现代材料测试技术整理
现代材料测试技术测试方法1精选全文
4.1差热分析
4.1.1差热分析的基本原理
2、差热分析的基本理论
ΔH=KS
差热曲线的峰谷面积S和 反应热效应△H成正比, 反应热效应越大,峰谷 面积越大。
具有相同热效应的反应, 传热系数K越小,峰谷面 积越大,灵敏度越高。
4.1差热分析
4.1.2差热分析曲线
1、DTA曲线的特征 DTA曲线是将试样和参比物置于
2、DTA曲线的温度测定及标定:外推法(反应起点、转变点、 终点) 外延起始温度——表示反应的起始温度
3、DTA曲线的影响因素 差热分析是一种热动态技术,在测试过程中体系的温度不断变 化,引起物质热性能变化。因此,许多因素都可影响DTA曲 线的基线、峰形和温度。归纳起来,影响DTA曲线的主要因 素有下列几方面:
用相同质量的试样和升温速度对不同粒度的胆矾进 行研究(如图)。说明颗粒大小影响反应产物的扩散 速度,过大的颗粒和过小的颗粒都可能导致反应温 度改变,相邻峰谷合并,分辨率下降。
4.1差热分析
4.1.2差热分析曲线
试样用量的多少与颗粒大 小对DTA曲线有着类似的 影响,试样用量多,放热 效应大,峰顶温度滞后, 容易掩盖邻近小峰谷,特 别是对在反应过程中有气 体放出的热分解反应。
(1)仪器方面的因素:包括加热炉的形状和尺寸,坩埚材料及大 小,热电偶的位置等。
(2)试样因素:包括试样的热容量、热导率和试样的纯度、结晶 度或离子取代以及试样的颗粒度、用量及装填密度等。
(3)实验条件:包括加热速度、气氛、压力和量程、纸速等。
4.1差热分析
4.1.2差热分析曲线
(1)热容和热导率的变化: 试样的热容和热导率的变化会引起 差热曲线的基线变化,一台性能良 好的差热仪的基线应是一条水平直 线,但试样差热曲线的基线在反应 的前后往往不会停留在同一水平上, 这是由于试样在反应前后热容或热 导率变化的缘故。
现代材料检测技术及检测方法复习要点
现代材料检测技术及检测方法复习要点一.热分析定义:热分析是在程序控制温度下,测量物质的物理性质与温度之间关系的一类技术。
1.热重分析(Thermogravimetry,TG)定义:热重法是在程序控温下,测量物质的质量与温度或时间的关系的方法,通常是测量试样的质量变化与温度的关系。
影响因素:升温速度,气氛,样品的粒度和用量,试样皿温度的标定2.差热分析(Differential Thermal Analysis,DTA)定义:差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
差热分析曲线描述了样品与参比物之间的温差(ΔT)随温度或时间的变化关系。
影响因素:气氛和压力的选择,升温速率的影响和选择,试样的预处理和粒度,参比物的选择,纸速的选择3.差示扫描量热分析(Differential Scanning Calorimetry,DSC);定义:差示扫描量热法(DSC)是在程序控温下,测量物质和参比物之间的能量差随温度变化关系的一种技术4.差热重分析(Differential Thermogravimetry, DTG)DTG曲线是TG曲线对温度或时间的一阶导数,即质量变化率5.在DTA曲线中,吸热效应用谷来表示,放热效应用峰来表示所不同的是:在DSC曲线中,吸热(endothermic)效应用凸起正向的峰表示凹下的谷表示(热焓增加),放热(exothermic)效应用凹下的谷表示(热焓减少)。
二.电镜分析1.定义:TEM用聚焦电子束作照明源,使用于对电子束透明的薄膜试样,以透过试样的透射电子束或衍射电子束所形成的图像来分析试样内部的显微组织结构。
2.为什么采用电子束而不用自然光?决定因素1)显微镜的分辨率2)自然光与电子束的波长3)有效放大倍数透射电镜的有效放大倍数M=人眼的分辨率(0.2mm)/投射电镜的分辨率(0.1nm),而光学显微镜的分辨率为200mm。
由显微镜的分辨率与光源的波长决定了透射电子显微镜的放大倍率远大于普通光学显微镜;3.场深是指在保持象清晰的前提下,试样在物平面上下沿镜轴可移动的距离,或者说试样超越物平面所允许的厚度。
材料现代测试技术内容总结
1. X射线产生的基本条件答:①产生自由电子;②使电子做定向高速运动;③在电子运动的路径上设置使其突然减速的障碍物。
5. X射线相干散射与非相干散射现象答:相干散射:当X射线与原子中束缚较紧的内层电子相撞时,电子振动时向四周发射电磁波的散射过程。
非相干散射:当X射线光子与束缚不大的外层电子或价电子或金属晶体中的自由电子相撞时的散射过程。
6. 光电子、荧光X射线以及俄歇电子的含义答:光电子:光电效应中由光子激发所产生的电子(或入射光量子与物质原子中电子相互碰撞时被激发的电子)。
荧光X射线:由X射线激发所产生的特征X射线。
俄歇电子:原子外层电子跃迁填补内层空位后释放能量并产生新的空位,这些能量被包括空位层在内的临近原子或较外层电子吸收,受激发逸出原子的电子叫做俄歇电子。
7. X射线吸收规律、线吸收系数答:X射线吸收规律:强度为I的特征X射线在均匀物质内部通过时,强度的衰减与在物质内通过的距离x成比例,即-dI/I=μdx 。
线吸收系数:即为上式中的μ,指在X射线传播方向上,单位长度上的X射线强弱衰减程度。
2、电磁透镜的像差是怎样产生的,如何来消除或减小像差?解:电磁透镜的像差可以分为两类:几何像差和色差。
几何像差是因为投射磁场几何形状上的缺陷造成的,色差是由于电子波的波长或能量发生一定幅度的改变而造成的。
几何像差主要指球差和像散。
