线段的垂直平分线综合提高测试带答案

合集下载

垂直平分线专项练习30题(有答案)ok

垂直平分线专项练习30题(有答案)ok

垂直平分线专项练习30题(有答案)ok垂直平分线专项练习30题(有答案)1.如图,在△ABC中,∠BAC=2∠B,DE⊥AB于点D,交BC于点E,AC=AD=BD,请你猜想∠C的度数并证明.2.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC 于点M,求证:BN=CM.3.如图,在△ABC中,D是BC的垂直平分线DH上一点,DF⊥AB于F,DE⊥AC交AC的延长线于E,且BF=CE.(1)求证:AD平分∠BAC;(2)若∠BAC=80°,求∠DCB的度数.4.如图,在△ABC中,AB=AC,∠A=52°,AB的垂直平分线MN交AC于点D.求∠DBC的度数.5.如图,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E.求证:BC垂直且平分DE.6.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.7.如图,△ABC中,边AB、BC的垂直平分线交于点P.(1)求证:PA=PB=PC;(2)点P是否也在边AC的垂直平分线上?由此你还能得出什么结论?8.如图,在Rt△ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,求BD的长.9.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.10.如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.11.如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF 的理由.12.如图所示,在△ABC中,AB=AC=16cm,D为AB的中点,DE⊥AB交AC于E,△BCE的周长为26cm,求BC的长.13.如图,在△ABC中,EN,DM分别是AB,AC边的垂直平分线,BC=8cm.求△AED的周长.14.如图,在△ABC中,0E,OF分别是AB,AC的中垂线,∠ABO=20°,∠ABC=45°,求∠BAC和∠ACB的度数.15.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.16.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?17.如图1,△ABC中,AB=AC,∠BAC=130°,边AB、AC的垂直平分线交BC于点P、Q.(1)求∠PAQ的度数;(2)如图2,△ABC中,AB>AC,且90°<∠BAC<180°,边AB、AC的垂直平分线交BC于点P、Q.①若∠BAC=130°,则∠PAQ=_________°,若∠BAC=α,则∠PAQ用含有α的代数式表示为_________;②当∠BAC=_________°时,能使得PA⊥AQ;③若BC=10cm,则△PAQ的周长为_________cm.18.如图,△ABC中,AB=AC=14cm,D是AB的中点,DE⊥AB于D交AC于E,△EBC的周长是24cm,求BC 的长度.19.已知:如图,在△ABC中,AB=AC=32,AB的垂直平分线DE分别交AB、AC于点E、D.(1)若△DBC的周长为56,求BC的长;(2)若BC=21,求△DBC的周长.20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE 的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.21.如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于P、Q.(1)若BC=10,求△APQ周长是多少?(2)若∠BAC=110°,求∠PAQ的度数是多少?24.已知,如图,AD是BC的垂直平分线,DE⊥AB于点E,DF⊥AC于点F,求证:(1)∠ABD=∠ACD;(2)DE=DF.25.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF.求证:AD垂直平分EF.26.如图,△ABC中,E是BC边上的中点,DE⊥BC于E,DM⊥AB于M,DN⊥AC于N,BM=CN 试证明:点D在∠BAC的平分线上.27.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.28.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.29.已知,如图,DE为△ABC的边AB的垂直平分线,CD为△ABC的外角平分线,与DE交于D,DM⊥BC于M,DN⊥AC于N,求证:AN=BM.30.如图所示,在△ABC中,AB=8,AC=4,∠BAC的平分线与BC的垂直平分线交于点D,过点D作DE⊥AB 于点E,DF⊥AC(或AC的延长线)于点D.(1)求证:BE=CF;(2)求AE的长.参考答案:1.解:∠C=90°.证明:如图,连接AE,在Rt△AED和Rt△BED中,,∴△AED≌△BED(HL),∴∠DAE=∠B,又∵∠BAC=2∠B,∴∠DAE=∠CAE,在△AED和△BED中,,∴△ACE≌△ADE,∴∠C=∠ADE=90°.2.证明:连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.3.(1)证明:如图,连接BD,∵DH垂直平分BC,∴BD=CD,在Rt△BDF和Rt△CDE中,,∵DF⊥AB于F,DE⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BDF≌Rt△CDE,∴∠CDE=∠BDF,∴∠BDC=∠EDF,∵∠BAC=80°,∴∠EDF=360°﹣90°×2﹣80°=100°,∴∠BDC=100°,∵BD=CD,∴∠DCB=(180°﹣100°)=50°4.解:∵AB=AC,∠A=52°,∴∠ABC=∠ACB==64°,∵AB的垂直平分线MN,∴AD=BD,∠A=∠ABD=52°,∴∠DBC=∠ABC﹣∠ABD=64°﹣52°=12°5.证明:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,∴△ABE≌△CAD(ASA),∴AD=BE,又∵AD=BD,∴BD=BE,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,故∠ABC=45°.∵BE∥AC,∴∠EBD=90°,∠EBF=90°﹣45°=45°,∴△DBP≌△EBP(SAS),∴DP=EP,即可得出BC垂直且平分DE6.证明:∵AD是∠BAC的平分线,∴∠1=∠2,∵FE是AD的垂直平分线,∴FA=FD(线段垂直平分线上的点到线段两端的距离相等),∴∠FAD=∠FDA(等边对等角),∵∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,∴∠BAF=∠ACF7.证明:(1)∵边AB、BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.还可得出结论:①三角形三边的垂直平分线相交于一点.②这个点与三顶点距离相等8.解:因为CE垂直平分AD,所以AC=CD=5cm.所以∠ACE=∠ECD.因为CD平分∠ECB,所以∠ECD=∠DCB.因为∠ACB=90°,所以∠ACE=∠ECD=∠DCB=30°.所以∠A=90°﹣∠ACE=60°.所以∠B=90°﹣∠A=30°.所以∠DCB=∠B.所以BD=CD=5cm9.证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B10.解:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD=∠CAD,∠EAD=∠EDA,∴∠EAC=∠B11.解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF12.解:∵点D中AB的中点,DE⊥AB,∴DE是AB的中垂线,∴AE=BE,∴△BCE的周长=BE+EC+BC=AE+EC+BC=AC+BC=26,∴BC=26﹣AC=26﹣16=10cm13.解:∵EN,DM分别是AB,AC边的垂直平分线,∴BE=AE,CD=AD,14.解:连接AO并延长,交BC于点D,∵0E,OF分别是AB,AC的中垂线,∴OB=OA,OC=OA,∴OC=OB,∠ABO=∠BAO=20°,∠CBO=∠BCO,∠CAO=∠ACO,∵∠ABC=45°,∴∠CBO=∠BCO=25°,∴∠BOC=180°﹣∠CBO﹣∠BCO=130°,∵∠BOD=∠ABO+∠BAO,∴∠BOD=40°,∠COD=90°.∵∠COD=∠CAO+∠ACO,∴∠CAO=45°,∴∠BAC=∠BAO+∠CAO=65°,∠ACB=∠BCO+∠ACO=70°15.解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG16.解:∵BC边的垂直平分线DE,∴BE=CE=5,∵BE+CE+BC=18,∴BC=18﹣5﹣5=8,答:BC的长是817.解:(1)∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;(2)①∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=α,∴∠B+∠C=180°﹣∠BAC=180°﹣α,∴∠BAP+∠CAQ=180°﹣α,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=α﹣(180°﹣α)=2α﹣180°;②当∠PAQ=90°,即2α﹣180°=90°时,PA⊥AQ,解得:α=135°,∴当∠BAC=135°时,能使得PA⊥AQ;③∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∵BC=10cm,即BP+PQ+CQ=AP+PQ+AQ=10cm,∴△PAQ的周长为10cm.故答案为:①80,2α﹣180°;②135;③1018.解:在△ABE中,∵D是AB的中点,DE⊥AB于D交AC于E,∴AE=BE;在△ABC中,∵AB=AC=14cm,AC=AE+EC,又∵CE+BE+BC=24cm,∴BC=10cm19.解:(1)∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD=AC,∵△DBC的周长为56,AC=32,∴BC=56﹣32=24;(2)∵AD=BD,AC=32,∴AD+CD=BD+CD=AC=32,∵BC=21,∴△DBC的周长=BD+CD+BC=32+21=53.故答案为:24;5320.解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.21.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∴∠EDA=180°﹣∠AED﹣∠EAD,∠FDA=180°﹣∠AFD﹣∠FAD,∴∠EDA=∠FDA,∵DE=DF(已证),∴DG垂直平分EF(三线合一),即AD垂直平分EF.22.证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B23.解:(1)∵MP、NQ分别是AB、AC的垂直平分线,∴AP=BP,AQ=CQ,∴△APQ周长=AP+PQ+AQ=BP+PQ+QC=BC,∵BC=10,∴△APQ周长=10;(2)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AP=BP,AQ=CQ(已证),∴∠BAP=∠B,∠CAQ=∠C,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=∠BAC﹣∠B﹣∠C=110°﹣70°=40°24.证明:(1)∵AD是BC的垂直平分线,∴AB=AC,BD=CD,∴∠ABC=∠ACB,∠DBC=∠DCB,∴∠ABD=∠ACD;(2)∵AB=AC,AD是BC的垂直平分线,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF25.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在△ADE和△ADF中,,∴△ADE≌△ADF(HL),∴AE=AF,又∵AD平分∠BAC,∴AD垂直平分EF26.证明:如图,连接BD、CD,∵DE⊥BC,E是BC边上的中点,∴BD=CD,在△BDM和△CDN中,,∴△BDM≌△CDN(HL),∴DM=DN,又∵DM⊥AB,DN⊥AC,∴点D在∠BAC的平分线上.27.解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.故答案为:728.解:连接DB.∵点D在BC的垂直平分线上,∴DB=DC;∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,∴DE=DF;∵∠DFC=∠DEB=90°,在Rt△DCF和Rt△DBE中,,∴Rt△DCF≌Rt△DBE(HL),∴CF=BE(全等三角形的对应边相等).29.证明:∵DE为△ABC的边AB的垂直平分线,∴AD=BD,∵CD为△ABC的外角平分线,与DE交于D,DM⊥BC于M,DN⊥AC于N,∴DN=DM,在Rt△ADN和Rt△BDM中,,∴Rt△ADN≌Rt△BDM(HL),∴AN=BM.30.(1)证明:连结BD,CD.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠AED=∠BED=∠AFD=90°,DE=DF.∵DE垂直平分BC,∴DB=DC.在Rt△DEB和Rt△DFC中,∴Rt△DEB≌Rt△DFC(HL),∴BE=CF;(2)解:在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∵AB=AE+BE,∴AB=AF+EB,∴AB=AC+CF+EB.∵AB=8,AC=4,∴8=4+CF+EB,∴CF+EB=4,∴2EB=4,∴EB=2.∴AE=8﹣2=6.答:AE的长为6.。

八年级上册数学人教版课时练《 线段的垂直平分线的性质》 试题试卷 含答案解析(1)

八年级上册数学人教版课时练《 线段的垂直平分线的性质》 试题试卷 含答案解析(1)

《13.1.2线段的垂直平分线的性质》课时练1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=5,则线段PB的长度为()A.6B.5C.4D.32.在锐角△ABC内一点P满足PA=PB=PC,则点P是△ABC()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点3.如图所示,已知AO=OC,AC⊥BD,AD=10cm,BC=4cm,则四边形ABCD的周长为()A.30cm B.16cm C.28cm D.以上都不对4.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7B.14C.17D.205.如图,直线PO与AB交于O点,PA=PB,则下列结论中正确的是()A.AO=BOB.PO⊥ABC.PO是AB的垂直平分线D.P点在AB的垂直平分线上6.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.7.如图,在R t△ABC中,∠ACB=90°,DE为AB的垂直平分线.若△ACD的周长为50cm,则线段AC 与BC的长度和为.8.在△ABC中,AB的垂直平分线与AC边所在直线相交所得锐角为50°,则∠A的度数为.9.如图,两条公路OA、OB相交于点O,在∠AOB的内部有两个村庄C、D,若要修一个加油站P,使P 到两个村庄的距离相等,且到两条公路OA、OB的距离也相等,用尺规作出加油站P点的位置.(不写作法,保留作图痕迹)10.△ABC中,边AB、AC的垂直平分线交于点P.求证:点P在BC的垂直平分线上.11.如图,直线AD是线段BC的垂直平分线,求证:∠ABD=∠ACD.12.如图,已知,AB=AD,CB=CD,那么直线AC是线段BD的,你能写出证明过程吗?13.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,若AB=3cm,BD=2cm,求BE的长.14.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:AD垂直平分EF.15.如图,已知△ABC中,BC边的垂直平分线DE与∠BAC的平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC交AC于点G.求证:(1)BF=CG;(2)AF=12(AB+AC).参考答案1—5.BDCCD6.87.50cm8.40°或140°9.略10.证明:边AB、AC的垂直平分线交于点P.∴PA=PB,PA=PC,∴PB=PC.∴点P在BC的垂直平分线上.11.证明:∵AD是BC的垂直平分线,∴AB=AC,DB=DC,∵AD=AD,∴△ABD≌△ACD,∴∠ABD=∠ACD.12.垂直平分线∵AB=AD,∴点A在BD的垂直平分线上,∵CB=CD,∴点C在BD的垂直平分线上.∵两点确定一条直线,∴AC是BD的垂直平分线.13.∵AD⊥BC,BD=CD,∴AD是BC的垂直平分线,∴AB=AC,∵点C在AE的垂直平分线上,∴CA=CE,∴CE=AB=3cm,∴BE=2BD+CE=7cm.14.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∴D在线段EF的垂直平分线上.∵在R t△ADE和R t△ADF中,AD=AD,DE=DF,∴R t△ADE≌R t△ADF,∴AE=AF,∴A点在EF的垂直平分线上.∵两点确定一条直线,∴AD垂直平分EF.15.(1)连接BE,CE.∵DE是BC的垂直平分线,∴BE=CE,∵AE平分∠BAC,又EF⊥AB,EG⊥AC,∴EF=EG,在R t△EBF和R t△ECG中,BE=CE,EF=EG,∴R t△EBF≌R t△ECG(HL),∴BF=CG.(2)易证:R t△AEF≌R t△AEG,∴AF=AG,∵AB=AF-BF,AC=AG+CG,BF=CG,∴AB+AC=AF+AG=2AF,∴AF=12(AB+AC).。

