人教版 高中数学 2.2.1条件概率学案 选修2-3

合集下载

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》

2.2.1条件概率教学设计一教学目标(一)知识与技能:掌握条件概率的定义、判断、及求解方法。

(二)过程与方法:通过知识的探索让学生体会数学为主的方法,以培养学生自学能力。

(三)情感态度与价值观:通过生活中的实例让学生体会数学知识的重要性,培养学生思维的灵活性和知识的迁移能力,让学生养成善于观察,分析总结的良好习惯。

二教学重点、难点教学重点:条件概率的定义、公式的推导及计算;为了让学生能够区分一般概率和条件概率的区别,在教学时应特别注意条件概率的定义的引入;但能否解决问题,并解决学生知其然,不知其所以然的情况,还在于对公式的理解,所以本节课的重点是让学生理解公式的推导及应用。

教学难点:条件概率的判断与计算;在理解的基础上能运用自如才是教学的真正目的,所以在教学中选择适当的练习题让学生理解究竟什么是条件概率及条件概率该如何解决。

三学情分析(一)学生已有知识基础或学习起点这是一节新授课,本班学生对数学科特别是概率内容的学习有很高的热情,本班学生具备较好的逻辑思维能力,并能够用已学的定理和概念解决一些常见问题,但分析问题的能力有待提高。

(二)学生已有生活经验和学习该内容的经验学生通过小学、初中的学习,具备了基本的逻辑思维能力,同时在以前的数学学习中学生已经经历了合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

(三)学生的思维水平以及学习风格受以前传统教学方式的影响,学生的思维仍停留在就题论题上,还没有形成一套完整的思维体系去解决一类问题甚至没有形成一种解决问题的思维方法,因此思路不开阔,缺少发散思维和逻辑思维能力。

学习风格上还保留着被动接受的习惯,缺乏主动思考和探索的精神。

(四)学生学习该内容可能的困难在学习中,学生可能对对条件概率的判断和计算上会有些困难,但相比较计算上困难会更大一些,因为通过本节课的学习,我们掌握了两种解决条件概率的方法,分别是公式法和缩减基本事件空间的方法,能不能运用的好可能是学生在学习中遇到的困难。

数学人教A版选修2-3教案:2.2.1条件概率 含解析 精品

数学人教A版选修2-3教案:2.2.1条件概率 含解析 精品

2.2 二项分布及其应用2.2.1 条件概率整体设计教材分析条件概率的概念在概率理论中占有十分重要的地位,教科书只是简单介绍条件概率的初等定义.为了便于学生理解,教材以简单事例为载体,逐步通过探究,引导学生体会条件概率的思想.课时分配 1课时教学目标 知识与技能通过对具体情境的分析,了解条件概率的定义,掌握简单的条件概率的计算. 过程与方法发展抽象、概括能力,提高解决实际问题的能力. 情感、态度与价值观使学生了解数学来源于实际,应用于实际的唯物主义思想. 重点难点教学重点:条件概率定义的理解. 教学难点:概率计算公式的应用.教学过程探究活动抓阄游戏:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.活动结果:法一:若抽到中奖奖券用“Y”表示,没有抽到用“Y ”表示,那么三名同学的抽奖结果共有三种可能:Y Y Y ,Y Y Y 和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为P(B)=13.故三名同学抽到中奖奖券的概率是相同的.法二:(利用乘法原理)记A i 表示:“第i 名同学抽到中奖奖券”的事件,i =1,2,3, 则有P(A 1)=13,P(A 2)=2×13×2=13,P(A 3)=2×1×13×2×1=13.提出问题:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?设计意图:引导学生深入思考,小组内同学合作讨论,得出以下结论,教师因势利导. 学情预测:一些学生缺乏用数学语言来表述问题的能力,教师可适当辅助完成.师生共同指出:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y 和Y Y Y .而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为12,不妨记为P(B|A),其中A 表示事件“第一名同学没有抽到中奖奖券”.进一步提出:已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?共同指出:在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P(B|A)≠P(B).提出问题:对于上面的事件A 和事件B ,P(B|A)与它们的概率有什么关系呢?活动结果:用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y ,Y Y Y ,Y Y Y}.既然已知事件A 必然发生,那么只需在A ={Y Y Y ,Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件A 发生的情况下事件B 发生,等价于事件A 和事件B 同时发生,即AB 发生.而事件AB 中仅含一个基本事件Y Y Y ,因此P(B|A)=12=n AB n A.理解新知(几何解释)其中n(A)和n(AB)分别表示事件A 和事件AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,P(AB)=n(AB)n(Ω),P(A)=n(A)n(Ω),其中n(Ω)表示Ω中包含的基本事件个数.所以,P(B|A)=n(AB)n(A)=n(AB)n(Ω)n(A)n(Ω)=P(AB)P(A).因此,可以通过事件A 和事件AB 的概率来表示P(B|A).(给出定义) 1.定义设A 和B 为两个事件,P(A)>0,称P(B|A)=P(AB)P(A)为在事件A 发生的条件下,事件B 发生的条件概率.P(B|A)读作A 发生的条件下B 发生的概率.补充说明:由这个定义易知,P(AB)=P(B|A)·P(A).(概率的乘法公式) 提出问题:根据概率的性质可以得到P(B|A)的哪些性质? 活动结果:2.P(B|A)的性质(1)非负性:0≤P(B|A)≤1; (2)规范性:P(Ω|B)=1;(3)可列可加性:如果B 和C 是两个互斥事件,则P(B ∪C|A)=P(B|A)+P(C|A). 运用新知例1考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)解:Ω={(男,男),(男,女),(女,男),(女,女)}.设B =“有男孩”,则B ={(男,男),(男,女),(女,男)}. A =“有两个男孩”,则A ={(男,男)},B 1=“第一个是男孩”,则B 1={(男,男),(男,女)}于是得P(B)=34,P(BA)=P(A)=14,∴P(A|B)=P(BA)P(B)=13;P(B 1)=12,P(B 1A)=P(A)=14,∴P(A|B 1)=P(B 1A)P(B 1)=12.例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解:设“第i 次按对密码”为事件A i (i =1,2),则A =A 1∪(A 1A 2)表示“不超过2次就按对密码”.(1)因为事件A 1与事件A 1A 2互斥,由概率的加法公式得 P(A)=P(A 1)+P(A 1A 2)=110+9×110×9=15.(2)用B 表示“最后一位按偶数”的事件,则 P(A|B)=P(A 1|B)+P(A 1A 2|B)=15+4×15×4=25.设计意图:以上两题都是从实际中来,到实际中去,这也是我们学习数学的目的所在.【变练演编】 盒中有球如下表:任取一球,若已知取的是蓝球,问该球是玻璃球的概率.(411)变式:若已知取的是玻璃球,求取的是蓝球的概率.(23)【达标检测】1.一批产品中有4%的次品,而合格品中一等品占45%.从这批产品中任取一件,求该产品是一等品的概率.解:设A 表示“取到的产品是一等品”,B 表示“取出的产品是合格品”,则P(A|B)=45%,P(B )=4%,于是P(B)=1-P(B )=96%.所以P(A)=P(AB)=P(B)P(A|B)=96%×45%=43.2%. 2.掷两颗均匀骰子,已知第一颗掷出6点,问“掷出点数之和不小于10”的概率是多少? 解:设A ={掷出点数之和不小于10},B ={第一颗掷出6点}, 所以P(A|B)=n(AB)n(B)=36=12.课堂小结1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(B).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB 发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B 发生的概率.用古典概率公式,则P(B|A)=AB 中样本点数ΩA 中样本点数,P(AB)=AB 中样本点数Ω中样本点数.补充练习【基础练习】1.抛掷一颗质地均匀的骰子所得的样本空间为S ={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P(A)=________,P(B)=________,P(AB)=________,P(A|B)=________.(12;56;13;25)2.一个正方形被平均分成9个小正方形,向大正方形区域随机地投掷一个点(假设每次都能投中),设投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,求P(AB),P(A|B).解:P(AB)=19;P(A|B)=14.【拓展练习】某种动物出生之后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的这种动物活到25岁的概率.解:设A 表示“活到20岁”(即≥20),B 表示“活到25岁”(即≥25),则P(A)=0.7,P(B)=0.56, 故P(B|A)=P(AB)P(A)=P(B)P(A)=0.8.设计说明好的教学情境的创设,等于成功的一半.因而,以一个轻松愉快的抽奖券游戏把学生带进一个轻松愉快的课堂环境中.从游戏开始,诱思深入,把老师在堂上讲、学生在堂下听的教学过程变为师生共同探索,共同研究的过程.学生围绕老师提出的一系列具有趣味性和启发性的层层深入的问题,展开讨论,使问题得到解决,从而突出本节重点,突破本节难点.备课资料备用例题:1.抛掷一枚质地均匀的硬币两次,则 (1)两次都是正面向上的概率是________.(2)在已知有一次出现正面向上的条件下,两次都是正面向上的概率是________.答案:(1)14 (2)122.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.解:设“第1次抽到理科题”为事件A ,“第2次抽到理科题”为事件B ,则“第1次和第2次都抽到理科题”为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为n(Ω)=A 25=20.根据分步乘法计数原理,n(A)=A 13×A 14=12.于是P(A)=n(A)n(Ω)=1220=35. (2)因为n(AB)=A 23=6,所以P(AB)=n(AB)n(B)=620=310. (3)解法1:由(1)(2)可得,在“第1次抽到理科题的条件下,第2次抽到理科题”的概率为P(B|A)=P(AB)P(A)=31035=12.解法2:因为n(AB)=6,n(A)=12,所以P(B|A)=n(AB)n(A)=612=12.3.一个袋中装有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到白球”为A ;事件“第二次抽到白球”为B.(1)分别求事件A 、B 、AB 发生的概率; (2)求P(B|A). 解:同2.(设计者:王宏东 李王梅)。

高中数学 2.2.1 条件概率学案 新人教A版选修2-3(2021年整理)

高中数学 2.2.1 条件概率学案 新人教A版选修2-3(2021年整理)

2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3的全部内容。

2.2。

1 条件概率1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)[基础·初探]教材整理条件概率阅读教材P51~P53,完成下列问题.1.条件概率的概念一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=错误!为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).1.设A,B为两个事件,且P(A)>0,若P(AB)=错误!,P(A)=错误!,则P(B|A)=________.【解析】由P(B|A)=P ABP A=错误!=错误!.【答案】错误!2.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是________.【解析】根据条件概率公式知P=错误!=0。

5.【答案】0.5[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]利用定义求条件概率一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球"为A;事件“第二次抽到黑球"为B。