球差是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律造成的,像散是由透镜磁场的非旋转对称引起的。
消除或减小的方法:球差:减小孔径半角或缩小焦距均可减小球差,尤其小孔径半角可使球差明显减小。
像散:引入一个强度和方向都可以调节的矫正磁场即消像散器予以补偿。
色差:采用稳定加速电压的方法有效地较小色差。
3、说明影响光学显微镜和电磁透镜分辨率的关键因素是什么?如何提高电磁透镜的分辨率?解:光学显微镜的分辨本领取决于照明光源的波长。
电磁透镜的分辨率由衍射效应和球面像差来决定,球差是限制电磁透镜分辨本领的主要因素。
材料现代分析方法知识点汇总
材料现代分析方法知识点汇总1.基础分析技术:材料现代分析方法常用的基础分析技术包括光学显微镜、电子显微镜、X射线衍射、扫描电子显微镜等。
这些技术可以用于材料样品的形态、结构和成分的分析和表征。
2.元素分析方法:材料中元素的分析是材料研究中的重要内容。
现代元素分析方法包括原子吸收光谱、原子发射光谱、原子荧光光谱、质谱等。
通过这些方法可以获取样品中各个元素的含量和分布情况。
3.表面分析技术:材料的表面性质对其性能有着重要影响。
表面分析技术包括扫描电子显微镜、原子力显微镜、拉曼光谱等。
这些技术可以用于研究材料表面形貌、结构和成分,以及表面与界面的性质。
4.结构分析方法:材料的结构对其性能有着决定性的影响。
结构分析方法包括X射线衍射、中子衍射、电子衍射等。
这些方法可以用于确定材料的晶体结构、非晶态结构和纳米结构,从而揭示材料的物理和化学性质。
5.磁学分析方法:材料的磁性是其重要的性能之一、磁学分析方法包括霍尔效应测量、磁化率测量、磁滞回线测量等。
这些方法可以用于研究材料的磁性基本特性,如磁场效应、磁滞行为和磁相互作用。
6.热学分析方法:材料的热性质对其在高温、低温等条件下的应用具有重要意义。
热学分析方法包括热重分析、差示扫描量热法、热导率测量等。
这些方法可以用于研究材料的热稳定性、相变行为和导热性能。
7.分子分析技术:材料中分子结构的分析对于研究其化学性质具有重要意义。
分子分析技术包括红外光谱、拉曼光谱、核磁共振等。
通过这些技术可以确定材料的分子结构、键合方式和功能性分子的存在情况。
8.表征方法:材料的表征是指对其特定性能的评估和描述。
表征方法包括电阻率测量、粘度测量、硬度测量等。
这些方法可以用于研究材料的电学、力学和流变学性质。
总之,材料现代分析方法是一门综合应用各种科学技术手段对材料样品进行分析与表征的学科。
掌握这些现代分析方法的知识,可以帮助科学家和工程师更好地了解材料的性质和特点,为材料设计和应用提供科学依据。
材料现代测试分析技术
材料分析是如何实现的?
通过对表征材料的物理性质参数及其变化 (称为测量信号或特征信息)的检测实现 的。即,材料分析的基本原理是指测量信 号与材料成分、结构等的特征关系 采用各种不同的测量信号(相应地具有与 材料的不同特征关系)形成了各种不同的 材料分析方法
能级跃迁类型
吸收或发射 辐射种类
原子核能级
γ 射线
电子能级跃迁 (低能级到高能级)
X射线
价电子能级跃迁 (低能级到高能级)
紫外线、可见光
分子电子能级跃迁 (低能级到高能级)
紫外线、可见光
分子振动能级跃迁 (低能级到高能级)
红外线
电子自旋能级(磁能级) 微波 跃迁
原子核磁能级跃迁
射频
电子能级跃迁
荧光
价电子能级跃迁 (高能级到低能级)
四、光谱的分类
按辐射与物质相互作用性质
吸收光谱
发射光谱
散射光谱
…….. X
按的 发物
按谱域
生质
作微
红
用粒
外
光
原子光谱 分子光谱 谱
紫 外 光 谱
可 见 光 谱
射 线 谱
按强度对波长的分布特点
钠蒸气吸收光谱 苯蒸气吸收光谱
氢原子发射光谱 氰分子发射光谱
线光谱 带光谱
连续光谱
吸收与发射光谱分类
光谱分类名称
紫外线、可见光
价电子能级跃迁 (高能级到低能级)
紫外线、可见光 (原子荧光)
分子能级
紫外线、可见光 (分子荧光)
分子能级
紫外线、可见光 (分子磷光)
备注
材料分析测试技术
材料分析测试技术第一篇:材料分析测试技术一、引言材料分析测试技术是现代材料科学领域中非常重要的一部分,涵盖了材料结构、材料性能以及材料组成等方面的研究。
通过对材料进行分析测试,能够为材料的合理设计、精细加工、可靠使用以及环境保护等方面提供科学依据。
二、主要内容1.材料结构分析测试:此项测试主要是通过对材料的原位形貌、拉伸或压缩变形过程以及破坏机理的观察和分析,来揭示材料微结构的特征和结构与性能之间的关系。
2.材料物理性质测试:此项测试主要包括材料的热学性能、电学性能、光学性能等各个方面。
其中,热学性能测试包括热膨胀系数、热导率、比热等;电学性能测试包括电导率、介电常数、磁导率等;光学性能测试包括透过率、反射率、吸收率等。
3.材料化学成分测试:此项测试主要是通过对材料中各种元素化学量的测定,来确定材料的组成及其含量范围。
其中,常用的测试方法有荧光光谱法、原子吸收光谱法、质谱法等。
4.材料力学性能测试:此项测试主要是通过对材料的受力响应、变形、破坏等参数的测定,来评估材料的强度、韧性、脆性、疲劳性等力学特性。
其中,常用的测试方法有拉伸试验、压缩试验、硬度测试等。
三、测试技术优化为了提高材料分析测试的准确性和可靠性,需要注重以下几个方面:1.测试设备的选用和改进:从设备的选型、使用、维护等多方面考虑,提高设备的测试精度、可靠性和稳定性,并为特定的测试任务提供更优化的测试方法。
2.测试方法的优化:对测试方法的有效性、精度和可重复性进行评估和提高,并根据实际测试情况不断优化测试方法。
