高中数学选修不等式

合集下载

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

9
3 .
归纳升华
1.利用三个正数的算术—几何平均不等式常处理下
面两个类型的最值: (1)求函数 y=ax2+bx的最小值,其中 ax2>0,bx>0.

y

ax2

b x

ax2

b 2x

b 2x

3
3
ax2·2bx·2bx

3 2
3 2ab2.当且仅当 ax2=2bx,即 x= 3 2ba时,等号成立.
(1)如果 a,b,c∈R,那么a+3b+c≥3 abc.(
)
(2)如果 a,b,c∈R+,那么a+3b+c≥3 abc,当且仅
当 a=b 或 b=c 时,等号成立.( )
(3)如果 a,b,c∈R+,那么 abc≤a+3b+c3,当且 仅当 a=b=c 时,等号成立.( )
(4)如果 a1,a2,a3,…,an 都是实数.那么 a1+a2
n
+…+an≥n· a1a2…an.( )
解析:(1)根据定理 3,只有在 a,b,c 都是正数才成
立.其他情况不一定成立,如 a=1,b=-1,c=-3,
a+b+c
3
3
3 =-1, abc= 3,故(1)不正确.
(2)由定理 3,知等号成立的条件是 a=b=c.故(2)不正
确.
(3)由定理 3 知(3)正确. (4)必须 a1,a2,…,an 都是正数,命题才成立. 答案:(1)× (2)× (3)√ (4)×
第一讲 不等式和绝对值不等式
1.1 不等式 1.1.3 三个正数的算术—
几何平均不等式
[知识提炼·梳理] 1.三个正数的算术—几何平均不等式 (1)如果 a1,a2,a3∈R+,则a1+a32+a3叫做这 3 个正 数的算术平均数,3 a1a2a3叫做这三个正数的几何平均数.

(完整版)高中数学不等式归纳讲解

(完整版)高中数学不等式归纳讲解

第三章不等式定义:用不等号将两个解析式连结起来所成的式子。

3-1 不等式的最基本性质①对称性:如果x>y,那么y<x;如果y<x,那么x>y;②传递性:如果x>y,y>z;那么x>z;③加法性质;如果x>y,而z为任意实数,那么x+z>y +z;④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则)3-2 不等式的同解原理①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。

③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。

④不等式F (x )G (x )>0与不等式0)x (G 0)x (F >>或0)x (G 0)x (F <<同解不等式解集表示方式F(x)>0的解集为x 大于大的或x 小于小的F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式3-3-1 均值不等式1、调和平均数: )a 1...a 1a 1(nH n21n +++= 2、几何平均数: n 1n 21n )a ...a a (G =3、算术平均数: n)a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++=这四种平均数满足Hn ≤Gn ≤An ≤Qna1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号3-3-1-1均值不等式的变形(1)对正实数a,b ,有2ab b a22≥+ (当且仅当a=b 时取“=”号)(2)对非负实数a,b ,有ab 2b a ≥+ (6)对非负数a,b ,有ab )2b a (b a 222≥+≥+ (7) 若,,a bc R +∈,有a b c ++≥a b c ==时成立)(8)对非负数a,b,c ,有ac bc ab c b a 222++≥++ (9)对非负数a,b , 2b a 2b a ab 222b1a 1+≤+≤≤+ 3-3-1-1最值定理当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时,其和有最小值。

人教版高中数学选修45柯西不等式

人教版高中数学选修45柯西不等式
柯西在大学期间,就开始研读拉格朗日和拉普拉斯 的著作。柯西最重要的数学贡献在微积分、复变函数和 微分方程等方面。
此外,柯西对力学和天文学也有许多贡献。著作甚 丰,共出版了七部著作和800多篇论文,1882年开始出 版他的全集,至1970年已达27卷之多。
2021/3/10
2
要想获得真理和知识,唯 有两种武器,那就是清晰的直 觉和严格的演绎。
2021/3/10
22
(二)评价
1.客观性评价 概念形成,方法运用,解题能力
2.发展性评价 (1) 、 学 习 态 度 , 积 极 思 考 , 主 动 参 与 , 合
作交流,勤奋刻苦,不畏艰难等方面。 (2)、开放性考查课题完成情况。 (3)、报告与论文的表述 (4)、学习反思与学习方式的改进。
2021/3/10
数学是智能的一种形式,利 用这种形式,我们可以把现象世 界中的种种对象,置之于数量概 念的控制之下。
------------Howison.G.H
2021/3/10
1
大数学家柯西(Cauchy)
法国数学家、力学家。1789年8月 21日生于巴黎,1857年5月23日卒于 索镇。曾为巴黎综合工科学校教授, 当选为法国科学院院士。曾任国王查 理十世的家庭教师。
2021/3/10
5
(二)柯西不等式的证明方法
共同思考,讨论发现。借助以往的知识和经验, 运用类比联想与化归转化的思想,探究用什么方法来 证明它。
归纳总结
1.向量法:(类比数学模型) 2.比较法:(不等式证明的基本方法) 3.构造法:(类比联想,利用二次函数的性质) 4.几何法:(利用余弦定理)
大胆假设,小心求证,运用发散思维,自主探求。不断提升 思维层次,提炼出其中蕴含的数学思想方法。

高中数学 : 选修4-5 不等式选讲

高中数学  : 选修4-5  不等式选讲

解析 原不等式等价于
x 1,
1
(x 1) (2x 2) 17

1 x 1, (x 1) (2x 2) 1

x 1, (x 1) (x 2) 1,
解得x≥2或x≤-1.
5
故原不等式的解集为{x|x≤-1或x≥2}.
考法2 与绝对值有关的恒成立、存在性等求参数范 围的问题
4.设不等式|x+1|-|x-2|>k 的解集为 R,则实数 k 的取值范围 为____________.
4-5 不等式选讲
1
聚焦核心素养
理科数学选修4-5:不 等式选讲
1.命题分析预测 从近五年的考查情况来看,选修4-5是
高考题中的选做部分,主要考查绝对值不等式的求解、
恒成立问题、存在性问题以及不等式的证明,多以解答
题的形式呈现,难度中等,分值10分.
2.学科核心素养 本章通过绝对值不等式的解法和不等 式的证明考查考生的数学运算素养,以及对分类讨论思 想和数形结合思想的应用.
上述定理还可以推广到以下两个不等式:
(1)|a1+a2+…+an|≤|a1|+|a2|+…+|an|;
(2)||a|-|b||≤|a±b|≤|a|+|b|.
2.绝对值不等式的解法
(1)含绝对值的不等式|x|<a 与|x|>a 的解法:
不等式
a>0
a=0
a<0
|x|<a
__{x_|_-__a_<__x_<_a__} _
解析
原不等式等价于
x 1, (x 1)
(x
2)
5
x 1, (x 1) (2x 2) 7