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。

线段的垂直平分线经典习题及答(精.选)

线段的垂直平分线经典习题及答(精.选)

线段的垂直平分线一、选择题(共8小题)1、如图,在△ABC 中,分别以点A 和点B 为圆心,大于的21AB 的长为半径画孤,两弧相交于点M ,N ,作直线MN , 交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为( ) A 、7 B 、 14 C 、17 D 、20第1题 第2题 第3题2、如图,在Rt △ACB 中,∠C=90°,BE 平分∠ABC ,ED 垂直平分AB 于D .若AC=9,则AE 的值是( )A 、6B 、4C 、6D 、43、如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )A 、6B 、5C 、4D 、34、如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A 、80°B 、70°C 、60°D 、50°第4题 第 5题 第6题 5、如图,直线CP 是AB 的中垂线且交AB 于P ,其中AP=2CP .甲、乙两人想在AB 上取两点D 、E ,使得AD=DC=CE=EB ,其作法如下:(甲)作∠ACP 、∠BCP 之角平分线,分别交AB 于D 、E ,则D 、E 即为所求;(乙)作AC 、BC 之中垂线,分别交AB 于D 、E ,则D 、E 即为所求.对于甲、乙两人的作法,下列判断何者正确( )A 、两人都正确B 、两人都错误C 、甲正确,乙错误D 、甲错误,乙正确6、如图,在Rt △ABC 中,∠C=90°,∠B=30°.AB 的垂直平分线DE 交AB 于点D ,交BC 于点E ,则下列结论不正确的是( )A 、AE=BEB 、AC=BEC 、CE=DED 、∠CAE=∠B7、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A 、△ABC 的三条中线的交点B 、△ABC 三边的中垂线的交点 C 、△ABC 三条角平分线的交点D 、△ABC 三条高所在直线的交点第7题 第8题8、如图,AC=AD ,BC=BD ,则有( ) A 、AB 垂直平分CD B 、CD 垂直平分AB C 、AB 与CD 互相垂直平分 D 、CD 平分∠ACB二、填空题(共12小题)9、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________.第9题第10题第11题10、如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.11如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_________°.12、如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC 的周长之差为12,则线段DE的长为_________.第12题第13题第14题第15题13、如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.14、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_________度.15、如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是_________度.16、如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_________个不同的四边形.第16题第17题第18题17已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________.18、如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=1/2∠DAC;④△ABC是正三角形.请写出正确结论的序号_________(把你认为正确结论的序号都填上)19、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________cm.20、在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_________°.三、解答题(共6小题)21、如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.22、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.1、如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20考点:线段垂直平分线的性质。

北师大版数学八年级下线段的垂直平分线 同步练习含答案

北师大版数学八年级下线段的垂直平分线  同步练习含答案

线段的垂直平分线第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为()A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是()A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为()A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是()A.P是AC的垂直平分线与AB的交点B.P是BC的垂直平分线与AB的交点C.P是∠ACB的平分线与AB的交点D.P是以点B为圆心,AC长为半径的弧与边AB的交点8.如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D.求证:点D在AB的垂直平分线上.9.在△ABC中,AB=AC,边AB的垂直平分线与边AC所在的直线相交所得的锐角为50°,则∠C的度数为.10.下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB;②若PA=PB,EA=EB,则直线PE是线段AB的垂直平分线;③若EA=EB,则直线EP是线段AB的垂直平分线;④若PA=PB,则点P在线段AB的垂直平分线上.其中正确的有()A.1个B.2个C.3个D.4个11.如图,在△ABC中,DE是AC的垂直平分线,AC=6 cm,且△ABD的周长为13 cm,则△ABC的周长为()A.13 cm B.19 cmC.10 cm D.16 cm第11题图第12题图12.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=.13.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.第13题图第14题图14.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=39°,则∠AOC=.15.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE交AC于点F.求证:点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在()A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是()A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD .过点P 作直线AB 的垂线6.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是( )A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE = ;(2)AE EC ;(填“=”“>”或“<”)(3)当AB =3,AC =5时,△ABE 的周长等于 .8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.A 村 ·B 村 ·C 村·9.在平面内,到三点A,B,C距离相等的点()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有10.如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则()A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.参考答案:第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为(D)A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是(B)A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为(B)A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为30°.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.证明:∵DE是AB的垂直平分线,∴EA=EB.∴∠EAB=∠B.∵∠C=90°,∴∠CAB+∠B=90°.又∵∠AED+∠EAB=90°,∴∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有(A)A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是(B)A.P是AC的垂直平分线与AB的交点B .P 是BC 的垂直平分线与AB 的交点 C .P 是∠ACB 的平分线与AB 的交点D .P 是以点B 为圆心,AC 长为半径的弧与边AB 的交点8.如图,在△ABC 中,∠C =90°,∠A =30°,BD 平分∠ABC 交AC 于点D.求证:点D 在AB 的垂直平分线上.证明:∵∠C =90°,∠A =30°, ∴∠ABC =90°-30°=60°. ∵BD 平分∠ABC , ∴∠ABD =12∠ABC =30°.∴∠A =∠ABD. ∴DA =DB.∴点D 在AB 的垂直平分线上.9.在△ABC 中,AB =AC ,边AB 的垂直平分线与边AC 所在的直线相交所得的锐角为50°,则∠C 的度数为20°或70°.10.下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ;②若PA =PB ,EA =EB ,则直线PE 是线段AB 的垂直平分线;③若EA =EB ,则直线EP 是线段AB 的垂直平分线;④若PA =PB ,则点P 在线段AB 的垂直平分线上.其中正确的有(C)A .1个B .2个C .3个D .4个11.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6 cm ,且△ABD 的周长为13 cm ,则△ABC 的周长为(B)A .13 cmB .19 cmC .10 cmD .16 cm第11题图 第12题图12.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,将AB 边沿AD 折叠,发现B 点的对应点E 正好在AC 的垂直平分线上,则∠C =30°.13.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为76.第13题图 第14题图14.(2020·南京)如图,线段AB ,BC 的垂直平分线l 1,l 2相交于点O.若∠1=39°,则∠AOC =78°.15.如图,在△ABC 中,∠ACB =90°,D 是BC 延长线上一点,E 是BD 的垂直平分线与AB 的交点,DE 交AC 于点F.求证:点E 在AF 的垂直平分线上.证明:∵E 是BD 的垂直平分线上的一点, ∴EB =ED. ∴∠B =∠D. ∵∠ACB =90°,∴∠A=90°-∠B,∠CFD=90°-∠D.∴∠CFD=∠A.又∵∠AFE=∠CFD,∴∠AFE=∠A.∴EF=EA.∴点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.解:(1)证明:∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD垂直平分BC.(2)选择A,证明:由(1),得AD⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠CAF=∠ADE.∴∠BAF=∠ADE.∴DE=AE.选择B,线段DE,AC,BE之间的等量关系为DE=BE+AC.证明:由(1),得AF⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠EDA=∠CAF.∴∠BAF=∠EDA.∴AE=DE.∵AE=EB+AB,AB=AC,∴DE=BE+AC.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定(D)A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形(C)A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是(D) A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在(A)A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是(D)A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD.过点P作直线AB的垂线6.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是(A)A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE =90°;(2)AE =EC ;(填“=”“>”或“<”) (3)当AB =3,AC =5时,△ABE 的周长等于7.8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.解:已知:A ,B ,C 三点不在同一直线上. 求作:作一点P ,使PA =PB =PC. 如图所示,点P 即为所求的点.9.在平面内,到三点A ,B ,C 距离相等的点(D) A .只有一个B .有两个C .有三个或三个以上D .有一个或没有10.如图,在△ABC 中,∠BAC =90°,AB >AC.按下列步骤作图:①分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是(C)A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则(B)A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案③.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).解:作法:(1)作线段AD=a;(2)过点D作直线MN⊥AD于点D;(3)以点A为圆心,b为半径画弧,交MN于B,C两点,连接AB,AC,△ABC即为所求,如图所示.14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.解:(1)∵DM,EN分别垂直平分AC和BC,∴AM=CM,CN=BN.∴∠A=∠ACM,∠B=∠BCN.∴∠MCN=180°-(∠CMN+∠CNM)=180°-(2∠A+2∠B)=180°-2(180°-∠ACB)=60°.(2)∵AM=CM,BN=CN,∴△CMN的周长为CM+MN+CN=AM+MN+BN=AB.∵△CMN的周长为15 cm,∴AB=15 cm.(3)∵∠MFN=70°,∴∠MNF+∠NMF=180°-70°=110°.∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠NMF+∠MNF=110°.∴∠A+∠B=90°-∠AMD+90°-∠BNE=70°.又∵∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°-2(∠A+∠B)=40°.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.解:(1)设∠PAQ=x,∠CAP=y,∠BAQ=z,∵MP和NQ分别垂直平分AB和AC,∴AP=PB,AQ=CQ.∴∠B=∠BAP=x+z,∠C=∠CAQ=x+y.∵∠BAC=80°,∴∠B+∠C=100°,即x+y+z=80°,x+z+x+y=100°.∴x=20°.∴∠PAQ=20°.(2)∵△APQ周长为12,∴AQ+PQ+AP=12.∵AQ=CQ,AP=PB,∴CQ+PQ+PB=12,即BC+2PQ=12.∵BC=8,∴PQ=2.21。

北师大版八年级数学下册 线段的垂直平分线---巩固提高(提高) 含答案解析

北师大版八年级数学下册 线段的垂直平分线---巩固提高(提高)  含答案解析

线段的垂直平分线——巩固练习(提高)【巩固练习】一.选择题1.如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE 的值是()A、6B、4C、6D、42.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、33.如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确4.如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BEB、AC=BEC、CE=DED、∠CAE=∠B5.如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB6.(2015秋•陆丰市校级期中)如图,点P是△ABC内的一点,若PB=PC,则()A.点P在∠ABC的平分线上 B.点P在∠ACB的平分线上C.点P在边AB的垂直平分线上 D.点P在边BC的垂直平分线上二.填空题7.(2016•长沙)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC 于点E,则△BCE的周长为.8.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________ .9.(2015•西宁)如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为______________.10.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_____ 度.11.如图:已知,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________ .12.如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD 的周长为_________ cm.三.解答题:13.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2-GE2=EA2.14.(2015秋•扬州校级月考)如图,∠ACB=90°,AC=BC,D为△ABC外一点,且AD=BD,DE⊥AC交CA的延长线于E点.求证:DE=AE+BC.15.(2016秋•农安县期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【答案与解析】一.选择题1.【答案】C;【解析】∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=6.故选C.2.【答案】B;【解析】∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,而已知线段PA=5,∴PB=5.3.【答案】D;【解析】∵CP是线段AB的中垂线,∴△ABC是等腰三角形,即AC=BC,∠A=∠B,作AC、BC之中垂线分别交AB于D、E,∴∠A=∠ACD,∠B=∠BCE,∵∠A=∠B,∴∠A=∠ACD,∠B=∠B CE,∵AC=BC,∴△ACD≌△BCE,∴AD=EB,∵AD=DC,EB=CE,∴AD=DC=EB=CE.4【答案】B;【解析】A、根据线段垂直平分线的性质,得AE=BE.故该选项正确;B、因为AE>AC,AE=BE,所以AC<BE.故该选项错误;C、根据等角对等边,得∠BAE=∠B=30°;根据直角三角形的两个锐角互余,得∠BAC=60°.则∠CAE=∠BAE=30°,根据角平分线的性质,得CE=DE.故该选项正确;D、根据C的证明过程.故该选项正确.5.【答案】A;【解析】∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.6.【答案】D;【解析】解:∵PB=PC,∴P在线段BC的垂直平分线上,故选D.二.填空题7.【答案】13;【解析】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.8.【答案】6;【解析】∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=6.9.【答案】;【解析】解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.10.【答案】60;【解析】由AB=AC,∠BAC=120°,可得∠B=30°,因为点D是AB的垂直平分线上的点,所以AD=BD,因而∠BAD=∠B=30°,从而∠ADC=60度.11.【答案】8;【解析】∵△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,∴AD=BD,AE=CE∴△ADE的周长=AD+AE+DE=BD+DE+CE=BC=8.△ADE的周长等于8.12.【答案】13;【解析】∵AC的垂直平分线DE交BC于D,E为垂足∴AD=DC,AC=2AE=6,∵△ABC的周长为19,∴AB+BC=13(cm).∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13(cm).三.解答题13.【解析】证明:(1)∵CD⊥AB,BE⊥AC,∴∠BDH=∠BEC=∠CDA=90°,∵∠ABC=45°,∴∠BCD=180°-90°-45°=45°=∠ABC∴DB=DC,∵∠BDH=∠BEC=∠CDA=90°,∴∠A+∠ACD=90°,∠A+∠HBD=90°,∴∠HBD=∠ACD,∵在△DBH和△DCA中,BDH CDABD CDHBD ACD∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DBH≌△DCA(ASA),∴BH=AC.(2)连接CG,∵∠ABC=45°,CD⊥AB(∠CDB=90°),∴∠BCD=45°=∠ABC,∴DB=CD,∵F为BC的中点,∴DF垂直平分BC,∴BG=CG,∵∠ABE=∠CBE,BE⊥AC,∴EC=EA,在Rt△CGE中,由勾股定理得:CG2-GE2=CE2,∵CE=AE,BG=CG,∴BG2-GE2=EA2.14. 【解析】证明:连接CD,∵AC=BC,AD=BD,∴C在AB的垂直平分线上,D在AB的垂直平分线上,∴CD是AB的垂直平分线,∵∠ACB=90°,∴∠ACD=∠ACB=45°,∵DE⊥AC,∴∠CDE=∠ACD=45°,∴CE=DE,∴DE=AE+AC=AE+BC.15.【解析】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.。

《垂直平分线》练习题(含答案)

《垂直平分线》练习题(含答案)