3.测试样品的处理:要注重对测试样品的处理和制备,避免样品的变形、损伤、干扰等因素对测试结果的影响。
4.测试人员的素质提高:对测试人员必须进行专业知识的培训和技能的提高,使其具备独立进行测试的能力和科学分析测试结果的能力。
四、应用前景目前,材料分析测试技术已经广泛应用于材料科学领域中的各个方面,如材料设计、加工制造、环境保护、矿产资源开发等。
现代材料测试技术整理
一衍射2、衍射的基本要素只有三个:即衍射线的峰位、线形、强度。
3、在X射线衍射仪法中,对光源的基本要求是稳定、强度大、光谱纯洁。
4、利用吸收限两边质量吸收系数相差十分悬殊的特点,可制作滤波片。
5、测量X射线衍射线峰位的方法有七种,它们分别是7/8高度法、峰巅法、切线法、弦中点法、中线峰法、重心法、抛物线法。
7、特征X射线产生的根本原因是原子内层电子的跃迁。
8、X射线衍射仪扫描方式可分连续扫描、步进扫描、跳跃步进扫描三种。
9、X射线管阳极靶发射出的X射线谱可分为两类:连续X射线光谱和特征X射线光谱。
10、当X射线穿过物质时,由于受到散射,光电效应等的影响,强度会减弱,这种现象称为X射线的吸收。
11、用于X射线衍射仪的探测器主要有盖革-弥勒计数管、闪烁计数管、正比计数管、固体计数管,其中闪烁计数管和正比计数管应用较为普遍。
15、当X射线照射到物体上时,一部分光子由于和原子碰撞而改变了前进的方向,造成散射线;另一部分光子可能被原子吸收,产生光电效应;再有部分光子的能量可能在与原子碰撞过程中传递给了原子,成为热振动能量。
2、产生特征X射线的根本原因是什么?内层电子跃迁:阴极发出的电子动能足够大,轰击靶,使靶原子中的某个内层电子打出,使它脱离原来的能级,致使靶原子处于受激态。
此时,原子中较高能级上的电子自发跃迁到该内层空位上,多余的能量变为X射线辐射出。
由于任一原子各个能级间的能量差值都是某些不连续的确定值,该差值转变为X射线的波长必为确定值,即产生特征X射线。
3、简述特征X-射线谱的特点。
特征X-射线谱有称作标识射线,它具有特定的波长,且波长取决于阳极靶元素的原子序数。
5、X射线连续光谱产生的机理。
答:当X射线管中高速电子和阳极靶碰撞时,产生极大的速度变化,就要辐射出电磁波。
由于大量电子轰击阳极靶的时间和条件不完全相同,辐射出的电磁波具有各种不同波长,因而形成了连续X射线谱。
6、X射线所必须具备的条件。
材料现代分析与测试技术资料
X射线衍射分析(基础与应用)一?X射线的特性人的肉眼看不见X射线,但X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。
? X射线呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。
? X射线对动物有机体(其中包括对人体)能产生巨大的生理上的影响,能杀伤生物细胞。
二.X射线具有波粒二相性1. X射线的本质是电磁辐射,与可见光完全相同,仅是波长短而已,因此其同样具有波粒二象性。
波动性:? 硬X射线:波长较短的硬X射线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。
? 软X射线:波长较长的软X射线能量较低,穿透性弱,可用于非金属的分析。
? 三.X光与可见光的区别? 1) X光不折射,因为所有物质对X光的折光指数都接近1。
因此无X光透镜或X光显微镜。
? 2) X光无反射? 3) X光可为重元素所吸收,故可用于医学造影。
1.3 X射线的产生及X射线管X射线的产生:X射线是高速运动的粒子(一般用电子)与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。
产生原理X射线是高速运动的粒子(一般用电子)与某种物质邙日极靶)相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。
高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分( 1 %左右)能量转变为X射线,而绝大部分(99 %左右)能量转变成热能使物体温度升高。
产生X射线条件? 1•产生自由电子;? 2•使电子作定向的高速运动(阴极阳极间加高电压);? 3•在其运动的路径上设置一个障碍物(阳极靶)使电子突然减速或停止。
? 阴极一一发射电子。
一般由钨丝制成,通电加热后释放出热辐射电子。
? 阳极一一靶,使电子突然减速并发出X射线。
窗口一一X射线出射通道。
既能让X射线出射,又能使管密封。
窗口材料用金属铍或硼酸铍锂构成的林德曼玻璃。
窗口与靶面常成3-6 °的斜角,以减少靶面对出射X射线的阻碍。
现代材料测试技术
测试标准的统一和规范
目前,材料测试领域存在多种不同的测试标准和规范,这给测试结果的可比性和互操作性带来了挑战。为推动测试标 准的统一和规范,需要加强国际合作和交流,共同制定国际通用的测试标准和规范。
应用
广泛应用于生物学、医学、 材料科学等领域,用于观 察细胞、组织、材料等微 观结构。
优缺点
具有高分辨率、操作简便 等优点,但对样品制备要 求高,且对非金属材料成 像效果较差。
激光共聚焦显微镜技术
原理
利用激光作为光源,通过共聚焦 技术实现三维成像,可获得样品
的表面形貌和内部结构信息。应用适用于生物医学、材料科学等领 域,用于研究细胞、组织、材料
对操作环境要求较高。
04
电子显微分析技术
透射电子显微镜技术
原理
利用高能电子束穿透样品,通过电磁透镜成像,观察样品的内部 结构。
应用