人教版高中数学选修4-5课件:1.1不等式.1

人教版高中数学选修4-5课件:1.1不等式.1

【解析】(1)因为a>b>0,所以a>b两边同乘以1
ab
得 a
1
>b得1
> ,
,1故正1 确.
(2)因ab为c-aab>0,c-bb>0a ,且c-a<c-b
所以
>0,
又a>bc 1>a0>,所c 1以b
,正确.
a>b ca cb
(3)由 a >,所b 以 >a0,b
cd
cd
即即aaddcd>bcb>c0且,c所d以>0ac或dd>a0bd,c><0b,或c且accddd<<0b.c0<, 0,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
3.不等式的单向性和双向性 性质(1)和(3)是双向的,其余的在一般情况下是不可逆 的.
4.注意不等式成立的前提条件 不可强化或弱化成立的条件.要克服“想当然”“显然 成立”的思维定式.如传递性是有条件的;可乘性中c的 正负,乘方、开方性质中的“正数”及“n∈N,且n≥2” 都需要注意.
类型一 作差法比较大小 【典例】设m≠n,x=m4-m3n,y=n3m-n4,比较x与y的大小. 【解题探究】比较两个多项式的大小常用的方法是什 么? 提示:常用作差比较法.

高中数学知识点总结 第六章不等式

高中数学知识点总结 第六章不等式

高中数学知识点总结(zǒngjié) 第六章不等式高中数学知识点总结(zǒngjié) 第六章不等式高中数学第六章-不等式考试内容:不等式.不等式的根本(gēnběn)性质.不等式的证明.不等式的解法.含绝对值的不等式.考试(kǎoshì)要求:〔1〕理解不等式的性质(xìngzhì)及其证明.〔2〕掌握两个〔不扩展到三个〕正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.〔3〕掌握分析法、综合法、比拟法证明简单的不等式.〔4〕掌握简单不等式的解法.〔5〕理解不等式│a│-│b│≤│a+b│≤│a│+│b│06.不等式知识要点1.不等式的根本概念〔1〕不等〔等〕号的定义:ab0ab;ab0ab;ab0ab.〔2〕不等式的分类:绝对不等式;条件不等式;矛盾不等式.〔3〕同向不等式与异向不等式.〔4〕同解不等式与不等式的同解变形.2.不等式的根本性质〔1〕abba〔对称性〕〔2〕ab,bcac〔传递性〕〔3〕abacbc〔加法单调性〕〔4〕ab,cdacbd〔同向不等式相加〕〔5〕ab,cdacbd〔异向不等式相减〕〔6〕a.b,c0acbc〔7〕ab,c0acbc〔乘法单调性〕〔8〕ab0,cd0acbd〔同向不等式相乘〕(9)ab0,0cdabcd〔异向不等式相除〕(10)ab,ab011〔倒数关系〕ab〔11〕ab0anbn(nZ,且n1)〔平方法那么〕〔12〕ab0nanb(nZ,且n1)〔开方法那么〕3.几个重要不等式〔1〕假设aR,那么|a|0,a20〔2〕假设a、bR,那么a2b22ab(或a2b22|ab|2ab)〔当仅当a=b时取等号〕〔3〕如果a,b都是正数,那么abab.〔当仅当a=b时取等号〕2极值定理:假设某,yR,某yS,某yP,那么:1如果P是定值,那么当某=y 时,S的值最小;○2如果S是定值,那么当某=y时,P的值最大.○利用极值定理求最值的必要条件:一正、二定、三相等.(4)假设a、b、cR,那么abc3abc〔当仅当a=b=c时取等号〕ba(5)假设ab0,那么2〔当仅当a=b时取等号〕ab(6)a0时,|某|a某2a2某a或某a;|某|a某2a2a某a〔7〕假设a、bR,那么||a||b|||ab||a||b|4.几个著名不等式〔1〕平均不等式:如果a,b都是正数,那么211abababa2b2〔当仅当.22a=b时取等号〕即:平方平均≥算术平均≥几何平均≥调和平均〔a、b为正数〕:2222abababab22特别地,ab(〔当a=b时,())ab〕2222a2b2c2abc(a,b,cR,abc时取等)3322...an幂平均不等式:a12a221(a1a2...an)2n注:例如:(acbd)2(a2b2)(c2d2).常用不等式的放缩法:①2(n2)nn1n(n1)nn(n1)n1n②n1n1nn112n1nn1nn1(n1)〔2〕柯西不等式:假设a1,a2,a3,,anR,b1,b2,b3,bnR;那么〔a1b1a2b2a3b3anbn)aaaa当且仅当123n时取等号b1b2b3bn22(a12a22a32an)(b122b22b32bn)〔3〕琴生不等式〔特例〕与凸函数、凹函数假设定义在某区间上的函数f(某),对于定义域中任意两点某1,某2(某1某2),有f(某1某2f(某1)f(某2))或22f(某1某2f(某1)f(某2)).22那么称f(某)为凸〔或凹〕函数.5.不等式证明的几种常用方法比拟法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法〔1〕整式不等式的解法〔根轴法〕.步骤:正化,求根,标轴,穿线〔偶重根打结〕,定解.特例①一元一次不等式a某>b解的讨论;②一元二次不等式a某+b某+c>0(a≠0)解的讨论.〔2〕分式不等式的解法:先移项通分标准化,那么f(某)0f(某)g(某)0;g(某)f(某)g(某)0f(某)0g(某)g(某)0〔3〕无理不等式:转化为有理不等式求解○1f(某)g(某)g(某)0定义域f(某)g(某)f(某)0○2f(某)0f(某)0○3f(某)g(某)g(某)0或g(某)02f(某)[g(某)]f(某)0f(某)g(某)g(某)02f(某)[g(某)]〔4〕.指数不等式:转化为代数不等式af(某)ag(某)(a1)f(某)g(某);af(某)ag(某)(0a1)f(某)g(某)af(某)b(a0,b0)f(某)lgalgb〔5〕对数不等式:转化为代数不等式f(某)0logaf(某)logag(某)(a1)g(某)0;f(某)g(某)f(某)0logaf(某)logag(某)(0a1)g(某)0f(某)g(某)〔6〕含绝对值不等式1应用分类讨论思想去绝对值;○2应用数形思想;○3应用化归思想等价转化○g(某)0|f(某)|g(某)g(某)f(某)g(某)g(某)0|f(某)|g(某)g(某)0(f(某),g(某)不同时为0)或f(某)g(某)或f(某)g(某)注:常用不等式的解法举例〔某为正数〕:①某(1某)(1某)(1某)()2(1某2)(1某2)②y某(1某)y()y类似于ysin某cos某sin某(1sin某),③|某1||某||1|(某与1同号,故取等)2扩展阅读:高中数学知识点总结_第六章不等式[1]高中数学第六章-不等式考试内容:不等式.不等式的根本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:〔1〕理解不等式的性质及其证明.〔2〕掌握两个〔不扩展到三个〕正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.〔3〕掌握分析法、综合法、比拟法证明简单的不等式.〔4〕掌握简单不等式的解法.〔5〕理解不等式│a│-│b│≤│a+b│≤│a│+│b│06.不等式知识要点1.不等式的根本概念〔1〕不等〔等〕号的定义:ab0ab;ab0ab;ab0ab.〔2〕不等式的分类:绝对不等式;条件不等式;矛盾不等式.〔3〕同向不等式与异向不等式.〔4〕同解不等式与不等式的同解变形.2.不等式的根本性质〔1〕abba〔对称性〕〔2〕ab,bcac〔传递性〕〔3〕abacbc〔加法单调性〕〔4〕ab,cdacbd〔同向不等式相加〕〔5〕ab,cdacbd〔异向不等式相减〕〔6〕a.b,c0acbc〔7〕ab,c0acbc〔乘法单调性〕〔8〕ab0,cd0acbd〔同向不等式相乘〕(9)ab0,0cdabcd〔异向不等式相除〕(10)ab,ab011〔倒数关系〕ab〔11〕ab0anbn(nZ,且n1)〔平方法那么〕〔12〕ab0nanb(nZ,且n1)〔开方法那么〕3.几个重要不等式〔1〕假设aR,那么|a|0,a20〔2〕假设a、bR,那么a2b22ab(或a2b22|ab|2ab)〔当仅当a=b时取等号〕〔3〕如果a,b都是正数,那么abab.〔当仅当a=b时取等号〕2极值定理:假设某,yR,某yS,某yP,那么:1如果P是定值,那么当某=y 时,S的值最小;○2如果S是定值,那么当某=y时,P的值最大.○利用极值定理求最值的必要条件:一正、二定、三相等.(4)假设a、b、cR,那么abc3abc〔当仅当a=b=c时取等号〕ba(5)假设ab0,那么2〔当仅当a=b时取等号〕ab(6)a0时,|某|a某2a2某a或某a;|某|a某2a2a某a〔7〕假设a、bR,那么||a||b|||ab||a||b|4.几个著名不等式〔1〕平均不等式:如果a,b都是正数,那么211abababa2b2〔当仅当.22a=b时取等号〕即:平方平均≥算术平均≥几何平均≥调和平均〔a、b为正数〕:2222abababab22特别地,ab(〔当a=b时,())ab〕2222a2b2c2abc(a,b,cR,abc时取等)3322...an幂平均不等式:a12a221(a1a2...an)2n注:例如:(acbd)2(a2b2)(c2d2).常用不等式的放缩法:①2(n2)nn1n(n1)nn(n1)n1n②n1n1nn112n1nn1nn1(n1)〔2〕柯西不等式:假设a1,a2,a3,,anR,b1,b2,b3,bnR;那么〔a1b1a2b2a3b3anbn)aaaa当且仅当123n时取等号b1b2b3bn22(a12a22a32an)(b122b22b32bn)〔3〕琴生不等式〔特例〕与凸函数、凹函数假设定义在某区间上的函数f(某),对于定义域中任意两点某1,某2(某1某2),有f(某1某2f(某1)f(某2))或22f(某1某2f(某1)f(某2)).22那么称f(某)为凸〔或凹〕函数.5.不等式证明的几种常用方法比拟法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法〔1〕整式不等式的解法〔根轴法〕.步骤:正化,求根,标轴,穿线〔偶重根打结〕,定解.特例①一元一次不等式a某>b解的讨论;②一元二次不等式a某+b某+c>0(a≠0)解的讨论.〔2〕分式不等式的解法:先移项通分标准化,那么f(某)0f(某)g(某)0;g(某)f(某)g(某)0f(某)0g(某)g(某)0〔3〕无理不等式:转化为有理不等式求解○1f(某)g(某)g(某)0定义域f(某)g(某)f(某)0○2f(某)0f(某)0○3f(某)g(某)g(某)0或g(某)02f(某)[g(某)]f(某)0f(某)g(某)g(某)02f(某)[g(某)]〔4〕.指数不等式:转化为代数不等式af(某)ag(某)(a1)f(某)g(某);af(某)ag(某)(0a1)f(某)g(某)af(某)b(a0,b0)f(某)lgalgb〔5〕对数不等式:转化为代数不等式f(某)0logaf(某)logag(某)(a1)g(某)0;f(某)g(某)f(某)0logaf(某)logag(某)(0a1)g(某)0f(某)g(某)〔6〕含绝对值不等式1应用分类讨论思想去绝对值;○2应用数形思想;○3应用化归思想等价转化○g(某)0|f(某)|g(某)g(某)f(某)g(某)g(某)0|f(某)|g(某)g(某)0(f(某),g(某)不同时为0)或f(某)g(某)或f(某)g(某)注:常用不等式的解法举例〔某为正数〕:①某(1某)(1某)(1某)()2(1某2)(1某2)②y某(1某)y()y类似于ysin某cos某sin某(1sin某),③|某1||某||1|(某与1同号,故取等)2内容总结(1)○2应用数形思想。