1题A B E C 2题D A B C 3题D AB EC 4题A B C O 5题D A BE C 11题D A B E C O 12题D A B E C 13题D A B E C 14题D A B E C 15题D A B E C6题D A BE C 8题D A B E C 7题D A B E C 10题'9题《垂直平分线》练习题1.如图,△ABC 的边AB 的垂直平分线交AC 于点E,若AE=23,则BE= 。

2.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点D, △ABC 和△DBC 的周长分别为60㎝和38㎝,则△ABC 的腰长为 ,底边长为 。

3.如图,△ABC 中,∠ACB=90°,CB 的垂直平分线DE 交AB 于点D,垂足为E ,①若∠B=20°,则∠ADC 的度数为 ;②若△ADC 的周长为14,AC=4,则AB= ;③若AB=8㎝,则CD= 。

4.如图,△ABC 中,∠A=52°,AB 、AC 的垂直平分线交于点O ,则∠BOC 的度数为 。

5.如图,∠ABC=50°,AD 垂直平分线段BC ,交BC 于点D ,∠ABC 的角平分线BE 交AD 于点E ,连接EC ,则∠AEC 的度数为 。

6.如图,△ABC 中,AC 的垂直平分线交BC 于点D ,垂足为E ,△ABD 的周长为12㎝,AC=5㎝,则△ABC 的周长为 。

7.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点E ,垂足为D, ∠EBC ∶∠EBA=1∶2,则∠A 的度数为 。

8.如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 与点E,则△CDE 的周长为 。

9.如图,某广告公司为一厂家设计的商标图案,AD 垂直平分线段BC ,E 、F 都在线段AD 上,若AB=5,BC=6,则图中阴影部分面积为 。

10.如图,△ABC 中,AB=BC=2,∠ABC=90°,D 为BC 的中点,且它关于AC 的对称点D ’,则 BD ’= 。

线段的垂直平分线(有答案)

线段的垂直平分线(有答案)

线段的垂直平分线一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为_________ cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是_________ cm.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于_________.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为_________.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=_________.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.线段的垂直平分线参考答案与试题解析一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为18 cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是14cm.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于9.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为23.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=4.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.BD×13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.,,18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.ADAD=8cm27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.21。

专题28有关线段垂直平分线大题专练-2021-2022学年八年级数学上(解析版)【苏科版】

专题28有关线段垂直平分线大题专练-2021-2022学年八年级数学上(解析版)【苏科版】

2021-2022学年八年级数学上册尖子生同步培优题典【苏科版】专题2.8有关线段垂直平分线大题专练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷试题共24题,解答24道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题(本大题共24小题,解答时应写出文字说明、证明过程或演算步骤)1.(2021春•吴中区月考)如图,在△ABC中,DE是AC的垂直平分线.(1)若AC=6,△ABD的周长是13,则△ABC的周长是19;(2)若△ABC中,∠B=62°,∠C=36°,求∠BAD的度数.【分析】(1)根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理求出∠BAC,根据等腰三角形的性质求出∠DAC,计算即可.【详解】解:(1)∵DE是AC的垂直平分线,∴DA=DC,∵△ABD的周长是13,∴AB+AD+BD=AB+DC+BD=AB+BC=13,∴△ABC的周长=AB+BC+AC=13+6=19,故答案为:19;(2)在△ABC中,∠B=62°,∠C=36°,则∠BAC=180°﹣∠B﹣∠C=82°,∵DA=DC,∴∠DAC=∠C=36°,∴∠BAD=∠BAC﹣∠DAC=82°﹣36°=46°.2.如图,△ABC中,∠ABC=25°,∠ACB=55°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若BC的长为30,求△DAF的周长.【分析】(1)根据三角形内角和定理计算即可;(2)根据线段垂直平分线的性质得到DA=DB,F A=FC,根据等腰三角形的性质得到∠DAB=∠ABC =25°,∠F AC=∠ACB=55°,结合图形计算,得到答案;(3)根据三角形的周长公式计算.【详解】解:(1)∵∠ABC=25°,∠ACB=55°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°;(2)∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,F A=FC,∴∠DAB=∠ABC=25°,∠F AC=∠ACB=55°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=20°;(3)△DAF的周长=DA+DF+F A=DB+DF+FC=BC=30.3.(2020秋•兴化市期末)如图,△ABC中,AB的垂直平分线分别交AB、BC于点M、D,AC的垂直平分线分别交AC、BC于点N、E,△ADE的周长是7.(1)求BC的长度;(2)若∠B+∠C=60°,则∠DAE度数是多少?请说明理由.【分析】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算,得到答案;(2)根据等腰三角形的性质得到∠DAB=∠B,∠EAC=∠C,根据三角形的外角性质、三角形内角和定理计算即可.【详解】解:(1)∵DM是线段AB的垂直平分线,∴DA=DB,同理,EA=EC,∵△ADE的周长为7,∴DA+DE+EA=7,∴BC=DA+DE+EC=7;(2)∠DAE度数是60°,理由如下:∵DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∵∠B+∠C=60°,∴∠ADE+∠AED=2∠B+2∠C=120°,∴∠DAE=180°﹣120°=60°.4.(2020秋•锡山区期中)如图,△ABC中,∠C=90°,DE垂直平分AB,若∠B=25°,求∠CAE的度数.【分析】根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的性质得到∠EAB=∠B=25°,根据直角三角形的性质计算,得到答案.【详解】解:∵DE垂直平分AB,∴EA=EB,∵∠B=25°,∴∠EAB=∠B=25°,∵∠C=90°,∴∠CAB=65°,∴∠CAE=65°﹣25°=40°.5.(2020秋•鼓楼区校级月考)在△ABC中,∠BAC>90°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F.(1)若AB=AC,∠BAC=120°,求证BM=MN=NC;(2)由(1)可知△AMN是等边三角形;(3)去掉(1)中的“∠BAC=120°”的条件,其他不变,判断△AMN的形状,并证明你的结论;(4)当∠B与∠C满足怎样的数量关系时,△AMN是等腰三角形?直接写出所有可能的情况.【分析】(1)连接AM、AN,根据等腰三角形的性质、三角形内角和定理得到∠B=∠C=30°,根据线段垂直平分线的性质得到MA=MB,NA=NC,根据等边三角形的性质定理证明结论;(2)根据(1)中结论解答;(3)根据三角形的外角性质、等腰三角形的判定定理解答;(4)分AM=AN、NA=MN、MA=MN三种情况,根据等腰三角形的性质计算即可.【详解】(1)证明:连接AM、AN,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵ME是线段AB的垂直平分线,∴MA=MB,∴∠MAB=∠B=30°,∴∠AMN=∠B+∠MAB=60°,同理,NA=NC,∴∠NAC=∠C=30°,∴∠ANM=∠C+∠NAC=60°,∴△AMN为等边三角形,∴AM=MN=AN,∴BM=MN=NC;(2)解:由(1)可知△AMN是等边三角形,故答案为:等边;(3)解:△AMN是等腰三角形,理由如下:∵AB=AC,∴∠B=∠C,∵∠MAB=∠B,∠AMN=∠B+∠MAB,∠NAC=∠C,∠ANM=∠C+∠NAC,∴∠AMN=∠ANM,∴AM=AN,∴△AMN是等腰三角形;(4)解:当∠B=∠C时,AM=AN;当2∠B+∠C=90°时,∠MAC=90°,∴NF∥MA,∵CF=F A,∴CN=CM,∴NA=12CM=MN,同理,当∠B+2∠C=90°时,MA=MN,综上所述,当∠B=∠C、2∠B+∠C=90°、∠B+2∠C=90°时,△AMN是等腰三角形.6.(2020春•太原期末)如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.【分析】(1)利用尺规作出线段AB的垂直平分线DF,交CB于D,交AB于F,连接AD;作∠CAD的角平分线交BC于E,点D,射线AE即为所求.(2)首先证明DA=DB,推出∠DAB=∠B=30°,利用三角形内角和定理求出∠BAC,∠DAC即可解决问题.【详解】解:(1)如图,点D,射线AE即为所求.(2)∵DF垂直平分线段AB,∴DB=DA,∴∠DAB=∠B=30°,∵∠C=40°,∴∠BAC=180°﹣30°﹣40°=110°,∴∠CAD=110°﹣30°=80°,∵AE平分∠DAC,∴∠DAE=12∠DAC=40°.7.(2019秋•泰兴市期末)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.【分析】(1)根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到DA=DB,F A=FC,得到∠DAB=∠ABC=30°,∠F AC=∠ACB=50°,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】解:(1)∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣30°﹣50°=100°,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,∵FG是AC的垂直平分线,∴F A=FC,∴∠DAF=∠BAC﹣(∠DAB+∠F AC)=20°;(2)∵△DAF的周长为10,∴AD+DF+F A=10,∴BC=BD+DF+FC=AD+DF+FC=10.8.(2019秋•仪征市期末)如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON=30°,求∠MAN的度数;(3)若∠MON=45°,BM=3,BC=12,求MN的长度.【分析】(1)根据线段的垂直平分线的性质得到MA=MB,NA=NC,根据三角形的周长公式计算,得到答案;(2)根据等腰三角形的性质、三角形内角和定理计算;(3)根据(2)的解法得到∠MAN=90°,根据勾股定理列式计算即可.【详解】解:(1)∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;(2)∵∠MON=30°,∴∠OMN+∠ONM=150°,∴∠BME+∠CNF=150°,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠AMN+∠ANM=360°﹣300°=60°,∴∠MAN=180°﹣60°=120°;(3)由(2)的作法可知,∠MAN=90°,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12﹣3﹣x=9﹣x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9﹣x)2,解得,x=5,即MN=5.9.(2019秋•东台市期末)如图,AB=AC,∠A=120°,BC=6cm,ED、FG分别是AB,AC的垂直平分线,求BE的长.【分析】连接AE、AG,先由△ABC中,AB=AC,∠BAC=120°求出∠B及∠C的度数,再由线段垂直平分线的性质得出BE=AE,AG=CG,∠B=∠BAE,∠C=∠CAG,由三角形外角的性质求出∠AEG 与∠AGE的度数,判断出△AEG是等边三角形,由等边三角形的性质可得到AF=FD=AD,故BE=EG =CG,由BC=6cm即可求出答案.【详解】解:连接AE、AG,∵AB=AC,∠BAC=120°,∴∠B=∠C=180°−∠BAC2=30°,∵DE、FG分别为线段AB、AC的垂直平分线,∴BE=AE,AG=CG,∠B=∠BAE=30°,∠C=∠CAG=30°,∵∠AEG与∠AGE分别是△AEG与△AGE的外角,∴∠AEG=∠B+∠BAE=30°+30°=60°,∠AGE=∠C+∠CAG=30°+30°=60°,∴△AEG是等边三角形,∴AE=EG=AG,∵BE=AE,AG=CG,BC=6cm,∴BE=EG=CG=2cm.10.(2019秋•苏州期末)如图,在△ABC中,∠A=60°,∠ABC=2∠C,BC边的垂直平分线交AC边于点D,交BC边于点E,连接BD,求∠ADB的度数.【分析】设∠C=α,则∠ABC=2α,根据三角形的内角和和线段垂直平分线的性质即可得到结论.【详解】解:∵∠ABC=2∠C,∴设∠C=α,则∠ABC=2α,∵∠A=60°,∴∠ABC+∠C=120°,∴2α+α=120°,∴α=40°,∴∠C=40°,∵BC边的垂直平分线交AC边于点D,∴BD=CD,∴∠DBC=∠DCB=40°,∴∠ABD=40°,∴∠ADB=180°﹣60°﹣40°=80°.11.(2019秋•溧水区期末)如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E.(1)证明∠BAD=∠C;(2)∠BAD=29°,求∠B的度数.【分析】(1)根据角平分线即可得到∠BAD=∠DAE,依据DE垂直平分AC,即可得出∠DAE=∠C,进而得到∠BAD=∠C;(2)根据角平分线的定义求出∠BAC=58°,根据线段的垂直平分线的性质得到AD=DC,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】解:(1)∵AD平分∠BAC∴∠BAD=∠DAE,∵DE垂直平分AC,∴DA=DC,∴∠DAE=∠C,∴∠BAD=∠C;(2)∵AD平分∠BAC∴∠BAD=∠DAE,∵∠BAD=29°,∴∠DAE=29°,∴∠BAC=58°,∵DE垂直平分AC,∴AD=DC,∴∠DAE=∠DCA=29°,∵∠BAC+∠DCA+∠B=180°,∴∠B=93°.12.(2020秋•阜宁县校级月考)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,求△ADE的周长;(2)设直线DM、EN交于点O.①试判断点O是否在BC的垂直平分线上,并说明理由;②若∠BAC=100°,求∠BOC的度数.【分析】(1)根据垂直平分线性质得AD=BD,AE=EC.所以△ADE周长=BC;(2)①如图,连接AO,BO,CO,根据线段垂直平分线的性质即可得到结论;②根据四边形的内角和和等腰三角形的性质即可得到结论.【详解】解:(1)∵AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=CE,C△ADE=AD+DE+AE=BD+DE+CE=BC=10;(2)①如图,点O在BC的垂直平分线上,理由:连接AO,BO,CO,∵DM,EN分别是AB,AC的垂直平分线,∴AO=BO,OA=OC,∴OB=OC,∴点O在BC的垂直平分线上;②∵OM⊥AB,ON⊥AC,∴∠AMO=∠ANO=90°,∵∠BAC=100°,∴∠MON=360°﹣90°﹣90°﹣100°=80°,∴∠BOC=2∠MON=160°.13.(2020秋•台州期中)如图,在△ABC中,线段BC的垂直平分线DE交AC于点D.(1)若AB=3,AC=8,求△ABD的周长.(2)若△ABD的周长为13,△ABC的周长为20,求BC的长.【分析】(1)根据线段垂直平分线的性质得到DB=DC,根据三角形的中周长公式计算即可;(2)根据三角形的周长公式和(1)中结论解答.【详解】解:(1)∵DE是线段BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+DB=AB+AD+DC=AB+AC=11;(2)∵△ABC的周长为20,∴AB+BC+AC=20,∵△ABD的周长=13,∴AB+AC=13,∴BC=20﹣13=7.14.(2020•瑞安市一模)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=5,求△ADE的周长.(2)若∠BAD+∠CAE=60°,求∠BAC的度数.【分析】(1)直接利用线段垂直平分线的性质得出答案;(2)利用∠BAD+∠CAE=60°,得出∠B+∠C=∠DAB+∠EAC=60°,进而得出答案.【详解】解:(1)∵边AB、AC的垂直平分线分别交BC于D、E,∴DA=DB,EA=EC,∴△ADE的周长=AD+DE+AE=DB+DE+EC=BC=5;(2)∵DA=DB,EA=EC,∴∠DAB =∠B ,∠EAC =∠C ,∴∠B +∠C =∠DAB +∠EAC =60°,∴∠BAC =120°.15.(2019秋•宁德期末)如图,在△ABC 中,BC =AC ,∠ACB =90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于点E ,且AE =12BD ,求证:BD 是∠ABC 的角平分线.【分析】延长AE 、BC 交于点F .根据同角的余角相等,得∠DBC =∠F AC ;在△BCD 和△ACF 中,根据ASA 证明全等,得AF =BD ,从而AE =EF ,根据线段垂直平分线的性质,得AB =BF ,再根据等腰三角形的三线合一即可证明.【详解】证明:延长AE 、BC 交于点F .∵AE ⊥BE ,∴∠BEF =90°,又∠ACF =∠ACB =90°,∴∠DBC +∠AFC =∠F AC +∠AFC =90°,∴∠DBC =∠F AC ,在△ACF 和△BCD 中,{∠ACF =∠BCD =90°AC =BC ∠FAC =∠DBC∴△ACF ≌△BCD (ASA ), ∴AF =BD .又AE =12BD ,∴AE =12AF =EF ,即点E 是AF 的中点.∵BE ⊥AF∴DE 是AF 的垂直平分线∴AB =BF ,根据等腰三角形三线合一的性质可知:BD是∠ABC的角平分线.16.(2019秋•余杭区月考)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=72°,∠F AE=18°,求∠C的度数.【分析】根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质得到∠EAC=∠C,根据角平分线的定义、三角形内角和定理列式计算,得到答案.【详解】解:∵DE是线段AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴F AC=∠EAC+∠EAF=∠EAC+18°,∵AF平分∠BAC,∴BAC=2∠F AC=2∠EAC+36°=2∠C+36°,∵∠B+∠BAC+∠C=180°,∴72°+2∠C+36°+∠C=180°,解得,∠C=24°.17.(2019春•滨州期末)如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.(1)如图(1),若∠A=40°,则∠NMB=20度;(2)如图(2),若∠A=70°,则∠NMB=35度;(3)如图(3),若∠A=120,则∠NMB=60度;(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.【分析】(1)利用等腰三角形的性质求出∠B,再利用三角形内角和定理解决问题即可.(2)(3)(4)方法类似.【详解】解:(1)如图1中,∵AB=AC,∴∠B=∠ACB=12(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB=12(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB=12(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(4)结论:∠NMB=12∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB=12(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°−12∠A)=12∠A.18.(2019秋•鄞州区期中)如图,△ABC中,∠C=45°,若MP和NQ分别垂直平分AB和AC,CQ=4,PQ=3,求BC的长.【分析】根据线段垂直平分线的性质得出AP=BP,AQ=CQ,求出∠AQP=90°,根据勾股定理求出AP,即可得出BP,求出即可.【详解】解:∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ,又∵∠C=45°,∴∠AQC=90°,∵PQ=3,由勾股定理得BP=5,∴BC=BP+PQ+CQ=12.19.(2018秋•鄂托克旗期中)如图,在△ABC中,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.(1)若∠ABC=∠C,∠A=40°,求∠DBC的度数;(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.【分析】(1)首先计算出∠ABC的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD=BD,进而可得∠ABD=∠A=40°,然后可得答案;(2)根据线段垂直平分线的性质可得AD=DB,AE=BE,然后再计算出AC+BC的长,再利用△ABC 的周长为30cm可得AB长,进而可得答案.【详解】解:(1)∵∠ABC=∠C,∠A=40°,∴∠ABC=(180°﹣40°)÷2=70°.∵DE是边AB的垂直平分线,∴AD=DB,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.(2)∵DE是边AB的垂直平分线,∴AD=DB,AE=BE,∵△BCD的周长为18cm,∴AC+BC=AD+DC+BC=DB+DC+BC=18cm.∵△ABC的周长为30cm,∴AB=30﹣(AC+BC)=30﹣18=12cm,∴BE=12÷2=6cm.20.(2021春•中原区校级月考)如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=3cm,求△CMN的周长.(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线的性质得到AM=CM,BN=CN,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理求出∠MNF+∠NMF,进而求出∠A+∠B,结合图形计算即可.【详解】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB=3(cm);(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.21.(2021春•金牛区校级期中)如图,在ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.(1)若∠CAE=∠B+30°,求∠B的大小;(2)若∠CAE=∠B,AD=3,求AC的长.【分析】(1)根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的性质得到∠EAB=∠B,根据直角三角形的性质列式计算即可;(2)根据含30°的直角三角形的性质计算,得到答案.【详解】解:(1)∵DE垂直平分AB,∴EA=EB,∴∠EAB=∠B,∵∠C=90°,∴∠CAB+∠B=90°,即∠B+30°+∠B+∠B=90°,解得,∠B=20°;(2)∵∠CAE=∠B,∴3∠B=90°,解得,∠B=30°,∵DE垂直平分AB,AD=3,∴AB=6,在Rt△ABC中,∠C=90°,∠B=30°,∴AC=12AB=3.22.(2020秋•番禺区期末)如图,△ABC中,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G,连接AE,AG.(1)若△AEG的周长为10,求线段BC的长;(2)若∠BAC=104°,求∠EAG的度数.【分析】(1)根据线段的垂直平分线的性质得到EA=EB,GA=GC,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理得到∠B+∠C=76°,根据等腰三角形的性质求出∠EAB+∠GAC,结合图形计算即可.【详解】解:(1)∵DE垂直平分AB,GF垂直平分AC,∴EA=EB,GA=GC,∵△AEG的周长为10,∴AE+EG+AG=10,∴BC=BE+EG+GC=AE+EG+GC=10;(2)∵∠BAC=104°,∴∠B+∠C=180°﹣104°=76°,∵EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAB+∠GAC=∠B+∠C=76°,∴∠EAG=∠BAC﹣(∠EAB+∠GAC)=104°﹣76°=28°.23.(2020秋•永年区期末)如图,在△ABC中,点E、F分别在AB、AC上,AD是EF的垂直平分线,DE ⊥AB,DF⊥AC,EF交AD于点G.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,求证:DE=2DG.【分析】(1)根据线段垂直平分线的性质可得DE=DF,结合DE⊥AB,DF⊥AC可证明AD平分∠BAC;(2)由(1)可∠EAD=30°,由余角的性质可求得∠DEG=∠EAD=30°,再利用含30°角的直角三角形的性质可证明结论.【详解】证明:(1)∵AD是EF的垂直平分线,∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC(2)∵∠BAC=60°,AD平分∠BAC,∴∠EAD=12∠BAC=30°,∵DE⊥AB,DF⊥AC,∴∠EAD+∠AEG=∠DEG+∠AEG=90°,∴∠DEG=∠EAD=30°,∴DE=2DG.24.(2020秋•虎林市期末)如图,△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠P AQ的度数.(2)若△APQ周长为12,BC长为8,求PQ的长.【分析】(1)设∠P AQ=x,∠CAP=y,∠BAQ=z,根据线段垂直平分线的性质得:AP=PB,AQ=CQ,由等腰三角形的性质得:∠B=∠BAP=x+z,∠C=∠CAQ=x+y,再由三角形内角和定理相加可得结论;(2)根据△APQ周长为12,列等式为AQ+PQ+AP=12,由等量代换得BC+2PQ=12,可得PQ的长.【详解】解:(1)设∠P AQ=x,∠CAP=y,∠BAQ=z,∵MP和NQ分别垂直平分AB和AC,∴AP=PB,AQ=CQ,∴∠B=∠BAP=x+z,∠C=∠CAQ=x+y,∵∠BAC=80°,∴∠B+∠C=100°,即x+y+z=80°,x+z+x+y=100°,∴x=20°,∴∠P AQ=20°;(2)∵△APQ周长为12,∴AQ+PQ+AP=12,∵AQ=CQ,AP=PB,∴CQ+PQ+PB=12,即CQ+BQ+2PQ=12,BC+2PQ=12,∵BC=8,∴PQ=2.。