用于研究材料的微观形貌、晶体结构、化学成分及相变等。
特点
具有高分辨率、高放大倍数和广泛的应用范围。
扫描电子显微镜技术
1 2
原理
利用聚焦电子束在样品表面扫描,通过检测样品 发射的次级电子等信号成像,观察样品表面形貌。
能测试。
非破坏性测试
在不破坏材料的情况下,利用物理、 化学等方法对材料进行测试。例如, X射线衍射、超声波检测、电子显 微镜观察等。
在线测试
在材料加工、使用过程中进行实时 测试,以监控材料性能和质量。例 如,自动化生产线上的无损检测、 实时监测等。
材料测试技术的原理和特点
原理
期末考试:现代材料测试分析方法及答案
期末考试:现代材料测试分析方法及答案一、引言本文旨在介绍现代材料测试分析方法,并提供相关。
现代材料测试分析方法是材料科学与工程领域的重要内容之一,它帮助我们了解材料的性质和特性,为材料的设计和应用提供依据。
本文将首先介绍几种常见的现代材料测试分析方法,然后给出相应的。
二、现代材料测试分析方法1. 机械性能测试方法机械性能是材料的重要指标之一,它包括材料的强度、硬度、韧性等方面。
常见的机械性能测试方法包括拉伸试验、压缩试验、冲击试验等。
这些测试方法通过施加外力或载荷,测量材料在不同条件下的变形和破坏行为,从而评估材料的机械性能。
2. 热性能测试方法热性能是材料在高温或低温条件下的表现,它包括热膨胀性、热导率、热稳定性等方面。
常见的热性能测试方法包括热膨胀试验、热导率测试、热分析等。
这些测试方法通过加热或冷却材料,测量其在不同温度下的性能变化,从而评估材料的热性能。
3. 化学性能测试方法化学性能是材料在不同化学环境中的表现,它包括耐腐蚀性、化学稳定性等方面。
常见的化学性能测试方法包括腐蚀试验、酸碱浸泡试验等。
这些测试方法通过将材料置于不同的化学介质中,观察其在化学环境下的变化,从而评估材料的化学性能。
三、1. 机械性能测试方法的应用机械性能测试方法广泛应用于材料工程领域。
例如,在汽车工业中,拉伸试验可以评估材料的抗拉强度和延伸性,从而选择合适的材料制造汽车零部件。
在建筑工程中,压缩试验可以评估材料的抗压强度,确保建筑结构的稳定性和安全性。
在航空航天领域,冲击试验可以评估材料的抗冲击性能,确保飞机在遭受外力冲击时不会破坏。
2. 热性能测试方法的意义热性能测试方法对于材料的设计和应用非常重要。
通过热膨胀试验,我们可以了解材料在高温条件下的膨胀性,从而避免热膨胀引起的构件变形和破坏。
通过热导率测试,我们可以评估材料的导热性能,为热传导设备的设计提供依据。
通过热分析,我们可以了解材料在不同温度下的热行为,为材料的热稳定性评估提供依据。
材料测试技术及方法原理
材料测试技术及方法原理
1. 光谱分析技术:利用物质对光的吸收、发射或散射等现象来分析材料的成分和结构。
例如,红外光谱可以分析材料中的官能团,紫外-可见光谱可以分析材料的颜色和光学性质。
2. X 射线衍射技术:通过 X 射线在材料中的衍射现象来分析材料的晶体结构和相组成。
该技术可以确定材料的晶体类型、晶格常数、晶粒尺寸等信息。
3. 电子显微镜技术:利用电子束与物质相互作用产生的信号来观察和分析材料的微观结构。
扫描电子显微镜可以观察材料的表面形貌,透射电子显微镜可以观察材料的内部结构。
4. 力学性能测试:包括拉伸试验、压缩试验、弯曲试验等,用于测定材料的强度、塑性、韧性等力学性能。
5. 热分析技术:如差热分析、热重分析等,用于研究材料在加热或冷却过程中的物理和化学变化,如相变、热分解等。
6. 光谱化学分析:利用光谱技术进行元素分析,例如原子吸收光谱、电感耦合等离子体发射光谱等。
7. 核磁共振技术:通过测定原子核在磁场中的自旋状态来分析材料的结构和化学键信息。
这些测试技术和方法原理在材料科学研究、工程设计和质量控制等领域具有重要的应用价值,可以帮助我们深入了解材料的性质和行为,为材料的开发、优化和应用提供科学依据。
材料现代分析方法归纳总结
材料现代分析方法归纳总结材料分析是研究和了解材料性质、组成以及结构的过程。
而随着科学技术的发展,材料现代分析方法不断丰富和完善,因此,本文将对常用的材料现代分析方法进行归纳总结。
通过这些方法,我们可以更加准确地了解材料的性质和特点,为材料研究和应用提供有力的支持。
一、X射线衍射分析方法1. X射线衍射仪原理X射线衍射是利用材料晶体对入射的X射线产生衍射现象,进而得到材料结构信息的方法。
X射线衍射仪包括X射线发生器、样品支架、衍射仪和探测器等组成。
2. X射线衍射应用范围X射线衍射广泛应用于材料相结构、晶体学、应力分析等领域。
通过X射线衍射分析,可以确定材料中存在的晶体结构、相变行为以及晶格常数等关键信息。
二、质谱分析方法1. 质谱仪原理质谱是一种通过分析样品中离子的质量和相对丰度,来确定样品组成的分析技术。
质谱仪包括进样系统、离子源、质谱分析器等组成。
2. 质谱分析应用领域质谱分析方法在有机物组成分析、无机元素分析以及分子结构分析等方面具有广泛的应用。
通过对样品分子离子的质量的检测和分析,可以获得样品化学成分以及分子结构等信息。
三、扫描电子显微镜(SEM)分析方法1. SEM原理扫描电子显微镜是利用电子束与样品表面相互作用产生的信号来获得样品表面形貌以及成分信息的一种显微镜。
SEM主要由电子光源、样品台、扫描控制系统、成像系统等部分构成。
2. SEM应用范围SEM广泛应用于材料表面形貌分析、晶体缺陷研究以及纳米材料分析等领域。
通过SEM技术,可以观察到材料表面的形貌、孔隙结构、晶体形态等微观特征。
