开关电源:单管自激,反激,推挽,半桥,全桥
反激式正激式推挽式半桥式全桥式开关电源优缺点
反激式正激式推挽式半桥式全桥式开关电源优缺点反激式开关电源是一种常见的开关电源拓扑结构,其工作原理是利用电感储能和电容滤波器来实现电压变换。
以下是反激式、正激式、推挽式、半桥式和全桥式开关电源的优缺点分析。
1.反激式开关电源:优点:-体积小,结构简单,成本较低。
-输出电流大,适用于一些高功率应用。
-效率较高,在负载率低时仍能提供稳定的输出电压。
缺点:-输出电压稳定性较差,容易受到输入电压波动的影响。
-输入电流波形不纯净,含有较高的谐波成分。
-输出电流变化较大时容易产生振荡和噪音。
2.正激式开关电源:优点:-输出电压稳定性较好,能够提供较为纯净的输出电流。
-输出电流较大,适用于一些高负载应用。
-效率较高,在大部分负载条件下都能保持较高的效率。
缺点:-体积较大,结构相对复杂。
-成本较高。
-在负载率低时效率较低。
3.推挽式开关电源:优点:-输出频率较高,适用于一些高频应用。
-输出电压稳定性较好。
-体积相对较小,结构简单。
缺点:-输出电流相对较小。
-效率较低,在大负载条件下会有较大的功率损耗。
-容易受到电容和电感等元器件的损耗影响,导致输出电压不稳定。
4.半桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
5.全桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
总结:根据以上分析,不同的开关电源拓扑在不同应用场景中具有不同的优缺点。
在选择开关电源时,应根据具体应用需求,综合考虑输出电压稳定性、输出电流、效率、结构复杂性、成本等因素,选择最适合的拓扑结构。
开关电源半桥和全桥推挽电路工作原理
开关电源半桥和全桥推挽电路工作原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注! Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!开关电源:半桥与全桥推挽电路的工作原理解析开关电源是现代电子设备中不可或缺的一部分,其核心部分包括多种拓扑结构,其中半桥和全桥推挽电路是常见的两种。
全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析
全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析优缺点比较一、全桥式开关电源的优点和缺点1、全桥式变压器开关电源输出功率很大,工作效率很高全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。
因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。
2、全桥式开关电源的优点是开关管的耐压值特别的低全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。
因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。
其最高耐压等于工作电压与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。
3、全桥式变压器开关电源主要用于输入电压比较高的场合在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率大很多。
因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。
而在输入电压较低的情况下,推挽式变压器开关电源的输出功率又要比全桥式变压器开关电源的输出功率大很多。
4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。
因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。
5、与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。
开关电源有哪些类型-开关电源的主要类型
开关电源有哪些类型-开关电源的主要类型开关电源有哪些类型-开关电源的主要类型现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。
下面,店铺就为大家讲讲开关电源的主要类型,快来看看吧!直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。
直流开关电源的核心是DC/DC转换器。
因此直流开关电源的分类是依赖DC/DC转换器分类的。
也就是说,直流开关电源的分类与DC/DC转换器的分类是基本相同的,DC/DC 转换器的分类基本上就是直流开关电源的分类。
直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器。
隔离式DC/DC转换器也可以按有源功率器件的个数来分类。
单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。