垂直平分线专项练习30题(有答案)ok

垂直平分线专项练习30题(有答案)ok

垂直平分线专项练习30题(有答案)1.如图,在△ABC中,∠BAC=2∠B,DE⊥AB于点D,交BC于点E,AC=AD=BD,请你猜想∠C的度数并证明.2.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC 于点M,求证:BN=CM.3.如图,在△ABC中,D是BC的垂直平分线DH上一点,DF⊥AB于F,DE⊥AC交AC的延长线于E,且BF=CE.(1)求证:AD平分∠BAC;(2)若∠BAC=80°,求∠DCB的度数.4.如图,在△ABC中,AB=AC,∠A=52°,AB的垂直平分线MN交AC于点D.求∠DBC的度数.5.如图,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC 交AF的延长线于E.求证:BC垂直且平分DE.6.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.7.如图,△ABC中,边AB、BC的垂直平分线交于点P.(1)求证:PA=PB=PC;(2)点P是否也在边AC的垂直平分线上?由此你还能得出什么结论?8.如图,在Rt△ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,求BD的长.9.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.10.如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.11.如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF 的理由.12.如图所示,在△ABC中,AB=AC=16cm,D为AB的中点,DE⊥AB交AC于E,△BCE的周长为26cm,求BC的长.13.如图,在△ABC中,EN,DM分别是AB,AC边的垂直平分线,BC=8cm.求△AED的周长.14.如图,在△ABC中,0E,OF分别是AB,AC的中垂线,∠ABO=20°,∠ABC=45°,求∠BAC和∠ACB的度数.15.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.16.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?17.如图1,△ABC中,AB=AC,∠BAC=130°,边AB、AC的垂直平分线交BC于点P、Q.(1)求∠PAQ的度数;(2)如图2,△ABC中,AB>AC,且90°<∠BAC<180°,边AB、AC的垂直平分线交BC于点P、Q.①若∠BAC=130°,则∠PAQ=_________°,若∠BAC=α,则∠PAQ用含有α的代数式表示为_________;②当∠BAC=_________°时,能使得PA⊥AQ;③若BC=10cm,则△PAQ的周长为_________cm.18.如图,△ABC中,AB=AC=14cm,D是AB的中点,DE⊥AB于D交AC于E,△EBC的周长是24cm,求BC 的长度.19.已知:如图,在△ABC中,AB=AC=32,AB的垂直平分线DE分别交AB、AC于点E、D.(1)若△DBC的周长为56,求BC的长;(2)若BC=21,求△DBC的周长.20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE 的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.21.如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于P、Q.(1)若BC=10,求△APQ周长是多少?(2)若∠BAC=110°,求∠PAQ的度数是多少?24.已知,如图,AD是BC的垂直平分线,DE⊥AB于点E,DF⊥AC于点F,求证:(1)∠ABD=∠ACD;(2)DE=DF.25.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF.求证:AD垂直平分EF.26.如图,△ABC中,E是BC边上的中点,DE⊥BC于E,DM⊥AB于M,DN⊥AC于N,BM=CN 试证明:点D在∠BAC的平分线上.27.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.28.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.29.已知,如图,DE为△ABC的边AB的垂直平分线,CD为△ABC的外角平分线,与DE交于D,DM⊥BC于M,DN⊥AC于N,求证:AN=BM.30.如图所示,在△ABC中,AB=8,AC=4,∠BAC的平分线与BC的垂直平分线交于点D,过点D作DE⊥AB 于点E,DF⊥AC(或AC的延长线)于点D.(1)求证:BE=CF;(2)求AE的长.参考答案:1.解:∠C=90°.证明:如图,连接AE,在Rt△AED和Rt△BED中,,∴△AED≌△BED(HL),∴∠DAE=∠B,又∵∠BAC=2∠B,∴∠DAE=∠CAE,在△AED和△BED中,,∴△ACE≌△ADE,∴∠C=∠ADE=90°.2.证明:连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.3.(1)证明:如图,连接BD,∵DH垂直平分BC,∴BD=CD,在Rt△BDF和Rt△CDE中,,∵DF⊥AB于F,DE⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BDF≌Rt△CDE,∴∠CDE=∠BDF,∴∠BDC=∠EDF,∵∠BAC=80°,∴∠EDF=360°﹣90°×2﹣80°=100°,∴∠BDC=100°,∵BD=CD,∴∠DCB=(180°﹣100°)=50°4.解:∵AB=AC,∠A=52°,∴∠ABC=∠ACB==64°,∵AB的垂直平分线MN,∴AD=BD,∠A=∠ABD=52°,∴∠DBC=∠ABC﹣∠ABD=64°﹣52°=12°5.证明:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,∴△ABE≌△CAD(ASA),∴AD=BE,又∵AD=BD,∴BD=BE,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,故∠ABC=45°.∵BE∥AC,∴∠EBD=90°,∠EBF=90°﹣45°=45°,∴△DBP≌△EBP(SAS),∴DP=EP,即可得出BC垂直且平分DE6.证明:∵AD是∠BAC的平分线,∴∠1=∠2,∵FE是AD的垂直平分线,∴FA=FD(线段垂直平分线上的点到线段两端的距离相等),∴∠FAD=∠FDA(等边对等角),∵∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,∴∠BAF=∠ACF7.证明:(1)∵边AB、BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.还可得出结论:①三角形三边的垂直平分线相交于一点.②这个点与三顶点距离相等8.解:因为CE垂直平分AD,所以AC=CD=5cm.所以∠ACE=∠ECD.因为CD平分∠ECB,所以∠ECD=∠DCB.因为∠ACB=90°,所以∠ACE=∠ECD=∠DCB=30°.所以∠A=90°﹣∠ACE=60°.所以∠B=90°﹣∠A=30°.所以∠DCB=∠B.所以BD=CD=5cm9.证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B10.解:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD=∠CAD,∠EAD=∠EDA,∴∠EAC=∠B11.解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF12.解:∵点D中AB的中点,DE⊥AB,∴DE是AB的中垂线,∴AE=BE,∴△BCE的周长=BE+EC+BC=AE+EC+BC=AC+BC=26,∴BC=26﹣AC=26﹣16=10cm13.解:∵EN,DM分别是AB,AC边的垂直平分线,∴BE=AE,CD=AD,14.解:连接AO并延长,交BC于点D,∵0E,OF分别是AB,AC的中垂线,∴OB=OA,OC=OA,∴OC=OB,∠ABO=∠BAO=20°,∠CBO=∠BCO,∠CAO=∠ACO,∵∠ABC=45°,∴∠CBO=∠BCO=25°,∴∠BOC=180°﹣∠CBO﹣∠BCO=130°,∵∠BOD=∠ABO+∠BAO,∴∠BOD=40°,∠COD=90°.∵∠COD=∠CAO+∠ACO,∴∠CAO=45°,∴∠BAC=∠BAO+∠CAO=65°,∠ACB=∠BCO+∠ACO=70°15.解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG16.解:∵BC边的垂直平分线DE,∴BE=CE=5,∵BE+CE+BC=18,∴BC=18﹣5﹣5=8,答:BC的长是817.解:(1)∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;(2)①∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=α,∴∠B+∠C=180°﹣∠BAC=180°﹣α,∴∠BAP+∠CAQ=180°﹣α,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=α﹣(180°﹣α)=2α﹣180°;②当∠PAQ=90°,即2α﹣180°=90°时,PA⊥AQ,解得:α=135°,∴当∠BAC=135°时,能使得PA⊥AQ;③∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∵BC=10cm,即BP+PQ+CQ=AP+PQ+AQ=10cm,∴△PAQ的周长为10cm.故答案为:①80,2α﹣180°;②135;③1018.解:在△ABE中,∵D是AB的中点,DE⊥AB于D交AC于E,∴AE=BE;在△ABC中,∵AB=AC=14cm,AC=AE+EC,又∵CE+BE+BC=24cm,∴BC=10cm19.解:(1)∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD=AC,∵△DBC的周长为56,AC=32,∴BC=56﹣32=24;(2)∵AD=BD,AC=32,∴AD+CD=BD+CD=AC=32,∵BC=21,∴△DBC的周长=BD+CD+BC=32+21=53.故答案为:24;5320.解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.21.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∴∠EDA=180°﹣∠AED﹣∠EAD,∠FDA=180°﹣∠AFD﹣∠FAD,∴∠EDA=∠FDA,∵DE=DF(已证),∴DG垂直平分EF(三线合一),即AD垂直平分EF.22.证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B23.解:(1)∵MP、NQ分别是AB、AC的垂直平分线,∴AP=BP,AQ=CQ,∴△APQ周长=AP+PQ+AQ=BP+PQ+QC=BC,∵BC=10,∴△APQ周长=10;(2)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AP=BP,AQ=CQ(已证),∴∠BAP=∠B,∠CAQ=∠C,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=∠BAC﹣∠B﹣∠C=110°﹣70°=40°24.证明:(1)∵AD是BC的垂直平分线,∴AB=AC,BD=CD,∴∠ABC=∠ACB,∠DBC=∠DCB,∴∠ABD=∠ACD;(2)∵AB=AC,AD是BC的垂直平分线,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF25.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在△ADE和△ADF中,,∴△ADE≌△ADF(HL),∴AE=AF,又∵AD平分∠BAC,∴AD垂直平分EF26.证明:如图,连接BD、CD,∵DE⊥BC,E是BC边上的中点,∴BD=CD,在△BDM和△CDN中,,∴△BDM≌△CDN(HL),∴DM=DN,又∵DM⊥AB,DN⊥AC,∴点D在∠BAC的平分线上.27.解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.故答案为:728.解:连接DB.∵点D在BC的垂直平分线上,∴DB=DC;∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,∴DE=DF;∵∠DFC=∠DEB=90°,在Rt△DCF和Rt△DBE中,,∴Rt△DCF≌Rt△DBE(HL),∴CF=BE(全等三角形的对应边相等).29.证明:∵DE为△ABC的边AB的垂直平分线,∴AD=BD,∵CD为△ABC的外角平分线,与DE交于D,DM⊥BC于M,DN⊥AC于N,∴DN=DM,在Rt△ADN和Rt△BDM中,,∴Rt△ADN≌Rt△BDM(HL),∴AN=BM.30.(1)证明:连结BD,CD.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠AED=∠BED=∠AFD=90°,DE=DF.∵DE垂直平分BC,∴DB=DC.在Rt△DEB和Rt△DFC中,∴Rt△DEB≌Rt△DFC(HL),∴BE=CF;(2)解:在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∵AB=AE+BE,∴AB=AF+EB,∴AB=AC+CF+EB.∵AB=8,AC=4,∴8=4+CF+EB,∴CF+EB=4,∴2EB=4,∴EB=2.∴AE=8﹣2=6.答:AE的长为6.。