人教新课标版数学高二-人教选修2-3学案设计2.2.1条件概率

人教新课标版数学高二-人教选修2-3学案设计2.2.1条件概率

2.2 二项分布及其应用2.2.1 条件概率问题导学一、条件概率的概念与计算活动与探究11.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .122.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则P (B |A )=__________,P (A |B )=__________.迁移与应用1.下列说法正确的是( ) A .P (B |A )<P (AB ) B .P (B |A )=P (B )P (A )是可能的 C .P (AB )=P (A )P (B ) D .P (A |A )=02.5个乒乓球,其中3个新的,2个旧的,每次取一个,不放回地取两次,求第一次取到新球的情况下,第二次取到新球的概率.计算条件概率的两种方法:(1)在缩小后的样本空间ΩA 中计算事件B 发生的概率,即P (B |A );(2)在原样本空间Ω中,先计算P (AB ),P (A ),再按公式P (B |A )=P (AB )P (A )计算求得P (B |A ).二、条件概率的应用活动与探究2盒内装有16个球,其中6个是玻璃球,10个是木质球.玻璃球中有2个是红色的,4个是蓝色的;木质球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是玻璃球的概率是多少?迁移与应用1.(2013浙江宁波模拟)某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班所占的概率为__________.2.某个兴趣小组有学生10人,其中有4人是三好学生.现已把这10人分成两小组进行竞赛辅导,第一小组5人,其中三好学生2人.(1)如果要从这10人中选一名同学作为该兴趣小组组长,那么这个同学恰好在第一小组内的概率是多少?(2)现在要在这10人中任选一名三好学生当组长,问这名同学在第一小组内的概率是多少?在解决条件概率问题时,要灵活掌握P (A ),P (B ),P (AB ),P (B |A ),P (A |B )之间的关系.即在应用公式求概率时,要明确题中的两个已知事件,搞清已知什么,求什么,再运用公式求概率.答案: 课前·预习导学 【预习导引】1.P (AB )P (A ) A B A B2.(1)[0,1] (2)P (B |A )+P (C |A )预习交流 (1)提示:事件A 发生的条件下,事件B 发生等价于事件A 与事件B 同时发生,即AB 发生,但P (B |A )≠P (AB ).这是因为事件(B |A )中的基本事件空间为A ,相对于原来的总空间Ω而言,已经缩小了,而事件AB 所包含的基本事件空间不变,故P (B |A )≠P (AB ).(2)提示:P (AB )=14, P (A )=12,∴P (B |A )=12.故选B .课堂·合作探究 【问题导学】活动与探究1 1.思路分析:由题意知,本题属于条件概率.可以由题意求P (A ),P (AB ),然后根据公式求出P (B |A ).B 解析:∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110,∴P (B |A )=P (AB )P (A )=14.2.思路分析:应用公式P (B |A )=P (AB )P (A )计算.38 34 解析:由已知P (A )=415,P (B )=215,P (AB )=110, ∴P (B |A )=P (AB )P (A )=110415=38,P (A |B )=P (AB )P (B )=34. 迁移与应用 1.B 解析:由P (B |A )=P (AB )P (A ),而P (AB )=P (B )是可能的.2.解:设“第一次取到新球”为事件A ,“第二次取到新球”为事件B . 法一:因为n (A )=3×4=12,n (AB )=3×2=6, 所以P (B |A )=n (AB )n (A )=612=12. 法二: P (A )=35,P (AB )=C 23C 25=310,所以P (B |A )=P (AB )P (A )=31035=12.活动与探究2 思路分析:通过表格将数据关系表示出来,再求取到蓝球是玻璃球的概率.解:由题意得球的分布如下:设A ={取得蓝球},B 则P (A )=1116,P (AB )=416=14.∴P (B |A )=P (AB )P (A )=141116=411.迁移与应用 1.16 解析:设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (AB )=1C 27, 故P (B |A )=P (AB )P (A )=16. 2.解:设A 表示“在兴趣小组内任选一名同学,该同学在第一小组内”,B 表示“在兴趣小组内任选一名同学,该同学是三好学生”,而第二问中所求概率为P (A |B ).(1)由等可能事件概率的定义知,P (A )=C 15C 110=12.(2)P (B )=C 14C 110=25,P (AB )=C 12C 110=15.∴P (A |B )=P (AB )P (B )=12.当堂检测1.袋中有大小相同的3个红球,7个白球,从中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得红球的概率是 ( )A .15 B .13 C .38 D .37答案:D 解析:设事件A 为“第一次取白球”,事件B 为“第二次取红球”,则n (A )=63,n (AB )=21,故()1(|)()3n AB P B A n A ==. 2.一个盒子中有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A .56 B .34 C .23 D .13答案:C 解析:记A :取的球不是红球,B :取的球是绿球.则153()204P A ==,101()202P AB ==,∴1()22(|)3()34P AB P B A P A ===.3.抛掷红、黄两枚骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A .14 B .13C .12 D .35答案:B 解析:记A :抛掷两颗骰子,红色骰子点数为4或6,B :两颗骰子的点数积大于20.121()363P A ==,41()369P AB ==, ∴()1()19|1()33P AB P B A P A ===.4.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是__________.答案:0.5 解析:设A :出生算起活到20岁.B :出生算起活到25岁. P (A )=0.8,P (AB )=0.4, ∴P (B |A )=()0.4()0.8P AB P A ==0.5.5.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=__________;答案:2π(2)P(B|A)=__________.答案:14解析:该题为几何概型,圆的半径为1,∴圆的面积为π,正方形面积为2,扇形面积为π4.故P(A)=2π,12()1π(|)2()4πP ABP B AP A===.。

人教版高中数学选修2-3 2.2.1条件概率教案

人教版高中数学选修2-3 2.2.1条件概率教案
(二)类比推导,得到公式
在上述两个问题中,通过计算 、 、 、 、 的值,引导学生探索它们之间的区别与联系, 分析导致 、 不同的原因,辨析 、 的区别,引导学生发现 、 、 的关系,总结计算条件概率的两种基本方法。
(三)师生携手,Байду номын сангаас成概念
根据以上分析,引导同学们思考以下问题:(1)试给出条件概率的定义,和定义中需要注意的问题。(2)既然条件概率也是概率,它具备概率性质吗?若具备,这些性质分别是什么呢?
设计意图:培养学生发现问题、解决问题的能力,架设由感性认识上升到理性认识的桥梁。通过对问题的分析,总结归纳出“在附加条件下”相当于缩小了基本事件的考虑范围,即样本空间发生了变化。凸显“缩小了基本事件的范围下,求事件B的概率,即可得到条件概率 ”的教学关键。同时,为了降低难度,借助韦恩图直观地描述事件关系,加深学生对于条件概率的理解。
设计意图:先让学生进行归纳表达,教师给予启发和补充完善。锻炼学生的数学概括表达能力,让学生再次尝试对条件概率概念的本质特征进行把握。明确求解条件概率的具体方法,以及这些求解方法的使用背景,突破本节课的重难点。此外,从性质这一角度,加深学生对条件概率的再认识,为以后应用条件概率公式及性质解决较复杂的条件概率问题做好铺垫。
(1)求此人患色盲的概率;
(2)如果此人是色盲,求此人是男人的概率.(以上各问结果写成最简分式形式)
教学反思:
学生在必修3中已经学习了有关概率的一些基础知识,对一些简单的概率模型(如古典概型、几何概型)已经有所了解。条件概率是学生接触到的又一个全新的概率模型。这一概念比较抽象,学生较难理解。遇到具体问题时,学生常因分不清是P(B|A)还是P(AB)而导致出错。基于此,在本节的教学中,应特别注意对于条件概率概念的生成,借助图示形象直观地展现条件概率概念的生成过程。

最新人教版高中数学选修2-3《条件概率》示范教案

最新人教版高中数学选修2-3《条件概率》示范教案

最新人教版高中数学选修2-3《条件概率》示范教案2.2 二项分布及其应用2.2.1 条件概率整体设计:本章节介绍条件概率的概念及其在概率理论中的重要性。

为了方便学生理解,教材采用简单的例子,通过探究,逐步引导学生理解条件概率的思想。

课时分配:本节课程安排为1课时。

教学目标:知识与技能:通过具体情境的分析,学生将了解条件概率的定义,并掌握简单的条件概率计算方法。

过程与方法:本节课程旨在发展学生的抽象思维和概括能力,提高他们解决实际问题的能力。

情感、态度与价值观:本节课程旨在让学生了解数学来源于实际,应用于实际的唯物主义思想。

重点难点:本节课程的重点在于让学生理解条件概率的定义,难点在于应用概率计算公式。

教学过程:探究活动:本节课程采用抓阄游戏的方式,三张奖券中只有一张能中奖,由三名同学无放回地抽取,最后一名同学抽到中奖奖券的概率是否比前两名同学小。

活动结果:XXX:如果抽到中奖奖券用“Y”表示,没有抽到用“N”表示,那么三名同学的抽奖结果共有三种可能:XXX,XXX和XXX。

用B表示事件“最后一名同学抽到中奖奖券”,则B仅包含一个基本事件XXX。

由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为P(B)=1/3.因此,三名同学抽到中奖奖券的概率是相同的。

法二:(利用乘法原理)记XXX表示:“第i名同学抽到中奖奖券”的事件,i=1,2,3,则有P(A1)=1/2,P(A2)=1/3,P(A3)=1/3.提出问题:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?设计意图:引导学生深入思考,小组内同学合作讨论,得出以下结论,教师因势利导。

学情预测:一些学生缺乏用数学语言来表述问题的能力,教师可适当辅助完成。

师生共同指出:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有XXX和XXX。

而“最后一名同学抽到中奖奖券”包含的基本事件仍是XXX。

由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为P(B|A),其中A表示事件“第一名同学没有抽到中奖奖券”。

高中数学 2.2.1条件概率教案 新人教版选修2-3

高中数学 2.2.1条件概率教案 新人教版选修2-3

§2.2.1条件概率教学目标:知识与技能:通过对具体情景的分析,了解条件概率的定义。

过程与方法:掌握一些简单的条件概率的计算。

情感、态度与价值观:通过对实例的分析,会进行简单的应用。

教学重点:条件概率定义的理解教学难点:概率计算公式的应用授课类型:新授课课时安排:1课时教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。