双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter) 和半桥式(Half-Bridge Converter)四种。
四管DC/DC 转换器就是全桥DC/DC转换器(Full-Bridge Converter)。
非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。
单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。
在这六种单管DC/DC转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。
开关电源:单管自激,反激,推挽,半桥,全桥
3 脚为误差放大器 A1、A2 输出端。集成电路内部用于控制 PWM 比较器的同相输入, 当 A1、A2 任一输出电压升高时,控制 PWM 比较器的输出脉宽减小。同时,该输出端还引 出端外,以便与 2、15 脚间接入 RC 频率校正电路和直流负反馈电路,稳定误差放大器的增 益以及防止其高频自激。3 脚电压反比于输出脉宽,也可利用该端功能实现高电平保护。 4 脚为死区时间控制端。当外加 1V 以下的电压时,死区时间与外加电压成正比。如果 电压超过 1V,内部比较器将关断触发器的输出脉冲,起到保护作用。 5 脚为锯齿波振荡器外接定时电容端。 6 脚为锯齿波振荡器外接定时电阻端。 7 脚为共地端。 8、11 脚为两路驱动放大器 NPN 管的集电极开路输出端。当通过外接负载电阻引出输 出脉冲时,为两路时序不同的倒相输出,脉冲极性为负极性,适合驱动 P 型双极型开关管 或 P 沟道 MOS FET 管。此时两管发射极接共地。 9、10 脚为两路驱动放大器的发射极开路输出端,也是对应的脉冲参考地端。 12 脚为 Vcc、输入端。供电范围适应 8~40V。 13 脚为输出模式控制端。 外接 5V 高电平时为双端图腾柱式输出, 用以驱动各种推挽开 关电路。接地时为两路同相位驱动脉冲输出,8、11 脚和 9、10 脚可直接并联。双端输出时 最大驱动电流为 2×200mA,并联运用时最大驱动电流为 400mA。 14 脚为内部基准电压精密稳压电路端。输出 5V±0.25V 的基准电压,最大负载电流为 10mA。用于误差检出基准电压和控制模式的控制电压。 15 脚为内部 2#误差放大器的反向输入端 IN2-。 16 脚为内部 2#误差放大器的同向输入端 IN2+。 RT 取值范围 1.8~500kΩ,CT 取值范围 4700pF~10μF,最高振荡频率 fOSC≤300KHz。 TL494 在工作时, 通过 5、 6 脚分别接定时元件 CT 和 RT。 经相应的门电路去控制 TL494 内部的两个驱动三极管交替导通和截止,通过 8 脚和 11 脚向外输出相位相差 180°的脉宽调 制控制脉冲。工作波形如图 3-3 所示。TL494 若将 13 脚与 14 脚相连.可形成推挽式工作; 若将 13 脚与 7 脚相连.可形成单端输出方式。为增大输出可将 2 个三极管并联[7]。
正激类(全桥、半桥、推挽、正激)变压器计算
推挽式开 关电源变 压器的计 算方法与 前面正激 式或反激 式开关电 源变压器 的计算方 法大体相 同,只是 对变压器 铁心磁感 应强度的 变化范围 选择有区 别。对于 具有双向 磁极化的 变压器铁 心,其磁 感应强度 B的取值 范围,可 从负的最 大值-Bm 变化到正 的最大值 +Bm。
关于开关 电源变压 器的计算 方法,请 参考前面 “1-63.正激 式变压器 开关电源 电路参数 计算”中 的“2.1 变压器初 级线圈匝 数的计算 ”章节中 的内容。
(1152)式 还没有考 虑变压器 的工作效 率,当把 变压器的 工作效率 也考虑进 去时,最 好在(1152)式 的右边乘 以一个略 大于1的 系数。
B)直流 输出电压 非调整式 推挽开关 电源变压 器初、次 级线圈匝 数比的计 算
直流输出 电压非调 整式推挽 开关电 源,就是 在DC/AC 逆变电源 的交流输 出电路后 面再接一 级整流滤 波电路。 这种直流 输出电压 非调整式 推挽开关 电源的控 制开关K1 、K2的占 空比与 DC/AC逆 变电源一 样,一般 都是 0.5,因 此,直流 输出电压 非调整式 推挽开关
1-8-1-42.推挽 式开关电 源变压器 初、次级 线圈匝数 比的计算
A)交流 输出推挽 式开关电 源变压器 初、次级 线圈匝数 比的计算 推挽式开 关电源如 果用于 DC/AC或 AC/AC逆 变电源, 即把直流 逆变成交 流输出, 或把交流 整流成直 流后再逆 变成交流 输出,这 种逆变电 源一般输 出电压都 不需要调 整,因此 电路相对 比较简 单,工作 效率很高 。
n=N3/N1 =Uo/Ui =Upa/Ui —— 次/ 初级变压 比,D为 0.5时 (1152) 不过,在 低电压、 大电流输 出时,一 定要考虑 整流二极 管的电压 降。
开关电源全桥和半桥工作原理和区别
开关电源全桥和半桥工作原理和区别开关电源,听起来就很高大上吧?其实它的核心原理并不复杂,就像小朋友玩积木,简单易懂又有趣。
今天咱们就聊聊全桥和半桥这两种开关电源的工作原理和它们之间的区别。
别担心,我会把它讲得轻松又有趣,保证你听完后不再觉得这些专业术语像外星人说的。
首先说说半桥。