四、透射电子显微镜(TEM)分析方法1. TEM原理透射电子显微镜是将电子束透射到样品上,通过电子束和样品发生相互作用产生的影像来获得样品内部的结构信息。
TEM主要由电子源、样品台、成像系统等部分构成。
2. TEM应用范围TEM主要应用于材料的内部结构分析,例如纳米材料的晶体结构、界面特性等。
通过TEM技术,可以观察到材料的晶体结构、晶界、缺陷以及纳米颗粒等细微结构。
现代材料分析测试技术
现代材料分析测试技术1. 引言现代材料分析测试技术是指利用科学仪器和方法对材料进行测试、分析和评估的一种技术手段。
随着材料科学的不断发展和技术的进步,现代材料分析测试技术在工业、科研和生产领域起着至关重要的作用。
本文将介绍常用的现代材料分析测试技术,包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、红外光谱(FTIR)等。
2. 扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种非常重要的材料分析测试仪器。
它通过扫描材料表面并通过电子束与材料相互作用来获得材料表面微观形貌和成分信息。
SEM广泛应用于材料科学、纳米材料研究、材料工艺等领域。
它可以观察样品的表面形貌、晶体结构、晶粒大小等,并通过能谱分析仪来获得元素组成信息。
3. 透射电子显微镜(TEM)透射电子显微镜(TEM)是一种用于观察材料内部结构的高分辨率显微镜。
TEM通过电子束穿透材料,并通过对透射电子进行束缚和散射来图像化材料的内部结构。
它在材料科学、纳米技术、纤维材料等领域具有重要的应用价值。
TEM能够观察材料的晶体结构、晶格缺陷、晶粒尺寸等,并可获得高分辨率的像像。
4. X射线衍射(XRD)X射线衍射(XRD)是一种常用的材料分析测试技术。
它利用材料对入射X射线的衍射现象来研究材料的晶体结构和晶格参数。
XRD广泛应用于材料科学、矿产勘探、无机化学等领域。
XRD可以确定材料的晶体结构、晶格常数、相对结晶度等,并可通过对射线衍射的精确测定来研究材料的相变行为和配位状态。
5. 红外光谱(FTIR)红外光谱(FTIR)是一种常用的材料分析测试技术,可以用来研究材料的分子结构和化学键的振动情况。
红外光谱可以提供关于材料的化学成分、结构和功能的重要信息。
它广泛应用于材料科学、有机化学、聚合物科学等领域。
红外光谱可以帮助确定材料的分子结构、功能团的存在和分布,以及材料的晶体性质等。
6. 总结现代材料分析测试技术在材料科学和工程领域起着至关重要的作用。
材料现代分析测试方法知识总结
材料现代分析测试方法知识总结现代分析测试方法是指在材料研究和应用过程中,通过各种仪器和设备对材料进行精确分析和测试的方法。
这些方法包括物理测试方法、化学测试方法和电子显微镜技术等。
以下是对现代分析测试方法的一些知识的总结。
一、物理测试方法:1.X射线衍射:通过X射线的衍射绘制出材料的结晶结构,确定材料的晶格常数、晶胞参数和晶体的相位等。
2.热重分析:通过加热材料并测量其重量的变化,判断其热稳定性、热分解性和可能的热分解产物。
3.红外光谱:通过测量材料在红外波段的吸收光谱,推断材料的分子结构、官能团以及物质的存在状态和纯度。
4.核磁共振:通过测量核磁共振信号,确定物质的结构、官能团和化学环境。
二、化学测试方法:1.光谱分析:包括紫外可见光谱、原子吸收光谱和发射光谱等,通过测量材料吸收或发射的光的波长和强度,确定材料的化学成分和浓度。
2.色谱分析:包括气相色谱、液相色谱和超高效液相色谱等,通过物质在固定相和流动相之间的相互作用,分离并测定材料中的组分。
3.原子力显微镜:通过测量微米和亚微米级尺寸范围内的力的作用,观察材料表面的形貌和物理特性。
4.微量元素分析:通过原子吸收光谱、荧光光谱和电感耦合等离子体发射光谱等方法,测量材料中的微量元素浓度。
三、电子显微镜技术:1.扫描电子显微镜:通过扫描电子束和样品表面之间的相互作用,观察材料表面的形貌、组成和结构。
2.透射电子显微镜:通过电子束穿透样品并与样品内部的原子发生相互作用,观察材料的晶格结构、晶格缺陷和界面等微观结构。
以上是现代材料分析测试方法的一些知识总结。
通过这些方法,我们可以准确地了解材料的组成、结构和性能,为材料的研究、设计和应用提供有力的支持。
现代材料分析测试技术
晶体和非 晶体
晶体是质点(原子、离子或分子)在空间按一 定规律周期性重复排列构成的固体物质。
非晶体是指组成物质的分子(或原子、离子) 不呈空间有规则周期性排列的固体。它没有一 定规则的外形,如玻璃、松香、石蜡等。它的 物理性质在各个方向上是相同的,叫“各向同 性”。它没有固定的熔点。所以有人把非晶体 叫做“过冷液体”或“流动性很小的液体”。
五. 最小内能:指的是在相同热力学条件下,晶体与同种物质的非晶 态相比较,其内能最小,因而晶体的结构也是最稳定的。
六. 稳定性:由于晶体有最小的内能,因而结晶状态是一个相对稳定 的状态。
七. 固定的熔点
空间点阵
为了探讨千变万化的晶体结构的一些共同规律,可 以把晶体结构进行几何抽象。抽象的方法是把晶体 结构中各周期重复单位中的等同点抽象成一个仅代 表重心位置而不代表组成、重量和大小的几何点, 这些几何点称为结点或点阵点。
,
晶面指数
描述晶面或一族互相平行面网在 空间位置的符号(hkl)称为晶面 符号或密勒符号。其中hkl称为晶 面指数或晶面指标。
晶面指数确定方法:取晶面在各晶轴上的截 距系数p、q、r的倒数1/p、1/q、1/r,化简 成互质的整数比h :k :l,用(hkl)表示这 组晶面。
法晶 面 指 数 确 定 方
1. 2. 3.