专题13.2线段的垂直平分线专题(限时满分培优训练)-【拔尖特训】2024-2025学年八年级数学上

专题13.2线段的垂直平分线专题(限时满分培优训练)-【拔尖特训】2024-2025学年八年级数学上

【拔尖特训】2024-2025学年八年级数学上册尖子生培优必刷题(人教版)专题13.2线段的垂直平分线专题(限时满分培优训练)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•防城港期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.8B.6C.4D.22.(2022秋•东宝区期末)和三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点3.(2022秋•黄石港区期末)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AB,AC于点M,N,△BCN的周长是7cm,则BC的长为()A.4cm B.3 cm C.2cm D.1cm4.(2022秋•长安区校级期末)某地兴建的幸福小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在△ABC()A.三条高线的交点处B.三条中线的交点处C.三个角的平分线的交点处D.三条边的垂直平分线的交点处5.(易错题)(2023秋•青秀区校级月考)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC 的数量关系是()A.2∠BOC+∠BPC=360°B.∠BOC+2∠BPC=360°C.3∠BOC﹣∠BPC=360°D.4∠BPC﹣∠BOC=360°6.(易错题)(2022秋•汉南区校级期末)如图,锐角三角形ABC中,O为三条边的垂直平分线的交点,I 为三个角的平分线的交点,若∠BOC的度数为x,∠BIC的度数为y,则x、y之间的数量关系是()A.x+y=90°B.x﹣2y=90°C.x+180°=2y D.4y﹣x=360°7.(易错题)(2022秋•东阿县校级期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠OEB =46°,则∠AOC=()A.92°B.88°C.46°D.86°8.(易错题)(2022春•雅安期末)如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE=40°,则∠BAC=()A.105°B.100°C.110°D.140°9.(培优题)(2022春•舞钢市期末)如图,四边形ABCD中,DE和DF恰好分别垂直平分AB和BC,则以下结论不正确的是()A.AD=CD B.∠B=∠A+∠CC.∠EDF=∠ADE+∠CDF D.BE=BF10.(培优题)(2022春•周村区期末)如图,在△ABC中,∠BAC=80°,边AB的垂直平分线交AB于点D,交BC于点E,边AC的垂直平分线交AC于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.35°B.30°C.25°D.20°二.填空题(共6小题)11.(2022秋•句容市期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长.12.(2022秋•德城区校级期末)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线DE交BC于点E,交AC于点D,∠B=70°,∠F AE=19°,则∠C=°.13.(易错题)(2023春•甘州区校级期末)如图,在△ABC中,AC的垂直平分线与AC,BC分别交于点E,D,CE=4,△ABC的周长是25,则△ABD的周长为.14.(易错题)(2023春•荔湾区期末)在平面直角坐标系中,已知A(8,0),B(0,4),作AB的垂直平分线交x轴于点C,则点C坐标为.15.(2023春•振兴区校级期中)如图,AE是∠CAM的角平分线,点B在射线AM上,DE是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=26°,∠EBD=25°,则∠AED=.16.(2023春•振兴区校级期中)如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.已知△ADE的周长为11cm,分别连接OA、OB、OC,若△OBC的周长为23cm,则OA的长为.三.解答题(共7小题)17.(2023•渭南一模)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD 垂直平分EF.18.(2022春•合浦县期中)如图,已知点D是BC上一点,DE⊥AB,DF⊥AC,垂足分别为E、F,连接AD,若AD垂直平分EF,求证:AD是△ABC的角平分线.19.(易错题)(2023春•新民市期中)如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与P A相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与DP的位置关系,并说明理由;(2)若AC=6,BC=8,P A=2,求线段DE的长.20.(易错题)(2023春•丰城市期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.(1)若BC=9,求△AEG的周长.(2)若∠BAC=130°,求∠EAG的度数.21.(培优题)(2023春•榆林期末)如图,在△ABC中,AC边的垂直平分线分别交BC、AC于点E、F,连接AE,作AD⊥BC于点D,且D为BE的中点.(1)试说明:AB=CE;(2)若∠C=32°,求∠BAC的度数.22.(培优题)(2023春•定边县校级期末)已知,如图,AD是△ABC的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠B=40°,求∠AEF的度数;(2)求证:∠B=12∠AED.23.(培优题)(2023春•兴庆区校级期末)如图,△ABC中,D、E在AB上,且D、E分别是AC、BC的垂直平分线上一点.(1)若△CDE的周长为4,求AB的长;(2)若∠ACB=100°,求∠DCE的度数;(3)若∠ACB=a(90°<a<180°),则∠DCE=.。

垂直平分线练习题

垂直平分线练习题

垂直平分线练习题垂直平分线练习题垂直平分线是几何学中的一个重要概念,它在很多数学题目中经常被用到。

垂直平分线是指将一条线段垂直平分为两段相等的线段的直线。

在本文中,我们将探讨一些与垂直平分线相关的练习题,帮助读者更好地理解和应用这一概念。

练习题一:垂直平分线的构造假设有一条线段AB,我们的目标是通过构造一条垂直平分线来将其平分为两段相等的线段。

请你描述一下如何进行这一构造。

解答:首先,我们需要绘制一条与线段AB垂直的直线。

可以使用直尺和铅笔来辅助作图。

接下来,在线段AB的两个端点上分别作两个等长的弧,这两个弧的半径可以任意选择。

然后,我们将直尺的一边放在其中一个端点上,另一边与另一个端点的弧交点相连,得到的直线就是垂直平分线。

练习题二:垂直平分线的性质垂直平分线具有一些重要的性质,下面我们来探讨其中的一些。

性质一:垂直平分线将线段分为两段相等的部分。

证明:由于垂直平分线将线段分为两个等长的弧,所以它也将线段分为两段相等的部分。

性质二:垂直平分线与线段的中垂线重合。

证明:设垂直平分线为CD,线段AB的中点为E。

由于CD与AB垂直且等分,所以CD与AE、BE都垂直。

而根据垂直平分线的定义,CD与AE、BE也相等。

因此,CD即为线段AB的中垂线。

练习题三:垂直平分线的应用垂直平分线在几何学中有着广泛的应用,下面我们来看一个实际问题。

问题:假设有一个正方形ABCD,以及一条通过点A和点C的直线l。

请你证明直线l是正方形ABCD的对角线,并找出它的垂直平分线。

解答:首先,我们知道正方形的对角线互相垂直且相等。

因此,我们只需要证明直线l与正方形的两条对边垂直,并且它们的长度相等。

设正方形的边长为a。

由于直线l通过点A和点C,所以它与正方形的边AB和边CD相交。

设交点分别为E和F。

我们可以通过计算证明AE=CF=a/2,从而证明直线l与正方形的两条对边相等。

接下来,我们需要证明直线l与正方形的两条对边垂直。

由于正方形的两条对边互相垂直,所以我们只需要证明直线l与边AB垂直即可。

线段的垂直平分线(有答案)

线段的垂直平分线(有答案)