想象一下你在游乐园,坐上了过山车,一开始你慢慢上升,心里那个紧张啊,等到达顶点,哇,感觉真是刺激!这半桥的工作原理就像这样的过山车。
它有两个开关,在电流的控制下,电流在两个开关之间交替流动,简直像过山车一样忽上忽下。
这样做的好处是,电源能够高效地把直流电转换成高频交流电,能量损耗少,效率高,就像在游乐园省了排队的时间,爽快得很!不过,半桥也有点小缺陷,不能提供太高的输出功率。
就像过山车有个最大载重,超过了就不让上。
这时候,如果你需要更大的输出功率,比如说给一个大马达供电,半桥就显得有些力不从心了。
再加上,半桥的电压波动也比较大,有时候会让人心里发毛,哎呀,这玩意儿不会出什么岔子吧?说完半桥,咱们再来聊聊全桥。
全桥就像是升级版的过山车,有四个开关,听起来就厉害了,瞬间多了两条轨道。
全桥能把电流进行更加灵活的控制,让电流的输出更平稳、更强劲。
就像在游乐园里,有了更多的轨道,能同时让更多的人享受刺激的感觉。
全桥不仅能提供高功率输出,还能让你感受到电流的灵活变换,真是太让人惊喜了!而且全桥的电压波动相比半桥要小得多,像是在保证过山车安全的同时,让你尽情尖叫。
电源的稳定性也很不错,这样一来,设备运行得更安心,谁不喜欢这种感觉呢?而且全桥的结构稍微复杂点,需要的元件更多,但这也给了它更强的能力,像是一个全副武装的骑士,勇敢地迎接各种挑战。
世上没有十全十美的东西,全桥虽然牛,但成本也相对高一点。
就像游乐园里,刺激的项目票价可能更贵一些。
制造全桥电源的时候,需要更复杂的电路设计和材料,偶尔让预算变得紧张。
不过呢,物有所值,毕竟高效能、稳定性和强大的输出功率,谁不愿意为这些付出点钱呢?再说说应用场景。
全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析
全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析优缺点比较一、全桥式开关电源的优点和缺点1、全桥式变压器开关电源输出功率很大,工作效率很高全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。
因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。
2、全桥式开关电源的优点是开关管的耐压值特别的低全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。
因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。
其最高耐压等于工作电压与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。
3、全桥式变压器开关电源主要用于输入电压比较高的场合在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率大很多。
因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。
而在输入电压较低的情况下,推挽式变压器开关电源的输出功率又要比全桥式变压器开关电源的输出功率大很多。
4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。
因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。
5、与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。
全桥-半桥-推挽-正激-反激的优缺点比较及应用场合分析
全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析优缺点比较一、全桥式开关电源的优点和缺点1、全桥式变压器开关电源输出功率很大,工作效率很高全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。
因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。
2、全桥式开关电源的优点是开关管的耐压值特别的低全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。
因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。
其最高耐压等于工作电压与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。
3、全桥式变压器开关电源主要用于输入电压比较高的场合在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率大很多。
因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。
而在输入电压较低的情况下,推挽式变压器开关电源的输出功率又要比全桥式变压器开关电源的输出功率大很多。
4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。
因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。
