度.3.如图,AB=AC,AD=AE,BE=CD.求证:△ABD≌△ACE.证明:在△ABD和△ACE中,∴△ABD≌△ACE(SSS)上述的证明过程正确吗?若不正确,请写出正确的推理过程.4.如图,已知A,F,C,D在同一直线上,AB=DE,BC=EF,AF=DC,求证:BC∥EF.【教学说明】学生在教师指导下完成上述习题时,教师应提醒学生注意:1.善于利用题中已知条件和隐含条件(如题3的公共线段DE后),联想“SSS”证得三角形全等.2.要灵活地结合三角形全等性质,以证出线段相等或角相等,进而推得两线平行、或互相垂直等位置关系.3.熟悉证题格式.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.B 2.803.不正确.其证明过程如下:∵BE=CD,∴BE-DE=CD-DE,即BD=CE.在△ABD和△ACE中,∴△ABD≌△ACE(SSS).4.先证△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.四、师生互动,课堂小结教师引导学生反思:本节课我们有哪些收获?【指导要点】回顾反思本节课重要知识,探究过程,并归纳方法和结论,并领悟其中所包含的数学思想与规律.1.布置作业:从教材“习题12.2”中选取.2.完成练习册中本课时的练习.本课时教学时应抓住以下重点:1.分类问题:教师让学生从实践入手,给定三角形三边,学生在薄纸上画,然后小组的同学看所画三角形是否重合,探索归纳、形成结论.2.教师可用多媒体展示现实生活中的实际例子:如桥梁、铁塔、自行车的三角架等,从中体验三角形的稳定性,认识“边边边”可作为三角形全等的判定依据.3.强调思路分析和书写规范.第2课时边角边【知识与技能】掌握证明三角形全等的“边角边”定理.【过程与方法】1.经历探索三角形全等条件的过程,培养学生观察\,分析图形的能力及动手能力.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.【情感态度】通过对问题的共同探讨,培养学生的协作精神.【教学重点】应用“边角边”证明两个三角形全等,进而得出线段或角相等.【教学难点】指导学生分析问题,寻找判定三角形全等的条件.一、情境导入,初步认识问题1 教材探究3:已知任意△ABC,画△A′B′C′,使AB=A′B′,A′C′=AC,∠A′=∠A.【教学说明】要求学生规范地用作图工具画图,纠正学生的错误做法,并让学生剪出画好的△ABC,△A′B′C′,把它们放在一起,观察出现的结果,引导学生间交流结论.教师讲课前,先让学生完成“自主预习”.问题2 请各学习小组间交流,并总结出规律.二、思考探究,获取新知根据学生交流情况,教师作出如下归纳总结.1.两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.2.其中的角必须是两条相等的对应边的夹角,边必须是夹相等角的两条对应边.例1 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?【教学说明】让学生思考后,书写推理过程,教师引导分析.要想证AB=DE,只需要证△ABC≌△DEC.而证这两个三角形全等,已有条件 ,还需条件 .证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS).∴AB=DE.【归纳结论】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来得到答案.例2 如图,已知AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.【教学说明】由学生依题意寻找条件,涉及三角形边的条件有AB=AC,AD=AE,但∠BAC=∠DAE只是对应边夹角的一部分,怎么办?以此引导学生思考,理清解题思路.证明:∵∠BAC=∠DAE(已知),∴∠BAC+CAD=∠DAE+CAD,即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC(已知),∠BAD=∠CAE(已证),AD=AE(已知),∴△ABD≌△ACE.【归纳结论】用来证明三角形全等的边、角条件,必须是这两个三角形的边、角,而不是其中的一部分,如∠BAC=∠DAE不能直接用于证△ABD与△ACE的全等.三、运用新知,深化理解1.如图,已知∠1=∠2,如果用SAS证明△ABC≌△BAD,还需要添加的条件是.2.如图,已知OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°3.如图,已知AB∥DE,AB=DE,BE=CF,如果∠B=50°,∠A=70°,则∠F=( ).A.70°B.65°C.60°D.55°4.如图,点B,D,C,F在一条直线上,且BC=FD,AB=EF.(1)请你添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是 .(2)添加了条件后,证明△ABC≌△EFD.5.