高中数学选修4-5第三讲排序不等式

高中数学选修4-5第三讲排序不等式

所以 a1c1+a2c2+…+a5c5 的最大值为 304,最小值为 212.
类型 3 排序不等式的实际应用
[典例 3] 某座大楼共有 n 层,在每层有一个办公室, 每个办公室的人员步行上下楼,他们的速度分别为 v1, v2,…,vn(他们各不相同),为了能使得办公室的人员上 下楼梯所用的时间总和最小,应该如何安排(假设每两层 楼的楼梯长都一样)?
利用排序不等式,有aa12+aa23+…+aan-n 1≥bc11+bc22+… +bcnn--11≥12+23+…+n-n 1.
所以原不等式成立.
归纳升华 1.在不等式的证明方法中,配凑法比较常见,如在 运用基本不等式、柯西不等式时,常常先将不等式的一侧 (或已知等式的一侧)进行配凑,使之满足基本不等式或柯 西不等式的应用条件.在运用排序不等式时,常常根据题 目条件,配凑构造出所需要的有序数组.
解析:由基本概念知(1)(2)正确,(3)不正确,因为乱 序和也可能是 35 或其他等.由排序不等式可知(4)正确.
答案:(1)√ (2)√ (3)× (4)√
2.有两组数 1,2,3 与 10,15,20,它们的顺序和、
反序和分别是( )
A.100,85
B.100,80
C.95,80
D.95,85
所以将速度快的放在高层,速度慢的放在低层,可使 上下楼的时间最短.
归纳升华 在解决一些规划预算问题时,往往只需确定最小值与 最大值,以进行合理规划与正确预算,结合排序不等式 “顺序和最大,反序和最小”,可以方便快捷地处理,方 法巧妙,步骤灵活,过程简单.
[变式训练] 某网吧的 3 台电脑同时出现了故障,对 其维修分别需要 45 min,25 min 和 30 min,每台电脑耽 误 1 min,网吧就会损失 0.05 元.在只能逐台维修的条 件下,按怎样的顺序维+a2c2+…+a5c5 的最大值 为 a1b1+a2b2+a3b3+a4b4+a5b5=2×3+7×4+8×6+9 ×10+12×11=304.