5、与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。
非隔离型开关电源的四种典型拓扑
非隔离型开关电源的四种典型拓扑(实用版)目录1.非隔离型开关电源的基本概念2.非隔离型开关电源的四种典型拓扑2.1 降压型电路2.2 升压型电路2.3 极性反转型电路2.4 反激式电路2.5 正激式电路2.6 推挽式电路2.7 半桥式电路2.8 全桥式电路正文非隔离型开关电源是一种常见的电源电路,其工作原理是通过开关管的开通和截止,将输入电压转换为所需的输出电压。
非隔离型开关电源的四种典型拓扑包括降压型电路、升压型电路、极性反转型电路和反激式电路、正激式电路、推挽式电路、半桥式电路和全桥式电路。
降压型电路是一种将输入电压转换为较低输出电压的电路。
在工作过程中,当开关管导通时,输入电压可以传递到输出端;开关截止时,则被隔断。
这种脉冲状的能量传递经变换和滤波形成平滑的电压输出。
升压型电路是一种将输入电压转换为较高输出电压的电路。
在工作过程中,开关管 Q1 导通时,扼流圈 L1 储能。
这时 iluin/lt(t为扼流圈导通时间)。
设导通结束时的储能为E,则E=1/2 * iluin * t。
在开关管 Q1 截止时,储能 E 通过输出整流器进行整流,输出电压 U0=E/Cout,其中 Cout 为输出电容。
极性反转型电路是一种将输入电压的极性反转后输出的电路。
在工作过程中,开关管 Q1 和 Q2 交替导通和截止,使得输出电压的极性与输入电压相反。
反激式电路、正激式电路、推挽式电路、半桥式电路和全桥式电路都是非隔离型开关电源的一种形式转换。
反激式电路和正激式电路是通过改变开关管的接线方式来实现的,推挽式电路是通过两个开关管分别控制输入电压的正负半周期来实现的,半桥式电路和全桥式电路是通过多个开关管共同控制输入电压的正负半周期来实现的。
反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点
反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点反激式开关电源的优点和缺点反激变换器01反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2,电流脉动系数等于4。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。
02反激式开关电源的瞬态控制特性相对来说比较差。
由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。
有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。
03反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。
反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。
另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。
电源常见的拓扑结构精华汇总工程师不可不知的电源11种拓扑结构
电源常见的拓扑结构精华汇总工程师不可不知的电源11种拓扑结构工程师不可不知的电源11种拓扑结构基本名词电源常见的拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥■SEPIC■C’uk基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:1、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续 (斩波)。
■输出电流平滑。
2、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续 (斩波)。
3、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续 (斩波)。
■输出电流也不连续 (斩波)。
■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
5、Forward正激特点■降压电路的变压器耦合形式。
■不连续的输入电流,平滑的输出电流。
■因为采用变压器,输出可以大于或小于输入,可以是任何极性。
■增加次级绕组和电路可以获得多个输出。
■在每个开关周期中必须对变压器磁芯去磁。
开关电源的拓扑结构
主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
干货详解正激、反激、推挽、全桥、半桥区别和特点
干货详解正激、反激、推挽、全桥、半桥区别和特点
1. 单端正激式
单端:通过一只开关器件单向驱动脉冲变压器.
正激:脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。
2. 单端反激式
反激式电路与正激式电路相反,脉冲变压器的原/付边相位关系,确保当开关管导通,驱动脉冲变压器原边时,变压器付边不对负载供电,即原/付边交错通断。