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE.(2)若∠D=50°,求∠B的度数.【教学说明】引导学生应用“SAS”解答上述习题,巩固对“SAS”的认识和提升应用能力.可让学生在黑板上写出4\,5题的过程,强化学生书写证明过程的能力.在完成上述习题的解答后,请学生探究:“两边及其中一边的对角对应相等的两个三角形是否全等?”,指导学生画图分析、共同讨论,形成结论.教师出示下列材料帮助学生探究:如图,在△ABC和△ABD中,∠B=∠B,AB=AB,AC=AD,由图可知,△ABC与△ABD 并不全等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.AC=BD 2.A 3.C4.(1)∠B=∠F或AB∥EF或AC=ED.(2)当∠B=∠F时,在△ABC和△EFD中,AB=EF,∠B=∠F,BC=FD,∴△ABC≌△EFD(SAS).其它证明略.5.(1)∵点C是线段AB的中点,∴AC=BC,又∵CD平分∠ACE,CE平分∠BCD,∴∠1=∠2,∠2=∠3,∴∠1=∠3.在△ACD和△BCE中,CD=CE,∠1=∠3,AC=BC,∴△ACD≌△BCE(SAS).(2)∵∠1+∠2+∠3=180,∴∠1=∠2=∠3=60.∵△ACD≌△BCE,∴∠E=∠D=50°.∴∠B=180°-∠E-∠3=70°.四、师生互动,课堂小结先归纳“SAS”,并强调:“两边及其中一边的对角对应相等的两个三角形不一定全等”.再提出问题供同学思考\,交流\,探讨.1.判定三角形全等的方法有哪些?2.证明线段相等\,角相等的常见方法有哪些?1.布置作业:从教材“习题12.2”中选取.2.完成练习册中本课时的练习.本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.第3课时角边角和角角边【知识与技能】掌握两个三角形全等的条件:“ASA”与“AAS”,并指出用它们判别三角形是否全等.【过程与方法】经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思问题的能力,形成理性思维.【情感态度】敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.【教学重点】理解、掌握三角形全等的条件:“ASA”、“AAS”.【教学难点】探究出“ASA”“AAS”及它们的应用.一、情境导入,初步认识问题1 一张教学用的三角形硬纸板不小心被撕成了如图形状,你能制作出与原来同样大的纸板吗?鼓励学生提出不同的思路方法,并要求学生用纸片对自己的思路操作实验.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2 教材探究4.先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即两角和它们的夹边分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?要求每个学生先独立动手画图并思考,再在小组内交流.把画好的△A′B′C′剪下,放在△ABC上,观察出现的情形,并根据结果总结规律,说出每个人的发现并交流.二、思考探究,获取新知【归纳结论】根据学生的发言,予以不同的点评,重在鼓励,最后归纳出新知识点:两角和它们的夹边对应相等的两个三角形全等,简称“角边角”或“ASA”.强调注意:“边”必须是“两角的夹边”.例1 如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:AD=AE.证明:△ABE和△ACD中,∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA).∴AD=AE.【课堂练习】由学生在黑板上完成证明过程.如图,AB=A′C,∠A=∠A′,∠B=∠C,求证:△ABE≌△A′CD.【分析】本例可直接应用“ASA”证得两个三角形全等,关键是准确地书写证明过程.例2 在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.证明△ABC≌△DEF.【教学说明】由已知条件并联想“ASA”不难证明结论,教师关键通过本例引导学生发现:“两个角和其中一个角的对边对应相等的两个三角形全等”.上述判定三角形全等的定理简写成“角角边”或“AAS”.【课堂练习】如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得DE的长就是AB的长,为什么?【答案】利用三角形全等得到DE=AB.证明:在△ABC和△EDC中,∠B=∠EDC=90°,BC=DC,∠ACB=∠ECD.∴△ABC≌△EDC.∴DE=AB.三、运用新知,深化理解1.如图,B是CE的中点,AD=BC,AB=DC,DE交AB于F点.求证:(1)AD∥BC;(2)AF=BF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE,请你添加一个条件,使△BDE≌△CDF(不再添加其它线段,不再标注或使用其他字母),并给出证明.