教学过程:一、复习引入:探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1()3P B=.思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为12,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽到中奖奖券”.已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,使得 P ( B|A )≠P ( B ) .思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发生的情况下事件B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因此(|)P B A =12=()()n AB n A .其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,()()(),()()()n AB n A P AB P A n n ==ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以,(|)P B A =()()()()()()()()n AB n AB P AB n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) .条件概率1.定义设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.(|)P B A 定义为()(|)()P AB P B A P A =. 由这个定义可知,对任意两个事件A 、B ,若()0P B >,则有()(|)()P AB P B A P A =⋅.并称上式微概率的乘法公式.2.P (·|B )的性质:(1)非负性:对任意的A ∈f. 0(|)1P B A ≤≤;(2)规范性:P (Ω|B )=1;(3)可列可加性:如果是两个互斥事件,则(|)(|)(|)P B C A P B A P C A =+.更一般地,对任意的一列两两部相容的事件i A (I=1,2…),有P ⎥⎦⎤⎢⎣⎡∞= 1|i i B A =)|(1B A P i i ∑∞=.例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:(l )第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为n (Ω)=35A =20.根据分步乘法计数原理,n (A )=1134A A ⨯=12 .于是 ()123()()205n A P A n ===Ω. (2)因为 n (AB)=23A =6 ,所以()63()()2010n AB P AB n ===Ω. (3)解法 1由( 1 ) ( 2 )可得,在第 1 次抽到理科题的条件下,第 2 次抽到理科题的概3()110(|)3()25P AB P B A P A ===. 解法2 因为 n (AB )=6 , n (A )=12 ,所以()61(|)()122P AB P B A P A ===. 例2.一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解:设第i 次按对密码为事件i A (i=1,2) ,则112()A A A A =表示不超过2次就按对密码.(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095P A P A P A A ⨯=+=+=⨯. (2)用B 表示最后一位按偶数的事件,则112(|)(|)(|)P A B P A B P A A B =+14125545⨯=+=⨯. 课堂练习.1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P (A ),P (B ),P (AB ),P (A ︱B )。

高中数学选修2-3精品教案3:2.2.1 条件概率教学设计

高中数学选修2-3精品教案3:2.2.1 条件概率教学设计

2.2.1条件概率【教学目标】知识与技能:通过现实情境的探究,理解条件概率的概念及其计算公式,并能简单地应用公式进行问题解决.过程与方法:1.通过对条件概率计算公式的探究,渗透归纳思维和数形结合的思想方法,培养学生观察、归纳、抽象的能力和直观能力;2.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.情感、态度与价值观:结合现实情境,渗透概率思想,学会透过现象看本质,加强数学应用意识和数学审美能力的培养,激发学生学习数学的兴趣;对学生进行辨证唯物主义教育,培养学生坚持实事求是的态度、锲而不舍的科学精神.【教学重难点】教学重点:条件概率的定义及其计算公式.教学难点:条件概率与概率的区别与联系.解决难点的关键:弄清楚“事件A发生”、“事件A发生并且事件B也发生”以及“事件B在事件A发生的条件下发生”的概率之间的关系和区别.【教法分析】从学生的认知规律出发,结合问题情境,通过探究、交流合作,运用讲授法、讨论法、阅读指导法充分调动学生的积极性,发挥学生的主体作用,在讲授过程中善于解疑、设疑、激疑,通过合情推理与演绎推理的思维过程,培养学生的归纳思维,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学手段】计算机、投影仪.【教学过程】教学内容师生互动设计意图创设情境,引入课题预案:问题情境:某人有两个孩子,请思考:问题1:他的两个孩子都是男孩的概率是多少?问题2:如果他说:“我的大孩子是男孩”,则两个孩子都是男孩的概率是多少?归纳:(预计学生都会凭直觉而出错)分析问题之间的区别和联系,给出条件概率的定义.形成概念;条件概率的概念对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率.记作:)(ABP,读作:A发生的条件下B的概率.教师:让学生先独立思考问题.学生:大胆尝试,给出答案.教师:根据学生讨论、回答情况分析两个问题之间的区别和联系,鼓励学生给出条件概率的定义,引入新课.问题情境的创设贴近生活,能够激起学生探究激情,符合学生的认知规律,给学生设置认知冲突.通过学生的困惑体会引出本课概念的必要性.游戏探究,揭示新知游戏活动:抛掷红,蓝两骰子,思考如下问题:预案:问题1:事件A:“蓝色骰子的点数为3或6”概率为多少?问题2:事件B:“两颗骰子的点数之和大于8”概率为多少?问题3:事件A和B同时发生的概率为多少呢?变式:问题4:在已知事件A发生的条件下,事件B发生的概率为多少呢?问题5:在已知事件B发生的条件下,事件A发生的概率为多少呢?教师:学生能够比较容易解决问题.学生:独立回答问题1-3.教师:通过变式同样采用缩小样本空间的方法,让学生求出相应的概率.学生:分组讨论,积极思考,交流体会.游戏的设置具有较强的现实情景,增强学生学习的兴趣,让学生充分感受条件概率的本原的朴素的想法.通过相互讨论,加强学生间的交流与合作,充分发挥学生学习的主动性,让学生对知识进行探究:那么请大家观察,以条件概率)()()(A P AB P A B P =为讨论对象,其他哪些结论与125有关呢?直观演示:教师可以引导学生从集合的观点解释条件概率公式.形式化证明形成公式;条件概率公式)()()(A P B A P A B P =,)(A P >0.教师:提出问题,让学生找出条件概率公式. 学生:小组讨论)(A B P 、)(A P 、)(B P 与)(B A P 之间的关系.学生:归纳总结,教师:点拨,强调归纳思想.教师:利用几何图形,让学生直观理解条件概率的本质属性.教师:利用概率公式,形式化证明.类比、迁移以及联想.学生自己归纳出条件概率的计算公式,便于学生操作感知,完成条件概率公式第一次认识;通过几何直观感知,完成条件概率公式的可视化认知;把对公式的认识由感性上升到理性认识的高度,让学生由特殊到一般,从具体到抽象通过演绎推理,实现了公式的形式化证明,完成对概念的第三次认识.应用新知,归纳总结问题探究:以下哪个问题是条件概率问题?如果是,请应用条件概率公式计算之.某人有两个孩子,请思考:问题1:他的两个孩子都是男孩的概率是多少?问题2:如果他说:“我的大孩子是男孩”,则两个孩子都是男孩的概率是多少?深度挖掘:P(B)、P(A∩B)与P(B|A)三个概率之间的区别与联系.请同学们总结这节课都有哪些收获?学生:独立完成.教师:点拨.教师:总结.前后呼应,让学生找出条件概率问题中所具有的特点和性质,巩固条件概率的概念与计算方法,建立较完整的认知结构,揭示条件概率的本质.教学的反馈与评价,学生消化所学知识.【板书设计】。