线段的垂直平分线一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处 C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为( ) A.18B.22C.24D.263.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是( ) A.∠ADC=45°B.∠DAC=45°C.DB=DA D.BD=DC4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为( ) A.20B.18C.16D.145.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( ) A.三边垂直平分线的交点B.三条角平分线的交点 C.三条高的交点D.三边中线的交点二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为 _________ cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是 _________ cm .8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于 _________ . 9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为 _________ .10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB= _________ .三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗为什么(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC ,求证:BF=AC+AF.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC. 线段的垂直平分线参考答案与试题解析一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处 C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质即可得出答案.解答:解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC和BC的垂直平分线上,故选B.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为( ) A.18B.22C.24D.26考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AB=2AE=8,AD=BD,求出△ABC的周长为:AB+AD+DC+AC,求出AD+DC+AC=18,即可求出答案.解答:解:∵DE是AB的垂直平分线,AE=4,∴AB=2AE=8,AD=BD,∵△ACD的周长为18,∴AD+DC+AC=18,∴△ABC的周长为:AB+BC+AC=8+BD+DC+AC=8+AD+DC+AC=8+18=26,故选D.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是( ) A.∠ADC=45°B.∠DAC=45°C.DB=DA D.BD=DC考点:线段垂直平分线的性质.专题:数形结合.分析:由∠ACB=90°,∠B=22.5°,根据三角形的内角和定理求出∠BAC的度数,然后根据线段的垂直平分线的性质得到DB与DA相等,利用等边对等角得到∠BAD与∠B相等,求出∠BAD的度数,由∠BAC的度数减去∠BAD 的度数,求出∠DAC的度数,又因为∠ADC是三角形ADB的外角,由三角形的外角性质得到∠ADC等于2∠B ,求出∠ADC的度数,从而得到选项A,B,C的结论正确,在直角三角形ACD中,根据斜边总大于直角边,判定得到AD大于CD,而AD与BD相等,等量代换得到BD大于CD,选项D的结论错误.解答:解:∵∠ACB=90°,∠B=22.5,∴∠BAC=180°﹣90°﹣22.5°=67.5°,又AB的垂直平分线交BC于D,∴DB=DA,故选项C正确;∴∠BAD=∠B=22.5°,∴∠DAC=67.5°﹣22.5°=45°,选项A正确,∠ADC=22.5°+22.5°=45°,选项B正确,在直角三角形ACD中,∵AD>CD,又AD=BD,∴BD>CD,选项D错误,则不正确的选项为D.故选D.点评:此题考查了线段垂直平分线的性质,外角性质及直角三角形的边角关系.遇到线段垂直平分线,往往根据垂直平分线上的点到线段两端点的距离相等,构造出等腰三角形,从而利用等腰三角形的有关知识解决问题.4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为( ) A.20B.18C.16D.14考点:线段垂直平分线的性质.专题:计算题.分析:先根据线段垂直平分线的性质得到AD=CD,即BD+CD+BC=12,再根据CE=4得到AC=8即可进行解答.解答:解:∵ED是线段AC的垂直平分线,∴AD=CD,∵△BCD的周长等于12,∴△BCD的周长=BC+BD+CD=AB+BC=12,∵CE=4,∴AC=8.∴△ABC的周长=AB+BC+AC=12+8=20.故选A.点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( ) A.三边垂直平分线的交点B.三条角平分线的交点 C.三条高的交点D.三边中线的交点考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.解答:解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选A.点评:本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为 18 cm.考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质得出AE=BE=5cm,代入AB+AE+BE求出即可.解答:解:∵DE是线段AB的垂直平分线,BE=5cm,∴AE=BE=5cm,∵AB=8cm,∴△ABE的周长是AB+AE+BE=8cm+5cm+5cm=18cm,故答案为:18.点评:本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两端点的距离相等.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是 14 cm.考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线得出CE=AE=2,AD=DC,根据已知得出AB+BD+AD=AB+BD+DC=AB+BC=10,即可求出答案.解答:解:∵DE是AC的中垂线,∴AE=CE=2,AD=DC,∵△ABD的周长是10cm,∴AB+BD+AD=10,∴AB+BD+DC=AB+BC=10,∴△ABC的周长是AB+BC+AC=10+2+2=14,故答案为14.点评:本题考查了线段的垂直平分线性质的应用,关键是求出AB+BC=10,题目比较典型,难度适中.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于 9 .考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,求出△BCD的周长=AB+BC,代入求出即可.解答:解:∵DE是AC的垂直平分线,∴AD=DC,∴△BCD的周长是BD+DC+BC=BD+AD+BC=AB+BC=5+4=9,故答案为:9.点评:本题考查了线段垂直平分线的应用,关键是求出△BCD的周长等于AB+BC.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为 23 .考点:线段垂直平分线的性质.分析:由已知条件,根据垂直平分线的性质得到线段相等,由△BCE的周长=EC+BE+BC得到答案.解答:解:AB的垂直平分线交AB于点D,所以EA=BE.∵AC=13,BC=10,∴△BCE的周长是EC+BE+BC=BC+CE+EA=AC+BC=13+10=23,故答案为23.点评:本题考查了垂直平分线的性质;由于已知三角形的两条边长,根据垂直平分线的性质,求出另一条的长,相加即可.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB= 4 .考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,根据BC长求出AD+BD=8,代入AB+AD+BD=12即可求出答案.解答:解:∵MN垂直平分AC,∴AD=DC,∵BC=8,∴BD+DC=8=AD+BD,∵△ABD的周长为12,∴AB+AD+BD=12,∴AB=12﹣8=4,故答案为:4.点评:本题考查了线段的垂直平分线性质,注意:线段垂直平分线上的点到线段两端点的距离相等.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.考点:线段垂直平分线的性质.专题:计算题.分析:(1)根据线段的垂直平分线性质求出AC即可;(2)根据线段的垂直平分线性质求出AD=DC,AC=2AE=6,根据△ABD的周长为13求出AB+BC的值即可求出答案.解答:解:(1)∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,∴AC=BC=6,答:BC的长是6.(2)∵DE是AC的垂直平分线,AE=3,∴AD=DC,AC=2AE=6,∵△ABD的周长为13,∴AB+AD+BD=13,∴AB+CD+BD=13,即AB+BC=13,∴△ABC的周长是AB+BC+AC=13+6=19.答:△ABC的周长是19.点评:本题主要考查对线段的垂直平分线性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗为什么(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.考点:线段垂直平分线的性质;全等三角形的判定与性质.分析:(1)根据SSS证△ABC≌△ADC,推出∠BAC=∠DAC,根据等腰三角形的三线合一定理推出即可;(2)求出四边形ABCD的面积为S=S△ABD+S△CBD=BD×AC,代入求出即可.解答:解:(1)∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,BE=DE(三线合一定理);(2)∵AC=a,BD=b,∴四边形ABCD的面积S=S△ABD+S△CBD=×BD×AE+×BD×CE=×BD×(AE+CE)=BD×AC=ab.点评:本题考查了等腰三角形的性质和线段垂直平分线性质,三角形的面积等知识点的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,等腰三角形的顶角的平分线垂直于底边,且平分底边.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AM=BM,推出∠BAM=∠B,设∠B=x,则∠BAM=x,∠C=3x,在△ABC中,由三角形内角和定理得出方程x+x+3x+50°=180°,求出即可.解答:解:∵MN是边AB的中垂线,∴AM=BM,∴∠BAM=∠B,设∠B=x,则∠BAM=x,∵∠C=3∠B,∴∠C=3x,在△ABC中,由三角形内角和定理,得x+x+3x+50°=180°,∴x=26°,即∠B=26°.点评:本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,关键是求出关于x的方程,注意:线段垂直平分线上的点到线段两端点的距离相等,等边对等角.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC ,求证:BF=AC+AF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:过D作DN⊥AC,垂足为N,连接DB、DC,推出DN=DF,DB=DC,根据HL证Rt△DBF≌Rt△DCN,推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.解答:证明:过D作DN⊥AC,垂足为N,连接DB、DC,则DN=DF(角平分线性质),DB=DC(线段垂直平分线性质),又∵DF⊥AB,DN⊥AC,∴∠DFB=∠DNC=90°,在Rt△DBF和Rt△DCN中∵,∴Rt△DBF≌Rt△DCN(HL)∴BF=CN,在Rt△DFA和Rt△DNA中∵,∴Rt△DFA≌Rt△DNA(HL)∴AN=AF,∴BF=AC+AN=AC+AF,即BF=AF+AC.点评:本题考查了全等三角形的性质和判定,线段的垂直平分线定理,角平分线性质等知识点,会添加适当的辅助线,会利用中垂线的性质找出全等的条件是解此题的关键.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线性质求出CE长,代入BE+CE+BC=18求出BC即可.解答:解:∵BC边的垂直平分线DE,∴BE=CE=5,∵BE+CE+BC=18,∴BC=18﹣5﹣5=8,答:BC的长是8.点评:本题考查了线段垂直平分线的应用,关键是求出CE长,题目较好,难度不大.16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.考点:线段垂直平分线的性质.专题:证明题.分析:根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.解答:证明:∵AD是高,∴AD⊥BC,又BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.点评:本题考查了线段的垂直平分线的应用,解此题的关键是熟练地运用性质进行推理,培养了学生分析问题和解决问题的能力.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点:一次函数综合题;线段垂直平分线的性质;作图—应用与设计作图;轴对称-最短路线问题.专题:综合题.分析:(1)连接AB,作出线段AB的垂直平分线,与x轴的交点即为所求的点;(2)找到点A关于x轴的对称点,连接对称点与点B与x轴交点即为所求作的点.解答:解:(1)存在满足条件的点C;作出图形,如图所示.(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.设A′B所在直线的解析式为:y=kx+b,把(2,﹣2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).点评:本题是一道典型的一次函数综合题,题目中还涉及到了线段的垂直平分线的性质及轴对称的问题.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:根据线段垂直平分线得出AC=BC,BD=AD,推出∠CBE=∠CAF,证△BCE≌△ACF,推出BE=AF,即可得出答案.解答:证明:∵线段CD垂直平分AB,∴AC=BC,AD=BD,∴∠CAB=∠CBA,∠BAD=∠ABD,∴∠CAB+∠BAD=∠CBA+∠ABD,即∠CBE=∠CAF,在△BCE和△ACF中∵,∴△BCE≌△ACF(ASA),∴BE=AF,∵BD=AD,∴BE﹣BD=AF﹣AD,即DE=DF.点评:本题考查了等腰三角形的性质和判定,线段垂直平分线性质,全等三角形的性质和判定等知识点的综合运用.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.考点:线段垂直平分线的性质;全等三角形的判定与性质.专题:证明题.分析:连接AC、AD,根据线段垂直平分线定理求出AC=AD,根据全等三角形的判定SSS证△ABC≌△AED即可.解答:证明:连接AC,AD,∵AF⊥CD,F为CD的中点,∴AC=AD,在△ABC和△AED中,∴△ABC≌△AED,∴∠B=∠E.点评:本题考查了对线段的垂直平分线定理和全等三角形的性质和判定的应用,关键是构造三角形ABC和三角形AED,并推出两三角形全等,题目比较典型,难度适中.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)根据全等三角形的判定SSS证出△ABC和△ADC即可;(2)根据线段垂直平分线定理得出点A,C都在线段BD的垂直平分线上即可.解答:证明:(1)在△ABC和△ADC中∴△ABC≌△ADC,∴∠ABC=∠ADC.(2)∵AB=AD,CB=CD,∴点A,C都在线段BD的垂直平分线上,∴AC⊥BD.点评:本题综合运用全等三角形的性质和判定和线段的垂直平分线定理,难度适中,题型较好.通过作题培养了学生分析问题和解决问题的能力.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.考点:线段垂直平分线的性质.专题:探究型.分析:(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE ,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE ,同理可得出DE=2EF即可得出结论.解答:解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.考点:线段垂直平分线的性质;角平分线的定义;三角形内角和定理.专题:证明题.分析:根据线段垂直平分线得出AF=DF,推出∠FAD=∠FDA,根据角平分线得出∠BAD=∠CAD,根据三角形外角性质推出即可.解答:证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B.点评:本题考查了三角形的外角性质,角平分线定义,线段垂直平分线性质等知识点的运用,关键是推出∠FAD=∠FDA,培养了学生综合运用性质进行推理的能力.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?考点:线段垂直平分线的性质.专题:计算题.分析:利用线段的垂直平分线的性质得到:AD=BD,AF=CF,就可以将△ADF的周长转化为线段BC的长.解答:解:∵DE,FG分别是△ABC的边AB、AC的垂直平分线∴AD=BD,AF=CF∴△ADF的周长=AD+DF+AF=BD+DF+CF=BC=10∴△ADF的周长是10.点评:本题考查了线段的垂直平分线的性质以及转化思想的应用.24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.考点:线段垂直平分线的性质;三角形三边关系.专题:数形结合.分析:PA大于PB,理由是:如图连接PA,与直线l交于C,连接PB,BC,因为直线l为线段AB的垂直平分线,根据线段垂直平分线的定理得直线l上的点C到线段两端点的距离相等,即AC=BC,在三角形PBC中,根据三角形的两边之和大于第三边得到PC+BC大于PB,然后利用等量代换把其中的BC换为AC,根据图形可得证.解答:解:PA>PB.理由如下:(3分)如图,连接PA,与直线l交于点C;连接PB、BC.(2分)因为直线l是线段AB的垂直平分线,所以CA=AB;(2分)因为三角形任意两边之和大于第三边,所以PC+CB>PB;(2分)所以PC+CA>PB,即PA>PB.(1分)点评:此题考查了线段垂直平分线的定理,以及三角形的三边关系.遇到线段垂直平分线,常常连接垂直平分线上的点与线段的两端点,构造等腰三角形.同时注意运用在三角形中,任意两边之和大于第三边,两边之差小于第三边.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)由已知和BC=BC,根据SSS即可推出两三角形全等;(2)由全等得出∠DBC=∠ACB,推出MB=MC,根据线段垂直平分线定理得出即可.解答:(1)证明:∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS).(2)证明:∵由(1)知:△ABC≌△DCB,∴∠ACB=∠DBC,∴MB=MC,∴点M在BC的垂直平分线上.点评:本题考查了全等三角形的性质和判定和线段垂直平分线定理的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出BD=AD=16cm,推出∠B=∠BAD=15°,根据三角形的外角性质求出∠ADC=30°,根据含30度角的直角三角形性质得出AC=AD,代入求出即可.解答:解:∵DE垂直平分AB,∴BD=AD=16cm,∴∠B=∠BAD=15°,∴∠ADC=15°+15°=30°,∵∠C=90°,∴AC=AD=8cm,点评:本题考查了三角形的外角性质,线段垂直平分线性质,等腰三角形性质,含30度角的直角三角形性质等知识点的综合运用,题目比较典型,是一道比较好的题目.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.考点:三角形的五心;线段垂直平分线的性质.专题:作图题.分析:首先根据线段的垂直平分线的性质,推出垂心H关于三边的对称点,均在△ABC的外接圆上,作△H1H2H3的外接圆O,根据线段的垂直平分线的性质作出弧H1H2、弧H2H3、弧H1H3的中点即可得到答案.解答:作法:1、作△H1H2H3的外接圆O,2、连接H1H2,作H1H2的垂直平分线EF交圆O于A,同法可作H2H3和H1H3的垂直平分线,分别交圆于B、C,3、连接AB、BC、AC,则△ABC为所求.点评:本题主要考查了三角形的五心,线段的垂直平分线的性质等知识点,解此题的关键是理解△ABC的垂心H 关于三边的对称点,均在△ABC的外接圆上.题型较好,但有一定的难度.21。