脉冲变压器磁能被积累的问题容易解决,但是,由于变压器存在漏感,将在原边形成电压尖峰,可能击穿开关器件,需要设置电压钳位电路予以保护D3、N3构成的回路。
从电路原理图上看,反激式与正激式很相象,表面上只是变压器同名端的区别,但电路的工作方式不同,D3、N3的作用也不同。
3.推挽(变压器中心抽头)式
这种电路结构的特点是:对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性
放大电路中的乙类推挽功率放大器。
4. 全桥式
这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边。
5. 半桥式
电路的结构类似于全桥式,只是把其中的两只开关管(T3、T4)换成了两只等值大电容C1、C2。
反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点
反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点最近查了很多关于开关电源的资料,现在总结如下,以便日后的查阅,呵呵。
为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。
在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。
因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为:Sv = Up/Ua ——电压脉动系数 (1-84)Si = Im/Ia ——电流脉动系数 (1-85)Kv =Ud/Ua ——电压波形系数 (1-86)Ki = Id/Ia ——电流波形系数 (1-87)上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或 K。
脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S 和K的值,显然是越小越好。
S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。
反激式开关电源的优点和缺点1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为 0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2,电流脉动系数等于4。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。
全桥VS半桥VS推挽VS正激VS反激
优缺点比较:
适用场合分析:
全桥:当输出相同功率时,半桥式电路的输入电流就要是全桥式电路的2倍;换句话说,如果他们的开关电流一样,电源输入电压也相等,半桥式的输出功率将是全桥式的一半。
因此全桥式电路可用于大功率的逆变电路,通常使用在1KW以上超大功率开关电源电路中。
半桥:半桥式电路不适用于大功率的逆变电路。
这种电路常常被用于各种非稳压输出的DC变换器,如电子荧光灯驱动电路中。
推挽:推挽电路适用于低电压大电流的场合,广泛应用于功放电路和开关电源中。
正激:就是只有在开关管导通的时候,能量才通过变压器或电感向负载释放,当开关关闭的时候,就停止向负载释放能量。
结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。
用在150瓦到几百瓦之间。
反激:反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。
最新开关电源分类
开关电源分类开关电源分类开关电源一般分为两类:一是直流开关电源(DC-DC);另一种是交流开关电源(AC-DC)。
也有AC/AC、DC/AC直流开关电源的分类是依赖DCDC转换器分类的。
直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器。
隔离式也可以按有源功率器件的个数来分类。
单管的DC/DC转换器有正激式和反激式两种。
双管DC/DC转换器有双管正激式,双管反激式、推挽式和半桥式四种。
四管DC/DC转换器就是全桥DC/DC转换器。
非隔离式按有源功率器件的个数,可以分为单管、双管和四管三类。
单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。
在这六种单管DC/DC转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。
双管DC/DC转换器有双管串接的升压式(Buck-Boost)DC/DC转换器。
四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。
隔离式DC/DC转换器在实现输出与输入电器隔离时,通常采用变压器来实现,由于变压器具有变压的功能,所以有利于扩大转换器的输出应用范围,也便于实现不同电压的多路输出,或相同电压的多种输出。
在功率开关管的电压和电流定额相同时,转换器的输出功率通常与所用开关管的数量成正比。
所以开关管数越多,DC/DC转换器的输出功率越大,四管式比两管式输出功率大一倍,单管式输出功率只有四管式的1/4。