人教A版选修2-3 2.2.1 条件概率 学案

人教A版选修2-3 2.2.1 条件概率 学案

2.2 二项分布及其应用2.2.1 条件概率问题导学预习教材P51~P53的内容,并思考下列问题:1.条件概率的定义是什么?2.条件概率的公式是什么?3.条件概率的特点是什么?有哪些性质?1.条件概率对条件概率计算公式的两点说明(1)如果知道事件A发生会影响事件B发生的概率,那么P(B)≠P(B|A).(2)已知A发生,在此条件下B发生,相当于AB发生,要求P(B|A),相当于把A看作新的基本事件空间计算AB发生的概率,即P(B|A)=n(AB)n(A)=n(AB)n(Ω)n(A)n(Ω)=P(AB)P(A).2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).[注意] (1)前提条件:P(A)>0.(2)P(B∪C|A)=P(B|A)+P(C|A),必须B与C互斥,并且都是在同一个条件A 下.判断正误(正确的打“√”,错误的打“×”)(1)若事件A ,B 互斥,则P (B |A )=1.( ) (2)P (B |A )与P (A |B )不同.( ) 答案:(1)× (2)√已知P (AB )=310,P (A )=35,则P (B |A )为( )A .950B .12C .910D .14答案:B袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( )A .35B .34C .12D .310解析:选C .在第一次取到白球的条件下,在第二次取球时,袋中有2个白球和2个黑球共4个球,所以取到白球的概率P =24=12.某地区气象台统计,该地区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .34解析:选C .设事件A 为下雨,事件B 为刮风,由题意知P (A )=415,P (B )=215,P (AB )=110,P (B |A )=P (AB )P (A )=110415=38.某种电子元件用满3 000小时不坏的概率为34,用满8 000 小时不坏的概率为12.现有一只此种电子元件,已经用满3 000小时不坏,还能用满8 000小时的概率是________.解析:记事件A 为“用满3 000小时不坏”,P (A )=34;记事件B 为“用满8 000小时不坏”,P (B )=12.因为B ⊆A ,所以P (AB )=P (B )=12,则P (B |A )=P (AB )P (A )=1234=12×43=23.答案:23利用定义求条件概率任意向(0,1)区间内投掷一个点,用x 表示该点的坐标,则Ω={x |0<x <1},事件A ={x |0<x <0.5},B ={x |0.25<x <1},则P (B |A )=________.【解析】 由题意知A ∩B ={x |0.25<x <0.5},所以P (AB )=0.5-0.251-0=0.25,又P (A )=0.5-01-0=0.5,所以P (B |A )=P (AB )P (A )=0.250.5=12.【答案】12利用定义计算条件概率的步骤(1)分别计算概率P (AB )和P (A ).(2)将它们相除得到条件概率P (B |A )=P (AB )P (A ),这个公式适用于一般情形,其中AB 表示A ,B 同时发生.1.某种动物活到20岁的概率是0.8,活到25岁的概率是0.4,则现龄20岁的这种动物活到25岁的概率是( )A .0.32B .0.5C .0.4D .0.8解析:选B .记事件A 表示“该动物活到20岁”,事件B 表示“该动物活到25岁”,由于该动物只有活到20岁才有活到25岁的可能,故事件A 包含事件B ,从而有P (AB )=P (B )=0.4,所以现龄20岁的这种动物活到25岁的概率为P (B |A )=P (AB )P (A )=0.40.8=0.5. 2.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( )A .12B .14C .16D .19解析:选A .由题知本题是一个条件概率,第一次出现正面的概率是P (A )=12,第一次出现正面且第二次也出现正面的概率是P (AB )=12×12=14,则P (B |A )=P (AB )P (A )=1412=12.缩小基本事件范围求条件概率集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.【解】 将甲抽到数字a ,乙抽到数字b ,记作(a ,b ),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个,在这15个数中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率P =915=35.1.[变问法]本例条件不变,求乙抽到偶数的概率.解:在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.2.[变条件]若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解:甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.利用缩小基本事件范围计算条件概率的方法将原来的基本事件全体Ω缩小为已知的条件事件A ,原来的事件B 缩小为AB .而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P (B |A )=n (AB )n (A ),这里n (A )和n (AB )的计数是基于缩小的基本事件范围的.一个盒子内装有4个产品,其中3个一等品,1个二等品,从中取两次,每次任取1个,做不放回抽取.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,试求条件概率P (B |A ).解:将产品编号为1,2,3号的看作一等品,4号为二等品,以(i ,j )表示第一次,第二次分别取得第i 号,第j 号产品,则试验的基本事件空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)},事件A有9种情况,事件AB有6种情况,P(B|A)=n(AB)n(A)=69=23.条件概率性质的应用把外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球,如果第二次取出的是红球,则称试验成功.求试验成功的概率.【解】 设A ={从第一个盒子中取得标有字母A 的球}.B ={从第一个盒子中取得标有字母B 的球},R ={第二次取出的球是红球},W ={第二次取出的球是白球},则容易求得P (A )=710,P (B )=310,P (R |A )=12,P (W |A )=12,P (R |B )=45,P (W |B )=15. 事件“试验成功”表示为RA ∪RB ,又事件RA 与事件RB 互斥,故由概率的加法公式,得P (RA ∪RB )=P (RA )+P (RB )=P (R |A )·P (A )+P (R |B )·P (B )=12×710+45×310=0.59.利用条件概率性质的解题策略(1)分析条件,选择公式:首先看事件B ,C 是否互斥,若互斥,则选择公式P (B ∪C |A )=P (B |A )+P (C |A ).(2)分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.解:设“摸出第一个球为红球”为事件A ,“摸出第二个球为黄球”为事件B ,“摸出第二个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.所以P (B |A )=P (AB )P (A )=145÷110=29,P (C |A )=P (AC )P (A )=130÷110=13.所以P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.所以所求的条件概率为59.1.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )A .23B .14C .25D .15解析:选C .设A i 表示第i 次(i =1,2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=425,先摸出一个白球后放回,再摸出一个白球的概率为P (A 2|A 1)=25×2525=25. 2.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A .14B .13C .12D .35解析:选B .抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积大于20的包含4×6,6×4,6×5,6×6共4个基本事件.所以其概率为4361236=13.3.袋中装有标号为1,2,3的三个小球,从中任取一个,记下它的号码,放回袋中,这样连续做三次.若抽到各球的机会均等,事件A 为“三次抽到的号码之和为6”,事件B 为“三次抽到的号码都是2”,则P (B |A )=( )A .17B .27C .16D .727解析:选A .因为P (A )=A 33+133=727,P (AB )=133=127,所以P (B |A )=P (AB )P (A )=17.4.位于西部地区的A ,B 两地,据多年的资料记载:A ,B 两地一年中下雨天仅占6%和8%,而同时下雨的比例为2%,则A 地为雨天时,B 地也为雨天的概率为________.解析:记A =“A 地下雨”,B =“B 地下雨”,则AB =“A ,B 两地同时下雨”,且P (A )=6%,P (B )=8%,P (AB )=2%,P (B |A )=P (AB )P (A )=2%6%=13.答案:135.考虑恰有两个小孩的家庭.(1)若已知某家有男孩,求这家有两个男孩的概率;(2)若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率(假定生男生女为等可能).解:Ω={(男,男),(男,女),(女,男),(女,女)}. 设B =“有男孩”,则B ={(男,男),(男,女),(女,男)}.A =“有两个男孩”,则A ={(男,男)},B 1=“第一个是男孩”,则B 1={(男,男),(男,女)},于是得(1)P (B )=34,P (BA )=P (A )=14,所以P (A |B )=P (BA )P (B )=13;(2)P (B 1)=12,P (B 1A )=P (A )=14,所以P (A |B 1)=P (B 1A )P (B 1)=12.[A 基础达标]1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A .56B .910C .215D .115解析:选C .P (AB )=P (B |A )·P (A )=13×25=215,故选C .2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A .14B .13C .12D .1解析:选B .记“第一位同学没有抽到中奖券”为事件A ,P (A )=34,“最后一位同学抽到中奖券”为事件B ,P (AB )=34×13=14,P (B |A )=P (AB )P (A )=1434=14×43=13.3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( )A .49B .29C .12D .13解析:选C .由题意可知.n (B )=C 1322=12,n (AB )=A 33=6.所以P (A |B )=n (AB )n (B )=612=12.4.在区间(0,1)内随机投掷一个点M (其坐标为x ),若A ={x |0<x <12},B ={x |14<x <34},则P (B |A )等于( )A .12B .14C .13D .34解析:选A .P (A )=121=12.因为A ∩B ={x |14<x <12},所以P (AB )=141=14,所以P (B |A )=P (AB )P (A )=1412=12.5.甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回),则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是( )A .12B .715C .815D .914解析:选D .设事件A =“甲取到的数是5的倍数”,B =“甲所取的数大于乙所取的数”,又因为本题为古典概型概率问题,所以根据条件概率可知,P (B |A )=n (A ∩B )n (A )=4+9+143×14=914.故选D .6.如图,EFGH 是以O 为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形HOE (阴影部分)内”,则P (A )=________,P (B |A )=________.解析:因为圆的半径为1,所以圆的面积S =πr 2=π,正方形EFGH 的面积为⎝ ⎛⎭⎪⎫2r 22=2,所以P (A )=2π.P (B |A )表示事件“已知豆子落在正方形EFGH 中,则豆子落在扇形HOE (阴影部分)”的概率,所以P (B |A )=14.答案:2π 147.从一副不含大、小王的52张扑克牌中不放回地抽取2次,每次抽1张.已知第1次抽到A ,则第2次也抽到A 的概率是________.解析:设“第1次抽到A ”为事件A ,“第2次也抽到A ”为事件B ,则AB 表示两次都抽到A ,P (A )=452=113,P (AB )=4×352×51=113×17,所以P (B |A )=P (AB )P (A )=117.答案:1178.(2019·长春高二检测)分别用集合M ={2,4,5,6,7,8,11,12}中的任意两个元素作分子与分母构成真分数,已知取出的一个元素是12,则取出的另外一个元素与之构成可约分数的概率是________.解析:设“取出的两个元素中有一个是12”为事件A ,“取出的两个元素构成可约分数”为事件B ,则n (A )=7,n (AB )=4,所以P (B |A )=n (AB )n (A )=47.答案:479.某考生在一次考试中,共有10题供选择,已知该考生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该考生在第一题不会答的情况下及格的概率.解:设事件A 为从10题中抽5题,第一题不会答;设事件B 为从10题中依次抽5题,第一题不会答,其余4题中有3题或4题会答.n (A )=C 14C 49,n (B )=C 14(C 36C 13+C 46C 03). 则P =C 14(C 36C 13+C 46C 03)C 14C 49=2542. 所以该考生在第一题不会答的情况下及格的概率为2542.10.某班从6名班干部(其中男生4人,女生2人)中,任选3人参加学校的义务劳动.(1)设所选3人中女生人数为X ,求X 的分布列. (2)求男生甲或女生乙被选中的概率.(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (A |B ).解:(1)X 的所有可能取值为0,1,2,依题意得P (X =0)=C 34C 36=15,P (X =1)=C 24C 12C 36=35,P (X =2)=C 14C 22C 36=15. 所以X 的分布列为(2)则P (C )=C 34C 36=420=15;所以所求概率为P (C —)=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12;P (AB )=C 14C 36=15.所以P (A |B )=P (AB )P (B )=25.[B 能力提升]11.(2019·唐山高二检测)将三颗骰子各掷一次,设事件A 表示“三个点数都不相同”,B 表示“至少出现一个6点”,则概率P (A |B )等于( )A .6091B .12C .518D .91216解析:选A .因为P (A |B )=P (AB )P (B ),P (AB )=C 13C 15C 1463=6063=60216,P (B )=1-P (B —)=1-5363=1-125216=91216.所以P (A |B )=P (AB )P (B )=6021691216=6091.12.从1~100共100个正整数中,任取一数,已知取出的一个数不大于50,则此数是2或3的倍数的概率为________.解析:设事件C 为“取出的数不大于50”,事件A 为“取出的数是2的倍数”,事件B 为“取出的数是3的倍数”.则P (C )=12,且所求概率为P (A ∪B |C )=P (A |C )+P (B |C )-P (AB |C ) =P (AC )P (C )+P (BC )P (C )-P (ABC )P (C )=2×(25100+16100-8100)=3350. 答案:335013.一个口袋内装有2个白球和2个黑球,那么: (1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少?解:(1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸出白球”为事件AB ,“先摸一球不放回,再摸一球”共有4×3种结果,所以P (A )=12,P (AB )=2×14×3=16,所以P (B |A )=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A 1,“再摸出1个白球”为事件B 1,“两次都摸出白球”为事件A 1B 1,P (A 1)=12,P (A 1B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1B 1)P (A 1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12. 14.(选做题)在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若能答对其中的5道题就能获得优秀.已知某考生能答对其中的10道题,并且已知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设“该考生6道题全答对”为事件A ,“该考生恰好答对了5道题”为事件B ,“该考生恰好答对了4道题”为事件C ,“该考生在这次考试中通过”为事件D ,“该考生在这次考试中获得优秀”为事件E ,则D =A ∪B ∪C ,E =A ∪B ,且A ,B ,C 两两互斥,由古典概型的概率公式知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620,又AD =A ,BD =B ,所以P (E |D )=P (A ∪B |D )=P (A |D )+P (B |D )=P (AD )P (D )+P (BD )P (D )=P (A )P (D )+P (B )P (D )=C 610C 62012 180C 620+C 510C 110C 62012 180C 620=1358.。