【教学说明】教师引导学生通过上述习题的解答归纳证明三角形全等的方法,并总结证明线段相等(或两线平行\,垂直)或两角相等的常见方法.同时,让学生探究“两个三角形中三个角分别相等,这两个三角形全等吗?”的问题,同学间互相交流探究出来.【答案】1.(1)连接BD,∵AD=CB,AB=DC,BD=DB,∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD.∴AD∥BC.(2)∵B为CE中点,∴EB=BC.由(1)知AD∥BC,AD=BC,∴AD=BE,∠A=∠FBE,又∠AFD=∠BFE,∴△ADF≌△BEF(AAS).∴AF=BF.2.添加条件:BD=DC(或点D是线段BC中点),FD=ED或CF=BE.以BD=DC为例证明如下:∵CF∥BE,∴∠FCD=∠EBD.又∵BD=DC,∠FDC=∠EDB.∴△BDE≌△CDF(ASA).四、师生互动,课堂小结1.证明三角形全等的方法有:SSS,SAS,ASA,AAS.2.三个角对应相等的两个三角形不一定相等.如:大小不同的两个等腰直角三角形不全等.3.证两线相等(或两角相等)的常用方法是证它们所在的两个三角形全等.1.布置作业:从教材“习题12.2”中选取.2.完成练习册中本课时的练习.本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究,合作学习的能力.同时,注重让学生用自己的语言归纳和表达发现的规律,指引学生对知识与方法进行回顾总结,形成良好的反思习惯,获取优秀的学习方法.第4课时斜边、直角边【知识与技能】掌握两个直角三角形全等的条件,并能应用它证明两个直角三角形全等.【过程与方法】通过对知识方法的归纳总结,加深对三角形全等的判定的理解.培养反思习惯,形成理性思维.【情感态度】通过探究与交流,解决问题,获得成功的体验,进一步激发探究的积极性.【教学重点】理解、掌握直角三角形全等的条件:HL.【教学难点】熟练选择判定方法,判定两个直角三角形全等.一、情境导入,初步认识问题1舞台的背景形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)请你设法帮工作人员找到解决问题的方式.(2)如果工作人员只带了一卷尺,他能完成这个任务吗?全体学生思考,并互相交流每个人的想法,组长收集每组的结论.问题2 教材探究5任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.要求:每个学生都动手画图,并剪下所画的直角三角形,每两人把剪下的直角三角形,重叠在一起,观察它们是否重合.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知教师根据学生操作、交流情况,引导学生一起归纳上述两个问题的结果.对于问题1,(1)方法有:测量斜边和一个对应的锐角(AAS),或测量没遮住的一条直角边和一个对应的锐角(ASA或AAS);(2)可以完成这个条件,其依据正是本节所要学的知识,以此激发学生探究的兴趣.对于问题2,归纳得到:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”.例1 如图,已知AC⊥BC,BD⊥AD,AC=BD.求证:BC=AD.【教学说明】由学生思考\,交流讨论后,指定学生表述思路,并由教师板书证明过程,引导学生正确书写解题步骤.证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90°.在Rt△ABC和Rt△BAD中,AB=BA,AC=BD,∴Rt△ABC≌Rt△BAD(HL).例2 如图,两根长度为12m的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.解:相等.理由如下:由图形及实际情形可知,△ABD和△ACD均为直角三角形.又AB=AC,AD为公共边,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD.例3 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?解:∠ABC+∠DFE=90°.理由如下:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL).又∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.三、运用新知,深化理解1.如图,已知AC⊥BD于点P,AP=CP,请增加一个条件,使△ABP≌△CDP,你增加的条件是 (不再添加辅助线).2.如图,已知AB=AC,AD⊥BC于D,且△ABC的周长是50cm,△ABD的周长是40cm,则AD= .3.如图,AB⊥BD,AB∥DE,AB=CD,AC=CE,那么BC与DE有怎样的数量关系?写出你的猜想并说明理由.4.