非隔离式转换器与隔离式转换器的组合,可以得到单个转换器所不具各的一些特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 2.4 单端正激式开关电源
单端反激式开关电源 反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励 时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的 激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式 开关电源。反激式开关电源是在反极性(Buck—Boost)变换器的基础上演 变而来的,它具有以下优点: 比正激式开关电源少用一个大储能滤波电感及一个续流二极管,因此,体积 比正激式开关电源的要小,且成本也要低。
C18 Q5 C1815 22u50V
+
D17 R21 1N4148 12k
R27 1.5k
HW.79 94V-0
S-100N-R5
2000-11-21
+
C17 1u50V
MW
S-100-24 IN 110VAC 1.9A IN 220VAC 0.8A OUT 24VDC 4.5A
TL494 管脚功能及参数
+
R3 100R 2W 102 1kV FMX 1
C2
+V +V
1k 2W
C1 +
SCK054
TF-096
C3
D3S B-60 -0.5
N C10 4.7u50V T2 D7 R6 T028 15R
3A250V R13 580k 1/2W RT C6 220u 200V 470u 35V x5
开关电源:单管自激,反激,推挽,半桥,全桥
单端正激式开关电源 正激式变压器开关电源,是指当变压器的初级线圈正被直流电压激励 时,变压器的次级线圈正好有功率输出。它是在 BUCK 电路的开关管 Q 与续 流二极管 D 之间加入单端变压隔离器而得到的。它具有以下优点: 1) 正激变换器利用高频变压器的一次侧、二次侧绕组隔离的特点,可以方 便的实现交流电网和直流输出之间的隔离。 2) 正激变换器电路简单,成本很低,能方便的实现多路输出。 3) 正激变换器只有一个开关管,只需一组驱动脉冲;其对控制电路的要求 比双端变换器低。
图 2.5 单端反激式开关电源
推挽式开关电源 在双激式变压器开关电源中,推挽式开关电源是最常用的开关稳压电 源。由于推挽式变压器开关电源中的两个控制开关 S1 和 S2 轮流交替工作, 其输出电压波形非常对称,而且开关电源在整个工作周期之内都向负载提供 功率输出,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推 挽式变压器开关电源被广泛应用于 DC/AC 逆变器,或 DC/DC 变换电路中。它 具有以下优点:功率开关器件的发射极是共地的,所以无须隔离基极驱动电 路;推挽式开关电源变压器的漏感及铜阻损耗很小,因此其工作效率很高。
R35 100k
Q3 C1815
C30 103
C27 222
R19 3.9k
R18 1.5k
R31 22k R29 681 R30 22k VR 1k C15 222
C19 103
IC1
TL494CN
1 1 IN+ 2 1 IN3 F EEDB ACK D TC CT RT G ND C1
4 5 6 7 8
图 2.7 半桥式开关电源
全桥开关电源 全桥式变压器开关电源也属于双激式变压器开关电源。它同时具有推挽 式变压器开关电源电压利用率高,又具有半桥式变压器开关电源耐压高的特 点。因此,全桥式变压器开关电源经常用于电压高,输出功率大的场合。全 桥式变压器开关电源工作原理图如下。图中,K1、K2、K3、K4 是 4 个控制开 关管;开关管 K1 和 K4,K2 和 K3 同时开通和关断,两对开关管以 PWM 方式 交替的开通和关断。它具有以下优点:对 4 个开关器件的耐压要求比推挽式 对 2 个开关器件的耐压要求可以降低一半;全桥式开关电源的输出功率要比 推挽式开关电源的输出功率大很多且其变压器的初级线圈只需要一个绕组。
0.1 630V
222M 2NR1 C4 2kV u TNR 0.1 x2 15G471K 630V
COM
103 100V
G
外壳/大地
C28 103 1kV
COM
Vcc
+ D10 TF-09
R35 100k D13 1N4752 C11 4.7u50V R40 150kx2 D14 1N4752 D8 R10 T028 15R R9 3.9k TF-020 + D15 D16 1N4148x2 R11 2.2R1/2W R8 + R12 1.5k Q4 C1815 C13 4.7u 50V R17 3.9k C15 47u50V