晶 选 称 结 空 何 结
Байду номын сангаас
取
最 小 。
在 满 ① 和 ②
多 的 直 角 ;
在 满 足 ① 的
期 性 和 对 称
能 同 时 反 映
晶 胞 的 条
为点间图点 晶而点形在 胞成阵,空 。的。就间
单连称周
胞
的 条性出件
(完整版)现代材料测试技术——知识点识记
现代材料测试技术知识点识记、掌握1.材料现代分析方法的类别:基于电磁辐射及运动粒子束与材料相互作用的各种性质建立起来的分析方法已成为材料现代分析方法的重要组成部分,大体可分为光谱分析、电子能谱分析、衍射分析和电子显微分析等四大类。
此外,基于其它物理性质或电化学性质与材料的特征关系建立的色谱分析、质谱分析、电化学分析及热分析等方法,也是材料现代分析的重要方法。
材料分析测试技术的发展,使得材料分析不仅包括材料整体的成分、结构分析,也包括材料表面与界面分析、微区分析、形貌分析等内容。
组织形貌分析——A.光学显微分析:光学显微镜最先用于医学及生物学方面,直接导致了细胞的发现,在此基础上形成了19世纪最伟大的发现之一------细胞学说。
冶金及材料学工作者利用显微镜观察材料的显微结构,例如:经过抛光腐蚀后可以看到不同金属或合金的晶粒大小及特点,从而判断其性能及其形成条件,使人们能够按照自己的意愿改变金属的性能,或合成新的合金。
举例:纯钨丝退火过程中的组织变化。
B. 扫描电镜分析:扫描电子显微镜是用细聚焦的电子束在样品表面进行逐行扫描,电子束激发样品表面发射二次电子,二次电子被收集并转换成电信号,在荧光屏上同步扫描成像。
由于样品表面形貌各异,发射的二次电子强度不同。
对应在屏幕上亮度不同,得到表面形貌像。
目前扫描电子显微镜的分辨率已经达到了2nm左右。
举例:金属铸锭的树枝晶结构;化学法生长的纳米ZnO;钢铁中的珠光体组织(铁素体 -Fe和渗碳体Fe3C间层混合物);Al-Cu合金;Ni合金大变形冷轧后晶粒状态;C. 透射电镜分析:举例:Ni合金大变形冷轧后晶粒状态;纯Al热轧晶粒状态;D. 扫描探针显微镜:1982年发明扫描隧道显微镜。
扫描隧道显微镜没有镜头,它使用一根探针。
探针和物体之间加上电压,如果探针距离物体表面大约在纳米级的距离时,就会产生电子隧穿效应。
电子会穿过物体与探针之间的空隙,形成一股微弱的电流。
现代材料检测技术总结_图文(精)
第一章热分析热分析定义热分析是在程序控制温度下,测量物质的物理性质与温度之间关系的一类技术。
差热分析(Differential Thermal Analysis,DTA热重分析(Thermogravimetry,TG;差示扫描量热分析(Differential Scanning Calorimetry,DSC;一、差热分析DTA定义:差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
差热分析曲线描述了样品与参比物之间的温差(ΔT随温度或时间的变化关系。
差热分析的原理如下图所示。
将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以Ts、Tr 表示各自的温度,设试样和参比物的热容量不随温度而变。
若以ΔT=Ts-Tr 对t作图,所得DTA曲线如图所示,随着温度的增加,试样产生了热效应(例如相转变,与参比物间的温差变大,在DTA曲线中表现为峰、谷。
显然,温差越大,峰、谷也越大,试样发生变化的次数多,峰、谷的数目也多,所以各种吸热谷和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而其面积与热量的变化有关。
图示了差热分析的原理图。
图中两对热电偶反向联结,构成差示热电偶。
S为试样,R为参比物在电表T处测得的为试样温度TS;在电表△T处测的即为试样温度TS和参比物温度TR 之差△T。
影响差热分析的主要因素1 气氛和压力的选择气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形,因此必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入N2、Ne等惰性气体。
2 升温速率的影响和选择:升温速率不仅影响峰温的位置,而且影响峰面积的大小:快的升温速率下峰面积变大,峰变尖锐。
使试样分解偏离平衡条件的程度也大,易使基线漂移,并导致相邻两个峰重叠,分辨力下降。
慢的升温速率,基线漂移小,使体系接近平衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。
材料现代测试技术
3.色差 玻璃透镜对不同波长的光具有不同的焦距,磁透镜对不 同能量的电子也有不同的会聚能力。
二:高能电子与样品物质相互作用产生的电子信息
背散射电子、透射电子、吸收电子、二次电子、俄 歇电子、特征X射线等等。
X射线衍射仪
X射线
电子探针仪
扫描电镜
二次电子
韧致辐射
阴极荧光
入射电子
背散射电子
吸收电子
在满足衍射条件时,根据厄瓦尔德图解原理,反射球 与倒易球相交,其交线为一系列垂直于入射线的圆,从反 射球中心向这些圆周连线组成数个以入射线为公共轴的共 顶圆锥。圆锥的母线就是衍射线的方向,锥顶角等于4 。
H: 样品台 C: 平板试样 T: 靶材 S: 线状焦点 A, B: 狭缝 F: 光阑 G: 计数管 E:测角仪台
j 1
(1)简单点阵
每个胞中只有一个原子。其位置在原点上,坐标为 (000),fa为其原子散射因数
这表明lFl2与晶面指数无关、所有晶面均有反射
粉末衍射原理
粉末试样是由数目极多的微小晶粒组成,这些晶粒 的取向完全是无规则的.各晶粒中的指数相同的晶面取 向分布于空间的任意方向。