北师大版高中数学选修4-5《不等式选讲》全套教案

北师大版高中数学选修4-5《不等式选讲》全套教案

课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

还可从引言中实际问题出发,说明本章知识的地位和作用。

生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。

怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

高中数学选修4-5中的著名不等式

高中数学选修4-5中的著名不等式

选修4-5中的著名不等式内蒙古赤峰市翁牛特旗乌丹一中熊明军新课程改革推出了知识模块,把高等数学中一些领域的知识进行了简化,下放到高中。

选修4-5中给出了许多著名不等式的特例,下面对课本上的这些不等式及其一般形式做一下介绍。

绝对值的三角不等式():定理:若为实数,则,当且仅当时,等号成立。

绝对值的三角不等式一般形式:,简记为。

柯西不等式()定理:(向量形式)设为平面上的两个向量,则。

当及为非零向量时,等号成立及共线存在实数,使。

当或为零向量时,规定零向量与任何向量平行,即当时,上式依然成立。

定理:(代数形式)设均为实数,则,当且仅当时,等号成立。

柯西不等式的一般形式()定理:设为实数,则,当且仅当时,等号成立(当某时,认为)。

闵可夫斯基不等式()定理:设均为实数,则,当且仅当存在非负实数(不同时为0),使时,等号成立。

闵可夫斯基不等式的一般形式:定理:设是两组正数,,则或,当且仅当时,等号成立。

排序不等式()定理:设为两组实数为的任一排列,则有。

当且仅当或时,等号成立。

排序原理可简记作:反序和乱序和顺序和。

切比晓夫不等式():定理:设为任意两组实数,①如果或,则有②如果或,则有①②两式,当且仅当或时,等号成立。

平均值不等式()定理:设为个正数,则,当且仅当时,等号成立。

当时,,当且仅当时,等号成立。

加权平均不等式()定理:设为正数,都是正有理数,并且,那么。

杨格不等式():定理:设为有理数,满足条件(互称为共轭指标),为正数,则。

当时,,此时的杨格不等式就是熟知的基本不等式。

贝努利不等式():定理:设,且,为大于1的自然数,则。

贝努利不等式的一般形式:(1)设,且同号,则;(2)设,则①当时,有;②当或时,有,①②当且仅当时等号,成立。

2019-2020学年人教版高中数学选修4-5教材用书:第一讲 不等式和绝对值不等式 一 不等式 1.不等式的基本性

2019-2020学年人教版高中数学选修4-5教材用书:第一讲 不等式和绝对值不等式 一 不等式 1.不等式的基本性

1.不等式的基本性质1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的大小.在数轴上,右边的数总比左边的数大.(2)如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b.(3)比较两个实数a与b的大小,归结为判断它们的差与0的大小;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差与0的大小.2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质:(1)如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)如果a>b,那么a+c>b+c.(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)如果a>b>0,那么a n>b n(n∈N,n≥2).(6)如果a>b>0n∈N,n≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘一个数仍为等式,但不等式两边同乘同一个数c(或代数式)结果有三种:①c>0时得同向不等式;②c=0时得等式;③c<0时得异向不等式.(2)a>b,c>d⇒a+c>b+d,即两个同向不等式可以相加,但不可以相减;而a>b>0,c>d>0⇒ac>bd,即已知的两个不等式同向且两边为正值时,可以相乘,但不可以相除.(3)性质(5)(6)成立的条件是已知不等式两边均为正值,并且n∈N,n≥2,否则结论不成立.而当n取正奇数时可放宽条件,a>b⇒a n>b n(n=2k+1,k∈N),a>b⇒na>nb(n=2k+1,k∈N*).已知x,y均为正数,设m=x +y,n=x+y,试比较m和n的大小.两式作差――→变形 转化为因式乘积形式――→与0比较判断正负,得出大小 m -n =1x +1y -4x +y =x +y xy -4x +y =+-4xy+=-+,∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0. ∴m -n ≥0,即m ≥n (当x =y 时,等号成立).比较两个数(式子)的大小,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等.1.已知a ,b ∈R ,比较a 4+b 4与a 3b +ab 3的大小. 解:因为(a 4+b 4)-(a 3b +ab 3) =a 3(a -b )+b 3(b -a ) =(a -b )(a 3-b 3) =(a -b )2(a 2+ab +b 2) =(a -b )2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +b 22+34b2≥0. 当且仅当a =b 时,等号成立, 所以a 4+b 4≥a 3b +ab 3.2.在数轴的正半轴上,A 点对应的实数为6a29+a4,B 点对应的实数为1,试判断A 点在B 点的左边,还是在B 点的右边?解:因为6a29+a4-1=--9+a4≤0,所以6a29+a4≤1. 当且仅当a =±3时,等号成立,所以当a ≠±3时,A 点在B 点左边,当a =±3时,A 点与B 点重合.已知a >b >0,c <d <0,e <0.求证:a -c >b -d .可以作差比较,也可用不等式的性质直接证明. 法一:e a -c -eb -d=-d -a +--=-a +c ---,∵a >b >0,c <d <0,∴b -a <0,c -d <0.∴b -a +c -d <0.又∵a >0,c <0,∴a -c >0.同理b -d >0, ∴(a -c )(b -d )>0. ∵e <0,∴-a +c --->0,即e a -c >eb -d . 法二:⎭⎪⎬⎪⎫c<d<0⇒-c>-d>0a>b>0⇒⎭⎪⎬⎪⎫a -c>b -d>0⇒1a -c <1b -d e<0⇒e a -c >e b -d.进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.3.已知x ≥1,y ≥1,求证:x 2y +xy 2+1≤x 2y 2+x +y . 证明:左边-右边=(y -y 2)x 2+(y 2-1)x -y +1 =(1-y )=(1-y )(xy -1)(x -1).因为x ≥1,y ≥1,所以1-y ≤0,xy -1≥0,x -1≥0. 所以x 2y +xy 2+1≤x 2y 2+x +y .4.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证:x x +a >yy +b .证明:因为a ,b ,x ,y 都是正数,且1a >1b ,x >y ,所以x a >y b ,所以a x <by .故a x +1<b y +1,即x +a x <y +b y .所以x x +a >yy +b.(1)已知-π2≤α≤β≤2,求α-β的取值范围.