如图,AB=AC,AD⊥BC于点D,AD=AE,AB平分∠DAE交DE于点F.请你写出图中三对全等三角形,并选取其中一对加以证明.【教学说明】指导学生解答上述习题时,强调学生应:(1)注意应用“HL”证三角形全等时的书写格式;(2)归纳总结证明直角三角形全等的判定条件共有几个?它们分别是什么?【答案】1.BP=DP或AB=CD或∠B=∠D或AB∥CD. 2.15cm3.猜想:BC=DE.证明:∵AB⊥BD,∴∠ABC=90°,又AB∥DE,∴∠EDC=∠ABC=90°,即△ABC和△EDC为直角三角形.又AB=CD,AC=CE,∴Rt△ABC≌Rt△CDE(HL).∴BC=DE.4.△ADB≌△ADC,△ABD≌△ABE,△ABE≌△ACD,△AFD≌△AFE,△BFD≌△BFE(写出三对即可,可以△ADB≌△ADC为例证明,应用HL证得).四、师生互动,课堂小结1.回顾本书所学知识,巩固“HL”的记忆与认识,清楚地了解到“HL”是直角三角形全等所独有的定理,以直角三角形为前提条件.2.归纳直角三角形全等的证明定理有:SSS,SAS,ASA,AAS,HL共五个,在实际解题时能灵活选用.【教学说明】在总结直角三角形全等判定定理共有几个时,鼓励学生踊跃思考发言,发挥集体智慧得到完整答案,利于引导学生形成合作交流意识.1.布置作业:从教材“习题12.2”中选取部分题目.2.完成练习册中本课时的练习.本课时教学应突出学生主体性原则,即从规律的探究、例题的学习,指引学生独立思考,自主得出,在探究之后,让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.12.3 角的平分线的性质第1课时角的平分线的作法及性质【知识与技能】1.掌握角的平分线的作法.2.会利用角平分线的性质.【过程与方法】经历折纸、画图、文字与符号的翻译活动,培养学生的联想、探索、概括归纳的能力.【情感态度】通过实际操作与探究交流,激发学生学习数学的兴趣.【教学重点】角平分线的性质及其应用.【教学难点】灵活应用两个性质解决问题.一、情境导入,初步认识活动1 学生预习教材,掌握角平分线的作法,小组间交流并动手实际画一画,总结出画角平分线的步骤.活动2 让学生用准备好的白纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?【教学说明】发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.请同学们折出如图所示的折痕PD、PE,并研究这个图形中隐含了哪些等量关系,互相交流,形成结论.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知由上述活动及交流情况,教师总结以下新知识:1.角平分线上的点到角两边的距离相等.2.到角两边距离相等的点在角的平分线上.【教学说明】1.这两个性质的条件和结论正好相反,分别可以作为证线段相等和证角相等的依据.2.在用几何语言表述性质时,注意强调“点到直线的距离”中的垂直条件.例1 如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个市场应建于何处(在图上标出它的位置,比例。
人教版八年级数学上册集体备课(教案设计)14.1.4.1单项式与单项式、多项式相乘
解析:原式先计算乘方运算,再利用单项式乘多项式法则计算,根据结果不含x3项,求出n的值即可.
【方法总结】在单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.
四、反思小结当堂测评
(一)反思小结:
1.单项式乘以单项式运算法则:
(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?
解析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.
【方法总结】通过本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法则是解实例探究,讲练结合,小组合作
学习过程
学习内容
二次备课
一、激趣导入,呈现目标
情境导入
1.教师引导学生回忆幂的运算公式.
学生积极举手回答:
同底数幂的乘法公式:am·an=am+n(m,n为正整数).
幂的乘方的公式:(am)n=amn(m,n为正整数).
积的乘方公式:(ab )n=anbn(n为正整数)
2.单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.
3.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.
(二)当堂测评:
《长江全能学案》
解析:运用幂的运算法则和单项式乘以单项式的法则计算即可.
【方法总结】①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按顺序运算;③不要丢掉只在一个单项式里含有的字母因式;④此性质对于多个单项式相乘仍然成立.