主电路工作过程分析:闭合开关 S1 后,输入电压经过保险管 F1,浪涌抑制电阻 R1, 滤波器 C1、L1、C2、C3、C4 及全桥整流后送入由 C5、C6、V4、V5、T1、T2 等构成的半 桥式变换器。 开关管 V4 和 V5 在 TL494 的控制下,两管交替导通截止,将直流电转换成 高频交流电。高频振荡电压有变压去 T2 副绕组分两路输出。一路由 V13、V14、C25 整流 滤波得到约 12V 直流电压供给脉冲宽度调制器 TL494 专用,另一路则由 V12、L2、C22、 L3、C23 整流滤波作为 48V 主输出。电路中 R12、R15、R14、R17 构成启动回路,T1、V8、 V9、C12、C14、R13、R16 为正反馈元件,R4、C8 及 R29、C21 构成尖峰吸收网络,用于 改善波形及保护开关管。 在电路中,TL494 的 13 脚连 14 脚,即 U13=5V; TL494 由 8 脚和 11 脚双端输出,两 路输出脉冲相位差半个周期,送到 V2、V3 俩个驱动管,Q3 和 Q4 的导通或截止又通过驱 动变压器 T1 分别去控制两个大功率开关调整管 Q1 和 Q2 的饱和导通或截止。 C7 是耦合电容, 其作用是防止由于两个开关管的特性差异而造成变压器磁芯饱和,从而 提高半桥逆变电路的抗不平衡能力.R4 、C8 ;R29 、C21 为吸收电路,用于改善波形和保 护开关管。吸收电路就是我们通常说的“消反冲电路” ,其作用就是药消除没有用的反冲电 压。在开关稳压电压中最高的反冲电压,是在开关调整管截止时产生的,这个很高的反冲电 压, 就产生在开关变压器的初级绕组的两端, 同时也加在了开关调整管的集电极和发射机的 两端, 这样就对开关管是一个很大的威胁, 所以就将吸收电路加在开关变压器的初级绕组的 两端。 吸收电路通常能起到两个作用,那就是降低反冲电压和消除高频振荡。 C20、R26 分别接至 TL494 的 5 脚和 6 脚,使内部振荡器的震荡频率由 C20 和 R26 决定。 用 TL494 的内部误差放大器 2 进行反馈稳压。反馈稳压过程如下: 误差放大器 2 的反向输入端 15 脚接与 14 脚和地之间的电阻 R20、R18 之间,分压后 U15=2.5V,输出电压 U0 经 R23 和(R21、RP1)分压后加到 16 脚,作为误差放大器 2 的同 向输入。当 U0 变化时,误差放大器 2 的输出电压随之改变,即与比较的电平改变,PWM 比较器输出的脉冲宽度改变,致使 TL494 输出的驱动脉冲,即开关管 V4 和 V5 的导通时间 TON 改变,从而实现调宽稳压的目的。此外,微调 RP1 可调节输出电压的数值,使输出电 压在 45V~75V 之间变化。 电路利用误差放大器 1 作为过流保护。从 48V 输出主回路上取出的电流控制信号经 R24 接至误差放大器 1 的 1 脚和 2 脚上,其中反向输入端 2 脚的电位由 14 脚输出的 5V 基 准源经过(RP2,R27)和(R24,R30)分压后获得。调整 RP2 大小可控制 2 脚门坎电位, 即过流控制点。当 R30 上取出的电压信号足够大使其绝对值超过 2 脚电位时,误差放大器 1 将翻转并关闭脉冲信号输出,进而起到过流保护作用。 本电源输出的直流电压为 48V,输出电流为 0~3A.。 本电路利
图 2.9 全桥开关电源
SW
110V
1.0K C7 250V
R32 C20 22R1/2W 102 1kV T1 C22 C23 C24 C25 C26 2NR2 D18 + + + + R37 4.3k + L2
220V BD1 + C5 220u 200V R1 150k 1/2W Q1 2SC2625 C8 Q2 2SC2625 D6 FR155 LED1 R39 D9 FR104x2 C21 R33 22R1/2W 102 1kV 150kx2 R7 R5 2.2R1/2W 3.9k R4 + D5 FR155
图 2.6 推挽式开关电源
半桥式开关电源 半桥式变压器开关电源属于双激式变压器开关电源,从原理上来说,半 桥式变压器开关电源也属于推挽式变压器开关电源,它是多种推挽式变压器 开关电源家庭成员之一。在半桥式变压器开关电源中,也是两个控制开关管
S1 和 S2 轮流交替工作,开关电源在整个工作周期之内都向负载提供功率输 出,因此,其输出电流瞬间响应速度很高,电压输出特性也很好。由于半桥 式变压器开关电源的两个开关器件工作电压只有输入电压的一半,截止开关 管极间承受的电压低;抗不平衡能力强,因此,半桥式变压器开关电源比较 适用于工作电压比较高的场合。
电路启动过程分析: 当接通电源后,由滤波电容器 C5 上的 150V 电压的正端输出电流,通过启动电阻 R12、 R15 分压给 V3 注入一个基极电流,这时 V3 流入的集电极电流通过发射极,又通过驱动变 压器 T1 中的 W3(T1 中间的那段绕组)电流由上往下流,又通过主变压器 T2 初级绕组由 下往上流,最后通过电容 C7,回到 C5 上的 150V 负端。C6 和 C5 类似,但流经 W3 的电流 方向相反,而幅值又相等,这样 W3 中的电流就相互抵消了,W3 中没有电流也就不能震荡 起来了。 这是一个非常重要的问题, 但是 W3 中是有电流的, 虽然 V3, V4 的外围电路相同, 元件参数也相等,所加的电压也相等,但是元件参数的分散性还是比较大的,也就是说相同 的元件,相同的参数,但是他们存在着误差,不可能完全相等,所以抵消一部分电流后 W3 中还是有电流,在 T2 的初级绕组产生幅值+150~ -150 的方波。来驱动反馈变压器使 TL494 工作。 一但 TL494 正常工作,这个启动自激震荡的波形就立刻停止了。 电路启动后,R12、R15 就完成了任务,虽然在电路中没有断开,但在电路中已经不起 作用了,因为启动电阻 R1 R3 的阻值很大(一般都在 300K 以上) ,对三极管的电流很小起 不到控制作用,这样三极管的导通和截止完全受 PWM 来控制。