(2)已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围. 求代数式的范围应充分利用不等式的基本性质. (1)∵-π2≤α≤β≤π2, ∴-π2≤α≤π2,-π2≤-β≤π2,且α≤β.∴-π≤α-β≤π且α-β≤0.∴-π≤α-β≤0.即α-β的取值范围为.(2)设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b .解得λ1=53,λ2=-23.∴-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23.∴-113≤a +3b ≤1.即a +3b 的取值范围为⎣⎢⎡⎦⎥⎤-113,1.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.5.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围. 解:设2α-β=m (α+β)+n (α-β),∴⎩⎪⎨⎪⎧m +n =2,m -n =-1⇒⎩⎪⎨⎪⎧m =12,n =32.又∵1≤α+β≤4,-2≤α-β≤-1, ∴⎩⎪⎨⎪⎧12≤12α+β,-3≤32α-β-32⇒-52≤2α-β≤12.∴2α-β的取值范围为⎣⎢⎡⎦⎥⎤-52,12.6.三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,求ba 的取值范围.解:两个不等式同时除以a ,得⎩⎪⎨⎪⎧1≤b a +ca≤2,①b a ≤1+c a ≤2·ba ,②将②×(-1),得⎩⎪⎨⎪⎧1≤b a +ca≤2,-2·b a ≤-1-c a ≤-ba,两式相加,得1-2b a ≤b a -1≤2-b a ,解得23≤b a ≤32.即b a 的取值范围是⎣⎢⎡⎦⎥⎤23,32. 课时跟踪检测(一)1.下列命题中不.正确的是( ) A .若3a>3b ,则a >b B .若a >b ,c >d ,则a -d >b -c C .若a >b >0,c >d >0,则a d >bcD .若a >b >0,ac >bd ,则c >d解析:选D 当a >b >0,ac >ad 时,c ,d 的大小关系不确定. 2.已知a >b >c ,则下列不等式正确的是( ) A .ac >bc B .ac 2>bc 2C .b (a -b )>c (a -b )D .|ac |>|bc |解析:选C a >b >c ⇒a -b >0⇒(a -b )b >(a -b )c . 3.如果a <b <0,那么下列不等式成立的是( ) A.1a <1b B .ab <b 2C .-ab <-a 2D .-1a <-1b解析:选D 对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -a ab >0,1a >1b ,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝ ⎛⎭⎪⎫-1b =a -b ab <0,-1a <-1b成立,故D 项正确.4.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d-c )中,成立的个数是( )A .1B .2C .3D .4解析:选 C ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①不成立.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②成立.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③成立.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④成立.成立的个数为3.5.给出四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 能得出1a <1b成立的有________(填序号).解析:由1a <1b ,得1a -1b <0,b -a ab <0,故①②④可推得1a <1b成立.答案:①②④6.设a >b >1,c <0,给出下列三个结论:①c a >c b ;②a c <b c;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是________.解析:由a >b >1,c <0,得1a <1b ,c a >c b ;幂函数y =x c (c <0)是减函数,所以a c <b c;因为a -c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.答案:①②③7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________. 解析:设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y .∴⎩⎪⎨⎪⎧m +n =2,m -n =-3.解得⎩⎪⎨⎪⎧m =-12,n =52.∴2x -3y =-12(x +y )+52(x -y ).∵-1<x +y <4,2<x -y <3,∴-2<-12(x +y )<12,5<52(x -y )<152.由不等式同向可加性,得3<-12(x +y )+52(x -y )<8,即3<z <8.答案:(3,8)8.若a >0,b >0,求证:b2a +a2b≥a +b . 证明:∵b2a +a2b -a -b =(a -b )⎝ ⎛⎭⎪⎫a b -b a =-+ab,(a -b )2≥0恒成立,且已知a >0,b >0, ∴a +b >0,ab >0.∴-+ab≥0.∴b2a +a2b≥a +b . 9.已知-6<a <8,2<b <3,分别求2a +b ,a -b ,ab 的取值范围.解:∵-6<a <8,∴-12<2a <16. 又2<b <3,∴-10<2a +b <19. ∵2<b <3,∴-3<-b <-2. 又∵-6<a <8,∴-9<a -b <6. ∵2<b <3,∴13<1b <12.①当0≤a <8时,0≤ab <4;②当-6<a <0时,-3<ab<0.综合①②得-3<ab<4.∴2a +b ,a -b ,ab的取值范围分别为(-10,19),(-9,6),(-3,4).10.已知a >0,a ≠1. (1)比较下列各式大小.①a 2+1与a +a ;②a 3+1与a 2+a ; ③a 5+1与a 3+a 2.(2)探讨在m ,n ∈N +条件下,am +n+1与a m +a n的大小关系,并加以证明.解:(1)由题意,知a >0,a ≠1,①a 2+1-(a +a )=a 2+1-2a =(a -1)2>0. ∴a 2+1>a +a .②a 3+1-(a 2+a )=a 2(a -1)-(a -1) =(a +1)(a -1)2>0,∴a 3+1>a 2+a , ③a 5+1-(a 3+a 2)=a 3(a 2-1)-(a 2-1)=(a 2-1)(a 3-1). 当a >1时,a 3>1,a 2>1,∴(a 2-1)(a 3-1)>0. 当0<a <1时,0<a 3<1,0<a 2<1, ∴(a 2-1)(a 3-1)>0,即a 5+1>a 3+a 2. (2)根据(1)可得am +n+1>a m +a n.证明如下:a m +n +1-(a m +a n )=a m (a n -1)+(1-a n )=(a m -1)(a n -1).当a >1时,a m>1,a n>1,∴(a m-1)(a n-1)>0. 当0<a <1时,0<a m<1,0<a n<1, ∴(a m-1)(a n-1)>0.综上可知(a m-1)(a n-1)>0,即a m +n+1>a m +a n.。