【类型二】单项式乘以单项式与同类型的综合
八年级上册数学教案人教版【优秀8篇】
八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。
而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。
所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。
探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。
练习:让学生通过解决实际问题,巩固勾股定理的应用。
1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。
探究:让学生通过割补、折叠等方法,尝试证明勾股定理。
练习:让学生通过解决实际问题,加深对勾股定理证明的理解。
第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。
探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。
练习:让学生通过解决实际问题,加深对实数分类的理解。
2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。
探究:让学生通过解方程的方法,掌握一元一次方程的解法。
练习:让学生通过解决实际问题,巩固一元一次方程的应用。
第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。
探究:让学生通过实际操作,理解不等式的性质。
练习:让学生通过解决实际问题,加深对不等式概念的理解。
3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。
探究:让学生通过实际操作,掌握不等式的解法。
练习:让学生通过解决实际问题,巩固不等式的解法。
第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。
探究:让学生通过实际操作,理解函数的性质。
练习:让学生通过解决实际问题,加深对函数概念的理解。
4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。
探究:让学生通过实际操作,绘制一次函数的图象。
练习:让学生通过解决实际问题,巩固一次函数图象的应用。
第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。
2. 教学重点:勾股定理的表述和证明;勾股定理的应用。
3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。
二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。
2. 教学重点:平行四边形的定义和性质;平行四边形的判定。
3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。
三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。
2. 教学重点:三角形的定义和性质;三角形的判定。
3. 教学难点:三角形的性质证明;三角形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。
四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。
2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。
3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。
五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。
八年级数学备课组集体备课教案
八年级数学备课组集体备课教案第一章:实数的性质和运算1.1 有理数的加减乘除法教学目标:理解有理数的加减乘除法运算规则,能够熟练进行计算。
教学内容:讲解有理数的加减乘除法运算方法,举例说明运算规则,进行练习题的讲解。
1.2 实数的定义和性质教学目标:理解实数的概念,掌握实数的性质。
教学内容:讲解实数的定义,介绍实数的性质,如正负性、奇偶性、绝对值等,进行相关练习题的讲解。
第二章:一次函数和二次函数2.1 一次函数的定义和性质教学目标:理解一次函数的概念,掌握一次函数的性质。
教学内容:讲解一次函数的定义,介绍一次函数的性质,如斜率、截距等,进行相关练习题的讲解。
2.2 二次函数的定义和性质教学目标:理解二次函数的概念,掌握二次函数的性质。
教学内容:讲解二次函数的定义,介绍二次函数的性质,如开口方向、顶点等,进行相关练习题的讲解。
第三章:几何图形的性质和计算3.1 三角形的性质和计算教学目标:理解三角形的性质,掌握三角形的计算方法。
教学内容:讲解三角形的性质,如内角和、两边之和大于第三边等,介绍三角形的计算方法,如周长、面积等,进行相关练习题的讲解。
3.2 四边形的性质和计算教学目标:理解四边形的性质,掌握四边形的计算方法。
教学内容:讲解四边形的性质,如对角线互相平分、四边之和大于第三边等,介绍四边形的计算方法,如周长、面积等,进行相关练习题的讲解。
第四章:概率和统计4.1 概率的基本概念教学目标:理解概率的概念,掌握概率的计算方法。
教学内容:讲解概率的定义,介绍概率的计算方法,如古典概率、条件概率等,进行相关练习题的讲解。
4.2 统计的基本概念教学目标:理解统计的概念,掌握统计的计算方法。
教学内容:讲解统计的定义,介绍统计的计算方法,如平均数、中位数、众数等,进行相关练习题的讲解。
第五章:方程和不等式5.1 线性方程的解法教学目标:理解线性方程的概念,掌握线性方程的解法。
教学内容:讲解线性方程的定义,介绍线性方程的解法,如加减法、代入法等,进行相关练习题的讲解。
2023年人教版八年级数学教案上册 八年级数学上册教案人教版优秀5篇
2023年人教版八年级数学教案上册八年级数学上册教案人教版优秀5篇人教版八年级上册数学教案篇一一、教学目标1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形。
突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。
应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、练习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。