如果采用倒易空间的概念,则这些晶面的倒易矢量 分布于整个倒易空间的各个方向,各等同晶面族的倒易 点阵分别分布在以倒易点阵原点为中心的同心倒易球面 上。
材料现代测试技术
X射线衍射
“衍 射”:散射波的干涉
重点:
X射线本质、条件, X射线光谱 特征x射线
x射线与物质相互作用
X射线衍射方向:劳埃方程式和布拉格方程式。 衍射矢量方程和爱瓦尔德图解 X射线衍射束的强度:结构因子Fhkl X射线衍射方法: X射线衍射仪
特征X射线的产生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一衍射2、衍射的基本要素只有三个:即衍射线的峰位、线形、强度。
3、在X射线衍射仪法中,对光源的基本要求是稳定、强度大、光谱纯洁。
4、利用吸收限两边质量吸收系数相差十分悬殊的特点,可制作滤波片。
5、测量X射线衍射线峰位的方法有七种,它们分别是7/8高度法、峰巅法、切线法、弦中点法、中线峰法、重心法、抛物线法。
7、特征X射线产生的根本原因是原子内层电子的跃迁。
8、X射线衍射仪扫描方式可分连续扫描、步进扫描、跳跃步进扫描三种。
9、X射线管阳极靶发射出的X射线谱可分为两类:连续X射线光谱和特征X射线光谱。
10、当X射线穿过物质时,由于受到散射,光电效应等的影响,强度会减弱,这种现象称为X射线的吸收。
11、用于X射线衍射仪的探测器主要有盖革-弥勒计数管、闪烁计数管、正比计数管、固体计数管,其中闪烁计数管和正比计数管应用较为普遍。
15、当X射线照射到物体上时,一部分光子由于和原子碰撞而改变了前进的方向,造成散射线;另一部分光子可能被原子吸收,产生光电效应;再有部分光子的能量可能在与原子碰撞过程中传递给了原子,成为热振动能量。
2、产生特征X射线的根本原因是什么?内层电子跃迁:阴极发出的电子动能足够大,轰击靶,使靶原子中的某个内层电子打出,使它脱离原来的能级,致使靶原子处于受激态。
此时,原子中较高能级上的电子自发跃迁到该内层空位上,多余的能量变为X射线辐射出。
由于任一原子各个能级间的能量差值都是某些不连续的确定值,该差值转变为X射线的波长必为确定值,即产生特征X射线。
3、简述特征X-射线谱的特点。
特征X-射线谱有称作标识射线,它具有特定的波长,且波长取决于阳极靶元素的原子序数。
5、X射线连续光谱产生的机理。
答:当X射线管中高速电子和阳极靶碰撞时,产生极大的速度变化,就要辐射出电磁波。
由于大量电子轰击阳极靶的时间和条件不完全相同,辐射出的电磁波具有各种不同波长,因而形成了连续X射线谱。
6、X射线所必须具备的条件。
(1)产生自由电子的电子源(2)设置自由电子撞击靶子,用以产生X射线(3)施加在阳极和阴极间的高压(4)将阴阳极封闭在高真空中,保持两极纯洁7、简述连续X射线谱的特征(1)当增加X射线管时,各种波长射线的相对强度一致增高,最大强度波长λm和短波线λo变小(2)当管压保持恒定,增加管流是,各种波长的X射线相对强度一致增高。
但λm和λo数值大小不变。
(3)当改变阳极靶元素时,各种波长的相对强度随靶元素的原子序数增加。
二、热分析1、差热分析法、热重分析法、差示扫描量热分析法和热机械分析法是热分析的四大支柱。
2、热分析法是所有在高温过程中测量物质热性能技术的总称。
特征X射线产生的根本原因是内层电子的跃迁。
3、热重分析法包括:静态法和动态法两种类型。
4、热膨胀仪按照位移检测方法可分为:差动变压器检测、光电检测、激光干涉条纹检测三种类型。
三①第一个峰谷可能是脱水反应-吸热反应②第二个峰谷可能是分解反应或脱水反应-吸热反应6、简述热重分析的主要应用。
答:热重分析法的最大特点是定量性强,可以精确地分析出二元或三元混合物各组分的量。
利用脱羟基水的失重量测定氢氧化钙的含量,进而研究水泥水化的速度问题;利用脱碳失重测定碳酸盐的含量或脱硫失重测定硫酸盐的含量;利用脱水失重测定含水矿物的数量。
7、在差热曲线上如何确定反应起始点温度答:作峰的外延起始便陡峭部分的切线与外延基线的交点为外延起始点,从外延起始点引横坐标温度轴的垂线,在温度轴上的交点即为反应起始点温度。
9、影响热重曲线的主要因素有哪些?(1)仪器因素:浮力与对流的影响;挥发物冷凝的影响;温度测量的影响(2)室验因素:升温速率;气氛;纸速(3)试样因素:试样的用量和粒度12、简述影响差热曲线的因素。
(1)仪器方面的因素:包括加热炉的形状和尺寸、坩埚材料及大小、热电偶位置(2)试样因素:包括试样的热容量、热导率和试样的纯度、结晶度或离子取代以及试样的颗粒度用量及装填密度(3)室验条件:包括加热速度、气氛、压力和量程、纸速14、某物质的DTA曲线上出现吸热峰,简要说明其可能发生的热效应。
1)含水矿物的脱水- 几乎所有的矿物都有脱水现象,脱水是产生吸热效应,在DTA曲线上为吸热峰2)矿物分解放出气体 - 硫酸盐、碳酸盐及硫化物等物质,在加热的过称中由于CO2、SO2等气体的放出而产生吸热效应,在DTA曲线上表现为吸热峰3)氧化反应–试样或者分解产物中含有变价元素,当加热到一定温度时会发生由低价元素变为高价元素的氧化反应,同时放出热量,在差热曲线上表现为放热峰4):非晶态物质转变为晶态物质- 非晶态物质在加热的过程中伴随有重结晶或不同物质在加热的过程中互相化合成新物质时均会放热5):晶形转变–有些晶态物质在加热过程中发生晶体结构变化,并伴随有热效应。
通常在加热的过程中晶体由低温变体向高温变体转化产生吸热效应。
此外,固体物质的熔化升华、液体的气化、玻璃化转变等在加热过程中都产生吸热,在差热曲线上表现为吸热峰。
15、简述综合热分析方法的优越性。