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.1不等式的基本性质

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.1不等式的基本性质

探究四
探究一不等式的基本性质
对于考查不等式的基本性质的选择题,解答时,一是利用不等式的相关
性质,其中,特别要注意不等号变号的影响因素,如数乘、取倒数、开方、平
方等;二是对所含字母取特殊值,结合排除法去选正确的选项,这种方法一般
要注意选取的值应具有某个方面的代表性,如选取 0、正数、负数等.
J 基础知识 Z 重点难点
几乎都有类似的前提条件,但结论会根据不同的要求有所不同,因而这需要
根据本题的四个选项来进行判断.选项 A,还需有 ab>0 这个前提条件;选项
B,当 a,b 都为负数时不成立,或一正一负时可能也不成立,如 2>-3,但 22>(-3)2
1
a
b
不正确;选项 C,c2+1>0,由 a>b 就可知c2+1 > c2 +1,故正确;选项 D,当 c=0 时不
A.P≥Q
B.P>Q
C.P≤Q
1

a+1+ a
解析:P-Q=( a + 1 − a)-( a − a-1)=
a-1- a+1
=
D.P<Q
.
( a+1+ a)( a+ a-1)
∵a≥1,∴ a-1 < a + 1,即 a-1 − a + 1<0.
又∵ a + 1 + a>0, a + a-1>0,
a-1- a+1
格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.在使用
不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作

高中数学选修4《基本不等式》导学案

高中数学选修4《基本不等式》导学案

1 §1.1.2基本不等式一、学习目标1.理解并掌握定理1、定理2,会用两个定理解决函数的最值或值域问题.2.能运用平均值不等式(两个正数的)解决某些实际问题.【重点、难点】教学重点:均值不等式定理的证明及应用。

教学难点:等号成立的条件及解题中的转化技巧。

二、学习过程【情景创设】1.我们已经学过重要不等式()R b a ab b a ∈≥+,222,该不等式是怎么推导的? 2.根据1中重要不等式推导b a ab b a ++,,22),(+∈R b a 的不等关系.并思考它们如何应用.【导入新课】自学探究:(阅读课本第5-7页,完成下面知识点的梳理)1.定理1:如果R b a ∈,,那么 ,当且仅当 时,等号成立.2.定理2(基本不等式)如果0,>b a ,那么ab b a ≥+2,当且仅当 时,等号成立. 说明:1. 基本不等式ab ≤a +b 2(1) 基本不等式成立的条件:a>0,b>0;(2) 等号成立的条件:当且仅当a =b 时取等号;(3) 结论:两个非负数a ,b 的算术平均数不小于其几何平均数.2. 应用基本不等式的条件:(1)、一正:各项为正数;(2)、二正:“和”或“积”为定值;(3)、三等:等号一定能取到,这三个条件缺一不可。

“积定和最小;和定积最大”。

三 、典例分析例1.(1) 若x>0,求9()4f x x x =+的最小值; (2)若x<0,求9()4f x x x =+的最大值.例2.(1)求函数y =1x -3+x (x >3)的最小值;2例3.已知x >0,y >0,且1x +9y=1,求x +y 的最小值.【变式拓展】变式1:若102x <<,求(12)y x x =-的最大值。