值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。
这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。
四、课堂引入1、请同学们考虑:与相等吗?与相等吗?为什么?2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
P11例3.约分:[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。
八年级上册数学集体备课
以下是八年级上册数学的集体备课内容,供您参考:一、课程目标1. 掌握全等三角形的性质和判定方法,能够运用全等三角形解决实际问题。
2. 掌握轴对称、平移、旋转等图形的变换,能够运用这些变换进行作图和设计。
3. 掌握实数的概念和运算性质,能够进行实数的运算和证明。
4. 掌握一次函数的图像和性质,能够运用一次函数解决实际问题。
5. 掌握数据的收集、整理、描述和分析的方法,能够运用数据进行推断和决策。
二、重点难点1. 全等三角形的判定是重点也是难点,需要让学生充分理解全等三角形的性质,并能够灵活运用全等三角形的判定方法。
2. 图形的变换是重点,需要让学生理解各种图形变换的概念和性质,并能够进行简单的图形变换。
3. 实数的运算和证明是重点也是难点,需要让学生理解实数的概念和性质,并能够进行实数的运算和证明。
4. 一次函数的图像和性质是重点也是难点,需要让学生理解一次函数的图像和性质,并能够运用一次函数解决实际问题。
5. 数据的收集、整理、描述和分析是重点也是难点,需要让学生掌握数据的收集、整理、描述和分析的方法,并能够运用数据进行推断和决策。
三、教学方法1. 采用启发式教学,引导学生自主探究和学习。
2. 采用实例教学,通过实例让学生更好地理解和掌握知识。
3. 采用互动式教学,鼓励学生积极参与课堂讨论和交流。
4. 注重培养学生的数学思维能力和解决问题的能力。
四、教学评价1. 通过课堂提问、练习和测试等方式评价学生的学习情况。
2. 通过作业和考试等方式评价学生的掌握程度和能力水平。
3. 通过观察学生的表现和交流等方式评价学生的数学思维能力和解决问题的能力。
八年级数学上册 13《轴对称》集体备课同课异构教案 新人教版(2021-2022学年)
第十三章轴对称本章是人教版八年级上册第十三章轴对称,主要介绍轴对称图形、图形的轴对称的概念。
教科书立足于学生的生活经验和教学活动经历,从观察生活中的对称现象开始,通过不同的活动引出轴对称图形和图形的轴对称的概念,进而体会两个概念的区别和联系。
为学习轴对称的性质、变换,等腰三角形的直观认识打下坚实基础。
在探索的过程中,经历观察、实验、归纳,激起学生对数学学习的情感体验,在学习中发现美、欣赏美、创造美,体会轴对称在现实生活中的广泛应用和它的文化价值.本章内容涉及图形的定义、性质和判定方法较多,学生不容易理解和运用,学习的难度较大。
从心理特征来说,八年级阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,选取适当的教学资源,利用课件中好的视觉效果,如图片、动画、视频等,引发学生的兴趣,使他们的注意力始终集中在课堂上;让学生参与到教学过程中来,让学生发表见解,发挥学生学习的主动性。
1、通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分。
2、能画出简单平面图形(点,线段,直线,三角形等)关于给定对称轴的对称图形。
3、了解轴对称图形的概念;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质。
4、认识并欣赏自然界和现实生活中的轴对称图形。
5、运用图形的轴对称、平移进行图案设计.6、在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。
7、理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。
8、了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。
学会解一元一次方程,掌握解方程的基本步骤。
1.2 方程的解法学习使用加减法、乘除法解一元一次方程。
学会使用移项、合并同类项解方程。
1.3 方程的应用学会将实际问题转化为方程,解决实际问题。
练习使用一元一次方程解决实际问题。
第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。
学会解一元一次不等式,掌握解不等式的基本步骤。
2.2 不等式组理解不等式组的概念,掌握不等式组的解法。
学会解不等式组,掌握解不等式组的基本步骤。
2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。
练习使用不等式解决实际问题。
第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。
学会判断两个变量之间的关系是否为函数。
3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。
学会判断函数的单调性、奇偶性、周期性。
3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。
练习使用函数解决实际问题。
第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。
学会判断两个整式是否相等。
4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。
学会使用合并同类项进行整式的加减法运算。
4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。
练习使用整式解决实际问题。
第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。
掌握数据的整理方法,如列表、画图等。
5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。
学会使用图表展示数据,如条形图、折线图等。
5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。
学会使用统计量对数据进行描述和分析。
八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。
人教版八年级数学上册全册备课教案
第七章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。