线段的垂直平分线(有答案)教材

线段的垂直平分线(有答案)教材

线段的垂直平分线一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.A C、BC两边高线的交点处B.A C、BC两边垂直平分线的交点处C.A C、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()A.18 B.22 C.24 D.263.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()A.∠ADC=45°B.∠DAC=45°C.D B=DA D.B D=DC4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()A.20 B.18 C.16 D.145.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为_________ cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是_________ cm.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于_________.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为_________.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=_________.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.线段的垂直平分线参考答案与试题解析一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.A C、BC两边高线的交点处B.A C、BC两边垂直平分线的交点处C.A C、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质即可得出答案.解答:解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC和BC的垂直平分线上,故选B.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()A.18 B.22 C.24 D.26考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AB=2AE=8,AD=BD,求出△ABC的周长为:AB+AD+DC+AC,求出AD+DC+AC=18,即可求出答案.解答:解:∵DE是AB的垂直平分线,AE=4,∴AB=2AE=8,AD=BD,∵△ACD的周长为18,∴AD+DC+AC=18,∴△ABC的周长为:AB+BC+AC=8+BD+DC+AC=8+AD+DC+AC=8+18=26,故选D.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()A.∠ADC=45°B.∠DAC=45°C.D B=DA D.B D=DC考点:线段垂直平分线的性质.专题:数形结合.分析:由∠ACB=90°,∠B=22.5°,根据三角形的内角和定理求出∠BAC的度数,然后根据线段的垂直平分线的性质得到DB与DA相等,利用等边对等角得到∠BAD与∠B相等,求出∠BAD的度数,由∠BAC的度数减去∠BAD的度数,求出∠DAC的度数,又因为∠ADC是三角形ADB的外角,由三角形的外角性质得到∠ADC等于2∠B,求出∠ADC的度数,从而得到选项A,B,C的结论正确,在直角三角形ACD中,根据斜边总大于直角边,判定得到AD大于CD,而AD与BD相等,等量代换得到BD大于CD,选项D的结论错误.解答:解:∵∠ACB=90°,∠B=22.5,∴∠BAC=180°﹣90°﹣22.5°=67.5°,又AB的垂直平分线交BC于D,∴DB=DA,故选项C正确;∴∠BAD=∠B=22.5°,∴∠DAC=67.5°﹣22.5°=45°,选项A正确,∠ADC=22.5°+22.5°=45°,选项B正确,在直角三角形ACD中,∵AD>CD,又AD=BD,∴BD>CD,选项D错误,则不正确的选项为D.故选D.点评:此题考查了线段垂直平分线的性质,外角性质及直角三角形的边角关系.遇到线段垂直平分线,往往根据垂直平分线上的点到线段两端点的距离相等,构造出等腰三角形,从而利用等腰三角形的有关知识解决问题.4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()A.20 B.18 C.16 D.14考点:线段垂直平分线的性质.专题:计算题.分析:先根据线段垂直平分线的性质得到AD=CD,即BD+CD+BC=12,再根据CE=4得到AC=8即可进行解答.解答:解:∵ED是线段AC的垂直平分线,∴AD=CD,∵△BCD的周长等于12,∴△BCD的周长=BC+BD+CD=AB+BC=12,∵CE=4,∴AC=8.∴△ABC的周长=AB+BC+AC=12+8=20.故选A.点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.解答:解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选A.点评:本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为18 cm.考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质得出AE=BE=5cm,代入AB+AE+BE求出即可.解答:解:∵DE是线段AB的垂直平分线,BE=5cm,∴AE=BE=5cm,∵AB=8cm,∴△ABE的周长是AB+AE+BE=8cm+5cm+5cm=18cm,故答案为:18.点评:本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两端点的距离相等.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是14cm.考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线得出CE=AE=2,AD=DC,根据已知得出AB+BD+AD=AB+BD+DC=AB+BC=10,即可求出答案.解答:解:∵DE是AC的中垂线,∴AE=CE=2,AD=DC,∵△ABD的周长是10cm,∴AB+BD+AD=10,∴AB+BD+DC=AB+BC=10,∴△ABC的周长是AB+BC+AC=10+2+2=14,故答案为14.点评:本题考查了线段的垂直平分线性质的应用,关键是求出AB+BC=10,题目比较典型,难度适中.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于9.考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,求出△BCD的周长=AB+BC,代入求出即可.解答:解:∵DE是AC的垂直平分线,∴AD=DC,∴△BCD的周长是BD+DC+BC=BD+AD+BC=AB+BC=5+4=9,故答案为:9.点评:本题考查了线段垂直平分线的应用,关键是求出△BCD的周长等于AB+BC.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为23.考点:线段垂直平分线的性质.分析:由已知条件,根据垂直平分线的性质得到线段相等,由△BCE的周长=EC+BE+BC得到答案.解答:解:AB的垂直平分线交AB于点D,所以EA=BE.∵AC=13,BC=10,∴△BCE的周长是EC+BE+BC=BC+CE+EA=AC+BC=13+10=23,故答案为23.点评:本题考查了垂直平分线的性质;由于已知三角形的两条边长,根据垂直平分线的性质,求出另一条的长,相加即可.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=4.考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,根据BC长求出AD+BD=8,代入AB+AD+BD=12即可求出答案.解答:解:∵MN垂直平分AC,∴AD=DC,∵BC=8,∴BD+DC=8=AD+BD,∵△ABD的周长为12,∴AB+AD+BD=12,∴AB=12﹣8=4,故答案为:4.点评:本题考查了线段的垂直平分线性质,注意:线段垂直平分线上的点到线段两端点的距离相等.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.考点:线段垂直平分线的性质.专题:计算题.分析:(1)根据线段的垂直平分线性质求出AC即可;(2)根据线段的垂直平分线性质求出AD=DC,AC=2AE=6,根据△ABD的周长为13求出AB+BC的值即可求出答案.解答:解:(1)∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,∴AC=BC=6,答:BC的长是6.(2)∵DE是AC的垂直平分线,AE=3,∴AD=DC,AC=2AE=6,∵△ABD的周长为13,∴AB+AD+BD=13,∴AB+CD+BD=13,即AB+BC=13,∴△ABC的周长是AB+BC+AC=13+6=19.答:△ABC的周长是19.点评:本题主要考查对线段的垂直平分线性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.考点:线段垂直平分线的性质;全等三角形的判定与性质.分析:(1)根据SSS证△ABC≌△ADC,推出∠BAC=∠DAC,根据等腰三角形的三线合一定理推出即可;(2)求出四边形ABCD的面积为S=S△ABD+S△CBD=BD×AC,代入求出即可.解答:解:(1)∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,BE=DE(三线合一定理);(2)∵AC=a,BD=b,∴四边形ABCD的面积S=S△ABD+S△CBD=×BD×AE+×BD×CE=×BD×(AE+CE)=BD×AC=ab.点评:本题考查了等腰三角形的性质和线段垂直平分线性质,三角形的面积等知识点的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,等腰三角形的顶角的平分线垂直于底边,且平分底边.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AM=BM,推出∠BAM=∠B,设∠B=x,则∠BAM=x,∠C=3x,在△ABC中,由三角形内角和定理得出方程x+x+3x+50°=180°,求出即可.解答:解:∵MN是边AB的中垂线,∴AM=BM,∴∠BAM=∠B,设∠B=x,则∠BAM=x,∵∠C=3∠B,∴∠C=3x,在△ABC中,由三角形内角和定理,得x+x+3x+50°=180°,∴x=26°,即∠B=26°.点评:本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,关键是求出关于x的方程,注意:线段垂直平分线上的点到线段两端点的距离相等,等边对等角.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:过D作DN⊥AC,垂足为N,连接DB、DC,推出DN=DF,DB=DC,根据HL证Rt△DBF≌Rt△DCN,推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.解答:证明:过D作DN⊥AC,垂足为N,连接DB、DC,则DN=DF(角平分线性质),DB=DC(线段垂直平分线性质),又∵DF⊥AB,DN⊥AC,∴∠DFB=∠DNC=90°,在Rt△DBF和Rt△DCN中∵,∴Rt△DBF≌Rt△DCN(HL)∴BF=CN,在Rt△DFA和Rt△DNA中∵,∴Rt△DFA≌Rt△DNA(HL)∴AN=AF,∴BF=AC+AN=AC+AF,即BF=AF+AC.点评:本题考查了全等三角形的性质和判定,线段的垂直平分线定理,角平分线性质等知识点,会添加适当的辅助线,会利用中垂线的性质找出全等的条件是解此题的关键.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线性质求出CE长,代入BE+CE+BC=18求出BC即可.解答:解:∵BC边的垂直平分线DE,∴BE=CE=5,∵BE+CE+BC=18,∴BC=18﹣5﹣5=8,答:BC的长是8.点评:本题考查了线段垂直平分线的应用,关键是求出CE长,题目较好,难度不大.16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.考点:线段垂直平分线的性质.专题:证明题.分析:根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.解答:证明:∵AD是高,∴AD⊥BC,又BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.点评:本题考查了线段的垂直平分线的应用,解此题的关键是熟练地运用性质进行推理,培养了学生分析问题和解决问题的能力.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点:一次函数综合题;线段垂直平分线的性质;作图—应用与设计作图;轴对称-最短路线问题.专题:综合题.分析:(1)连接AB,作出线段AB的垂直平分线,与x轴的交点即为所求的点;(2)找到点A关于x轴的对称点,连接对称点与点B与x轴交点即为所求作的点.解答:解:(1)存在满足条件的点C;作出图形,如图所示.(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.设A′B所在直线的解析式为:y=kx+b,把(2,﹣2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).点评:本题是一道典型的一次函数综合题,题目中还涉及到了线段的垂直平分线的性质及轴对称的问题.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:根据线段垂直平分线得出AC=BC,BD=AD,推出∠CBE=∠CAF,证△BCE≌△ACF,推出BE=AF,即可得出答案.解答:证明:∵线段CD垂直平分AB,∴AC=BC,AD=BD,∴∠CAB=∠CBA,∠BAD=∠ABD,∴∠CAB+∠BAD=∠CBA+∠ABD,即∠CBE=∠CAF,在△BCE和△ACF中∵,∴△BCE≌△ACF(ASA),∴BE=AF,∵BD=AD,∴BE﹣BD=AF﹣AD,即DE=DF.点评:本题考查了等腰三角形的性质和判定,线段垂直平分线性质,全等三角形的性质和判定等知识点的综合运用.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.考点:线段垂直平分线的性质;全等三角形的判定与性质.专题:证明题.分析:连接AC、AD,根据线段垂直平分线定理求出AC=AD,根据全等三角形的判定SSS证△ABC≌△AED即可.解答:证明:连接AC,AD,∵AF⊥CD,F为CD的中点,∴AC=AD,在△ABC和△AED中,∴△ABC≌△AED,∴∠B=∠E.点评:本题考查了对线段的垂直平分线定理和全等三角形的性质和判定的应用,关键是构造三角形ABC和三角形AED,并推出两三角形全等,题目比较典型,难度适中.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)根据全等三角形的判定SSS证出△ABC和△ADC即可;(2)根据线段垂直平分线定理得出点A,C都在线段BD的垂直平分线上即可.解答:证明:(1)在△ABC和△ADC中∴△ABC≌△ADC,∴∠ABC=∠ADC.(2)∵AB=AD,CB=CD,∴点A,C都在线段BD的垂直平分线上,∴AC⊥BD.点评:本题综合运用全等三角形的性质和判定和线段的垂直平分线定理,难度适中,题型较好.通过作题培养了学生分析问题和解决问题的能力.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.考点:线段垂直平分线的性质.专题:探究型.分析:(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.解答:解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.考点:线段垂直平分线的性质;角平分线的定义;三角形内角和定理.专题:证明题.分析:根据线段垂直平分线得出AF=DF,推出∠FAD=∠FDA,根据角平分线得出∠BAD=∠CAD,根据三角形外角性质推出即可.解答:证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B.点评:本题考查了三角形的外角性质,角平分线定义,线段垂直平分线性质等知识点的运用,关键是推出∠FAD=∠FDA,培养了学生综合运用性质进行推理的能力.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?考点:线段垂直平分线的性质.专题:计算题.分析:利用线段的垂直平分线的性质得到:AD=BD,AF=CF,就可以将△ADF的周长转化为线段BC的长.解答:解:∵DE,FG分别是△ABC的边AB、AC的垂直平分线∴AD=BD,AF=CF∴△ADF的周长=AD+DF+AF=BD+DF+CF=BC=10∴△ADF的周长是10.点评:本题考查了线段的垂直平分线的性质以及转化思想的应用.24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.考点:线段垂直平分线的性质;三角形三边关系.专题:数形结合.分析:PA大于PB,理由是:如图连接PA,与直线l交于C,连接PB,BC,因为直线l为线段AB的垂直平分线,根据线段垂直平分线的定理得直线l上的点C到线段两端点的距离相等,即AC=BC,在三角形PBC中,根据三角形的两边之和大于第三边得到PC+BC大于PB,然后利用等量代换把其中的BC换为AC,根据图形可得证.解答:解:PA>PB.理由如下:(3分)如图,连接PA,与直线l交于点C;连接PB、BC.(2分)因为直线l是线段AB的垂直平分线,所以CA=AB;(2分)因为三角形任意两边之和大于第三边,所以PC+CB>PB;(2分)所以PC+CA>PB,即PA>PB.(1分)点评:此题考查了线段垂直平分线的定理,以及三角形的三边关系.遇到线段垂直平分线,常常连接垂直平分线上的点与线段的两端点,构造等腰三角形.同时注意运用在三角形中,任意两边之和大于第三边,两边之差小于第三边.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)由已知和BC=BC,根据SSS即可推出两三角形全等;(2)由全等得出∠DBC=∠ACB,推出MB=MC,根据线段垂直平分线定理得出即可.解答:(1)证明:∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS).(2)证明:∵由(1)知:△ABC≌△DCB,∴∠ACB=∠DBC,∴MB=MC,∴点M在BC的垂直平分线上.点评:本题考查了全等三角形的性质和判定和线段垂直平分线定理的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出BD=AD=16cm,推出∠B=∠BAD=15°,根据三角形的外角性质求出∠ADC=30°,根据含30度角的直角三角形性质得出AC=AD,代入求出即可.解答:解:∵DE垂直平分AB,∴BD=AD=16cm,∴∠B=∠BAD=15°,∴∠ADC=15°+15°=30°,∵∠C=90°,∴AC=AD=8cm,点评:本题考查了三角形的外角性质,线段垂直平分线性质,等腰三角形性质,含30度角的直角三角形性质等知识点的综合运用,题目比较典型,是一道比较好的题目.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.考点:三角形的五心;线段垂直平分线的性质.专题:作图题.分析:首先根据线段的垂直平分线的性质,推出垂心H关于三边的对称点,均在△ABC的外接圆上,作△H1H2H3的外接圆O,根据线段的垂直平分线的性质作出弧H1H2、弧H2H3、弧H1H3的中点即可得到答案.解答:作法:1、作△H1H2H3的外接圆O,2、连接H1H2,作H1H2的垂直平分线EF交圆O于A,同法可作H2H3和H1H3的垂直平分线,分别交圆于B、C,3、连接AB、BC、AC,则△ABC为所求.点评:本题主要考查了三角形的五心,线段的垂直平分线的性质等知识点,解此题的关键是理解△ABC的垂心H 关于三边的对称点,均在△ABC的外接圆上.题型较好,但有一定的难度.21。