变式2:若26x y +=,求24x y +的最小值四、总结反思1.用基本不等式求最值必须具备的三个条件:一“正”、二“定”、三“相等”,这三个条件缺一不可。

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结

选修4--5知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

高中数学人教A版选修课件:1.2.2 绝对值不等式的解法

高中数学人教A版选修课件:1.2.2 绝对值不等式的解法
(-6)( + 1) < 0
-5-6 < 0
-1 < < 6.
∴-1<x<2或3<x<6.
∴原不等式的解集为{x|-1<x<2或3<x<6}.
题型一
题型二
题型三
题型四
方法二:作函数y=x2-5x的图象,如图所示.
|x2-5x|<6表示函数图象中直线y=-6和直线y=6之间相应部分的自
故原不等式等价于x2-x+2>x2-3x-4.
∴x>-3.∴原不等式的解集为{x|x>-3}.
反思本题形如|f(x)|>g(x),我们可以借助形如|ax+b|>c的解法转化
为f(x)<-g(x)或f(x)>g(x),当然|f(x)|<g(x)⇔-g(x)<f(x)<g(x).如果f(x)的
正负能确定的话,也可以直接去掉绝对值号再解不等式.
解法二:3≤|x-2|<4⇔3≤x-2<4或-4<x-2≤-3⇔5≤x<6或-2<x≤-1.
∴原不等式的解集为{x|-2<x≤-1或5≤x<6}.
题型一
题型二
题型三
题型四
【例2】 不等式|5x-x2|<6的解集为(
)
A.{x|x<2或x>3} B.{x|-1<x<2或3<x<6}
C.{x|-1<x<6}
借助函数的图象,用数形结合来解得a的范围.而理解这几种表述方
式对掌握本节知识有很好的帮助.
题型一
题型二
题型三
题型四
题型一 解|ax+b|≥c(c>0)和|ax+b|≤c(c>0)型的不等式

选修4-5第二节不等式的证明+Word版

选修4-5第二节不等式的证明+Word版

第二节不等式的证明 突破点 不等式的证明 基础联通 抓主干知识的“源”与“流” 1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b 2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证A B≥1. 3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点贯通 抓高考命题的“形”与“神”比较法证明不等式[例1] 设a ,b 是非负实数求证:a 2+b 2≥ab (a +b ).[方法技巧]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.综合法证明不等式[例2] 已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c.[方法技巧]综合法证明时常用的不等式(1) a 2≥0.(2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ;a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b 2≥ab ,它的变形形式有: a +1a ≥2(a >0);a b +b a ≥2(ab >0); a b +b a≤-2(ab <0). 分析法证明不等式 本节重点突破1个知识点:不等式的证明.[例3] (2017·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥ 3;(2) a bc + b ac + c ab≥ 3(a +b +c ).[方法技巧]分析法的应用当所证明的不等式不能使用比较法,且和重要不等式(a 2+b 2≥2ab )、基本不等式⎝⎛⎭⎫ab ≤a +b 2,a >0,b >0没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.能力练通 抓应用体验的“得”与“失”1.[考点三]已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .2.[考点一]已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .3.[考点二]已知a ,b ,c ,d 均为正数,且ad =bc .(1)证明:若a +d >b +c ,则|a -d |>|b -c |;(2)t ·a 2+b 2c 2+d 2=a 4+c 4+b 4+d 4,求实数t 的取值范围.[全国卷5年真题集中演练——明规律]1.(2016·全国甲卷)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.2.(2015·新课标全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.3.(2014·新课标全国卷Ⅰ)若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.4.(2013·新课标全国卷Ⅱ)设a ,b ,c 均为正数,且a +b +c =1.证明:(1) ab +bc +ac ≤13; (2) a 2b +b 2c +c 2a≥1.[课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.已知函数f (x )=|x +3|+|x -1|,其最小值为t .(1)求t 的值;(2)若正实数a ,b 满足a +b =t ,求证:1a +4b ≥94.2.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由.3.(2017·广州模拟)已知定义在R 上的函数f (x )=|x -m |+|x |,m ∈N *,存在实数x 使f (x )<2成立.(1)求实数m 的值;(2)若α,β≥1,f (α)+f (β)=4,求证:4α+1β≥3.4.(1)已知a ,b 都是正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2;(2)已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c≥abc .5.已知x ,y ∈R ,且|x |<1,|y |<1.求证:11-x 2+11-y 2≥21-xy.6.(2017·长沙模拟)设α,β,γ均为实数.(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|;(2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.7.(2017·重庆模拟)设a ,b ,c ∈R +且a +b +c =1.求证:(1)2ab +bc +ca +c 22≤12; (2)a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.8.(2017·贵阳模拟)已知函数f (x )=2|x +1|+|x -2|.(1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c ≥3.。

高中数学人教新课标A版选修4-5第一讲 不等式和绝对值不等式二绝对值不等式

高中数学人教新课标A版选修4-5第一讲 不等式和绝对值不等式二绝对值不等式

将│2x-1│≤3两边除以2,得
x1 3, 22
它的解集是数轴上到坐标为
1 2
的点
的距离不大于 3 的点集合.
2
探究
如何求解│x-a│+│x-b│≥c和 │x-a│+│x-b│ ≤c型不等式?
提示
思路一:对几何意义作分析; 思路二:把含绝对值的不等式转化 为不含绝对值的不等式; 思路三:从函数的观点处理。
如果当a,b是实数,则 a b a b ,
当且仅当ab≥0时,等号成立.
定理1 (很重要)
探究
如果把定理1中的实数a,b分别换为向 量a,b能得出什么结果?你能解释它的几 何意义吗?
(1)当向量a,b不共线时,向量a+b,a,b构成 三角形.
因此:a b a b .
其几何意义是三角形的两边之和大于 第三边(如下图)。
可以得到 x x1 a和 x x1 a的解集。
例3 解不等式│2x-1│≤3
分析 可以把 (2x-1) 看成一个整体X, 即所解不等式就是 X 2.
解: 由 2 x 1 3得:-3 ≤2x-1 ≤3 解得-1≤x ≤2 因此,原不等式的解集 为{x│-1≤x ≤2}
思考
该题解的几何解释是什么?
解法二: 作函数y=x2-2x的图像. │x2-2x│<3 表示函数图像中在直线 y=-3 和直线 y=3 之间相应部分的自变量的集合.
解方程x2-2x=3得x1=-1,x2=3 即不等式的解集是(-1,3).
2.求函数y=│x-4│+ │x-6│的最小值.
解: y=│x-4│+ │x-6│ = │x-4│+ │6-x│
0 a b a+b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2, | x1|| x2|5
的解 集 ,3 是 .
当2 x1时,原不等式可以化为
x1x25,即35,矛盾.
所以不等式组
2x1, | x1|| x2|5
的解集为 .
当x 1时,原不等式可以化为
x1x2 5,解得x 2,
x1, 即不等式组 | x1|| x2|5
的解集 2,是 . 综上 ,原 所 不 述 等到 ,3 的 2, 解 . 集
1 3
x
1,
因此 ,原不等式的 x解 13 集 x为 1.
从几何上,看 如果将| 3x1|2两边除以 3,得
1 x3
32,它的解集是数轴上标到为坐13的点的距
离不大于 2的点的集 3
合,如图1.210所示.
1
3
O1 3
1x
图1.210
Hale Waihona Puke 例 4 解不 |23 式 x|7.
解 由 |2 3 x | 7 得 |3 x 2 | 7 ,
所 3 x 以 2 7 ,或 3 x 2 7 ,
从而 x53或x3, 所以原不等式的解集为
x
x
5 3