综合热分析方法是指在同一时间对同一样品使用两种或两种以上的热分析效果,因此可以在相同的实验条件下获得尽可能多的表征材料特性的多种信息且更全面可靠。
三、晶体光学1 光率体的种类有均质体的光率体, 一轴晶的光率体, 二轴晶的光率体; 其形态分别为圆球体, 以Z轴为旋转轴的椭球体 ,三轴椭球体。
2.光显微镜的调节与校正的内容主要有对光, 准焦, 确定下偏光镜的振动方向且将其平行东西方向十字丝,中心校正。
3.干涉色级序的测定方法有边缘色带法 ,补偿法。
4.晶体在单偏光镜下可以观察和测定的主要内容有晶体的外表特征,如形状,解理与晶体对无波吸收有光的光学性质,如颜色、多色性, 与晶体折射率有关的光学性质,如轮廓、糙面、突起、贝克线、色散效应等。
5.影响光程差的因素有矿物切片方向, 薄片厚度, 矿物本身性质。
6.锥光镜下研究矿物晶体时,可观察和测定的内容有晶体的轴性, 光性符号,切面位置, 光轴角大小,晶体的光性方位等。
7.一轴晶主要切面垂直光轴的切面, 平行光轴的切面, 斜交光轴的切面三种。
8.二轴晶光率体的主要切面有⊥OA切面, 平行AP切面, 垂直Bxa的切面,垂直Bxo的切面,任意斜交切面五种。
9.根据晶体颗粒边棱的规则程度,将晶体分为自形晶, 半自形晶, 他形晶三类。
11.根据薄片中晶体与树胶相对折射率的大小,将晶体的突起分为负高突起, 负低突起, 正低突起,正中突起, 正高突起, 正极高突起六个等级。
12.在正交偏光镜下,矿物的消光类型有平行消光, 对称消光, 斜消光三种。
13.干涉色级序的测定方法有目测法, 边缘色带法, 补偿法三种。
1.同一晶体的不同颗粒为何干涉色不同?晶体在什么切面上干涉色最高?答:○1干涉色的不同是由光程差的不同而导致的,而光程差不仅受到薄片的影响,还受到晶体双折射率的影响,对同一晶体切面方向不同,双折射率也不同,因而产生不同的干涉色。
○2当平行光轴或平行光轴面的切面双折射率最大,干涉色最高。
因为这是一轴晶双折射率为:N e ---Nc,是一轴晶矿物的最大折射率。
二轴晶双折射率为Ng—Np是二轴晶矿物的最大折射率。
所以光程差最大,干涉色最高。
3.矿物薄片中晶体的颜色和干涉色在成因上有何不同?影响干涉色的因素有?○1:矿物对白光的不等量吸收呈现颜色。
矿物改变光的振动方向,及折射率的不同形成光程差,从而形成干涉色。
○2影响干涉色的因素,因为干涉色是由光程差决定的,即影响光程差的因素:矿物本身性质,晶体的双折射率,薄片厚度4.矿物薄片中晶体的边缘、糙面、突起和贝克线是怎样形成的?在偏光显微镜下观测矿物晶体时,它们有何用途?答:○1边缘,贝克线:主要是由于相邻二物质折射率不等,光通过接触面时,发生折射,反射作用所引起的。
○2糙面:矿物薄片表面具有一些纤维状的凹凸不平,覆盖在矿片之上的加拿大树胶折射率又与矿片的折射率不同,光线通过二者之间的界面,将发生折射,甚至全发射作用,至使矿物表面的光线集散不一而显得明暗程度不同,给人以粗糙的感觉。
○3突起:主要是又与矿物折射率与加拿大树胶折射率不同引起的。
○4通过对在偏光显微镜下观测矿物晶体的现象分析矿物折射率的大致范围。
5.通常都是用什么方法测定矿物的干涉色级序?简述其测定方法。
答:补偿法1、电子显微分析是利用聚焦电子束与试样物质相互作用产生的各种物理信号,分析试样物质的微区形貌、晶体结构和化学组成。
2、电子显微镜可分为:透射电子显微镜、扫描电子显微镜等几类。
3、电镜中,用静电透镜作电子枪,发射电子束;用磁透镜做会聚透镜,起成像和放大作用。
4、磁透镜和玻璃透镜一样具有很多缺陷,因此会造成像差,像差包括:球差色差、像散、和畸变。
5。
在非弹性散射过程中,电子不但改变方向,能量也有不同程度的减少,转变为热、光和 X射线和二次电子发射等。
6、电子与固体物质相互作用过程中产生的各种电子信号,包括二次电子、背散射电子、_ 透射电子和吸收电子等。
7、块状材料是通过减薄的方法(需要先进行机械或化学方法的预减薄)制备成对电子束透明的薄膜样品。
减薄的方法有超薄切片、电解抛光、化学抛光和离子轰击等。
8、扫描电镜是用聚焦电子束在试样表面逐点扫描成像,成像信号可以是二次电子、背散射电子或吸收电子。
9、能谱分析有四种基本方法:定点定性分析、线扫描分析、面扫描分析、和定点定量分析。
10、能谱分析要得到准确的分析结果,需选择适宜的工作条件包括加速电压、计数率、计数时间和X射线出射角等。
11、透射电子显微镜中高分辨率像有晶格条纹像和结构像。
三、简答题1、为什么现代的透射电镜除电子光源处都用磁透镜做会聚镜?(1)磁透镜的焦距可以做的很短,获得高的放大倍数和较小的球差。
(2)静电透镜要求过高的电压,使仪器的绝缘问题难以解决2、为什么电子显微镜镜筒必须具有高真空?(1)若镜筒中有气体,会产生电离和放电现象。
(2)电子枪灯丝被氧化而烧断(3)高速电子与气体分子碰撞而散射,降低成像衬度及污染样品3、扫描电镜在探测二次电子时,为何要在栅网上加250V电压?而在探测背散射电子时在栅网上加—50V电压?在探测二次电子时,在栅网上加250V电压是为了会聚二次电子。
在探测背散射电子时,加电压是为了阻挡二次电子4、扫描电镜的衬度有那些?各种衬度的典型衬度像是什么?(1)形貌衬度二次电子像(2)原子序数衬度背散射电子像或特征X射线像(3)电压衬度二次电子像5、分析电子波与加速电压的关系。
答:一个初速度为零的电子,在电场中从电位为零的点受到电位为V的作用,其获得的动能和运动速度v之间的关系为:E=Ev=1/2mv²当加速电压较低时,v<<c(光速),电子质量近似于静止质量m.,由E=hγ P=h/γλ=h/p=h/mv得:λ=h/(2em.v)½=(150/γ)½=12.5/v½电子波长与其加速电压平方根成反比,加速电压越高,电子波长越短。