鲁教版七年级线段的垂直平分线练习50题及参考答案(难度系数0.6)

鲁教版七年级线段的垂直平分线练习50题及参考答案(难度系数0.6)

线段的垂直平分线(难度系数0.6)一、单选题(共20题;共40分)1.如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙两种作法:甲:分别作∠ACP、∠BCP的平分线,分别交AB于D、E,则D、E即为所求;乙:分别作AC、BC的垂直平分线,分别交AB于D、E,则D、E两点即为所求.下列说法正确的是()A. 甲、乙都正确B. 甲、乙都错误C. 甲正确,乙错误D. 甲错误,乙正确【答案】D【考点】线段垂直平分线的性质,线段垂直平分线的判定2.如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC的周长为()A. 14cmB. 13cmC. 11cmD. 9cm【答案】B【考点】线段垂直平分线的性质3.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm和48cm,则△ABC的腰和底边长分别为()A. 24cm和22cmB. 26cm和18cmC. 22cm和26cmD. 23cm和24cm【答案】C【考点】线段垂直平分线的性质4.如图,AC=AD,BC=BD,则有()A. AB与CD互相垂直平分B. CD垂直平分ABC. AB垂直平分CDD. CD平分∠ACB【答案】C【考点】线段垂直平分线的性质5.如图,△ABC中,AB的垂直平分线DE交AB于E,交BC于D,若AC=6,BC=10,则△ACD的周长为()A. 16B. 14C. 12D. 10【答案】A【考点】线段垂直平分线的性质6.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE 的度数为()A. 70°B. 80°C. 40°D. 30°【答案】D【考点】线段垂直平分线的性质,等腰三角形的性质7.下列说法中正确的是()A. 轴对称图形只有一条对称轴B. 两个三角形关于某直线对称,不一定全等C. 两个全等三角形一定成轴对称D. 直线MN垂直平分线段AB,则直线MN是线段AB的对称轴【答案】D【考点】线段垂直平分线的性质,轴对称的性质8.下列说法中,正确的有()个.①两个全等的三角形一定关于某直线对称;②关于某条直线对称的两个图形,对称点所连线段被对称轴垂直平分;③等腰三角形的高、中线、角平分线互相重合;④等腰三角形一腰上的高与底边的夹角等于顶角的一半;⑤若三角形一个外角的平分线平行于三角形的一边,则这个三角形为等腰三角形.A. 1B. 2C. 3D. 4【答案】B【考点】平行线的性质,线段垂直平分线的性质,轴对称的性质9.如图,△ABC中,AB=AC,AD是∠BAC的平分线,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A. 2对B. 3对C. 4对D. 5对【答案】C【考点】三角形全等的判定,线段垂直平分线的性质,等腰三角形的性质10.如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A. AC=AE=BEB. AD=BDC. AC=BDD. CD=DE【答案】C【考点】线段垂直平分线的性质11.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°【答案】B【考点】线段垂直平分线的性质12.如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE的周长为()A. 6B. 14C. 18D. 24【答案】B【考点】线段垂直平分线的性质13.如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,连接AD.若△ABC的周长是17cm,AE=2cm,则△ABD的周长是()A. 13cmB. 15cmC. 17cmD. 19cm【答案】A【考点】线段垂直平分线的性质14.如图,AB=AC,∠A=40°,AB的垂直平分线DE交AC于点E,垂足为D,则∠EBC的度数是()A. 30°B. 40°C. 70°D. 80°【答案】A【考点】线段垂直平分线的性质15.如图,在△ABC中,∠ACB=90°,DE垂直平分AB,垂足为D,如果∠A=30°,AB=6√3cmcm,那么CE等于()A. 3cmB. 2cmC. 4cmD. √3cm【答案】A【考点】线段垂直平分线的性质16.如图,在已知的△ABC中,按以下步骤作图:BC的长为半径作弧,两弧相交于两点M,N;①分别以B,C为圆心,以大于12②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A. 90°B. 95°C. 100°D. 105°【答案】D【考点】全等三角形的性质,线段垂直平分线的性质17.如图,在△ABC中,已知AB=AC,DE垂直平分AC,且AC=8,BC=6,则△BDC的周长为()A. 20B. 22C. 10D. 14【答案】D【考点】线段垂直平分线的性质18.在Rt△ABC中,∠C=90°,∠A=15°,AB的垂直平分线和AC相交于点M,则CM:MA等于()A. 1:√3B. √3:1C. 2:√3D. √3:2【答案】 D【考点】线段垂直平分线的性质19.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于点D,若AB=6,则AE的值是()A. 3√3B. 2√3C. 3D. 2【答案】B【考点】线段垂直平分线的性质,含30度角的直角三角形二、填空题(共12题;共12分)20.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=________.【答案】30o【考点】线段垂直平分线的性质,等腰三角形的性质21.如图,△ABC中AB=AC,AB的垂直平分线MN交AC于点D.若AC+BC=10cm,则△DBC的周长为________.【答案】10cm【考点】线段垂直平分线的性质22.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC 的度数是________.【答案】115°【考点】线段垂直平分线的性质23.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为________cm.【答案】6【考点】线段垂直平分线的性质24.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=________°.【答案】30【考点】线段垂直平分线的性质,等腰三角形的性质25.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是________ cm.【答案】19【考点】线段垂直平分线的性质26.如图,△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,△ADC的周长为9cm,则△ABC 的周长是________cm.【答案】15【考点】线段垂直平分线的性质27.在△ABC中,AB=AC,AB的中垂线于AC所在的直线相交所得的锐角为40°,则底角∠B的大小为________【答案】65°或25°【考点】线段垂直平分线的性质28.如图,在△ABC中,AB=AC,点D、F分别在AB,AC上,DF垂直平分AB,E是BC的中点,若∠C=70°,则∠EDF=________【答案】50°【考点】线段垂直平分线的性质29.如图,在△ABC中,AB=10cm,AC=6cm,BC的垂直平分线交AB于点D,交BC于点E,则△ACD的周长为________cm.【答案】16【考点】线段垂直平分线的性质30.在Rt△ABC中,∠C=90°,CB=8cm,若斜边AB的垂直平分线交CB于点D,CD=2cm,则AD=________ cm.【答案】6【考点】线段垂直平分线的性质31.如图,在△ABC中,AB=6cm,AC=4cm,BC的垂直平分线分别角AB、BC于D、E,则△ACD的周长为________cm.【答案】10【考点】线段垂直平分线的性质三、解答题(共7题;共35分)32.如图,直线AB,CD相交于点O,OE平分∠BOC,OF⊥CD于点O,∠BOD:∠EOB= 2:3,请补全图形,并求出∠AOF的度数.【答案】解:①若OF在CD上方时,如图所示,∵∠BOD:∠EOB=2:3设∠BOD=2x,∠EOB=3x∵OE平分∠BOC∴∠BOC=2 ∠EOB=6x∵∠BOC+∠BOD=180°∴6x+2x=180°解得:x=22.5°∴∠AOC=∠BOD=2×22.5°=45°∵OF⊥CD∴∠COF=90°∴∠AOF=∠AOC+∠COF=135°②若OF在CD下方时,如图所示,∵∠BOD:∠EOB=2:3设∠BOD=2x,∠EOB=3x∵OE平分∠BOC∴∠BOC=2 ∠EOB=6x∵∠BOC+∠BOD=180°∴6x+2x=180°解得:x=22.5°∴∠AOC=∠BOD=2×22.5°=45°∵OF⊥CD∴∠COF=90°∴∠AOF=∠COF-∠AOC=45°综上所述:∠AOF=135°或45°.【考点】角平分线的性质,线段垂直平分线的性质,根据数量关系列出方程33.利用尺规作三角形的三条边的垂直平分线,观察这三条垂直平分线的位置关系,你发现了什么?再换一个三角形试一试。

2020年秋人教版八年级数学上册专题小练习十 线段的垂直平分线(含答案)

2020年秋人教版八年级数学上册专题小练习十 线段的垂直平分线(含答案)

2020年人教版八年级数学上册专题小练习线段的垂直平分线一、选择题1.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为( )A.8 B.11 C.16 D.172.如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M.以下结论:①△BCD是等腰三角形;②射线CD是△ACB的角平分线;③△BCD的周长C△BCD=AB+BC;④△ADM≌△BCD.正确的有()A.①②B.①③C.②③D.③④3.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为()A.10°B.15°C.40°D.50°4.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则()A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP5.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处6.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB 边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A.6B.8C.10D.12二、填空题7.如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为.8.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=8,AC=3,则△ACD的周长为.9.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,EF=BF,则∠EFC= °.10.如图,△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、解答题11.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠MNA的度数是.(2)连接NB,若AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.12.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.求证: MN⊥BD.参考答案1.答案为:B.2.答案为:B3.A4.C5.C6.答案为:C.7.答案为:28cm.8.答案为:11.9.答案为:45.10.答案为:100°11.解:(1) 50(2) ①∵MN垂直平分AB.∴NB=NA,又∵△NBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.②当点P与点N重合时,由点P、B、C构成的△PBC的周长值最小,最小值是14cm.12.证明:∵BC⊥a,DE⊥b,点M是EC的中点,∴2DM=EC,2BM=EC,∴DM=BM,∵点N是BD的中点,∴MN⊥BD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的垂直平分线一、选择题(共8小题)1、如图,在△ABC中,分别以点A和点B为圆心,大于的错误!未找到引用源。

AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、202、如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是()A、6错误!未找到引用源。

B、4错误!未找到引用源。

C、6D、43、如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、34、如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A、80°B、70°C、60°D、50°5、如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()6、如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BEB、AC=BEC、CE=DED、∠CAE=∠B7、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A、△ABC的三条中线的交点B、△ABC三边的中垂线的交点C、△ABC三条角平分线的交点D、△ABC三条高所在直线的交点8、如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB二、填空题(共12小题)9、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________.10、如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.11、如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_________°.12、如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC13、如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.14、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_________度.15、如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是_________度.16、如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_________个不同的四边形.17、已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________.18、如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=错误!未找到引用源。

∠DAC;④△ABC是正三角形.请写出正确结论的序号___(把你认为正确结19、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________cm.20、在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_________°.三、解答题(共6小题)21、如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.22、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.1、(2011•绍兴)如图,在△ABC中,分别以点A和点B为圆心,大于的错误!未找到引用源。

AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20考点:线段垂直平分线的性质。

专题:几何图形问题;数形结合。

分析:首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC 的周长.解答:解:∵在△ABC中,分别以点A和点B为圆心,大于的错误!未找到引用源。

AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.故选C.点评:此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.2、(2011•丹东)如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是()A、6错误!未找到引用源。

B、4错误!未找到引用源。

C、6D、4考点:线段垂直平分线的性质;含30度角的直角三角形。

专题:计算题。

分析:由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.解答:解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=6.故选C.点评:本题考查了线段的垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.3、(2010•义乌市)如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、3考点:线段垂直平分线的性质。

专题:计算题。

分析:由直线CD是线段AB的垂直平分线可以得到PB=PA,而已知线段PA=5,由此即可求出线段PB的长度.解答:解:∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,而已知线段PA=5,∴PB=5.故选B.点评:本题主要考查线段垂直平分线的性质,此题比较简单,主要利用了线段的垂直平分线上的点到线段的两个端点的距离相等这个结论.4、(2010•烟台)如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A、80°B、70°C、60°D、50°考点:线段垂直平分线的性质;等腰三角形的性质。

专题:计算题。

分析:先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.解答:解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC=错误!未找到引用源。

=80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故选C.点评:此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.5、(2010•台湾)如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确考点:线段垂直平分线的性质。

分析:先根据直线CP是AB的中垂线且交AB于P,判断出△ABC是等腰三角形,即AC=BC,再根据线段垂直平分线的性质作出AD=DC=CE=EB.解答:解:甲错误,乙正确.证明:∵CP是线段AB的中垂线,∴△ABC是等腰三角形,即AC=BC,∠A=∠B,作AC、BC之中垂线分别交AB于D、E,∴∠A=∠ACD,∠B=∠BCE,∵∠A=∠B,∴∠A=∠ACD,∠B=∠BCE,∵AC=BC,∴△ACD≌△BCE,∴AD=EB,∵AD=DC,EB=CE,∴AD=DC=EB=CE.故选D.点评:本题主要考查线段垂直平分线的性质,还涉及等腰三角形的知识点,不是很难.6、(2010•三明)如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BEB、AC=BEC、CE=DED、∠CAE=∠B考点:线段垂直平分线的性质;角平分线的性质。

分析:根据线段垂直平分线的性质,得AE=BE;根据等角对等边,得∠BAE=∠B=30°;根据直角三角形的两个锐角互余,得∠BAC=60°,则∠CAE=∠BAE=30°,根据角平分线的性质,得CE=DE.解答:解:A、根据线段垂直平分线的性质,得AE=BE.故该选项正确;B、因为AE>AC,AE=BE,所以AC<BE.故该选项错误;C、根据等角对等边,得∠BAE=∠B=30°;根据直角三角形的两个锐角互余,得∠BAC=60°.则∠CAE=∠BAE=30°,根据角平分线的性质,得CE=DE.故该选项正确;D、根据C的证明过程.故该选项正确.故选B.点评:此题考查了线段垂直平分线的性质、等角对等边的性质、角平分线的性质.由已知条件结合各知识点得到结论对选项逐一验证时解答本题的关键.的位置应选在()A、△ABC的三条中线的交点B、△ABC三边的中垂线的交点C、△ABC三条角平分线的交点D、△ABC三条高所在直线的交点考点:线段垂直平分线的性质。

相关文档
最新文档