高中数学 2.2.1条件概率学案 新人教A版选修2-3

高中数学 2.2.1条件概率学案 新人教A版选修2-3

高中数学 2.2.1条件概率学案 新人教A 版选修2-3基础梳理 1.条件概率. 条件 设A ,B 为两个事件,且P (A )>0含义 在事件A 发生的条件下,事件B 发生的条件概率记作 P (B |A )读作 A 发生的条件下B 发生的概率计算 公式①缩小样本空间法:P (B |A )=n (AB )n (A )②公式法:P (B |A )=P (AB )P (A )P (B |A )与P (AB )的区别:P (B |A )的值是AB 发生相对于事件A 发生的概率的大小;而P (AB )是AB 发生相对于原来的总空间而言.2.条件概率的性质.(1)有界性:0≤P (B |A )≤1;(2)可加性:如果B 和C 是互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ).自测自评1.下列说法中正确的是(B ) A .P (B |A )<P (AB ) B .P (B |A )=P (B )P (A )是可能的 C .0<P (B |A )<1 D .P (A |A )=02.已知P (AB )=310,P (A )=35,则P (B |A )等于(B )A.950 B.12 C.910 D.143.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则P (B |A )=(A )A.13B.15C.16D.112解析:出现点数互不相同的共有6×5=30种,出现一个5点共有5×2=10种, 所以P (B |A )=1030=13.故选A.不注意区分条件概率P (B |A )与积事件的概率P (AB )致误 【典例】 袋中装有大小相同的6个黄色的乒乓球,4个白色的乒乓球,每次抽取一球,取后不放回,连取两次,求在第一次取到白球的条件下第二次取到黄球的概率.解析:记“第一次取到白球” 为事件A ,“第二次取到黄球” 为事件B ,“在第一次取到白球的条件下第二次取到黄球” 为事件C .在事件A 已经发生的条件下,袋中只有9个球,其中3个白球,故此时取到黄球的概率为P (C )=P (B |A )=69=23或者P (C )=P (B |A )=P (AB )P (A )=41525=23.【易错剖析】应注意P (AB )是事件A 和B 同时发生的概率,而P (B |A )是在事件A 已经发生的条件下事件B 发生的概率.若混淆这两个概念,就会出现如下错解:记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B ,“在第一次取到白球的条件下第二次取到黄球”为事件C ,∴P (C )=P (AB )=4×610×9=415.基础巩固1.已知P (B |A )=13,P (A )=25,则P (AB )=(C )A. 56B.910C.215D.115解析:P (AB )=P (B |A )·P (A )=13×25=215.故选C.2.把一枚硬币抛掷两次,事件B 为“第一次出现正面”,事件A 为“第二次出现反面”,则P (A |B )等于(B )A.14B.12C.13D.34解析:把抛掷硬币两次的结果图示为:“++”、“+-”、“-+”、“--”.易知P (B )=12,P (AB )=14,∴P (A |B )=P (AB )P (B )=1412=12.3.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为(D )A .0.02B .0.08C .0.18D .0.72解析:记P (A )=0.8,P (B |A )=0.9,则P (AB )=P (B |A )·P (A )=0.8×0.9=0.72. 4.6位同学参加百米径赛,赛场共6条跑道,已知甲同学排在第一跑道,则乙同学被排在第二跑道的概率是________.解析:甲排在第一跑道,其他同学共有A 55种排法,乙排在第二跑道共有A 44种排法.故所求概率为P =A 44A 55=15.答案:15能力提升5.将三颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率P (A |B )等于(C )A.91216 B.518C.6091D.12解析:事件B 发生的基本事件个数是n (B )=6×6×6-5×5×5=91,事件A ,B 同时发生的基本事件个数为n (AB )=3×5×4=60.∴P (A |B )=n (AB )n (B )=6091.6.盒中装有10只乒乓球,其中6只新球、4只旧球,不放回地依次取出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为(C )A.35B.110C.59D.25解析:把问题看成用10个不同的球排前两位,第一次为新球的基本事件数为6×9=54,两次均为新球的基本事件数为A 26=30,所以在第一次摸到新球条件下,第二次也摸到新球的概率为3054=59.7.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.解析:∵P (AB )=310,P (B |A )=12,P (B |A )=P (AB )P (A ),∴P (A )=P (AB )P (B |A )=31012=35.答案:358.某种元件用满6 000小时未坏的概率是34,用满10 000小时未坏的概率是12,现有一个此种元件,已经用过6 000小时未坏,则它能用到10 000小时的概率为________.解析:记满6 000小时未坏为事件A ,满10 000小时未坏为事件B ,则P (A )=34.∵B A ,∴P (AB )=P (B )=12.∴P (B |A )=P (AB )P (A )=1234=23.答案:239.已知箱子中装有10件产品,其中6件正品,现从中不放回地任取两次,每次取一件,求两次都取到正品的概率.解析:设A ={第一次取到正品},B ={第二次取到正品},AB ={两次都取到正品}.由题意知, P (A )=610,P (B |A )=59.故P (AB )=P (A )P (B |A )=610×59=13.10.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. 解析:设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”.(1)由题意,P (A )=1040=14.(2)法1 要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415.法2 P (B )=1540=38,P (AB )=440=110,∴P (A |B )=P (AB )P (B )=415.。

高中数学人教A版选修2-3 精品导学案:2.2.1 条件概率 Word版含解析

高中数学人教A版选修2-3 精品导学案:2.2.1 条件概率 Word版含解析

2.2二项分布及其应用2.2.1条件概率1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)[基础·初探]教材整理条件概率阅读教材P51~P53,完成下列问题.1.条件概率的概念一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).1.设A,B为两个事件,且P(A)>0,若P(AB)=13,P(A)=23,则P(B|A)=________.【解析】由P(B|A)=P(AB)P(A)=1323=12.【答案】1 22.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是________.【解析】根据条件概率公式知P=0.40.8=0.5.【答案】0.5[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]利用定义求条件概率一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A;事件“第二次抽到黑球”为 B.(1)分别求事件A,B,AB发生的概率;(2)求P(B|A).【精彩点拨】首先弄清“这次试验”指的是什么,然后判断该问题是否属于古典概型,最后利用相应公式求解.【自主解答】由古典概型的概率公式可知(1)P(A)=2 5,P(B)=2×1+3×25×4=820=25,P(AB)=2×15×4=110.(2)P(B|A)=P(AB)P(A)=11025=14.1.用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型;(2)计算P(A),P(AB);(3)代入公式求P(B|A)=P(AB)P(A).2.在(2)题中,首先结合古典概型分别求出了事件A、B的概率,从而求出P(B|A),揭示出P(A),P(B)和P(B|A)三者之间的关系.[再练一题]1.(1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________. 【导学号:97270036】(2)(2016·烟台高二检测)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.【解析】(1)由公式P(A|B)=P(AB)P(B)=23,P(B|A)=P(AB)P(A)=35.(2)设“种子发芽”为事件A,“种子成长为幼苗”为事件AB(发芽,又成活为幼苗),出芽后的幼苗成活率为P(B|A)=0.8,又P(A)=0.9,P(B|A)=P(AB)P(A),得P(AB)=P(B|A)·P(A)=0.8×0.9=0.72.【答案】(1)2335(2)0.72利用基本事件个数求条件概率现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.【精彩点拨】第(1)、(2)问属古典概型问题,可直接代入公式;第(3)问为条件概率,可以借用前两问的结论,也可以直接利用基本事件个数求解.【自主解答】设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事件A B.(1)从6个节目中不放回地依次抽取2个的事件数为n(Ω)=A26=30,根据分步计数原理n(A)=A14A15=20,于是P(A)=n(A)n(Ω)=2030=23.(2)因为n(AB)=A24=12,于是P(AB)=n(AB)n(Ω)=1230=25.(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A)=P(AB)P(A)=2523=35.法二:因为n(AB)=12,n(A)=20,所以P(B|A)=n(AB)n(A)=1220=35.1.本题第(3)问给出了两种求条件概率的方法,法一为定义法,法二利用基本事件个数直接作商,是一种重要的求条件概率的方法.2.计算条件概率的方法(1)在缩小后的样本空间ΩA中计算事件B发生的概率,即P(B|A).(2)在原样本空间Ω中,先计算P(AB),P(A),再利用公式P(B|A)=P(AB) P(A)计算求得P(B|A).(3)条件概率的算法:已知事件A发生,在此条件下事件B发生,即事件AB 发生,要求P(B|A),相当于把A看作新的基本事件空间计算事件AB发生的概率,即P(B|A)=n(AB)n(A)=n(AB)n(Ω)n(A)n(Ω)=P(AB)P(A).[再练一题]2.盒内装有16个球,其中6个是玻璃球,10个是木质球.玻璃球中有2个是红色的,4个是蓝色的;木质球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是玻璃球的概率是多少?【解】由题意得球的分布如下:玻璃木质总计红23 5蓝4711总计61016设A={取得蓝球}则P(A)=1116,P(AB)=416=14.∴P(B|A)=P(AB)P(A)=141116=411.[探究共研型]利用条件概率的性质求概率探究1掷一枚质地均匀的骰子,有多少个基本事件?它们之间有什么关系?随机事件出现“大于4的点”包含哪些基本事件?【提示】掷一枚质地均匀的骰子,可能出现的基本事件有“1点”“2点”“3点”“4点”“5点”“6点”,共6个,它们彼此互斥.“大于4的点”包含“5点”“6点”两个基本事件.探究2“先后抛出两枚质地均匀的骰子”试验中,已知第一枚出现4点,则第二枚出现“大于4”的事件,包含哪些基本事件?【提示】“第一枚4点,第二枚5点”“第一枚4点,第二枚6点”.探究3先后抛出两枚质地均匀的骰子,已知第一枚出现4点,如何利用条件概率的性质求第二枚出现“大于4点”的概率?【提示】设第一枚出现4点为事件A,第二枚出现5点为事件B,第二枚出现6点为事件C.则所求事件为B∪C|A.∴P(B∪C|A)=P(B|A)+P(C|A)=16+16=13.将外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则试验成功.求试验成功的概率.【精彩点拨】设出基本事件,求出相应的概率,再用基本事件表示出“试验成功”这件事,求出其概率.【自主解答】设A={从第一个盒子中取得标有字母A的球},B={从第一个盒子中取得标有字母B的球},R={第二次取出的球是红球},W={第二次取出的球是白球},则容易求得P(A)=710,P(B)=310,P(R|A)=12,P(W|A)=12,P(R|B)=45,P(W|B)=15.事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,所以由概率的加法公式得P(RA∪RB)=P(RA)+P(RB)=P(R|A)·P(A)+P(R|B)·P(B)=1 2×710+45×310=59100.条件概率的解题策略分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.[再练一题]3.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.【解】设“任选一人是男人”为事件A,“任选一人是女人”为事件B,“任选一人是色盲”为事件C.(1)此人患色盲的概率P(C)=P(A∩C)+P(B∩C)=P(A)P(C|A)+P(B)P(C|B)=5100×100200+25100×100200=21800.(2)P(A|C)=P(AC)P(C)=520021800=2021.[构建·体系]1.已知P(B|A)=13,P(A)=25,则P(AB)等于()A.56 B.910 C.215 D.115【解析】由P(B|A)=P(AB)P(A),得P(AB)=P(B|A)·P(A)=13×25=215.【答案】 C2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是()A.14 B.13 C.12D.1【解析】因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率,显然是1 3.【答案】 B3.把一枚硬币投掷两次,事件A={第一次出现正面},B={第二次出现正面},则P(B|A)=________.【解析】∵P(AB)=14,P(A)=12,∴P(B|A)=12.【答案】1 24.抛掷骰子2次,每次结果用(x1,x2)表示,其中x1,x2分别表示第一次、二次骰子的点数.若设A={(x1,x2)|x1+x2=10},B={(x1,x2)|x1>x2}.则P(B|A)=________. 【导学号:97270037】【解析】∵P(A)=336=112,P(AB)=136,∴P(B|A)=P(AB)P(A)=136112=13.【答案】135.一个口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少?(2)先摸出1个白球后放回,再摸出1个白球的概率是多少?【解】(1)设“先摸出1个白球不放回”为事件A,“再摸出1个白球”为事件B,则“先后两次摸出白球”为事件AB,“先摸一球不放回,再摸一球”共有4×3种结果,所以P(A)=12,P(AB)=2×14×3=16,所以P(B|A)=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A1,“再摸出1个白球”为事件B1,“两次都摸出白球”为事件A1B1,P(A1)=12,P(A1B1)=2×24×4=14,所以P(B1|A1)=P(A1B1)P(A1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.18 B.14C.25 D.12【解析】∵P(A)=C22+C23C25=410,P(AB)=C22C25=110,∴P(B|A)=P(AB)P(A)=14.【答案】 B2.下列说法正确的是()A.P(B|A)<P(AB) B.P(B|A)=P(B)P(A)是可能的C.0<P(B|A)<1 D.P(A|A)=0【解析】由条件概率公式P(B|A)=P(AB)P(A)及0≤P(A)≤1知P(B|A)≥P(AB),故A选项错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=P(B) P(A),故B选项正确,由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.故选B.【答案】 B3.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【解析】已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P=0.60.75=0.8.【答案】 A4.(2016·泉州期末)从1,2,3,4,5中任取两个不同的数,事件A为“取到的两个数之和为偶数”,事件B为“取到的两个数均为偶数”,则P(B|A)等于()A.18 B.14 C.25 D.12【解析】法一:P(A)=C23+C22C25=25,P(AB)=C22C25=110,P(B|A)=P(AB)P(A)=14.法二:事件A包含的基本事件数为C23+C22=4,在A发生的条件下事件B包含的基本事件为C22=1,因此P(B|A)=1 4.【答案】 B5.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是()A.13 B.118 C.16 D.19【解析】设“至少有一枚出现6点”为事件A,“两枚骰子的点数不同”为事件B,则n(B)=6×5=30,n(AB)=10,所以P(A|B)=n(AB)n(B)=1030=13.【答案】 A二、填空题6.已知P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________.【解析】P(A|B)=P(AB)P(B)=0.120.18=23;P(B|A)=P(AB)P(A)=0.120.2=35.【答案】23357.设A,B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为________. 【导学号:97270038】【解析】由题意知,P(AB)=310,P(B|A)=12.由P(B|A)=P(AB)P(A),得P(A)=P(AB)P(B|A)=35.【答案】3 58.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.【解析】设事件A为“其中一瓶是蓝色”,事件B为“另一瓶是红色”,事件C为“另一瓶是黑色”,事件D为“另一瓶是红色或黑色”,则D=B∪C,且B与C互斥,又P(A)=C12C13+C22C25=710,P(AB)=C12·C11C25=15,P(AC)=C12C12C25=25,故P(D|A)=P(B∪C|A) =P(B|A)+P(C|A)=P(AB)P(A)+P(AC)P(A)=67.【答案】6 7三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n个.从一个袋子中任取两个球,取到的标号都是2的概率是1 10.(1)求n的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.【解】(1)由题意得:C2nC2n+3=n(n-1)(n+3)(n+2)=110,解得n=2.(2)记“其中一个标号是1”为事件A ,“另一个标号是1”为事件B ,所以P (B |A )=n (AB )n (A )=C 22C 25-C 23=17. 10.任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间⎝ ⎛⎭⎪⎫0,13内的概率是多少?(2)在(1)的条件下,求该点落在⎝ ⎛⎭⎪⎫15,1内的概率.【解】 由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A =⎩⎨⎧⎭⎬⎫x |0<x <13,由几何概率的计算公式可知. (1)P (A )=131=13. (2)令B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪15<x <1,则AB =⎩⎨⎧⎭⎬⎫x |15<x <13,P (AB )=13-151=215.故在A 的条件下B 发生的概率为 P (B |A )=P (AB )P (A )=21513=25.[能力提升]1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A.14B.23C.12D.13【解析】 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知P (A )=34,P (AB )=14.问题是求在事件A 发生的情况下,事件B 发生的概率,即求P(B|A),由条件概率公式,得P(B|A )=1434=13.【答案】 D2.(2016·开封高二检测)将3颗骰子各掷一次,记事件A表示“三个点数都不相同”,事件B表示“至少出现一个3点”,则概率P(A|B)等于()A.91216 B.518 C.6091 D.12【解析】事件B发生的基本事件个数是n(B)=6×6×6-5×5×5=91,事件A,B同时发生的基本事件个数为n(AB)=3×5×4=60.所以P(A|B)=n(AB)n(B)=6091.【答案】 C3.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________.【解析】记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,“第二次才取到黄球”为事件C,所以P(C)=P(AB)=P(A)P(B|A)=410×69=415.【答案】4 154.如图2-2-1,三行三列的方阵有9个数a ij(i=1,2,3,j=1,2,3),从中任取三个数,已知取到a22的条件下,求至少有两个数位于同行或同列的概率.()a11a12a13a21a22a23a31a32a33图2-2-1【解】事件A={任取的三个数中有a22},事件B={三个数至少有两个数位于同行或同列},则B={三个数互不同行且不同列},依题意得n(A)=C28=28,n(A B)=2,故P(B|A)=n(A B)n(A)=228=114,则P(B|A)=1-P(B|A)=1-114=1314.即已知取到a22的条件下,至少有两个数位13 14.于同行或同列的概率为。