三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。
教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。
接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。
这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。
最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标〔知识与技能〕1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。
4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。
5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。
〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。
〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。
课时分配7.1与三角形有关的线段……………………………………… 2课时7.2 与三角形有关的角………………………………………… 2课时7.3多边形及其内角和………………………………………… 2课时本章小结………………………………………………………… 2课时7.1.1三角形的边[教学目标]〔知识与技能〕1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点]三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。
人教版八年级上册数学整体备课的教学设计
本章在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。
学
情
分
析
学生已学过线段、角、相交线、平行线以及三角形的有关知识,七年级两册教科书中安排了一些说理的内容,这些为学习全等三角形的有关内容作好了准备。通过本章的学习,可以丰富和加深学生对已学图形的认识(如两个三角形满足一定的条件就完全一样了,角的平分线上的一点到角的两边的距离相等),同时为学习其他图形知识打好基础。全等三角形是研究图形的重要工具,学生只有掌握好全等三角形的内容,并且能灵活地运用它们,才能学好四边形、圆等内容。
7.学生交流,这个交流在指课外的交流,多进入教室,当面评价学生作业,询问学生对课堂的意见。然后根据这些意见反馈,调整自己的教学速度、难度、内容,改进自己在教学上的不足之处。
教学实施
日期(周次)
教学内容
课时
一
11.1全等三角形11.2三角形全等的条件
5
二
11.2三角形全等的条件11.3角平分线
5
三
第十一章《全等三角形》的复习与小结
5
十三
14.2一次函数
5
十四
14.3用函数的观点看方程组与不等式14.4课题学习选择方案
5
十五
第十四章《一次函数》复习第三次月考
5
十六
15.1整式的乘法
5
十七
15.2乘法公式15.3整式的除法
5
十八
15.4因式分解
5
人教版八年级数学上册集体备课
拓展:△CFG是等边三角形吗
(四)达标测评
个人补充及反思
1.已知等腰三角形一腰为6,一腰上的中线把它的周长分为两部分,周长相差3,则它的底边为_____________
2.已知等腰三角形一腰上的高与另一腰的夹角为45°,这个等腰三角形的这条高与底边的夹角为____________
探索:当E在线段DC上移动时,线段AF与AG是否始终相等?并说明理由。
(三)精讲释疑
(三)第三版块
1.如图,已知△ABC,△DCE都是等边三角形,点A、C、E在一直线上联结AD、BE,试说明AD=BE。
变式:如图,已知△ABC是等边三角形,联结AD、BE,∠CBE=∠CAD,BE=AD试说明△DCE是等边三角形。
学校集体备课专用纸
人教版八年级数学上册集体备课
主备人
日期
课题
等腰三角形及等边三角形复习
学习目标
复习等腰三角形、等边三角形相关的概念,性质。
根据具体几何问题,总结基本图形,体会数形结合、分类讨论的思想。
教学重点
能够在解题中,对于知识点进行归纳总结,并且对题目总结解题方法。
对于复杂的几何图形中,正确识别基本图形。
1.如图,已知△ABC中,AB=AC,BE=CD,且∠B=∠EDF,△DEF是等腰三角形吗?为什么?
2.如图,在△ABC中,AB=AC,点D是底边BC上的一个动点,过点D作BC的垂线分别交一腰的延长线于点E、F
探索:当点D在BC上移动时,线段AE与AF的长度是否始终相等?并说明理由。
变式:如图,已知△ABC中,AB<AC,AD平分∠BAC,E为DC上的动点,过E作EF//AD,交BA的延长线与F,交AC于G
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校集体备课专用纸
(二)师生讨论与分享
(二)第二版块
1. 如图,已知△ABC中,AB=AC,BE=CD,且∠ B=∠ EDF,△DEF是等腰三角形吗?为什么?
2.如图,在△ABC中,AB=AC,点D是底边BC上的一个动点,过点D作BC的垂线分别交一腰的延长线于点E、F
探索:当点D在BC上移动时,线段AE与AF的长度是否始终相等?并说明理由。
变式:如图,已知△ABC中,AB<AC,AD平
分∠ BAC,E为DC上的动点,过E作EF//AD,
交BA的延长线与F,交AC于G
探索:当E在线段DC上移动时,线段AF
与AG是否始终相等?并说明理由。
(三)精讲释疑
(三)第三版块
1.如图,已知△ABC,△DCE都是等边三角形,点A、C、E在一直线上联结AD、BE,试说明AD=BE。
变式:如图,已知△ABC是等边三角形,联结AD、BE,∠CBE=∠CAD,BE=AD试说明△DCE是等边三角形。
转一转:如图,已知△ABC,△DCE都是等边三角形,联结AE、BD,试说明BD=AE。
拓展:△CFG是等边三角形吗
(四)达标测评个人补充及反思
1.已知等腰三角形一腰为6,一腰上的中线把它的周长分为两部分,周长相差3,
则它的底边为_____________
2.已知等腰三角形一腰上的高与另一腰的夹角为45°,这个等腰三角形的这条
高与底边的夹角为____________
3.如图,在四边形ABCD中,AD//BC,E是AB的中点,联结DE并延长交CB的
延长线交于点F,点G在边BC上,且∠GDF=∠ ADF
(1)说明:△ADE≌△BFE
(2)联结EG,判断EG与DF的位置关系,
并说明理由。
教师签名
分管教干评价签名。