x
3
.
探究 你能给出上述绝对等值式不的
解的几何解释? 吗
2 |x a||x b|c和 |x a||x b|c型 不
等式的解法
例 5解 不 |x 等 1||x式 2|5.
分析 这个绝对值不等式
为了求出不等式,关的键解要在数轴上找 点出与
A,B的距离之和5的 为点.将点A向左移1动 个单
位到点A1,这时有 | A1A| | A1B|5;
同,理 将点 B向右1移 个动 单位 B1,这 到时 点也 |B1A||B1B|5;
从数轴上可,点 以 A1与 看点 B到 1之间的任何点
点A,B的距离之和5;都 点A1的 小左 于边B或 1的点
我 们 只 要 在 数 轴 上 确 定出 具 有 上 述 特 点 的 点 的
位 置, 就 可 以 得 出 不 等 式 的 解.
解法一如图1.211,设数 A 1 A
BB1
轴上与 2,1对应的点分别 - 3 - 2 - 1 O 1 2
x
为A,B那么A,B两点的距离 图1.211
是3,因此区间 2,1上的数都不是原的 不解 等 . 式
三 个 区 间 上 讨 论的不 解的 等情 式况,然后把它
们综合在一起就等得式到的不解. 集
事实,上 以点A,B为分界,将 点数轴分为三,个区
在这三个区,绝 间对 上值不等式可为 以不 转含 化
绝对值的不.因 等此 式我们有如下 . 解法
解法二当x2时,原不等式可以化为
x1x25,解得x3,
即不等式组
在学习函数时知我识们知 ,由道函数 y fx的 零点与方f 程 x0的根 的关,系 可以利用函数
图象求方程 近的 似 根.类似,地 我们也可以从
数的观,利 点用函数图象求的不解等.集式
解法三 将原不等式转化
y
3
为| x 1| | x 2| 5 0.
2
构造函数 y| x1||x2|5.即
1
3 2 1 O 1 2
右边的任何点A,到B的距 离之和都大5于.
A1 A
BB1
-3 -2 -1 O 1 2
x
所以, 原不等式的解集是
,32,.
图1.211
分析上述解法 ,可以发,解 现| x1|| x2|5
时,数 轴 上与 2,1对 应 的A点 ,B把实 数集 分 成
了 三 个 区 间,2,2,1,1, ,先分 别 在 这
x
-1
2x 6, x 2;
-2
y 2, 2 x 1;
图1.212
2x 4, x 1.
作出函数的 图1图 .2象 12,它是分段线,性函
函数的零点 3,2.从 是图象,可 当x知 ,3
2,时,有y0,即| x1|| x2|50.所以原
不等式的解 集 ,3是 2,.
思考例5中给出了三种解 不绝 等对 式值 的, 方法 你能概括一下它 的们 特各 点? 自 吗
x1 a x1 x1 a x
x1 a x1 x1 a x
| xx1 |a 图1.29 | xx1 |a
利用上述 式及绝对值的几,何意义
可以解一些含有的 绝不 对等 值. 式
1|axb|c和|axb|c
型不等式的解法
例 3 解不等 |3x式 1|2.
解 由 |3 x 1 | 2 ,得 2 3 x 1 2 ,解 得
| x|a表 示 数 轴 上 到 原小点于a距的离点 的 集, 合
| x|a表 示 到 原 点 距a离的大点于的 集,因合而
| x|aa xa;
| x|axa或xa.
因 此 ,不 等|x式 |a的 解 集 a,是 a;不 等|x式 | a的 解 集 是 ,aa, .在 数 轴 上 表 示
下图1.28:
a O a x
a O a x
| x| a
| x| a
图1.28
上 述 绝 对 值不 ,是等解式其 他 绝 对的 值基 不, 础 等
即 其 他 绝 对 值解 不一 等般 式可 的以 通上 过述 转不 化
等 式 而 得 .例到 如 ,a是 一 个 正,对 实于 数绝 对 值 不 | xx1|a(或| xx1|a),我们有
2 绝对值不等式的解法
我们知道, 对于不等式| x | 1,由绝对值的 几何意义,它的解集是数轴上到原 点距离
小于1的点的集合,即1,1 ;对于不等式
| x | 1 ,由绝对值的几何意义,它的解集是 数轴上到原点距离大于1 的点的集合,即
,1 1,.
一 般 ,地 如 果a0,那 么 从 绝 对 值 的义几看,何 意
|x x 1 | a a x x 1 a x 1 a x x 1 a ; |x x 1 | a x x 1 a ,或 x x 1 a
xx1a ,或 xx1a.
由 于 绝 对 | x值 x1 |的 几 何 意 义 是 数 标 轴 为 x 上 的 点 与 坐x1标 的 为 点 的,距 所离 以 ,以 上 不 等 式 的 可 以 在 数 轴 上 表 ,如示 图 1.2出 9来 所 示 .
比 较 复 杂,我 们 从 它 的 几 何
A1 A
BB1
-3 -2 -1 O 1 2
x
意 义 来 分 析.如 图1.2 11, 设
图1.211
数 轴 上 与 2 ,1对 应 的 点 分
别 是A, B,那 么 不 等 式 的 解 就 是 数轴 上 到A, B两
点 的 距 离 之 和 不 小 于5的 点 所 对 应 的 实 数.所 以,
相关文档
最新文档