数学:2.2.1《条件概率》教案(新人教B版选修2-3)

数学:2.2.1《条件概率》教案(新人教B版选修2-3)

2.2.1条件概率教学目标:知识与技能:通过对具体情景的分析,了解条件概率的定义。

过程与方法:掌握一些简单的条件概率的计算。

情感、态度与价值观:通过对实例的分析,会进行简单的应用。

教学重点:条件概率定义的理解教学难点:概率计算公式的应用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。

教学过程:一、复习引入:探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1 ()3 P B=.思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为12,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽到中奖奖券”.已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) .思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发生的情况下事件B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因此(|)P B A =12=()()n AB n A .其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,()()(),()()()n AB n A P AB P A n n ==ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以,(|)P B A =()()()()()()()()n AB n AB P AB n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) .条件概率1.定义设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.(|)P B A 定义为()(|)()P AB P B A P A =. 由这个定义可知,对任意两个事件A 、B ,若()0P B >,则有()(|)()P AB P B A P A =⋅.并称上式微概率的乘法公式.2.P (·|B )的性质:(1)非负性:对任意的A ∈f. 0(|)1P B A ≤≤;(2)规范性:P (Ω|B )=1;(3)可列可加性:如果是两个互斥事件,则(|)(|)(|)P B C A P B A P C A =+.更一般地,对任意的一列两两部相容的事件i A (I=1,2…),有P ⎥⎦⎤⎢⎣⎡∞= 1|i i B A =)|(1B A P i i ∑∞=.例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l )第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为n (Ω)=35A =20.根据分步乘法计数原理,n (A )=1134A A ⨯=12 .于是 ()123()()205n A P A n ===Ω. (2)因为 n (AB)=23A =6 ,所以()63()()2010n AB P AB n ===Ω. (3)解法 1 由( 1 ) ( 2 )可得,在第 1 次抽到理科题的条件下,第 2 次抽到理科题的概3()110(|)3()25P AB P B A P A ===. 解法2 因为 n (AB )=6 , n (A )=12 ,所以()61(|)()122P AB P B A P A ===. 例2.一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解:设第i 次按对密码为事件i A (i=1,2) ,则112()A A A A =表示不超过2次就按对密码.(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095P A P A P A A ⨯=+=+=⨯. (2)用B 表示最后一位按偶数的事件,则112(|)(|)(|)P A B P A B P A A B =+14125545⨯=+=⨯.课堂练习.1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P (A ),P (B ),P (AB ),P (A ︱B )。

人民教育A版选修2-3 2.2.1条件概率导学案

人民教育A版选修2-3  2.2.1条件概率导学案

《条件概率》导学案制作王敬审核高二数学组 2016-05-31【学习目标】1.通过对实例的分析,会进行简单的应用。

2.通过对具体情景的分析,了解条件概率的定义【预习导航】3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题1:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名抽到中奖奖券的概率是多少?问题2:你知道第一名同学的抽奖结果为什么会影响最后一名同学的抽奖结果吗?【问题探究】探究活动一条件概率的定义一般地,设A,B为两个事件,且P(A)>0,则注意:(1)条件概率的取值在0和1之间,即0≤P(B|A) ≤1(2)如果B和C是互斥事件,则P(B∪C |A)= P(B|A)+ P(C|A) (3)要注意P(B|A)与P(AB)的区别,这是分清条件概率与一般概率问题的关键。

探究活动二概率 P(B|A)与P(AB)的区别与联系联系:区别:【应用训练】例1在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;(3)在第一次抽到理科题的条件下,第二次抽到理科题的概率。

思考(3)还有其它方法求解吗?巩固练习:甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?(3)甲乙两市至少一市下雨的概率是多少?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率【总结概括】1. 条件概率的定义2. 条件概率的计算公式:【课后作业】必做:课本54页1、2题选做:同步练习册。

高中数学人教A版高二选修2-3教学案:2.2.1_条件概率_Word版含解析

高中数学人教A版高二选修2-3教学案:2.2.1_条件概率_Word版含解析

二项分布及其应用2.2.1条件概率预习课本P51~53,思考并完成以下问题1.条件概率的定义是什么?它的计算公式有哪些?2.条件概率的特点是什么?它具有哪些性质?[新知初探] 1.条件概率(1)概念设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.(2)计算公式①缩小样本空间法:P(B|A)=n(AB) n(A);②公式法:P(B|A)=P(AB) P(A).[点睛](1)P(B|A)与P(A|B)意义不同,由条件概率的定义可知P(B|A)表示在事件A发生的条件下事件B发生的条件概率;而P(A|B)表示在事件B发生的条件下事件A发生的条件概率.(2)P(B|A)与P(B):在事件A发生的前提下,事件B发生的概率不一定是P(B),即P(B|A)与P(B)不一定相等.2.条件概率的性质(1)有界性:0≤P(B|A)≤1.(2)可加性:如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).[点睛]对条件概率性质的两点说明(1)前提条件:P(A)>0.(2)P(B∪C|A)=P(B|A)+P(C|A),必须B与C互斥,并且都是在同一个条件A下.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若事件A,B互斥,则P(B|A)=1.()(2)事件A 发生的条件下, 事件B 发生,相当于A, B 同时发生.( ) 答案:(1)× (2)√ 2.已知P (AB )=310,P (A )=35,则P (B |A )为( ) A .950B .12C .910D .14答案:B3.下列式子成立的是( ) A .P (A |B )=P (B |A ) B .0<P (B |A )<1 C .P (AB )=P (B |A )·P (A ) D .P (A ∩B |A )=P (B )答案:C4.把一枚硬币任意掷两次,事件A ={第一次出现正面},事件B ={第二次出现正面},则P (B |A )=________.答案:12[典例] 之和大于8”,求:(1)事件A 发生的条件下,事件B 发生的概率.(2)事件B 发生的条件下,事件A 发生的概率. [解] [法一 定义法]抛掷红、蓝两颗骰子,事件总数为6×6=36,事件A 的基本事件数为6×2=12,所以P (A )=1236=13.由于3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8,所以事件B 的基本事件数为4+3+2+1=10,所以P (B )=1036=518.在事件A 发生的条件下,事件B 发生,即事件AB 的基本事件数为6.故P (AB )=636=16.由条件概率公式,得 (1)P (B |A )=P (AB )P (A )=1613=12,(2)P (A |B )=P (AB )P (B )=16518=35.[法二 缩减基本事件总数法] n (A )=6×2=12.由3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8知,n(B)=10,其中n(AB)=6.所以(1)P(B|A)=n(AB)n(A)=612=12,(2)P(A|B)=n(AB)n(B)=610=35.计算条件概率的两种方法提醒:(1)对定义法,要注意P(AB)的求法.(2)对第二种方法,要注意n(AB)与n(A)的求法.[活学活用]1.已知某产品的次品率为4%,其合格品中75%为一级品,则任选一件为一级品的概率为() A.75%B.96%C.72% D.78.125%解析:选C记“任选一件产品是合格品”为事件A,则P(A)=1-P(A)=1-4%=96%.记“任选一件产品是一级品”为事件B.由于一级品必是合格品,所以事件A包含事件B,故P(AB)=P(B).由合格品中75%为一级品知P(B|A)=75%; 故P(B)=P(AB)=P(A)·P(B|A)=96%×75%=72%.2.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每一次取后不放回.若已知第一只是好的,求第二只也是好的概率.解:令A={第1只是好的},B={第2只是好的},法一:n(A)=C16C19,n(AB)=C16C15,故P(B|A)=n(AB)n(A)=C16C15C16C19=59.法二:因事件A已发生(已知),故我们只研究事件B发生便可,在A发生的条件下,盒中仅剩9只晶体管,其中5只好的,所以P(B|A)=C15C19=59.条件概率的应用[典例]在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个球,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.[解]法一:设“摸出第一个球为红球”为事件A,“摸出第二个球为黄球”为事件B,“摸出第二个球为黑球”为事件C,则P(A)=110,P(AB)=1×210×9=145,P(AC)=1×310×9=130.∴P (B |A )=P (AB )P (A )=145110=1045=29,P (C |A )=P (AC )P (A )=130110=13.∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.∴所求的条件概率为59.法二:∵n (A )=1×C 19=9,n (B ∪C |A )=C 12+C 13=5,∴P (B ∪C |A )=59.∴所求的条件概率为59.利用条件概率性质的解题策略(1)分析条件,选择公式:首先看事件B ,C 是否互斥,若互斥,则选择公式P (B ∪C |A )=P (B |A )+P (C |A ). (2)分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.[活学活用]在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620,P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P (A )P (D )+P (B )P (D )=210C 62012 180C 620+2 520C 62012 180C 620=1358. 故所求的概率为1358.层级一 学业水平达标1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A .56B .910C .215D .115解析:选C P (AB )=P (B |A )·P (A )=13×25=215.2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A .14B .13C .12D .1解析:选B 因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是13.3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( )A .49B .29C .12D .13解析:选C 由题意可知,n (B )=C 1322=12,n (AB )=A 33=6.∴P (A |B )=n (AB )n (B )=612=12. 4.甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )和P (B |A )分别等于( )A .13,25B . 23,25C .23,35D . 12,35解析:选C P (A |B )=P (AB )P (B )=0.120.18=23,P (B |A )=P (AB )P (A )=0.120.2=35.5.用“0”“1”“2”组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P (A |B )=( )A .12B .13C .14D .18解析:选B 法一:∵P (B )=3×33×3×3=13,P (AB )=33×3×3=19,∴P (A |B )=P (AB )P (B )=13,故选B .法二:在B 发生的条件下,问题转化为:用“0”“1”“2”组成三位数码,其中第二位数字为0,则P (A |B )为在上述条件下,第一位数字为0的概率,∴P (A |B )=33×3=13.6.投掷两颗均匀的骰子,已知点数不同,设两颗骰子点数之和为ξ,则ξ≤6的概率为________.解析:设A =“投掷两颗骰子,其点数不同”,B =“ξ≤6”,则P (A )=3036=56,P (AB )=13,∴P (B |A )=P (AB )P (A )=25. 答案:257.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.解析:设A =“其中一个是女孩”,B =“其中一个是男孩”,则P (A )=34,P (AB )=12,∴P (B |A )=P (AB )P (A )=23. 答案:238.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取产品,每次1件,取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是________.解析:令第二次取得一等品为事件A ,第一次取得二等品为事件B ,则P (AB )=C 12·C 14C 16·C 15=415,P (A )=C 14·C 13+C 12·C 14C 16·C 15=23. 所以P (B |A )=P (AB )P (A )=415×32=25.答案:259.五个乒乓球,其中3个新的,2个旧的,每次取一个,不放回的取两次,求: (1)第一次取到新球的概率; (2)第二次取到新球的概率;(3)在第一次取到新球的条件下,第二次取到新球的概率. 解:设第一次取到新球为事件A ,第二次取到新球为事件B . (1)P (A )=3×45×4=35. (2)P (B )=3×2+2×35×4=1220=35. (3)法一:P (AB )=3×25×4=310, P (B |A )=P (AB )P (A )=31035=12.法二:n (A )=3×4=12,n (AB )=3×2=6, P (B |A )=n (AB )n (A )=612=12.10.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一人作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. 解:设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)法一:要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415. 法二:P (B )=1540=38,P (AB )=440=110,∴P (A |B )=P (AB )P (B )=415. 层级二 应试能力达标1.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A .56B .34C .23D .13解析:选C 在已知取出的小球不是红球的条件下,问题相当于从5黄10绿共15个小球中任取一个,求它是绿球的概率,∴P =1015=23. 2.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .12解析:选B ∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110, ∴P (B |A )=P (AB )P (A )=14. 3.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( ) A .911 B .811C .25D .89解析:选D 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而在吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89.4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217解析:选D 设事件A 表示“抽到2张都是假钞”,事件B 为“2张中至少有一张假钞”,所以为P (A |B ). 而P (AB )=C 25C 220=119,P (B )=C 25+C 15C 115C 220=1738.∴P (A |B )=P (AB )P (B )=217. 5.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.解析:设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100=120,P (AB )=C 15C 195A 2100=19396, 所以P (B |A )=P (AB )P (A )=9599.答案:95996.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.解析:法一:根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数的数共有33个,故所求概率为3350.法二:设A =“取出的球不大于50”,B =“取出的数是2或3的倍数”,则P (A )=50100=12,P (AB )=33100, ∴P (B |A )=P (AB )P (A )=3350. 答案:33507.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈的条件下,第2次抽到舞蹈节目的概率.解:设“第1次抽到舞蹈节目”为事件A ,“第2次抽到舞蹈节目”为事件B ,则“第1次和第2次都抽到舞蹈节目”为事件AB .(1)从6个节目中不放回地依次抽取2次的事件数为n (Ω)=A 26=30,根据分步计数原理n (A )=A 14A 15=20,于是P (A )=n (A )n (Ω)=2030=23.(2)因为n (AB )=A 24=12,于是 P (AB )=n (AB )n (Ω)=1230=25. (3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=P (AB )P (A )=2523=35. 法二:因为n (AB )=12,n (A )=20, 所以P (B |A )=n (AB )n (A )=1220=35.8.有外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功,求试验成功的概率.解:设A ={从第一个盒子中取得标有字母A 的球}, B ={从第一个盒子中取得标有字母B 的球}, R ={第二次取出的球是红球}, 则容易求得P (A )=710,P (B )=310, P (R |A )=12,P (R |B )=45.事件“试验成功”表示为RA ∪RB ,又事件RA 与事件RB 互斥, 故由概率的加法公式,得 P (RA ∪RB )=P (RA )+P (RB ) =P (R |A )P (A )+P (R |B )P (B ) =12×710+45×310=0.59.。

高中数学选修2-3优质学案11:2.2.1 条件概率

高中数学选修2-3优质学案11:2.2.1 条件概率

2.2.1 条件概率知识导学知识点一 条件概率的定义一般地,设A ,B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率.一般把P (B |A )读作,变形公式(即乘法公式):P (AB )=.知识点二 条件概率的性质性质1:≤P (B |A )≤.性质2:如果B 和C 是两个互斥事件,那么P (B ∪C |A )=.知识拓展每一个随机试验,都是在一定条件下进行的,条件概率则是当试验结果的一部分已经知道,即在原随机试验的条件又加上一定的条件,已知事件A 发生,在此条件下事件AB 发生,要求P (B |A ),相当于把A 看作新的基本事件,空间计算事件AB 发生的概率,即P (B |A )=n (AB )n (A )=n (AB )n (Ω)n (A )n (Ω)=P (AB )P (A ). 自诊小测1.判一判(正确的打“√”,错误的打“×”)(1)若事件A ,B 互斥,则P (B |A )=1.( )(2)事件A 发生的条件下,事件B 发生,相当于A ,B 同时发生.( )(3)P (B |A )≠P (AB ).( )2.做一做(1)已知P (B |A )=13,P (A )=25,则P (AB )等于________. (2)把一枚硬币任意掷两次,事件A ={第一次出现正面),事件B =(第二次出现反面),则P (B |A )=________.(3)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.20,P (B )=0.18,P (AB )=0.12,则P (A |B )=________,P (B |A )=________.课堂探究探究1 条件概率的计算例1 5个乒乓球,其中3个新的,2个旧的,每次取一个,不放回地取两次,求:(1)第一次取到新球的概率;(2)第二次取到新球的概率;(3)在第一次取到新球的条件下第二次取到新球的概率.拓展提升计算条件概率的两种方法(1)在缩小后的样本空间ΩA中计算事件B发生的概率,即P(B|A)=事件AB所含基本事件的个数事件A所含基本事件的个数;(2)在原样本空间Ω中,先计算P(AB),P(A),再按公式P(B|A)=P(AB)P(A)计算,求得P(B|A).跟踪训练1从一副扑克牌(去掉大、小王,共52张)中随机取出1张,用A表示“取出的牌是Q”,用B表示“取出的牌是红桃”,求P(A|B).探究2有关几何概型的条件概率例2一个正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能投中).设投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,求P(AB),P(A|B).拓展提升本例是面积型的几何概型,利用小正方形的个数来等价转化,将样本空间缩小为n(B).跟踪训练2如图,四边形EFGH是以O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=________;(2)P(B|A)=________.探究3条件概率的实际应用例3一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.拓展提升若事件B,C互斥,则P(B∪C|A)=P(B|A)+P(C|A),即为了求得比较复杂事件的概率,往往可以先把它分解成两个(或若干个)互斥的较简单事件,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.跟踪训练3在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.课堂提升1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(A).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数. 3.利用公式P (B ∪C |A )=P (B |A )+P (C |A )求解有些条件概率问题较为简捷,但应注意这个性质是在“B 与C 互斥”这一前提下才具备的,因此不要忽视这一条件而乱用这个公式. 随堂自测1.已知P (B |A )=12,P (AB )=38,则P (A )等于( ) A.316 B.1316 C.34 D.142.某地区气象台统计,该地区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.343.抛掷红、黄两枚质地均匀的骰子,当红色骰子的点数为4或6时,两枚骰子的点数之积大于20的概率是( )A.14B.13C.12D.354.在区间(0,1)内随机投掷一个点M (其坐标为x ),若A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 0<x <12,B =⎩⎨⎧⎭⎬⎫x ⎪⎪14<x <34,则P (B |A )等于________.5.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则从2号箱中取出红球的概率是多少?——★ 参 考 答 案 ★——知识导学A 发生的条件下,B 发生的概率P (A )·P (B |A )知识点二 条件概率的性质0 1P (B |A )+P (C |A )自诊小测1.[[答案]] (1)× (2)√ (3)√2.[[答案]] (1)215 (2)12 (3)23 35[[解析]] (1)P (AB )=P (B |A )·P (A )=13×25=215. (2)P (A )=12,P (AB )=14,则P (B |A )=P (AB )P (A )=12. (3)由条件概率的概念可知,P (A |B )=P (AB )P (B )=0.120.18=23, P (B |A )=P (AB )P (A )=0.120.2=35. 课堂探究探究1 条件概率的计算例1 解:记第一次取到新球为事件A ,第二次取到新球为事件B .(1)P (A )=35. (2)P (B )=3×2+2×35×4=35. (3)解法一:因为P (AB )=3×25×4=310, 所以P (B |A )=P (AB )P (A )=31035=12. 解法二:因为n (A )=C 13C 14=12,n (AB )=C 13C 12=6,所以P (B |A )=n (AB )n (A )=612=12. 跟踪训练1 解:解法一:由于52张牌中有13张红桃,则B 发生(即取出的牌是红桃)的概率为P (B )=1352=14. 而52张牌中,既是红桃又是“Q ”的牌只有一张,故P (AB )=152, ∴P (A |B )=P (AB )P (B )=152÷14=113. 解法二:根据题意,即求“已知取出的牌是红桃”的条件下,事件A :“取出的牌是Q ”的概率. ∵n (A ∩B )=1,n (B )=13,从而P (A |B )=n (A ∩B )n (B )=113. 探究2 有关几何概型的条件概率例2 解:如图,n (Ω)=9,n (A )=3,n (B )=4,n (AB )=1,∴P (AB )=19, P (A |B )=n (AB )n (B )=14. 跟踪训练2 [[答案]] (1)2π (2)14[[解析]] (1)由题意可得,事件A 发生的概率P (A )=S 正方形EFGH S 圆O =2×2π×12=2π. (2)事件AB 表示“豆子落在△EOH 内”,则P (AB )=S △EOH S 圆O =12×12π×12=12π. 故P (B |A )=P (AB )P (A )=12π2π=14. 探究3 条件概率的实际应用例3 解:设第i 次按对密码为事件A i (i =1,2),则A =A 1∪(A -1A 2)表示不超过2次按对密码.(1)因为事件A 1与事件A -1A 2互斥,由概率的加法公式得P (A )=P (A 1)+P (A -1A 2)=110+9×110×9=15. (2)用B 表示最后一位按偶数的事件,则P (A |B )=P (A 1|B )+P ((A -1A 2)|B )=15+4×15×4=25. 跟踪训练3 解:记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另1道题答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =C 610C 620+C 510C 110C 620+C 410C 210C 620=12180C 620,P (AD )=P (A ),P (BD )=P (B ),P (E |D )=P (A |D )+P (B |D )=P (A )P (D )+P (B )P (D )=210C 62012180C 620+2520C 62012180C 620=1358. 故所求的概率为1358. 随堂自测1.[[答案]] C[[解析]] 由P (AB )=P (A )P (B |A )可得P (A )=34. 2.[[答案]] C[[解析]] 设A 为下雨,B 为刮风,由题意知P (A )=415,P (B )=215,P (AB )=110, P (B |A )=P (AB )P (A )=110415=38. 故选C.3.[[答案]] B[[解析]] 抛掷红、黄两枚骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,此时两枚骰子点数之积大于20包含4×6,6×4,6×5,6×6,共4个基本事件,所求概率为13. 4.[[答案]] 12[[解析]] P (A )=121=12.∵A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪14<x <12, ∴P (AB )=141=14,∴P (B |A )=P (AB )P (A )=1412=12. 5.解:记事件A =“最后从2号箱中取出的是红球”,事件B =“从1号箱中取出的是红球”,则P (B )=42+4=23,P (B -)=1-P (B )=13,P (A |B )=3+18+1=49,P (A |B -)=38+1=13, 从而P (A )=P (AB )+P (A B -)=P (A |B )P (B )+P (A |B -)P (B -)=49×23+13×13=1127.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学精品资料
高中数学 2.2.1条件概率学案 新人教A 版选

2-3
基础梳理 1.条件概率.
条件 设A ,B 为两个事件,且P (A )>0
含义 在事件A 发生的条件下,事件B 发生的条件概率
记作 P (B |A )
读作 A 发生的条件下B 发生的概率
计算 公式
①缩小样本空间法:P
(B |A )=n (AB )
n (A )
②公式法:P (B |A )=P (AB )
P (A )
P (B |A )与P (AB )的区别:P (B |A )的值是AB 发生相对于事件A 发生的概率的大小;而P (AB )是AB 发生相对于原来的总空间而言.
2.条件概率的性质. (1)有界性:0≤P (B |A )≤1;
(2)可加性:如果B 和C 是互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ).
自测自评
1.下列说法中正确的是(B ) A .P (B |A )<P (AB ) B .P (B |A )=
P (B )
P (A )
是可能的
C .0<P (B |A )<1
D .P (A |A )=0
2.已知P (AB )=310,P (A )=3
5,则P (B |A )等于(B )
A.950
B.12
C.910
D.1
4
3.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则P (B |A )=(A )
A.13
B.15
C.16
D.112
解析:出现点数互不相同的共有6×5=30种,出现一个5点共有5×2=10种, 所以P (B |A )=1030=1
3
.故选
A.
不注意区分条件概率P (B |A )与积事件的概率P (AB )致误
【典例】 袋中装有大小相同的6个黄色的乒乓球,4个白色的乒乓球,每次抽取一球,取后不放回,连取两次,求在第一次取到白球的条件下第二次取到黄球的概率.
解析:记“第一次取到白球” 为事件A ,“第二次取到黄球” 为事件B ,“在第一次取到白球的条件下第二次取到黄球” 为事件C .
在事件A 已经发生的条件下,袋中只有9个球,其中3个白球,故此时取到黄球的概率为P (C )=P (B |A )=69=23或者P (C )=P (B |A )=P (AB )P (A )=4
1525
=2
3
.
【易错剖析】应注意P (AB )是事件A 和B 同时发生的概率,而P (B |A )是在事件A 已经发生的条件下事件B 发生的概率.若混淆这两个概念,就会出现如下错解:
记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B ,“在第一次取到白球的条件下第二次取到黄球”为事件C ,
∴P (C )=P (AB )=
4×610×9=4
15
.
基础巩固
1.已知P (B |A )=13,P (A )=2
5,则P (AB )=(C )
A. 56
B.910
C.215
D.1
15
解析:P (AB )=P (B |A )·P (A )=13×25=2
15
.故选C.
2.把一枚硬币抛掷两次,事件B 为“第一次出现正面”,事件A 为“第二次出现反面”,则P (A |B )等于(B )
A.14
B.12
C.13
D.34
解析:把抛掷硬币两次的结果图示为:“++”、“+-”、“-+”、“--”. 易知P (B )=12,P (AB )=14,∴P (A |B )=P (AB )P (B )=1
412
=1
2
.
3.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为(D )
A .0.02
B .0.08
C .0.18
D .0.72
解析:记P (A )=0.8,P (B |A )=0.9,则P (AB )=P (B |A )·P (A )=0.8×0.9=0.72. 4.6位同学参加百米径赛,赛场共6条跑道,已知甲同学排在第一跑道,则乙同学被排在第二跑道的概率是________.
解析:甲排在第一跑道,其他同学共有A 5
5种排法,乙排在第二跑道共有A 4
4种排法. 故所求概率为P =A 4
4A 55=15.
答案:1
5
能力提升
5.将三颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率P (A |B )等于(C )
A.91216
B.518
C.6091
D.12
解析:事件B 发生的基本事件个数是n (B )=6×6×6-5×5×5=91,事件A ,B 同时发生的基本事件个数为n (AB )=3×5×4=60.∴P (A |B )=
n (AB )n (B )=60
91
.
6.盒中装有10只乒乓球,其中6只新球、4只旧球,不放回地依次取出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为(C )
A.35
B.110
C.59
D.25
解析:把问题看成用10个不同的球排前两位,第一次为新球的基本事件数为6×9=54,两次均为新球的基本事件数为A 2
6=30,所以在第一次摸到新球条件下,第二次也摸到新球的概率为3054=59
. 7.设A ,B 为两个事件,若事件A 和B 同时发生的概率为
3
10
,在事件A 发生的条件下,事件B 发生的概率为12
,则事件A 发生的概率为________.
解析:∵P (AB )=310,P (B |A )=1
2

P (B |A )=P (AB )
P (A )

∴P (A )=P (AB )P (B |A )=3
1012=3
5
.
答案:3
5
8.某种元件用满6 000小时未坏的概率是34,用满10 000小时未坏的概率是1
2,现有一个此
种元件,已经用过6 000小时未坏,则它能用到10 000小时的概率为________.
解析:记满6 000小时未坏为事件A ,满10 000小时未坏为事件B ,则P (A )=3
4.
∵B
A ,∴P (A
B )=P (B )=12
.
∴P (B |A )=P (AB )P (A )=1
234=2
3
.
答案:2
3
9.已知箱子中装有10件产品,其中6件正品,现从中不放回地任取两次,每次取一件,求两次都取到正品的概率.
解析:设A ={第一次取到正品},B ={第二次取到正品},AB ={两次都取到正品}. 由题意知, P (A )=610,P (B |A )=5
9.
故P (AB )=P (A )P (B |A )=610×59=1
3
.
10.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一个作学生代表.
(1)求选到的是第一组的学生的概率;
(2)已知选到的是共青团员,求他是第一组学生的概率. 解析:设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=1
4
.
(2)法1 要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=4
15
.
法2 P (B )=1540=38,P (AB )=440=1
10

P(AB)P(B)=
4
15
.
∴P(A|B)=。

相关文档
最新文档